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Abstract—The design of feedback channels in frequency division
duplex (FDD) systems is a major challenge because of the
limited available feedback bits. We consider non-orthogonal
multiple access (NOMA) systems that incorporate reconfigurable
intelligent surfaces (RISs). In limited feedback RIS-aided NOMA
systems, the RIS-aided channel and the direct channel gains
should be quantized and fed back to the transmitter. This paper
investigates the rate loss of the overall RIS-aided NOMA systems
suffering from quantization errors. We first consider random
vector quantization for the overall RIS-aided channel and identical
uniform quantizers for the direct channel gains. We then obtain
an upper bound for the rate loss, due to the quantization error,
as a function of the number of feedback bits and the size of RIS.
Our numerical results indicate the sum rate performance of the
limited feedback system approaches that of the system with full
CSI as the number of feedback bits increases.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) are presumed as
an attractive solution to enhance the spectral, power efficiency,
and coverage of wireless communication systems [1]. These
surfaces consist of many passive and cost-effective elements
capable of controlling the propagation environment by properly
adjusting the direction of coming signals. These distinctive prop-
erties make RIS a promising solution for broad connectivity in
the next generation of wireless networks. Previously, intelligent
surfaces that are not reconfigurable [2], [3] and reconfigurable
multiple-input multiple-output (MIMO) systems [4], [5] have
been proposed for orthogonal multiple access (OMA) systems.
Also, it is shown that RISs can have notable use cases and boost
performance when merged with other emerging technologies
such as non-orthogonal multiple access (NOMA) [6], [7].

NOMA has been a topic of research as a promising new
technology for the next generation of wireless communica-
tions. Specifically, in the downlink, power-domain NOMA
aims to serve two or more users by sharing the same
time/frequency/code resource block [8]. At the transmitter side,
NOMA squeezes the information signals using superposition
coding. Before decoding the intended signal, the stronger user
applies successive interference cancellation, i.e., first decodes
the weaker user’s signal and then subtracts it from the received
signal.

In this paper, we incorporate the RIS in downlink NOMA to
improve the quality of the weak user’s channel. Unlike many
other time division duplex (TDD)-based RIS-assisted NOMA
(RIS-NOMA) systems like [6], [7], [9], [10], we consider a
frequency division duplex (FDD) system. The FDD-based RIS-
NOMA is more challenging in the sense that the channel must
be estimated at the receiver and fed back to the transmitter via

The authors are with Center for Pervasive Communications and Computing,
University of California, Irvine. This work was supported in part by the NSF
Award CNS-2008786.

a limited feedback channel. The availability of the quantized
channel gains instead of perfect channel state information (CSI)
creates the following two major issues. First, the quantized
channel gains can result in a severe rate loss [11], [12]. This
phenomenon is more harmful when the quantized channel gains
inaccurately change the order of NOMA users. Second, the
phase information obtained from the overall quantized channel
restricts the performance of the RIS [13]. Motivated by this,
we investigate the impact of quantizing the overall RIS-aided
channel and the direct channel gains on the system’s rate loss.

The limited feedback problem in RIS-aided systems is
studied in [14]-[17]. Ref. [14] proposes a cascaded codebook
design and bit partitioning strategy in the presence of line-
of-sight (LoS) and non-LoS (NLoS) channels. In [15], the
feedback is divided into two parts, channel feedback and
angle information feedback. In particular, [15] uses a random
vector quantizer (RVQ) codebook to quantize the channel
followed by feeding back the indices related to the angle
of arrival (AoA) and angle of departure (AoD) information of
the cascade channel matrix. Similarly, [16] designs a codebook-
based limited feedback protocol for RIS using learning methods.
In [17], authors aim to reconstruct the channel using the
signal strength feedback and exploiting the sparsity and low-
rank properties. None of the above limited feedback methods
can be applied to our RIS-NOMA. Particularly, the feedback
methods in [14]-[16] mainly try to send the normalized channel
vectors to perform beamforming at the transmitter. Further, [17]
determines the channel direction while the channel gains are
estimated based on the distance and not precisely. However, our
RIS-NOMA system requires precise channel gains to accurately
order the users and perform the superposition coding. Also, it
needs the overall RIS-aided channel vector to adjust the RIS.
The main contributions of this paper are as follows:

o We provide a limited feedback framework for RIS-NOMA
systems and analyze its performance.

e« We find an upper bound on the rate loss caused by
quantization.

