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ABSTRACT

We consider the problem of learning high dimensional polynomial
transformations of Gaussians. Given samples of the form f(x),
where x ~ N'(0,1d;) ishiddenand f : R" — R is a function where
every output coordinate is a low-degree polynomial, the goal is to
learn the distribution over f(x). One can think of this as a simple
model for learning deep generative models, namely pushforwards
of Gaussians under two-layer neural networks with polynomial
activations, though the learning problem is mathematically natural
in its own right.

Our first main result is a polynomial-time algorithm for learn-
ing quadratic transformations of Gaussians in a smoothed setting.
Our second main result is a polynomial-time algorithm for learn-
ing constant-degree polynomial transformations of Gaussian in a
smoothed setting, when the rank of the associated tensors is small.
In fact our results extend to any rotation-invariant input distribu-
tion, not just Gaussian. These are the first end-to-end guarantees
for learning a pushforward under a neural network with more than
one layer.

While our work aims to take an initial step towards understand-
ing why generative models perform so well in practice, the algorith-
mic problems that we solve along the way are also of independent
interest. We give the first provably efficient algorithms for tensor
ring decomposition, a popular non-commutative generalization of
tensor decomposition that is used in practice to implicitly store
large tensors [107], as well as for a new variant of matrix factoriza-
tion where the factors arise from low-rank tensors.
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1 INTRODUCTION

We consider the problem of learning a polynomial transforma-
tion. Suppose there is an unknown low-degree polynomial f :
R" — RY, where r < d, and we are given samples of the form
f(x1),..., f(xn), where xi, ..., x, are independent samples, not
revealed to the learner, from some simple seed distribution D. The
goal is to approximately learn the distribution of f(x) for x ~ D,
perhaps even by approximately recovering f. When f is linear
and D is a product distribution, this is the well-studied problem of
independent component analysis [49].

While this problem is natural in its own right, it also has rele-
vance to the theory of deep generative models such as variational
auto-encoders (VAEs) [76] and generative adversarial networks
(GANS) [55]. Indeed, a polynomial transformation is nothing more
than a generative model computed by a two-layer neural network
with polynomial activations. Despite their apparent simplicity, push-
forwards of simple distributions like Gaussians under such net-
works can already be used to generate images of nontrivial quality
[83, Figure 2]. Understanding the learnability of such polynomial
transformations can thus be thought of as a first step towards un-
derstanding the learnability of real-world generative models.

Unfortunately, despite the fundamental nature of this question,
very little is known. The only provable results for this problem [83]
only hold for extremely structured instances, and only under a
certain conjectured structural result. To the best of our knowledge,
to date, there are no algorithms with end-to-end provable guar-
antees for learning polynomial transformations of degree strictly
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larger than 1. Indeed, more generally, there are no algorithms with
such guarantees for learning pushforwards of neural networks with
more than one layer in any non-trivial setting. Therefore, in this
paper, we ask:
When can we provably learn polynomial transformations?

We will focus on the setting where D = N(0,1d), a standard choice
of seed distribution in both the theoretical and applied generative
modeling literature.

Tensor problems. Our approach to learning polynomial trans-
formations is based on the method of moments. For example, in the
special case where the output coordinates of f are computed by qua-
dratic polynomials, i.e. f(x) = (xT Qix,..., xTQZx) for unknown
symmetric matrices QT, e Q; € R™, the task of recovering the
parameters of f from the low-order moments of the polynomial
transformation turns out to give rise to the following intriguing
tensor problem (see Section 5):

There are unknown matrices Q;‘, e, Q; € R™7, and the goal is
to recover them up to trivial symmetries, given noisy estimates for
Tr(QZQZ) and Tr(QZQZQi) for all a, b, c. When {Q}} are diagonal,
this is equivalent to (degree-3) symmetric tensor decomposition (see
Appendix in full version), a problem which has received consider-
able attention, especially in recent years, in the theoretical computer
science and learning theory literature [16, 18, 51, 60, 64, 65, 82, 86].
The problem for general {Q}} is thus the natural “non-commutative”
generalization of tensor decomposition.

In other communities, this tensor problem goes by the name of
tensor ring decomposition [107]. Tensor ring decomposition, and
related concepts such as hierarchical Tucker rank [15, 89] and tensor
train decomposition [90, 91], were first proposed in the condensed
matter physics community [101], and were later adopted in the
neural network community as ways to concisely represent large
tensors in a way which still allows for efficient linear algebraic
computations [107]. Various heuristics have been proposed for this
problem [75, 107], though to date, none of these come with provable
guarantees for tensor ring decomposition in any nontrivial regime
of parameters, and even in the noiseless setting where one has exact
access to Tr(QZQZ) and Tr(QZQZQj). This is in stark contrast to
the state of affairs with traditional tensor decomposition, where for
many settings, often in the presence of considerable noise, there
are many polynomial time algorithms with provable guarantees.
This begs the natural question:

When can we efficiently solve tensor ring decomposition?

While this is of tremendous interest in its own right, our interest
comes from the fact that this is fundamentally related to learning
quadratic transformations of Gaussians. Indeed, recovering the pa-
rameters of such a distribution from its moments of degree at most
3 is exactly equivalent to solving tensor ring decomposition (see
Section 5). Understanding tensor ring decomposition thus seems
like an important step towards understanding our central learning
problem.

We also give algorithms based on method of moments for learn-
ing higher-degree polynomial transformations. Naturally, this gives
rise to other tensor problems of even greater complexity, and we
defer a discussion of these to Sections 2.1 and 5. We view the design
of algorithms for tensor ring decomposition and these other tensor
problems as one of our primary contributions.
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1.1 Our Contributions

In this paper, we give the first efficient algorithms for learning
high dimensional polynomial transformations of Gaussians, under
mild non-degeneracy conditions that we demonstrate are satisfied
with negligible failure probability in reasonable smoothed analysis
settings. Along the way, we also provide the first efficient algorithms
for tensor ring decomposition and related tensor problems under
analogous conditions.

Efficient algorithms for quadratic transformations and ten-
sor ring decomposition. Our first result is a polynomial time
algorithm for learning smoothed (homogeneous) quadratic trans-
formations of Gaussians, in sufficiently high dimensions:

THEOREM 1.1 (INFORMAL). For anyd € N sufficiently large and
any ¢ > 0, 1/poly(d)-smoothed quadratic transformations of Gauss-
ian with input dimensionr = 5(\/3) are learnable (both in parameter
distance and Wasserstein distance) to error ¢ in poly(r,1/¢) - d time
and poly(r, 1/¢) samples with probability at least 1 — exp(—poly(r))
over the smoothing.

To the best of our knowledge, this is the first end-to-end provable
algorithmic result for learning pushforwards given by a neural
network with more than a single layer (see Section 4 for further
discussion). Note that the condition r = O(Vd) here means that
the pushforward distribution is supported on a low-dimensional
manifold, which is quite natural in practice [92].

Our smoothed model is the standard one in which the instance
is given by a small random perturbation of a worst-case instance
(see Section 2). As with many results in smoothed analysis, our re-
sults hold more generally under mild deterministic non-degeneracy
conditions.

We remark that while our guarantee holds for all d which are
at least quadratic in r, standard dimension reduction arguments
(see full version) show that the hardest case is really when d is
exactly quadratic in r. This is the threshold at which the d polyno-
mials defining the transformation first span the space of quadratic
polynomials in r variables.

We complement Theorem 1.1 with an information-theoretic
lower bound (see Appendix in the full version), which states that
in the worst case, parameter learning for quadratic transforma-
tions requires exponentially many samples, even in one dimension.
Combined with computational hardness results for improper den-
sity estimation of worst-case ReLU network transformations of
Gaussians [28-30], this suggests that some beyond-worst-case as-
sumptions are necessary to obtain efficient algorithms. Intuitively,
our non-degeneracy assumptions give us a “blessing of dimension-
ality” phenomenon which allows us to obtain multiple linearly
independent “views” of the underlying transformation.

Theorem 1.1 is based on the following new algorithm for tensor
ring decomposition:

THEOREM 1.2 (INFORMAL, SEE THEOREM 6.3). For anyd € N
sufficiently large and any e > 0, given a 1/poly(d)-smoothed instance
of e-noisy tensor ring decomposition in dimension r = O(Nd), there is
a polynomial time algorithm which recovers the unknown matrices to
error poly (e, r) up to trivial symmetries in poly(r, 1/¢) - d time with
probability at least 1 — exp(—poly(r)) over the smoothing.
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Our algorithms for Theorems 1.1 and Theorems 1.2 are based on the
Sum-of-Squares (SoS) “proofs to algorithms” framework, which in
recent years has been applied to solve a number of high-dimensional
statistical problems. However, the design of our algorithm differs
quite substantially from prior techniques used within this literature.
As we explain in Section 3, the Tr(QZQ;;)’s in tensor ring decompo-
sition give us the unknown r X r matrices Q;‘, e, QZ, up to a shared,
unknown rotation, but as vectors in r? dimensions. The heart of our
algorithm is an SoS proof that the only such rotations which can
additionally match the Tr(Qj Q;; QZ)’s are in fact Kronecker powers
of r X r-dimensional rotation matrices. In other words, up to gauge
symmetry in the r X r-dimensional space, the r? x r?-dimensional
rotations which respect our constraints are unique, and moreover,
SoS witnesses this fact. Consequently, this implies that we can
search for these rotations using an SoS program, and the result can
be easily rounded to solve the overall problem.

Efficient algorithms for low-rank polynomial transforma-
tions. For our final result, we turn to polynomial transformations
of higher degree. We show that (homogeneous) polynomial trans-
formations of odd constant degree can be learned efficiently, as long
as the transformation can be represented using low rank tensors.
Recall that any homogeneous degree w polynomial p : R” — R can
be associated with a symmetric tensor T : R” — (R")®?, so that
p(x) = (T,x®%). We say that a polynomial is rank ¢ if the associ-
ated tensor has symmetric rank ¢, and we say that a polynomial
transformation f : R” — R? has rank ¢, if each output coordinate
is computed by a rank-£ polynomial. From the perspective of neural
networks, £ corresponds to the channels of the hidden layer per
neuron. Our main result here is:

THEOREM 1.3 (INFORMAL). There is an absolute constant ¢ > 0
such that for any d € N sufficiently large and any ¢ > 0, 1/poly(d)-
smoothed rank-¢ = O(1) transformations of odd degree w = O(1)
with seed length r = 0(d®/(@?)) are learnable (both in parameter
distance and Wasserstein distance) to error € in poly(r,1/¢) - d time
and poly(r, 1/¢) samples with probability at least 1 — exp(—poly(r))
over the smoothing.

At its heart, our algorithm follows the same rough structure as
the one for the quadratic case, that is, we must show in SoS that
the unknown rotation over r® dimensions which maps the ground
truth to our estimates must arise as a Kronecker power of a rotation
over r dimensions. However, the arguments here are much more
subtle. For starters, for a high-degree polynomial transformation,
even the low-order moments are unwieldy even to write down, let
alone work with.

For this reason, unlike in the quadratic case, here we only work
with second-order moments. In place of tensor ring decomposition,
this leads to a new inverse problem that we call low-rank factor-
ization, which may be of independent interest: given unknown
low-rank symmetric tensors T},.. T; recover them from esti-
mates of every (T, Tb* ) up to the trivial r X r rotational symmetry
(see Definition 2.8). A priori it is unclear why this should be possi-
ble, e.g. if T}, .. ., T; weren’t constrained to be low-rank, then one
could only hope to recover them up to a global r® x r® rotation. We
show that surprisingly, the low-rank constraints force this rotation
to be the Kronecker power of an r X r rotation. The proof of this is
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the most involved part of this work: the difficulty comes in large
part from the fact that symmetric tensor rank, unlike matrix rank, is
notoriously difficult to capture using simple polynomial constraints
[80]. We refer the reader to Section 3 for more details.

Finally, we remark that all of our guarantees for learning trans-
formations (Theorem 1.1 and 1.3) in fact hold for transformations
of any rotation-invariant seed distribution with suitable moment
bounds (see Sections 5.1 and 5.2), not just of N (0,1d,).

2 GENERATIVE MODEL AND INVERSE
PROBLEMS

In this section, we formally define the models we study throughout
this paper.

Definition 2.1 (Polynomial Transformations). For v > 2, a d-
dimensional degree-w transformation with seed length r is a dis-
tribution D over RY specified by tensors T?, .. ., T; € (R"®4. To
sample from D, one samples x ~ N'(0,1d,-) and outputs

(T x®0), . (T x®0)).
Equivalently, D is the pushforward of the standard Gaussian measure
on R" under the map x — ((T7,x%%),..., (T;,xw)).

We will collectively refer to the tensors T/, . . .,T; as the polyno-
mial network specifying D. If w = 2, we will use Q7, ..., Q% € R™"
in place of T}, ..., T;f. IfT, ..., T; are of rank ¢, then we say that
(17, ..., T;) is a rank-¢ polynomial network.

We will study the learnability of polynomial transformations in the
following smoothed analysis settings. For quadratic transforma-
tions, we consider entrywise Gaussian perturbations.

Definition 2.2 (Smoothed Quadratic Networks). Let p > 0. We
say a degree-2 polynomial network Q7,..., Q% € R™7 is p-fully-
smoothed if Q7 . . ., Q:;, were generated as follows: for some (possibly
worst-case) matrices Qy,...,Qy € R™", each Q} is obtained by
independently sampling a symmetric matrix G, whose diagonal and
upper triangular entries are independent draws from N(0,1) and
forming Q% £ Q, + g - Gg. We refer to the matrices Q, ..., Qg as
the base network.

For low-rank transformations, we consider perturbations of the
rank-1 tensor components.

Definition 2.3 (Smoothed Low-Rank Networks). Let p > 0. We
say that a rank-t polynomial network Ty, ..., T} € (R")®® s p-
componentwise-smoothed if T/, . . T; were generated as follows:
for some (possibly worst-case) r-dimensional vectors {va,i Y ae[d],ic[¢]>
each T is obtained by independently sampling ga1,....gar from
N(0.1d,) and forming Ty = 31i_ (9a,i+ Lz - gai)®®. Similar to Def-

A Zt’ ®f

inition 2.2, we refer to the tensors T1, ..., T4 given by T, i=1 %

as the base network.

In this paper we give guarantees for parameter learning polynomial
transformations. There are some basic symmetries to be aware
of. First, if T and T’ differ by a skew-symmetric form, that is if
2reS, (T_T,)in(l)“'in(a)) =0foralliy,...,i, € [r], then (T, x®?)
and (T, x®®) are identical as polynomials in x. For this reason, we
will henceforth assume without loss of generality that the network
Tl*, ..., T% consists of symmetric tensors.
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Additionally, because the seed distribution N (0,1d;) that is be-
ing pushed forward through the polynomial network is rotation-
invariant, the network of a polynomial transformation is only iden-
tifiable up to a gauge symmetry. Let O(r) denote the group of or-
thogonal r X r matrices. Given a tensor T € (R")®“ and orthogonal
matrix U € O(r), define the tensor Fy;(T) € (R")®® by

Fu(iio = Y, Uiiji Ui Tirio )
Jisjw €lr]
for all iy,...,i, € [r]. Note that when w = 2sothat Tisanr X r

matrix, then Fiy (T) = UTU . The following is immediate:

Lemma 2.4 (Gauge symmetry). For any network T{,...,T} €
(R®")®“ and any orthogonal matrix U € O(r), the transforma-

tion specified by the polynomial network T, ..., T1*, where T;* =
Fyew (1) is identical in distribution to the one specified by T, ..., T}.