We conduct numerical simulations to evaluate the sum rate and
the rate loss of the limited feedback RIS-NOMA system. The
results verify our theoretical derivations.

Notations: In this paper, j = v/—1. Small letters, bold letters,
and bold capital letters designate scalars, vectors, and matrices,
respectively. Superscripts (-)7 and (-)T denote, respectively,
the transpose and the transpose-conjugate operations. Further,
||, E[z], and V]x] denote the absolute, the expected, and the
variance of x, respectively. The operation /x calculates the
element-wise angle of the vector x and |- | is the floor function.
Finally, v(n,z) = [; t"~*e~"dt denotes the lower incomplete
gamma function.
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Fig. 1: The limited feedback RIS-NOMA system model. B; bits and By + B’
bits are allocated to User 1 and User 2, respectively.

II. SYSTEM MODEL

Our system model is shown in Fig. 1 in which a single-input
single-output system model similar to [18], [19] is considered.
NOMA is a suitable multiple access technique for a single-
antenna setup because multi-user solutions are not applicable.
The base station (BS) uses NOMA to simultaneously serve two
users named User 1 and User 2.! The distance from User 2
to the BS is more than that of User 1. To determine which
user is near, the BS captures the distance information through
a channel quality indicator (CQI). The purpose of the RIS is
to serve the far user to improve the channel quality [6], [7].
The RIS is equipped with N antenna elements that ideally can
direct the incident signal to any arbitrary directions in [, 7].

Like [22], [23], it is assumed that the perfect CSI is estimated
at the users. This assumption allows us to focus on studying the
impact of the channel gain and phase vector quantization errors.
Recently, [24] has investigated the impact of CSI impairments
such as erroneous channel estimation or delay in feedback on
beamforming in a RIS-NOMA system without considering
quantization error. As a promising solution, our work on
beamforming in relay networks with channel statistics [25] and
quantized feedback [26], [27] can be extended to the underlying
RIS-NOMA system to study the CSI impairments.

A. Transmit Channel Model

We recall that both users are capable of estimating their
channels. That is, User 1 obtains h; € C and User 2 obtains
hy, € C¥*! and g € CV*! [28]. The channels capture
the small-scale fading and path loss effects. For User 1,
hy = /Lih}, where L1 = d;** is due to the path loss.
The parameters d; and «; denote the distance between the
BS and User 1 and the path loss factor, respectively. Further,
Ry ~ CN(0,1) denotes the small-scale Rayleigh fading. We
define the channel gain H; = |hy \2 witl}{the probability density

function (pdf) of fu, (Hy) = L%e_fi. Also, the channel
between the BS and the RIS is defined as hy = mhé where
Ly = d;** and h, ~ CN(0,I). The channel between the
RIS and User 2 is given by g = \/L,g’, where L, = dg “*
and g’ ~ CN(0,I). We note that I represents the identity
matrix of size N x N. In fact, the small-scale fading from the
BS to User 2 is subject to the double-Rayleigh fading [18],
[29], [30]. Another possible channel model from the BS to

!User pairing is out of the scope of this paper. We assume that the users
are paired using one of the existing methods in the literature such as [10],
[20], [21]. The complexity of rate loss calculation increases as the number of
NOMA users grows.

the RIS is Rician fading. Since the RIS is helping the far user,
it is reasonable to assume that its distance from the BS is
large [6], [7]. Thus, it is likely that the LoS channel is blocked
by moving objects or buildings justifying a Rayleigh fading
model. The parameters do and d, denote the distance between
the transmitter and the RIS and the distance from the RIS to
User 2, respectively. Further, the parameters o and o4 denote
the path loss factors. The effective overall channel between the
BS and User 2 is defined as ho = g7 ®hs,. Correspondingly, the
channel gain is Hy = |g” ©h, |2 in which © = diag(8), where
6 =[el?,.-  e/N] and ¢; € [-Z, Z] reflect the impact of
the RIS. The optimal values of ® result in the maximum