In this work we study parameter learning and thus formulate this
learning task as recovering the polynomial network modulo this
freedom:

Definition 2.5 (Parameter Distance). Given polynomial networks
T,...,TyandT/,..., Tl;, define parameter distance dg ({1}, {T}})

by do({Ta}, {T;}) = minyeo(r) Maxee[q)lFyee (Ta) = Tl F.

It is not hard to see that parameter learning implies proper density
estimation.

We note that in general it is not true that the parameters of
a polynomial transformation must be uniquely determined up to
gauge symmetry. For example, it was shown in [57] that there exist
cubic polynomials p, g : R — R for which the corresponding push-
forwards of N (0,1dy) are identical as distributions, but for which p
and q are not equivalent up to gauge symmetry. Nevertheless, the
fact that we are able to show parameter learning up to gauge sym-
metry is possible in smoothed settings suggests that such examples
are quite pathological.

2.1 Inverse Problems

Our algorithms for learning polynomial transformations are based
on the method of moments. In general, the intricate combinatorial
structure of the higher-order moments of a polynomial transforma-
tion makes them quite difficult to work with, especially when the
degree of the transformation itself is large. In this work however,
we show that for smoothed networks, it suffices to work with mo-
ments up to degree at most three. That is, we show how to recover
the parameters of a smoothed polynomial transformation D using
only estimates of the form E[z,zp2¢], E[zazp], E[z4] for z ~ D. As
we show in Section 5, these moments take a particular form so that
the problem of reconstructing parameters from moments naturally
gives rise to the following inverse problems.

Definition 2.6 (Tensor Ring Decomposition). Letn > 0, and let
Q;‘, .. Q; € R™ be unknown symmetric matrices. Given as input

R4 and a tensor T € R4 satisfying
[Tr(Q2Q5) = Sas| <1
|Tr(QZQZQZ<) - Ta,b,c| <7

a,b,c € [d], the goal is to output matrices Ql, A Qd for which the
parameter distance dg ({Q}}, {Qqa}) is small.

a matrix S €
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Remark 2.7. This is slightly different from how tensor ring decom-
position is traditionally posed [107] as usually one only assumes that
T is given. For learning polynomial transformations however, it is
easy to get access to both S and T, so we work with Definition 2.6.

This specializes to the well-studied problem of symmetric tensor
decomposition when Q}; are diagonal: if v; € R? denotes the vector
with a-th entry (Q});i, thenT =~ }; 0?3 (see full version for details).

We also study the following (to our knowledge, new) variant of
matrix factorization:

Definition 2.8 (Low-Rank Factorization). Letn > 0, and let T},
Td* € (R")®“ be unknown symmetric tensors of rank £. Given

a known positive definite matrix 3 € Rrwxrm, let (-, )y, denote the

associated inner product. Given as input a matrixS € RAxd satisfying

[(vec(Ty), vec(Ty))s = Sap| < n Y ab € [d],
the goal is to output T,..., Td for which dg ({T} }, {fa}) is small.

A priori, it is not even clear that such a recovery guarantee is
possible. Indeed, without the extra condition that T}, ..., T; are
low rank, the recovery goal in Definition 2.8 is impossible, even for
n =0and X = Id. In that case, the constraints (T, T,’) = 545 at best
specify {T;;} up to an r® X r® rotation, whereas in Definition 2.8
we are interested in recovery up to an r X r rotation!

In view of our application to polynomial transformations, we
will be interested in ¥ given by ¥ = Ex.p [Vec(x)®“’vec(x)®“’T]
for rotation-invariant distributions D over R", e.g. D = N(0,1d).

3 TECHNICAL OVERVIEW

In this section we give a high-level overview of the key algorithmic
ideas in this work. As our reduction from polynomial pushforwards
to the inverse problems defined in Section 2.1 is straightforward
(see Section 5), here we focus on describing our algorithms for
the inverse problems, namely tensor ring decomposition and low-
rank factorization. For both of these, we will sketch how to prove
that the underlying parameters ({Q}} and {T}; } respectively) are
information-theoretically identifiable from the input, modulo gauge
symmetry. As we show partially in Sections 6 and completely in
the full version, with significant care, these proofs of identifiability
can be implemented in the SoS proof system and thus yield efficient
algorithms; we discuss the main challenges for doing so at the
end of this overview. Along the way, we also discuss why existing
approaches in the tensor decomposition literature like simultaneous
diagonalization appear to fall short of solving the tensor problems
we consider.

For simplicity, in this overview we focus on the noiseless setting,
i.e. when 1 = 0 in Definitions 2.6 and 2.8, though in later sections
we prove our guarantees for general 7.

Overview notation. Subscripts/superscripts denote row/column

2
indices for matrices. Given Q € R™ ", vec(Q) € R denotes its
flattening. e; € R” denotes the i-th standard basis vector.

3.1 Tensor Ring Decomposition

Hidden r? x r? rotation. Recall that in tensor ring decomposi-
tion, there are unknown symmetric matrices Q;‘, .. Q; and we
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want to recover them up to gauge symmetry given Tr(QZQ;;) and
Tr(QZQZQﬁ) for all a, b, c.

First, as discussed above, the only information the Tr(Q;Q;)’s
provide is the angle between every pair of matrices regarded as an
r?-dimensional vector. In particular, given only the Tr(QgQ,)’s. the
best we can hope for is to estimate {Q}; } up to an r2xr? rotation’ (see
Section 6.3). More formally, we can only hope to produce matrices

Q1. ...,Qy for which there exists some r? X r? orthogonal matrix U
satisfying U vec(Q}) = vec(Qg) fora = 1,...,d. Recalling (1), we
denote this by

Fy(Qg) = Qa @)

An example of such a U would be one corresponding to an r X r
rotation. That is, consider a r X r orthogonal matrix V. We can check
that the transformation sending any Q to VQV " can be expressed
in terms of Fy for U given by the Kronecker square of V. That
is, if we index the rows and columns of U by [r] X [r] and let
the (i, j)-th column be given by the flattening of V:(V/)T, then
Fy(Q) = VQVT. In this case, we say that U arises from V.

Note that U’s of this form comprise a vanishing fraction of all
r?xr? orthogonal matrices. The bulk of our analysis is thus centered
around proving that the remaining third-order constraints in tensor
ring decomposition, i.e. the Tr(QzQ, Q¢)’s, force U to take this
special form.

Using third-order constraints. Note that we can interpret the
Tr(Q:;QZQﬁ)’s as telling us the angle between the vectors vec(Qj)
and vec(QZQc*) for any a, b, c. Using this, we can ensure that in
addition to U sending every Qg to Qq, U also sends every Q; O to

030, ie.
’ Fu(Q407) = 0y Q.

To unpack what additional information this implies about U, let
us pretend for a moment that Qi‘, el Q; consisted of the matrices
{Eij}, where E;jj = eiejT. For any i, j, we will refer to the corre-
sponding Qq as Q;j so that Q;; = Fyy (E;;). Note that Fyy (E;;) is the
(i, j)-th column of U, reshaped into an r X r matrix. We will refer
to this as U™,

Now what do the constraints 3.1 tell us? For any i, j, j/, k € [r],
note that E;jEj, = 1[j = j’] - Ej. So the fact that Q;;Q;x =
Fy (E;jEji) implies that

viu* =10 = 11U 3)

It turns out that even if {Q;} are not given by {E;;}, under mild
conditions on {Q}} that hold in the smoothed setting (Part 2 of
Assumption 1), U will still satisfy (3).

Using the relations (3). We now sketch how to argue, using the
relations (3), that U must arise from an r X r rotation. Recall this
means we must argue that the matrices U™/ are each given by the
outer product of a pair of columns of some orthogonal matrix.

The main step is to argue that the matrices U/ are rank-1 ma-
trices. From (3), we have that U"/ = U#U%/. Right-multiplying by
U on both sides and taking traces, we get

Tr(UYUY Ty = Te(UUT U T

- e T e T
< NUHIENUYUY e = IUYUY I (4)
!Technically this is not quite true as {Q};} do not span the space of all 7 X r matrices

as they are symmetric. We defer the discussion of how we circumvent this issue to
later in the overview.
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where in the third step we used the fact that U is orthogonal to
conclude that ||U||p = 1. As UV U Tis psd, the above inequality
holds with equality, so U/U T is a rank-1 matrix, implying that
Ut is as well.

Having showed there exist unit vectors {v;;, w;;} for which
Ui = UijWiTj, we can use (3) to conclude. For instance, (3) implies
that (U%)% = U, so v;; = wy;. It also tells us that UUJ = 0 for
i # j,so {0;;} are orthonormal. Lastly, it tells us that U#UY = U/
and UYUJ = U/ 50 v;j = v;; and w;; = vjj. These show that U
arises from an r X r rotation with columns {v;;}.

A catch: working with symmetric matrices. Thus far, an im-
portant detail that we have elided is that because QT, o Q:; are
symmetric, there is actually some ambiguity in how to define the
r? x r? matrix U mapping every Q7 to Q. For instance, given any
such U, we could interchange the (i, j)-th and (j, i)-th columns (or
more generally, replace them with arbitrary affine combinations of
each other) and get a new matrix with the same property.

To resolve this ambiguity, we insist that U satisfy UY = UJ!
for every i = j. Unfortunately, this comes at a cost: U is no longer
orthogonal. Additionally, because {Q}} are symmetric and thus
span a smaller space than {E;;}, we end up with weaker relations
than (3).

We nevertheless show how to use these weaker relations to
bootstrap a new matrix out of U with all the desired properties
from the discussion above, i.e. orthogonality, (2), and (3).

Failure of other approaches. Given that tensor ring decom-
position is a direct generalization of tensor decomposition, one
might wonder whether there are straightforward ways to tailor
off-the-shelf algorithms for the latter to our setting. While it is un-
clear how to adapt algorithms like tensor power method to tensor
ring decomposition, one promising candidate is Jennrich’s algo-
rithm [60, 82]. Unfortunately, it turns out that because {Q}} are
constrained to be generic symmetric matrices rather than generic
matrices (a distinction which is irrelevant in the special case where
{Q}} are diagonal which corresponds to tensor decomposition),
the fact that {Q}} don’t span all of R™ breaks natural ways of
adapting approaches based on simultaneous diagonalization. As
discussed in the preceding paragraphs, the constraint that {Q}}
must be symmetric, which is necessary for avoiding one of the triv-
ial symmetries inherent in the problem, is a key technical hurdle
that we overcome.

3.2 Low-Rank Factorization

We now turn to our second inverse problem. Here, while we also
employ the general strategy of showing some unknown rotation
between the ground truth {7} to our estimates {T,} arises from
an r X r rotation, there are a number of essential differences in how
we implement this approach.

Hidden mapping respecting ¥ norm. Recall there are un-
known symmetric tensors {T}; } of symmetric rank ¢, and we want
to recover them up to gauge symmetry given (T, T;')s. While the
>-norm is no longer Euclidean, we can still readily obtain estimates
{Ta} which agree with {T} up to some r® X r® map U preserving
the X-norm, and as before, we want to show that U arises from an
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r X r rotation. If we index the rows and columns of U by [r]?, this
amounts to showing that there is some orthogonal V € R™ such
that every column of U is given by some vec(V" ® - - - ® V'),

Rank-¢-preserving transformations. The key challenge that
arises in low-rank factorization and not tensor ring decomposition
is that we only have access to pairwise information about {T}; }. In
the absence of third-order constraints which might have helped us
to prove an identity like (3), we need to exploit the assumption that
the unknown tensors {T } are low-rank.

In particular, the fact that {T} are low-rank and the fact that
the estimates T, that we output should also be low-rank places
nontrivial constraints on U. Intuitively, because {T}; } are “random-
looking” in the smoothed setting, if d is sufficiently large then we
expect that U should send any rank-¢ tensor to a rank-¢ tensor.
Reasoning about this, especially in a way amenable to efficient
algorithms, is quite delicate, because tensor rank is notoriously
worse-behaved than matrix rank. We sidestep this by devising a
relaxed notion of tensor rank that plays nicely with our algorithmic
techniques (see Section 3.3) and show that U is “rank-¢-preserving”
That is, it sends any tensor of symmetric rank £ to a tensor with
“relaxed rank” ¢.

Rank-/-preserving implies rank-1-preserving. The reason it
is useful for U to be rank-¢-preserving is that, as we show in the
full version, it additionally implies that U is rank-(¢ — 1)-preserving
and thus, by induction, rank-1 preserving! Before we process the
implications of the latter, we sketch the argument. For simplicity,
suppose here that r = £ + 1 and consider the special case of w = 2,
where our relaxed notion of rank agrees with symmetric rank (i.e.
matrix rank), though the argument also extends to any w > 2.
Starting with any rank-(£—1) matrix M € REDX (D) consider

some rank-1 perturbation ¢ - zz" that we will vary. By assumption,
Fy(M+c-zz") = Fy(M)+Fy(c-zz") has rank ¢, so det(Fyy (M) +
Fy(c-zz")) = 0. Formally differentiating this with respect to c at
¢ = 0 yields

£+1

Z det ( Fy(M)Y=1 | Fy(zzT)! | Fy(M)HE41 ) =0, (5)

i=1
where A*J denotes the matrix consisting of the i-th to j-th columns
of A. In particular, we can take the Laplace expansion of the i-th
determinant in (5) along the i-th column, and (5) then becomes a
linear combination of all £ X £ minors of Fi; (M), where the coeffi-
cients of this linear combination are given by entries of F; (zz"). By
taking many choices of z, we can ensure that sufficiently many dif-
ferent linear combinations of these minors vanish to imply that the
minors themselves vanish. This shows that Fyy (M) is rank-(£ — 1)
as desired.

Using rank-1-preservation to conclude. It turns out our re-
laxed notion of rank aligns with symmetric rank for rank-1 tensors,
so rank-1-preservation implies U sends any symmetric rank-1 ten-
sor to a symmetric rank-1 tensor. Note that if U mapped any rank-1
tensor (not necessarily symmetric) to a rank-1 tensor, then U would
map any e;, ®- - -®e;, to arank-1 tensor, implying that the columns
of U are flattenings of rank-1 tensors. At this point we would practi-
cally be done. Indeed, with some work, one could combine this with
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the fact that U preserves the -norm to conclude that U indeed
arises from an r X r rotation.

On the other hand, using only the fact that U sends symmetric
rank-1 tensors to symmetric rank-1 tensors to show the same is far
more involved and out of the scope of this overview. We give the
full details in the full version.

3.3 Sum-of-Squares Algorithms

Proofs to algorithms. Our general approach for getting an algo-
rithm out of all of this follows the usual SoS proofs-to-algorithms
pipeline for statistical problems [62]. While our setting introduces a
multitude of new conceptual twists to implementing this approach
which we will explain below, we begin by outlining the basic setup.
First, we introduce SoS variables {Qg} (resp. {T,}) corresponding
to our estimates for the ground truth {Q}} (resp. {T;}) and con-
strain them to possess the same properties as the ground truth.
For instance, for low-rank factorization, we require that {T,} are
symmetric and satisfy (Ta, Tp)s = (T, T} )3, and to constrain them
to be low-rank, we also introduce SoS variables {vat}qe[d],re[e]
and insist that T, = Zi:l vg. The hope is to turn the arguments
above into a low-degree SoS proof that {T, } and {T; } are equivalent
up to gauge symmetry, and then to apply some simple rounding
procedure to a pseudoexpectation satisfying the aforementioned
constraints to extract estimates for {T}; }.

This raises a number of challenges. How do we capture the
r® x r® transformation U from the preceding discussion in SoS?
How do we encode the condition that U has the structure of a
Kronecker power of an r X r orthogonal matrix? And how do we
actually round, given that everything is only specified up to gauge
symmetry?