2
Zij\;1|h2,i||gi\) . Deriving the exact pdf of

H, is complicated. For the sake of simplicity, we first use
the following upper bound on the pdf of the random variable
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sive simulations, it is shown that this bound is tight [7]. Without
loss of generality, we assume N is an even number. Then,
noting that Hy = 22, we have fg,(Hs) = ﬁfz(\/ﬁg)
Finally, an upper bound on the pdf of Hs follows as:
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B. Feedback Channel

In FDD systems, the downlink channel is estimated at the
user side and then fed back to the BS and the other user using
the limited feedback channel. In our system model shown in
Fig. 1, User 1 quantizes the channel gain H; and maps it to
q(H1). Then, the index of ¢(Hy) is fed back to the BS using
B; bits. Since User 2 communicates with the BS through
the RIS, the phase information should be sent to the RIS as
well. In this regard, first, User 2 maps the overall channel
vector Ghy to Q(Ghy) using B’ bits, where Q(-) is a RVQ
and G = diag(g). User 2 then determines the phase vector
0 of the quantized channel Gh; denoted by 8. The exact
structure of quantizers ¢(-) and Q(-) is discussed in the next
section, but does not change the overall characteristics of the
feedback channel model. Next, User 2 quantizes the channel
gain Ha g = |05,Ghy|?, ie., q(Ha,q), with By bits. User 2
feeds the corresponding By + B’ bits back to the BS. The
feedback link from User 2 to the BS is assumed to support
Bs + B’ bits, although, the direct links might be blocked [14].
The same explanation holds for the feedback link from User 1
to the BS.

In our system model, the BS, the RIS, and the users are
fixed and the phase vector 65 and the channel gains H; and
Hy are only required once for every channel coherence time.

C. Sum Rate

To maximize the sum rate by efficiently allocating the
transmit power and subject to some minimum rate for each
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Fig. 2: Applied uniform quantizer for quantizing channel gains (i = 1, 2).

user, the following optimization problem can be defined

maximize R;+ Rs (3a)

subject to Ry, Ro> Ryp, (3b)

P1 + P2: P, (30)

where Ry = log,(1+ SPH;) and Ry = log, (1 + m% . The
power allocation can be parameterized by a factor £ such

that P, = P and P, = (1 — 8)P. In [31], given full CS],
Problem (3) is extended to an arbitrary number of users
and individual minimum rate constrains. Using the solution
given in [31, Eq. 15], we obtain the optimum factor S for

Hy < Hy as p* = 55 where ¢ = 2%t — 1. Hence,

Ry = 10g2<1 + PHM = ) and Ry = Ry The threshold Ry,
is the same for all users to ease the formulation but the approach
works for arbitrary thresholds. Further, there are other useful
objective functions to be considered. For example, similar to
Ref. [11], we can study the rate fairness in our RIS-NOMA

system with limited feedback and quantization error.

III. UNIFORM AND RANDOM VECTOR QUANTIZERS

In this section, we describe uniform quantizers and RVQs,
used in our system. We use uniform quantizers to compress the
scalar channel gains and RVQs to quantize the overall channel
vector.

To quantize H;, we define the following uniform quantizer
q : R — R, shown in Fig. 2:

[z s, z < (28 - 1)g,
q(z) = {(531 —1)8, > (2P —1)s, 4)

where z is any non-negative real number and ¢ denotes the size
of quantization partitions. The index of ¢(H;) is fed back by
Bj bits. The method in (4) quantizes the channel gain to the
left boundary of the partition instead of the center point. When
the gain is quantized to the center point, the quantized value
might be higher than the true channel gain. This can frequently
cause outage at the weak user, i.e., solving the optimization
problem in (3) may result in allocating insufficient power to
the weak user. Thus, Constraint (3b) may not hold for the
quantized channel gain. To avoid the outage, we quantize the
channel gain to the left boundary which guarantees the power
allocation to the weak user is more than the needed optimal
value.? The uniform quantization is selected for simplicity but
our approach works for non-uniform quantization as well.