Implementing U as an SoS variable. For simplicity, we illus-
trate this in the setting of tensor ring decomposition. Having im-
posed the constraints Tr(Q,Qp) = Tr(QZQ;;), we can rewrite these
constraints as the matrix equality

NNT — N*N*T,

where M, M* € R have a-th row given by vec(Q,) and vec(Q})
respectively. A linear transformation mapping every Qj into Qg
can be thought of as a matrix U for which UN*T = NT. A natural
way to construct such a matrix U would be to define U = N"IN*T.
Note that because NNT = N*N*T, it would follow that U is an
orthogonal matrix.

Of course this doesn’t quite work as N is an SoS variable and
thus does not have a left-inverse, but this is easy to remedy by intro-
ducing an additional variable L to the SoS program corresponding
to this left-inverse and requiring that LN = Id. We could then define
U to be LN*T. We emphasize that U should not be thought of as
another variable in our SoS program; after all, N* is unknown to the
algorithm designer, so the entries of U are merely unknown linear
forms in the SoS variable L. For this reason, U is only referenced
throughout the analysis of our SoS relaxation.

Finally, as discussed at the end of Section 3.1, there are some sub-
tleties as N has repeated columns because {Q,} are symmetric, so
strictly speaking it should not have a left-inverse. We discuss how to
circumvent these issues in Section 6.3 for tensor ring decomposition
and in the full version for low-rank factorization.



Learning Polynomial Transformations via Generalized Tensor Decompositions

Expressing Kronecker structure of U. While most of the steps
outlined in Sections 3.1 and 3.2 proving various properties of U
are relatively straightforward to implement in SoS, e.g. (3) and (4)
for tensor ring decomposition and rank preservation for low-rank
factorization, it is less clear how to even express in SoS the main
conclusion that we want to show about U, namely that it is the
Kronecker power of an r X r orthogonal matrix V.

In particular, how do we express V? That is, how do we use
the existing program variables to design a matrix V for which we
could hope to prove U is its Kronecker power? For tensor ring
decomposition, a natural candidate would be to take the r X r
matrix U¥ for every i € [r], pick one of its nonzero columns and
normalize it to a unit vector Vi, and take V’s columns to consist
of V¥’s. This does not quite work because the normalization step
involves a rational function of the entries of the program variables.
To fix this, we need to carry around these normalization factors
when expressing the U'/’s as outer products.

While this turns out to be manageable for tensor ring decompo-
sition, such an approach quickly becomes unwieldy for low-rank
factorization where the degree w can be arbitrary. Fortunately, for
odd w, there is a simpler workaround. Heuristically, because we
expect to have Ui = VI ® -+ - ® V! for r x r orthogonal matrix V,
we also expect that V7 is equal to the vector, call it U!, whose j-th
entry is given by

7l A i---1
DY UjijrLaofot jleosas”
Jisesdlws2) €L7]

In particular, the entries of U are simply linear forms in those of U.
For general odd w, our SoS proof that U is a Kronecker power thus
entails proving that U is the Kronecker power of U and that U is
orthogonal.

Rounding by breaking gauge symmetry. Finally, we describe
how to take a pseudodistribution satisfying the constraints of our
SoS program and round to an integral solution. This is complicated
by the fact that we can only hope to recover the ground truth
up to gauge symmetry. We address this by breaking symmetry
and imposing a small number of additional constraints to our SoS
program. These constraints will ensure that the transformation U is
not just the Kronecker power of some r X r orthogonal matrix, but
actually equal to the identity matrix. This shows that Q, and Q; (or
T, and T}) are not only equivalent up to rotation, but equal. At that
point we can produce an integral solution simply by outputting the
pseudoexpectations of {Q4} or {T,}.

In tensor ring decomposition, a natural approach to ensure that U
is identity would be to further insist that one of the Q,’s is diagonal
with diagonal entries sorted in increasing order. The reason is that if
the eigenvalues of Q, are all distinct (more precisely, well-separated
to account for noise when 5 > 0), then the only way for VQ,VT to
be equal to Q, for some r X r rotation V would be for V to be equal
to +Id (and thus for U to be (+Id)®? = Id). This approach in fact
already works in the smoothed setting.

To handle the slightly more general setting where {Q,} are
“incoherent” but have repeated eigenvalues, we slightly modify this
by insisting that some suitable random linear combination of the
Qq’s is diagonal with sorted diagonal entries. By carefully designing
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how this linear combination is sampled we can ensure that it has
sufficient eigengaps with high probability.

For low-rank factorization, we use a similar approach with vari-
ous technical modifications to account for the fact that for v > 2,
order-w tensors do not have a suitable notion of eigengap. The de-
tails here are rather thorny and involve running two SoS relaxations
in succession. We defer an overview of these workarounds to the
full version.

Roadmap. In Section 4 we describe related work. After estab-
lishing the reduction from learning polynomial transformations to
tensor ring decomposition and low-rank factorization in Section 5,
we give a more detailed overview of our algorithm for tensor ring
decomposition in Section 6, deferring many of the details of this, as
well as all the details for low-rank factorization, to the full version.

input dimension | output dimension | degree | rank

r d © 14
Table 1: Notation for the main parameters of a polynomial
transformation

4 RELATED WORK

There is a vast literature on density estimation of distributions,
especially in high dimensions, to which we cannot do justice here.
For conciseness we will only survey the most relevant work.

Learning latent variable models Much of the recent algorith-
mic success in high dimensional distribution learning has been
in developing efficient algorithms for a variety of latent variable
models, such as mixture models [1, 2, 4, 5, 12, 17, 18, 36, 37, 43, 44,
48, 50, 59, 63, 78, 79, 87, 88, 93, 100] and graphical models [10, 20—
26, 32, 35, 40, 42, 45, 53, 61, 72, 77, 94, 102, 104]. Of these works, we
highlight the work on learning latent variable models in smoothed
settings [4, 5, 10, 18, 19, 50, 66], where a similar “blessing of dimen-
sionality” phenomena to the one we observe can be seen.

However, there are important qualitative differences between
these settings and the one we consider. While our model can be
viewed as a latent variable model, where the hidden variable is
the unknown Gaussian, the main challenge of our work is to learn
the transformation of the hidden variable, rather than the hidden
variable itself. This makes the problem take a qualitatively different
form than much of the prior work. From a technical perspective,
another difference between our setting and much of the prior work
on learning latent variable models is that the form of the pdf for our
distributions is much more implicit; in particular, the relationship
between moments of the distribution and the pdf is much less clean
than (say) for Gaussian mixture models.

(Non-linear) independent component analysis Independent
component analysis as first proposed in [33] is the question of
learning an (unknown) linear transformation of a non-Gaussian,
coordinate-wise independent random variable. Here, the goal is
to recover the underlying transformation as well as the original
random variable (note that non-Gaussianity is necessary for this to
be possible). The literature on ICA is incredibly large, so we refer
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the reader to surveys of [34, 67, 69] and references within for a more
detailed literature review. We briefly note that to our knowledge,
one cannot black-box apply a kernelized version of the algorithms
for ICA such as [9, 11, 49, 84, 98] to solve our problem, because in
the polynomial kernel space, the resulting random variable does
not satisfy coordinate-wise independence.

Of particular interest to us is the literature on non-linear ICA,
which is very closely related to the learning problem we consider.
However, in non-linear ICA, the goal is not just to learn a distri-
bution which is close to the ground truth, but in fact to recover
the original (i.e. pre-transformation) latent variables. Despite a sub-
stantial amount of interest in this model from the more applied
side (see e.g. [68, 71, 74] and references therein), from a theoreti-
cal perspective, the problem remains relatively poorly understood
without additional assumptions. it is known that in the worst case,
the latent variable is not identifiable [70]. As another example of
this phenomenon, note that the aforementioned counterexample
of [57] from Section 2 implies that for cubic transformations of
Gaussians, the latent variable is not always identifiable.

Consequently, much of the literature has shifted to consider data
with temporal structure, see e.g. [68, 71]. In contrast, we consider the
standard i.i.d. model, but we make stronger parametric assumptions
about the transformation, namely, that it is a low-degree polynomial.
In addition, we do not require that the latent variable be identifiable,
as we only care about learning the underlying distribution, and not
recovering the the latent variable.