In general, there are two options for quantizing the vector
Ghs: vector quantization and scalar quantization, applied to
vector’s elements. Since the number of elements in RISs can
be large, scalar quantization will require a huge number of
feedback bits and may not be practical. Inspired by this, we
use random vector quantization in which the feedback bits can

2The optimal power allocation, i.e., Py and P, is obtained by determining

B* in (3).

be far less than the number of elements®. We define the RVQ
codebook W = {wy,wa,...,wys}, in which the codeword
w; € CNV*1 is the quantized overall RIS-aided channel vector
Ghs. The codebook W is generated by selecting each of
M = 28" vectors independently from a uniform distribution

on the complex unit sphere [35].
We aim to maximize the channel gain using the codebook

such that

Q(Ghy) = argmax|w' Ghy|?. )

wew

Further, we let o = £Q(Ghy) and OQ:eM’Q where

¢q =010, - ¢n,0]". The channel gain H, g = Bgth‘Q
takes any non-negative value and is mapped to g(Hz ) using
the quantizer in (4). As mentioned before, a uniform quantizer
is applied to Hs ¢ instead of H,. Since Hy and Hs g do
not necessarily belong to the same partition, their quantized
values might be different, i.e., ¢(Hz,g) < ¢(Hz). The index of
q(Ha,@) is sent using B, feedback bits. The uniform quantizers
applied to H; and H> ¢ include the same number of partitions,
i.e., By = By = B. Defining n = HHLf, we have n € [0, 1].
Deriving the pdf of n is not straightforward, but needed in
some analysis later. The exact pdf of n for a 2 x 1 Rayleigh
channel vector and a large number of feedback bits is derived
in [36]. However, each element in Ghy is a double-Rayleigh
variable and its pdf is different from that of Rayleigh channels.

Recently, the study of the pdf of )Ziv: 1 |ha,il|giled" ‘2 has been
the topic of research in RIS-aided systems [18], [37]. Note
that x; does not necessarily equal to ¢; o. In [18, 2Lemma 1],
the pdf of the random variable ’Zf\': 1 \h,27i|\gi|ej’*" where x;
is treated as a phase-noise is accurately approximated by a
Gamma random variable. Following the same approach, our
extensive empirical study shows that the pdf of the random
variable 7 can be approximated by the pdf of a beta random
variable with the shape parameters r; and rs, i.e.,

; (6

where r, = (M>}E[n], Py = (M)(l —E[5]), and

Fo) = g™ M=)

Vin] V]
B(ri,ra) = % represents a normalization constant that

ensures the total probability is 1. The values of E[n] and V[n]
depend on the RIS’s size N and the feedback bits B’. The
empirical results show a close resemblance between the real
pdf and the approximation, but we do not have space to show
them in this paper.

When the full CSI is available at the BS, the user ordering
is always accurate and the rates are calculated using (3). In
a limited feedback system, an inaccurate user ordering can
impose severe rate loss. Even if the user ordering is accurate,
the quantization can reduce the achievable sum rate.

IV. RATE LOSS ANALYSIS

Let us name the user with a higher channel gain the strong
user. We calculate the rate loss only for the strong user because

3RVQ is a simple method but not the most efficient to quantize a vector
with a limited number of feedback bits [32]. Other techniques such as Lloyd
Algorithm [33] and variable-length limited feedback beamforming [34] which
outperform the RVQ can be used to enhance the performance of the underlying
limited feedback system although they increase the complexity.
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Fig. 3: Presentation of all the possible regions for the rate loss.

the weak user will not experience quantization rate loss. When

instead of full CSI, the quantized channel gains are used in

Problem (3), we call the resulting power allocation factor 3.
In general, the strong user’s rate loss is obtained as

AR=R; — R; 4= 10g2(1 + PX;)
= log, <1 + 1+

—log,(1+ PX;,)

) <log,(1 + PAX), (7

where AX = X; — X;, denotes the normalized signal-to-

noise ratio (SNR) loss. When user ordering is accurate, we

have X1 = 5H1 (X2 = 5H2) and Xl,q = 5qH1 (X2,q = /BqHQ’Q).