Learning deep generative models A full literature on the the-
ory of learning deep generative models, and GANs in particular, is
beyond the scope of this paper. See e.g. [58] for a more in depth
survey. In terms of end-to-end learning guarantees with efficient
algorithms, the literature is somewhat sparser. To our knowledge,
results are only known for relatively simple networks. Much of
the literature focuses on understanding when stochastic first or-
der methods can learn the distribution on toy generative mod-
els 3, 39, 47, 52, 73, 81]. One line of work considers the problem
of learning distributions generated by pushforwards of Gaussians
one-layer neural networks with ReLU activations [81, 103]. How-
ever, such distributions have a much simpler structure than the
ones we consider in this paper, which correspond to two-layer neu-
ral networks (i.e. with one hidden layer). Indeed, when the neural
networks only have one layer, this means that the output of the
distribution is very similar to a truncated Gaussian, and one can
leverage techniques from the literature of learning from truncated
samples [38]. However, such structure completely disappears with
two layer neural networks. In that sense, our guarantee is the first
end-to-end provable result for learning pushforwards under neural
networks beyond a single layer.

Arguably the closest paper to ours is the recent work of [83].
This paper considers a very similar setting to ours, however, their
result has a number of drawbacks compared to ours. First, they
assume that the hidden weight matrices are orthonormal; that is,
the coordinates of their generative model are of the form p(x) =
Zle ai{u;, x)®, where the u; are orthogonal unit vectors. This is
an incredibly brittle assumption, and their algorithm breaks even if
the u; have inverse polynomially small correlations. In particular,
their assumption does not even hold in the smoothed setting we
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consider. In contrast, we handle arbitrary low-rank tensors. Sec-
ond, their bounds scale exponentially with scale of a;, whereas our
bounds do not. Finally, their provable guarantees are contingent on
a conjectured identifiability assumption which they do not prove
(see discussion above Theorem 2 in [83]). Therefore, they do not
give end-to-end provable guarantees for their learning task. In con-
trast, we give fully provable results for a significantly more general
setting. Indeed, much of the technical work in our paper comes
down to giving a proof of identifiability for a more involved tensor
decomposition-style problem.

The relative lack of algorithms for these learning tasks may be
inherent, at least in some worst case sense. Indeed, recent work
of [29, 30] demonstrates that learning pushforwards of Gaussians
under low-depth ReLU networks in Wasserstein distance is com-
putationally intractable, either under standard cryptographic as-
sumptions or in the statistical query model. The starting point for
the former result is the observation that the assumption that “lo-
cal pseudorandom generators” exist [6, 7, 54] implies that learning
polynomial transformations of the uniform distribution over the hy-
percube is computationally intractable. The idea behind the result of
[29] is that even depth-2 ReLU network pushforwards can match all
low-order moments of a standard Gaussian distribution. Alongside
our information theoretic lower bound against parameter estima-
tion for polynomial pushforwards (see Appendix of full version),
these hardness results give evidence that some sort of smoothing
assumptions are necessary to make the problem algorithmically
tractable.

On the flip side, there has been a lot of work on scrutinizing the
ways in which the training dynamics for learning generative models
in practice are aligned or misaligned with traditional statistical
notions of distribution learning [8, 13, 46, 97], and relatedly, what
it takes for minimax optimality (e.g. under the Wasserstein GAN
objective) to actually ensure distribution learning [14, 27, 30, 85, 95,
96, 99]. While this suggests that a satisfactory theory for generative
models may ultimately involve more than just distribution learning
in the traditional sense, the basic algorithmic question considered
in the present work, in addition to being natural in its own right,
seems like a natural stepping stone towards such a theory.

Tensor ring decomposition Tensor ring decomposition is an
important instance of tensor network decomposition and arises
as a prototypical model for periodic one-dimensional physical sys-
tems [101]. As alluded to previously, the tensor ring format, along
with other dimension-reduced tensor representations such as the
tensor train format [90, 91], or those associated with Tucker rank
or hierarchical Tucker rank [15, 89], arose as ways of representing
large tensors implicitly. Unfortunately, unlike Tucker decomposi-
tion [41, 106], hierarchical Tucker decomposition [56], or tensor-
train decomposition [91, 108], obtaining efficient algorithms with
provable guarantees for tensor ring decomposition has proven quite
challenging [31]. In part, this is because the notion of rank asso-
ciated with tensor ring decomposition—in contrast to the other
aforementioned representations—is unidentifiable in many scenar-
ios [105]. While some heuristic algorithms for tensor ring decom-
position have been proposed, such as those based on alternating
least squares [75, 107], prior to our work, there were no known
algorithms for the problem with end-to-end theoretical guarantees.
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SoS for learning From a technical point of view, our algorithms
fit into the recent SoS “proofs-to-algorithms” paradigm for statisti-
cal inference problems (see e.g. [62] for a more thorough overview).
From a technical perpective, our problem is closest to the line of
work using SoS and SoS-inspired algorithms to obtain efficient algo-
rithms for a variety of tensor decomposition tasks [16, 51, 64, 65, 86].
However, our problem setting appears to be significantly more tech-
nically challenging, in large part because in addition to the usual
permutational symmetry among components in tensor decomposi-
tion, there is an extra gauge symmetry inherent to the problems we
consider. Even for tensor ring decomposition, which generalizes
tensor decomposition, to our knowledge the techniques in these
papers do not apply.

5 LEARNING POLYNOMIAL
TRANSFORMATIONS

In this section, we establish the connection between the inverse
problems of Section 2.1, tensor ring decomposition and low-rank
factorization, to the problem of learning polynomial transforma-
tions:

THEOREM 5.1. Let € > 0. Suppose there is an algorithm for tensor
ring decomposition (Definition 2.6) that, given as input S, T satisfying

Tr(Q40;) = Sap| <n Vabeld] (6)

ITr(Q20,08) ~ Tupe| <1 ¥ ab,ce[dl]. ™)
for some n = n(e), runs in time T and with high probability outputs
symmetric matrices OL..., Qd for which dg({Q}}, {Qu)) < e

Then there is an algorithm for parameter learning the transfor-

mation D given by quadratic network Q7, ..., Q; to error € with

high probability that draws O(r>R% log®(2d/6) /5 (¢)?) samples and
runs in time T. Furthermore, this algorithm also solves proper density
estimation to Wasserstein error O(erVd) with high probability.
THEOREM 5.2. Let ¢ > 0 and define
3 A E QRw ( Qw\T ) 8
w1876 ®)

Suppose there is an algorithm for low-rank factorization (Defini-
tion 2.8) that, given as input S satisfying

KTs T)s = Sap| <1 Vab e [d] O

for some n = n(e), runs in time T and with high probability outputs
Ti..os :F\d for which we have dg ({T}}, {T.)) < e

Then there is an algorithm for parameter learning the transfor-
mation D given by low-rank polynomial network T/, . . ., T;.‘ to error
¢ with high probability that draws O(wr)?®R*1og?® (§/d)/n(¢)?
samples and runs in time T. Furthermore, this algorithm also solves
proper density estimation to Wasserstein error O(erVd) with high
probability.

5.1 Quadratic Transformations

Here we establish the connection between method of moments
for learning quadratic transformations and tensor ring decompo-
sition, and tensor ring decomposition and low-rank factorization.
Throughout this section, let D be a d-dimensional degree-2 trans-
formation with seed length r that is specified by the polynomial
network Q7,.. ., Q; e R™T,
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Lemma 5.3. Ifz is a sample from D, then for any a,b,c € [d],
2Tr(QaQy) = El(za — Elzal) (2 — El2p])]
8Tr(QqQ,Q¢) = El(za — Elzal) (2 — El2p])(2c — El2c])]

Proor. For any a,b, ¢ € [d], we have by Isserlis’ theorem that

— T A* _ *
Bleal = B [x7Qix] = Tr(Q))

Elzazp] = E[(x" Qgx) - (xT Qpx)] = Tr(Qg) Tr(Qp) +2Tr(Q5Q;).

Blzazpze] = BI(xTQ5x) - (xTQjx) - (x7 Qi)
= Tr(Q) Tr(Q}) Tr(Q}) + 2 Tr(Q) Tr(Q; Q)
+2Tr(Q}) Tr(Q5Q0) + 2 Tr(QY) Tr(Q40;)
+8Tr(Q50;00),

where x ~ N'(0,1d) and for the last identity, we used the fact that
for any symmetric matrices Aj, Az, As,

Tr(AlAzAg) = Tr(A,,(l)A,[(Z)A,,(g)) VredSs.

The lemma follows immediately from the above moment calcula-
tions. O

Lemma 5.4 (Empirical moment estimation). For any n,§ > 0,
lf||QZ||?, < R? for all a € [d], there is an algorithm that takes
O(r3R% log®(2d/6) /n?) samples from D and with probability at
least 1 — & outputs S € R4 qnd T e R¥4 gqtisfying (6) and (7).

We defer the proof of this to the Appendix of the full version.
Theorem 5.1 now immediately follows from Lemma 5.4.

General rotation-invariant seeds. While it would appear that
the reduction above makes use of the special structure of Gaussian
moments, our approach easily extends to any rotation-invariant
seed distribution D which is reasonably concentrated so that the
corresponding transformation moments can be estimated from sam-
ples as in Lemma 5.4. The reason for this comes from the following
elementary observation about moments of rotation-invariant dis-
tributions, whose proof we defer to the full version

Lemma 5.5. For any rotation-invariant distribution D over R and
any degree-e homogeneous polynomial q : R” — R, E,.p[q(x)] =
Cp.e * Byon(o1) [4(9)] for Cp e = e s - Breop lIxl€].

So from the second-, fourth-, and sixth-order moments of any
rotation-invariant D, we can extract the quantities Tr(QZQZ) and
Tr(QZQZQZ) as in Lemma 5.3 even when D is not N(0,1d), pro-
vided we know E,.p [||x||¢] for e = 2, 4, 6. Regarding this last point,
we note that it is entirely reasonable to assume that these quantities,
in fact even a description of D itself, is known to the algorithm
designer: in the practice of generative models one has complete
control over the seed distribution/prior that is used.

5.2 Low-Rank Transformations

Here we establish the connection between method of moments
for learning low-rank transformations and low-rank factorization.
Throughout this section, let D be a d-dimensional degree-w trans-
formation with seed length r that is specified by the low-rank
polynomial network T, ..., T; € (R")®.
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Lemma 5.6. Ifz is a sample from D, then for any a, b € [d],
(T3, Ty )z = Elzazp],
where 3 is defined in (8).

Proor. This follows from

E = B [(T;,¢%°NT;, 4%
[za2p] g~N(O,Idr)[< a9 N~

= vec(T;) E[g®“ (¢%) "] vec(Ty). O

Lemma 5.7 (Empirical moment estimation). For any 1,6 > 0,
1f||T;||12c < R? for all a € [d], there is an algorithm that takes
O(wr)?*R*10g??(8/d) [n? samples from D and with probability at
least 1 — & outputs S € Raxd satisfying (9).

We defer the proof of this to the Appendix of the full version.
Theorem 5.2 now immediately follows from Lemma 5.7.

General rotation-invariant seeds. Note that Lemma 5.6 makes
no use of the fact that the transformation has seed distribution given
by N(0,1d), so our reduction from learning low-rank transforma-
tions to low-rank factorization easily carries over to any known
seed distribution D which is sufficiently well-concentrated that
the pairwise moments of O can be estimated from samples as in
Lemma 5.7 and for which the corresponding low-rank factoriza-
tion problem with ¥ now given by E,..p [vec(x®?) vec(x®®)T] is
tractable. As we show in the full version, our algorithm for low-
rank factorization applies to any ¥ of this form for which the seed
distribution D is rotation-invariant and for which very mild con-
dition number bounds hold. In the full version, we also give an
algorithm for low-rank factorization when ¥ = Id, which yields
a learning algorithm for a certain family of inhomogeneous poly-
nomial transformations given by one hidden layer networks with
Hermite polynomial activations.

6 TENSOR RING DECOMPOSITION

Recall that in tensor ring decomposition (Definition 2.6), we are
given § € R4 and T € R¥*4Xd gych that there exist unknown
symmetric matrices Qf,..., Q% € R™ satisfying

Sq.p = Tr(QaQp)| < n and  [Tppc — Tr(QeQ,Q0) < 1 (10)
for all a,b,c € [d]. In this section we give a polynomial-time al-
gorithm for recovering Q7 ..., Q7 from S, T under the following
assumptions:

Assumption 1. For parameters R > 1,k > 0,

(1) (Scaling) ||Q:llF < R foralla € [d].
(2) (Condition number bound) a(rin) (M*) = k, where M* €
2

Rdx(rgl) is the matrix whose (a, (i1, iz))-th entry, fora € [d]
and1 < iy < iy <, is given by (Q})i,i,-

Remark 6.1. Readers familiar with the standard guarantees for
Jennrich’s algorithm will recognize that Part 2 of Assumption 1 is the
tensor ring analogue of the condition number assumption in tensor
decomposition. Namely, given an estimate of 3,; 0?3, Jennrich’s algo-
rithm can recover {v;} provided the matrix whose columns consist of
v; is well-conditioned (see e.g. [18, Condition 2.2]).

“Technically if {Q},} are all diagonal with (Q%)i; = (9;)q, Part 2 of Assumption 1
does not apply because M* will have many zero entries, but it is straightforward to
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One can readily check that Assumption 1 is gauge-invariant (see
Appendix of full version for proof):

Lemma 6.2. If{Q}} satisfy (10) and Assumption 1 with parameters
R, k, then {VQ;LV T} also satisfy (10) and Assumption 1 with the same
parameters for any V€ O(r).

Under Assumption 1, we give an algorithm for tensor ring decom-
position that runs in time polynomial in all parameters:

r+1)

THEOREM 6.3. Ford > ('}’), suppose Q5, ..., Q5 € R™" satisfy

Assumption 1 andn < O(JTZ/Z), and we are given S € R™4 and

T € R4 gqiisfying (10).

Then there is an algorithm TENSORRINGDECOMPOSE(S, T) which
runs in time poly(d, r) and outputs Ql, s (jd for which we have the
bound dg({Q}}, {0a}) < poly(d,r,R,1/k) - n¢ for some absolute
constant ¢ > 0, with high probability.

Section overview. Our algorithm is based on rounding the solu-
tion to a suitable sum-of-squares relaxation. As such, our analysis is
centered around exhibiting a low-degree sum-of-squares proof that
the ground truth {Q}} is identifiable from S, T. As discussed in Sec-
tion 3, the gauge symmetry inherent in tensor ring decomposition
poses a major challenge for this, because {Q}} is only identifiable
up to a global rotation in R”. In Section 6.1 we outline our strategy
for “breaking symmetry” by imposing certain constraints on {Q}}
that are without loss of generality but which will uniquely identify
{Qz}. In Section 6.2 we then formulate our sum-of-squares program
which incorporates this symmetry-breaking strategy.

The high-level strategy will be to introduce SoS variables {Q,}
that are constrained to have the same pairwise and three-wise
moment bounds as in (10), and we would like to prove the {Q,} are
close to {Q}} in Frobenius norm. To show this, we would like to
show that the r? xr? linear transformation that maps every vec(Q%)
to vec(Qq) behaves like the Kronecker power Id®2. Because every
Q; and Qq is symmetric, there is some ambiguity in formulating
this transformation as an SoS variable (recall the discussion at the
end of Section 3.1 of the technical overview).