For an inaccurate user ordering, X; is similar to the accurate
1—B4)Pq(Hy) 1—B4) Pq(H

one while X, , = % and X, , = W Based

on (7), an upper bound on the average rate loss is found as

E[AR] < E[log,(1 + PAX)] < log,(1 + PE[AX]). (8)

The second inequality is due to the Jensen’s inequality. Thus,
to find the upper bound, we first derive AX and then calculate
the expectation of AX, i.e., E[AX]. However, calculation of
AX heavily depends on the values of H; and Hs. The main
three Super Regions for this calculation, as shown in Fig. 3,
are:

o Super Region I: This consists of the conditions in which
q(H;) = 0 and/or q(Hz ) = 0 which results in 8, = cc.
o Super Region II: This includes the main partitions
of User 2’s uniform quantizer, ie., § < ¢(Hzg) <
(25 —1)0.
o Super Region III: This includes the upper marginal
partition of User 2’s uniform quantizer, i.e., ¢(Hz,g) =
(28 —1)6.
We denote AX in Super Region I as AX]. In what follows,
we calculate E[AX]], i.e., the expected normalized SNR loss
in each region.

A. Super Region I

Since 3, = oo, in this super region, NOMA is not feasible
and we let E[AX]] = 0.
B. Super Region Il

Lemma 1. The total average normalized SNR loss of Super
Region II is

E[AXy] < \/m Cs + 5(04 + Csﬂ(%)) +C5v25, (9)

where C3=Cg+C;+Cg and Cy=Co+ Cip. In detail
Cs > CiE | &), 0620615[1—7;7], Cr > OB 11,
Cs > CLE [(1— )/ Co > COE [%] and
CozCLE[L] i which ¢ = GG (252)),
Cé = GGy (31\72+2>! + 301[,10 (3N 2) C7 010 (3NQ+6)!’
2772 2 L1

Cg = 23fo2 s (31\]2_2)! + sgllélcg (3N2 6)" and
Cho = —52—(3N42)1. Also, Ei(z) = = e%dt denotes
the exponentilal-integral function.

Proof. Please see Appendix A. L]

C. Super Region Il

Lemma 2. The total average normalized SNR loss for Super
Region III is bounded by

V(2B -1)s B_1\s
E[AXIH] < 672 C2 2C11 (1 -+ %) X

<1+ (2,/(2'3051*;)3?2) +(112<1+ (2,/(2'303”‘5)3%2)} (10)

C,C2
where C; = 23}%24 (31\72—1-4)! and Oy = %(TN)'
Proof. Please see Appendix C. 0

Finally, we have the following theorem on the expectation
of the total rate loss for the quantized RIS-NOMA.

Theorem 1. The total average rate loss for the quantized
RIS-NOMA system with limited feedback is upper bounded
by

E[AR] < log,(1 + PE[AX]), (11)
where
E[AX]S /2P~ 13| Cs +8(Ca+ CsEa () ) | + Cov2

_2, /(2;9271)6

+e

w1 52 (10 (=) )
+Cl?<1+ <2\/<2?))N>} (12)

Proof. We know that E[AX] = ]E[AXI} +}E[AXH] +E[AXIH]
Noting E[AX]] = 0 and replacing E[AXy] and E[AXy]
with (9) and (10), respectively, results in (12). ]

To guarantee that the rate loss approaches zero as B
increases, one feasible solution is to define § = (3 2—CB for
¢1,C2 € (0,1). The parameters ¢; and (s are design parameters
and should be optimized. Such a parameter optimization is
out of the scope of this paper although the choice of (; and
(o will not affect the system model. In simulations, we will
intuitively select ¢; and (s, to achieve good performance.