In Section 6.3 we make a first attempt by constructing a certain
auxiliary r2 x r? matrix variable U that, as we show in the full ver-
sion, behaves in some respects like this r? x r? transformation. The
remaining details we defer to the full version. Namely, in the full
version, we then use the third-order constraints in (10) to show that
the entries of U satisfy a certain collection of quadratic relations.
We use these quadratic relations to refine U to give another SoS
auxiliary variable W which better captures the r? x r? transfor-
mation and which also satisfies a similar collection of quadratic
relations as U. We then complete the analysis by implementing the
aforementioned symmetry-breaking strategy in SoS to show that
W is approximately Id®?2. Finally, in the full version we use this to
give our main algorithm TENSORRINGDEcOMPOSE and prove Theo-
rem 6.3. We also show how to improve the runtime of Theorem 6.3
to only depend linearly on d.

modify our sum-of-squares algorithm to incorporate the assumption that {Q}, } are
diagonal to recover the guarantees of Jennrich’s algorithm.
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6.1 Breaking Gauge Symmetry for the Ground
Truth

A natural approach for breaking symmetry would be to insist with-
out loss of generality that, for instance, Q7 is diagonal with sorted
entries. If the eigenvalues of QT are well-separated, then one can
check that the only rotations V € O(r) for which VT Q:V = QF for
all a € [d] are those for which V is diagonal with diagonal entries
in {£1}. If we could additionally insist that, say, the first row of Q7
consisted entirely of strictly positive entries, this would force V to
be the identity and completely break the gauge symmetry.

Of course, it could be that Qf and Q; don’t meet the desired
criteria for making such assumptions: Q might have some repeated
eigenvalues, or Q5 might have a zero entry in its first row.? But the
above strategy is certainly not specific to Q7 or Q7 or the choice of
row in Q; .Indeed, it would be enough for this to hold for some fixed
linear combinations of {Q7}, instead of for QF, and Qj respectively.

We show that under Assumption 1, there is indeed a way to
construct such linear combinations. In the Appendix in the full
version, we give an algorithm that takes in S and outputs linear
combinations of {Q}} satisfying the desired properties, which we
formalize in the definition below:

Definition 6.4. We say that A, € ST gre v-non-degenerate
combinations of Q7, .. .,QZ if the following two properties hold for

Qp 2t > AQp  and  Qpt Y Q. (11)
ac[d] acld]
(1) Qj has minimum eigengap at least v.
(2) Let VT AV be the eigendecomposition OfQZ' Then every entry
ofVQZVT has magnitude at least v.

Because Assumption 1 is gauge-invariant by Lemma 6.2, we can
assume without loss of generality that le defined in (11) is diagonal
with entries sorted in nondecreasing order. As Q} has minimum
eigengap at least v,
()i = (QPii+v Vj>i (12)

After diagonalizing Q;, the second part of Definition 6.4 implies
that [(Q);)ij| 2 vforalli, j € [r].

By applying one more joint rotation to Qy, ..., Q% given by a
diagonal matrix of +1 entries, we can additionally assume that the
first row of Q;‘, consists of nonnegative entries. That is,

Q@1 2v Vjelr. (13)
In the sequel, we will show how to recover QT, el QZ’ in Frobenius
norm (as opposed to just parameter distance) by insisting that our
estimates also satisfy (12) and (13).

6.2 A Sum-of-Squares Relaxation

To prove Theorem 6.3, we will use the following sum-of-squares
program:

PROGRAM 1. (TENSOR RING DECOMPOSITION)

3When Q7, Q; are smoothed, this will not happen, but in this section we opt for an
algorithm that can work under minimal non-degeneracy assumptions even when
{Q;},} are not smoothed.
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Parameters: A, ;i € §4-1 5 ¢ RI¥d T ¢ RI¥dxd @ > q,
K,0> 0.
Variables: Let Q1,...,Qy4 be r X r matrix-valued variables,

and let L be an (rJZ'I) x d matrix-valued variable. Let M be the

dx (rgl) matrix of indeterminates whose (a, (i1, iz))-th entry,

fora € [d] and1 < iy < iy < 1, is given by (Qa)iyi,- Also

define Q) = Zgzl AaQq and Q = 22:1 HaQa-

Constraints:

(1) (Symmetry): Qqa = Q foralla € [d].

(2) (Second moments match): = < Tr(QaQp) — Sqp < 1 for
alla,b € [d].

(3) (Third moments match): —n < Tr(QaQpQc) — Type < 1
foralla,b,c € [d].

(4) (Q’s bounded): ||Qa||§, < R? foralla € [d].

(5) (Left-inverse L): LM =1d

(6) (L bounded): ||L||12D <r?/i.

(7) (Q, diagonal): (Q;)ij =0 foralli # j.

(8) (Qy sorted): (Qa)j;j = (Qa)ii for all j > i.

(9) (Qu’s first row): (Qu)1j = 0 forall j € [r].

We can easily verify that the ground truth is feasible.

Lemma 6.5. Whend > (rJZrl), the pseudodistribution given by the
point distribution supported on (Q7,...,Q75, L"), where L* is the left
inverse of M*, is a feasible solution to Program 1.

Proor. Note that L* is well-defined by Part 2 of Assumption 1. It
is immediate that Constraints 1-5 are satisfied, and Constraints 7-9
are satisfied by (12) and (13). For Constraint 6, note that ||L*|lop <

1/k by Part 2 of Assumption 1, so ||L*||12c < (r;'l)/lc2 <r’/k®. o

The main result we will show about this sum-of-squares program
is the following:

THEOREM 6.6. Suppose Assumption 1 holds, and for any A, €
S let B[] be a degree-96 pseudo-expectation over the variables
Q1,...,Qq L satisfying the constraints of Program 1.*

Then if A, i are v-non-degenerate combinations of Q7, .. ., QZ for
some v > 0, then |E[Qq] — QkllF < poly(d,r,R,1/x,1/v) - ¢ for
all a € [d] for some absolute constant ¢ > 0.

6.3 Hidden Rotation Variable

In this section we use the SoS variables of Program 1 to design
an auxiliary “rotation variable” U that will play the role of the
unknown linear transformation sending every Q7 to Qg, after which
the focus of our analysis in subsequent sections will be to show
this transformation qualitatively behaves like [d®?.

First, define the d x 72 matrix N* (resp. N) to be the matrix whose
(a, (i1, i2))-th entry is given by (Q7)i,i, (resp. (Qa)iyi,) foralla €
[d], i, j € [r]. Note that M, M* are submatrices of N, N*. Because
Tr(QZQZ) = (N*N*T)p and Tr(QuQp) = (NNT)p, the first part
of Eq. (10) and Constraint 2 imply that |[NNT = N*N*T||pax < 7.

A natural way to encode the unknown linear transformation
from Q} to Qg as an auxiliary variable would be to consider some-
thing like N~IN*, because (N_lN*)N*T ~ N7, and the a-th col-
umn of this approximate equality between matrices implies that

4We made no effort to optimize the degree of our SoS proof and suspect that with a
little more work, this constant can be made much smaller.
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the transformation N~!N* maps Q} to Q,. By right multiplying
this approximate equality by (N~1)T, we also see that N"IN* is
approximately orthogonal.

Of course, strictly speaking such a construction isn’t well-defined:
N is an SoS variable, so there is no meaningful notion of a left in-
verse N™1. In fact there isn’t even a suitable left inverse for the
scalar matrix N*, as N* has duplicate columns (because every Q}
is symmetric). Nevertheless, we will use L as a proxy for N~! and,
with a few modifications, our construction of the “rotation variable”
U will behave like N"!N*.

Formally, to construct U, first define the (rerl) X r2 matrix U by

U+ LN*.
Then define the r2 X r2 matrix U as follows. For any i1, iy € [r], the
(i1,i2)-th row of U is given by

ﬁiﬂz if iy = iy

Ui, = %ﬁhiz if iy < iy

%ﬁizil if iy > iy
When the context is clear, we will refer to mat(Uj,;,) as simply
Ui, i,, and similarly for any ji, jo € [r], we will refer to mat(U/1/2)

as simply UJ1/2, Note that the entries of U are (unknown) linear
forms in the indeterminate entries of L.
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