V. NUMERICAL RESULTS

We compare the sum rate performance of the RIS-NOMA
system with limited feedback to that of the RIS-assisted
orthogonal multiple access (RIS-OMA) system. The RIS-
NOMA system is described in Section II. For the RIS-OMA,
we consider the same system model in Section II and replace
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Fig. 4: Performance of the sum rate versus the transmit power P for (a)
¢1 =105 and ¢2 = 0.95 and (b) ¢; = 0.5 x 10~° and {2 = 0.95.

NOMA with OMA. Furthermore, since power allocation is not
required in the RIS-OMA, the channel gains are not fed back
although the RIS-aided channel vector information should be
fed back for beamforming at the RIS.

The parameters are set according to [9] as follows. The
distances are selected as d1=10 m, dy=40 m, and d,=10 m.
Further, the path loss exponents are set as oy = 3.5, ag = 2.5,
and oy = 2.5. The number of RIS elements is set to N = 10.

We present the simulation results for the sum rate perfor-
mance versus the total transmit power P for various feedback
bits in Fig. 4. The transmit power depends on the users’
path loss such that the power should compensate for the
propagation loss. Simulation is conducted for the full CSI RIS-
NOMA, full CSI RIS-OMA, limited feedback RIS-NOMA, and
limited feedback RIS-OMA. To study the impact of § where
§ = (12798, we set (, = 0.95 and consider two different
values for ¢;. We set (; = 107° and 0.5 x 10~ in Figs. 4(a)
and 4(b), respectively. The full CSI RIS-NOMA achieves the
highest sum rate. When B and B’ increase, the limited feedback
RIS-NOMA’s sum rate and the limited feedback RIS-OMA’s
sum rate approach those of the full CSI RIS-NOMA and the
full CSI RIS-OMA, respectively. This is consistent with our
findings in Theorem 1. For instance, B = 6 and B’ = 4, the
sum rate is almost the same as that of the full CSI. Further, as
we decrease the resolution of the quantizer, the length of the
region in which we quantize the channel gain to 0 enlarges.
Adopting a zero channel gain results in a zero sum rate as
indicated in the low power portion of Fig. 4. However, in
RIS-OMA, we do not impose any minimum rate constraint.
This causes the RIS-OMA’s sum rate to be equal or slightly
higher than the RIS-NOMA’s sum rate at low power levels
although there is no guarantee for the minimum sum rate.

We also observe that for B = 2 where B = B; = By and
B’ =2, i.e., a total of 6 feedback bits, the limited feedback
RIS-NOMA'’s sum rate shows different behavior compared to
the limited feedback RIS-OMA with B’ = 6. At low transmit
powers, the limited feedback RIS-OMA’s sum rate is better
than that of the limited feedback RIS-NOMA for both ¢ values.
As we increase the power, the limited feedback RIS-NOMA
improves the sum rate in comparison to the limited feedback
RIS-OMA. However, at very high transmit power levels, the
limited feedback RIS-NOMA’s slope is smaller than that of
the limited feedback RIS-OMA, as shown in Fig. 4(a). When
we select a smaller §, as in Fig. 4(b), for any given B and B’,
the limited feedback RIS-NOMA'’s sum rate becomes higher
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Fig. 5: The average rate loss versus the number of the feedback bits.

than that of the limited feedback RIS-OMA. Another important
observation is the impact of allocating B and B’ on the limited
feedback RIS-NOMA'’s sum rate. For instance, let us assume
the total number of feedback bits is 12. When B = 4 and
B’ = 4, in Fig. 4(a), the sum rate is higher than that of B = 2
and B’ = 8. Whereas, given the same B and B’, in Fig. 4(b),
these two schemes achieve almost the same sum rate.

Fig. 5 compares the limited feedback RIS-NOMA’s average
rate loss for (; = 0.5 x 1075 and (» = 0.95. As the feedback
bits and the power increase, the rate loss reduces. When B’ is
fixed, by increasing B, the rate loss at power 60 dBm reduces
faster than at power 40 dBm. In fact, increasing the power can
compensate for the quantization error.

VI. CONCLUSION

In this paper, we studied an FDD-based RIS-NOMA system
with a limited feedback channel. We used a RVQ to quantize
the RIS-aided channel vector. Also, we considered a uniform
quantizer for the channel gains. We then analyzed the rate
loss of the strong user under the accurate and inaccurate
user ordering conditions. Since the BS receives the quantized
channel gains, inaccurate user ordering can happen often. We
derived the rate loss resulted from quantization and showed
that the rate loss essentially depends on the number of
feedback bits, B and B’. From the simulations, we observed
that the parameters B and B’ affect the sum-rate, the rate
loss, and the probability that NOMA is not useful. As the
number of feedback bits increases, the quantized RIS-NOMA'’s
performance approaches that of the full CSI RIS-NOMA.

APPENDIX A
PROOF OF LEMMA 1

We divide this super region into Regions II.A-IL.D, as shown
in Fig. 3. Due to space limitations, we only provide the detailed
calculation of the upper bound and constants for Region IL.A.
The upper bound and constants for other regions can be found
similarly.

Region IL.A: In this region, Hy < H; which means User 1
is the strong user. It is clear that the output of the RVQ results
in Hy o < Hy < H; and the uniform quantizer results in
q(H2,0) < q(Hy). Thus, the user ordering is accurate and
the BS recognizes User 1 as the strong user. The average
normalized SNR loss is upper bounded as

E[AXya] < Cor/(28 — 1) + Cod+/(28 — 1)0.

The proof of (13) and the values of Cg and Cy are provided
in Appendix B.

(13)



Region IL.B: In this region, H; < Hy indicates User 2 is
stronger than User 1. It is possible that the RVQ leads to
Hy o < Hy < H,. Obviously, the uniform quantizer results
in ¢(Hy) > g(Hsz g). Thus, the BS recognizes User 1 as the
strong user which is not an accurate user ordering. The average
normalized SNR loss is expressed as

E[AXyg] < Cr/(28 —1)9, (14)

It should be mentioned that C; is a constant and bounded

since E [I’Tﬂ is bounded. Also, E 1\;%’ } can be approximated

B(nf%,rngl) .

B, using (6).

Region II.C: In this region, H; < Hy and using the RVQ
results in Hy < Hy g < Hs. For Hy g — Hy < 6, the uniform
quantizer leads to ¢(H) = g(Hs g). In such a region, the user
ordering is inaccurate and the BS picks User 1 as the strong
user. Hence, the average normalized SNR loss is obtained as

E[A Xy c] < C100+/ (2B = 1)6 4+ C5v/26 (15)

Region IL.D: In this region, H; < H, and the RVQ leads
to Hy < Hpg < Hj. If the uniform quantizer results in
q(H1) < q(Ha,q), the user ordering is accurate and the BS
selects User 2 as the strong user. Then, the average normalized
SNR loss is bounded by

IE[AJXILD] < Cs\/m+ C55\/(25’T)5E1<%)
The constant Cg is bounded, and using (6) we obtain the

rit+ir .
— 1)/ as B(ritsratl) Bz’;ir;;_l) which

as

(16)

approximated value of E [(1
is finite.

APPENDIX B
PROOF OF (13)

In Region II.A, the normalized SNR loss is obtained as

_ PH Hs—eH, _ PHiq(Hz,q)—€H;
AXna= PHy(1+e€) Pq(H2,q)(1+e€)

(“> PH, Hy—eHy —PHy (Hy,q—8)+eH; (>H1Hz Hy Hy g+ H)
= PH;(1+e) = H,

(©) HyHy—nH Hy+6H, _ (1
= o =

— ) H, + 6 (17)

The inequality (a) follows from the fact that for any § <
q(Ha2,q) < (2P —1)4, the inequalities q(Hs,g) > Ha g — 6

and Hy ¢ > q(Ha,q) hold. The inequality (b) is due to € > 0.

Further, (c) is true because Hy ¢ = nH,. For a given constant
7, the expectation of A Xy over the super region defined by

B_
%§H2<(2

and Hy; < H; is given as
(23—1)5
(L

E[AXyaln] < (1 - ?7)/é : Hi fu, (Hy) fu,(Hz)dH1dH>
=
le(Hl)sz(HQ)dHldHQ (18)

=1
Next, we compute the integrals /; and Is. For I;, we have

(2571)6
5= fﬁ !

n

Hy
e_Tl (H2 + Ll)ng (HQ)dHQ

Cy
=l
(23*1)5 3N—4
7 VH, —( R+
sol [T (R) (B ) 4, 19
=l
The integral I; ; is obtained as
(2B-1)s N 2y/Hy
I, < fo K (‘/Ci;) e (L1+ ©2 )dH2
(@ (P-1)s ¥o_am O 5
< gy (@) e~ 6 dH, < Cz Cr (3042 /(25 -1)8 1)5 (20)

The inequality (a) follows from the fact that e T < 1. The

inequality (b) is due to the definition of the lower incomplete

gamma function and using the upper bound v(n,z) < (n — 1)!z.
Likewise, we obtain an upper bound on I; 5 as

(31\12—2)! (2P-1)5

n

Ii2 < 23%274 21

Substituting (20) and (21) into (19) gives

C1C. 3N+2 25 1)0
1’1 31 2( +) /( )
2
+ ClLl 3N 2 /2B 1)
2

Also, we calculate I as

(2371)5
T (1+ Ll)fHQ(HQ)dHQ < Cpy /@12

(23)

(22)

' [(2B—1)5
6 n )

Thus, the upper bound on E[A Xy 4|n] is found as

E[AXyaln] < (1 —n)I1 + 312, (24

where the upper bounds on /; and Iy are derived in (22) and
(23), respectively. In order to calculate E[A X7 4], we have

E[AXual < (1= )T fy(m)dn + 6 [ Iofy(n)dn
< Co/2P =1)3 Jy L2 fy(n)dn
+Cod /(25 =103 [y 2= fu(n)
= C,E {1—77} V@B —1)6 + C4E [W} 5/2F —1)6
< Cs/(2B —1)8 + Cy6+/(28 — 1)0, (25)

Note that E [1_777} and E [ﬁ} are finite and for the approx-
_1

imation in (6) are, respectively, equal to W and

B(rlf%,rg)

B(ri,rz)

APPENDIX C
PROOF OF LEMMA 2

We divide Super Region III into Regions II.A-III.C, as
shown in Fig. 3.

Region III.A: In this region, User 1 has a better channel
compared to User 2, i.e., Hy < Hj. If the RVQ results in
(2B — 1)(5 < Hy g < Hy < Hj, then uniform quantizer’s
outcome will be q(Hy) = q(Hzq) = (2% —1) and the



ordering is accurate. In this region, the average normalized

SNR loss is bounded by
e by=) ™)
+C1y (1 + (2,/%‘3”5)3%2) ;. (6)

E[AXqya] <e??™ o

Region III.B: In this region, User 2 has a better channel
and q(Hy) = (28 — 1), ie., (28 -1)0 < Hy < Hy. In
such a region, the RVQ will result in either (28 —1)§ <
Hy < Hyq or (23 — 1)5 < Hy o < Hj. Also, the uniform
quantizer will provide ¢(H) = q(Ha,q) = (2% — 1)4. Hence,
the quantizers will inaccurately change the users’ order. The
average normalized SNR loss for this region is bounded as

(1 (/2 ). @

Region III.C: In this region, User 1’s channel gain is lower
than that of User 2 such that § < ¢(H;) < ¢(Hzq) =
(28 —1)6. Thus, User 2 is the strong user and the ordering
is accurate. We obtain the expectation of the normalized SNR
loss as

(2B-1)s

E[AXmys] < 011672 C2

_ \/m — 3N42
E[AXmc] €252 (28 — )se ™7 1+ (2,/ZFE)
(28)
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