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Distributionally Robust Data Join

Pranjal Awasthi∗ Christopher Jung† Jamie Morgenstern‡

Abstract

Suppose we are given two datasets: a labeled dataset and unlabeled dataset which also has additional
auxiliary features not present in the first dataset. What is the most principled way to use these datasets
together to construct a predictor?

The answer should depend upon whether these datasets are generated by the same or different dis-
tributions over their mutual feature sets, and how similar the test distribution will be to either of those
distributions. In many applications, the two datasets will likely follow different distributions, but both
may be close to the test distribution. We introduce the problem of building a predictor which minimizes
the maximum loss over all probability distributions over the original features, auxiliary features, and
binary labels, whose Wasserstein distance is r1 away from the empirical distribution over the labeled
dataset and r2 away from that of the unlabeled dataset. This can be thought of as a generalization of
distributionally robust optimization (DRO), which allows for two data sources, one of which is unlabeled
and may contain auxiliary features.
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1 Introduction

For a variety of prediction tasks, a number of sources of data may be available on which to train, each
possibly following a distinct distribution. For example, health records might be available from at a number
of geographically and demographically distinct hospitals. How should one combine these data sources to
build the best possible predictor?

If the datasets S1, S2 follow different distributions P1,P2, the test distribution P will necessarily differ
from at least one. A refinement of our prior question is to ask for which test distributions, then, can training
with S1, S2 give a good predictor?

More generally, very common issues of mismatch between training and test distributions (and uncertainty
over which test distribution one might face) have led to a great deal of interest in applying tools from distribu-
tionally robust optimization (DRO) to machine learning [Duchi and Namkoong, 2021, Shafieezadeh-Abadeh et al.,
2015, Lee and Raginsky, 2018, Rahimian and Mehrotra, 2019]. In contrast to classical statistical learning
theory, DRO picks a function f whose maximum loss (over a set of distributions near S) is minimized. This
set of potential test distributions, often referred to as the ambiguity or uncertainty set, captures the uncer-
tainty over the test distribution, along with knowledge that the test distribution will be close to the training
distribution.

The ambiguity set is usually defined as a set of distributions with distance at most r from the empirical

distribution over the training data: B(P̃S , r) =
{

Q : D(P̃S ,Q) ≤ r
}

where P̃S is the empirical distribution

over training dataset S and D is some distance measure between two probability distributions. Then, DRO
aims to find a model θ such that for some loss ",

θ = argmin
θ

sup
Q∈B(P̃S ,r)

E
(x,y)∼Q

["(θ, (x, y))].

The larger r, the more distributions over which DRO hedges its performance, leading to a tension between
performance (minimizing worst-case error) and robustness (over the set of distributions on which performance
is measured).

In this work, we introduce a natural extension of distributionally robust learning, two anchor distri-
butionally robust learning, which we also refer to as the distributionally robust data join problem. Two
anchor distributionally robust learning has access to two sources of training data, the first source containing
labels and the second source without labels but with auxilliary features not present in the first source. The
optimization is then over the set of distributions close to both the labeled and auxilliary data distributions.

Formally, suppose one has two training datasets. The first dataset S1 consists of feature vectors X ⊆ Rm1

and binary prediction labels for some task Y = {±1}. The other dataset S2 contains feature vectors
X and auxiliary features A ⊆ Rm2 but not the labels. The goal is to find a model θ that hedges its
performance against any distribution Q over (X ,A,Y) whose Wasserstein distance is r1 away from the
empirical distribution over S1 and r2 away from that of S2. Note that our setting is a strict generalization of
semi-supervised setting: for m2 = 0, there are no additional features in the second dataset, and S2 is simply
some additional unlabeled dataset. In contrast to pure semi-supervised settings, our method and setting
allow the learner to not only take advantage of the additional auxiliary features but also learn a model robust
to additional distribution shift.

In practice, it is quite common to have the datasets fragmented as our setting captures. For instance,
suppose some dataset has been collected at a hospital in order to build a predictive model that is to be used
at a nearby hospital. After collecting this data, some other research may have found other useful features
that could have been collected for the prediction task. Fortunately, another nearby hospital may have data
that contains both the original features and the useful auxiliary features but does not have labels for this
prediction task. Our data join approach allows to find a model that utilizes such auxiliary features and
explicitly considers the distribution mismatch between the hospital where the model is deployed and the
hospitals from which these two datasets have been collected.

Auxilliary features may be useful not only for improving accuracy of the model but for guaranteeing
additional properties including notions of fairness. We show that one can solve a two-anchor distributionally
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robust learning instance penalizing models for their difference in performance across demographic groups,
where demographic information is present only in one dataset. This extension is motivated by design-
ing equitable predictors (e.g., which equalize false positive rate over a collection of demographic groups)
where one training set contains labels for the relevant task but no demographic information, and another
training set contains demographic information but may not contain task labels. Such settings are quite
common in practice, where demographic data is not collected for every dataset — indeed, collection of de-
mographic data is difficult to do well or sometimes even illegal [Awasthi et al., 2021, Fremont et al., 2016,
Weissman and Hasnain-Wynia, 2011, Zhang, 2018].

The contribution of our work can be summarized as follows:

1. New problem formulation of distributionally robust data join (Section 2.2),

2. Tractable reformulation with an approximation guarantee (Section 3 and Section 4): we show how
to approximate the distributionally robust data join problem with a tractable convex optimization
problem with an approximation guarantee,

3. Applications to fairness with missing demographic group information (Section 5): with slight modifi-
cations, we show how to penalize the model for its unfairness even when the labeled dataset lacks the
demographic group information,

4. Experiments (Section 6): we perform some experiments to demonstrate the usefulness of our distribu-
tionally robust data join method.

1.1 Related Work

Distributionally Robust Optimization: Prior work has looked at many different ways to define the ambi-
guity set: characterizing the set with moment and support information [Delage and Ye, 2010, Goh and Sim,
2010, Wiesemann et al., 2014], or using various distance measures on probability space and defined the
ambiguity set to be all the probability measures that are within certain distance ε of the empirical distri-
bution: Duchi and Namkoong [2021] use f-divergence, Hu and Hong [2013] the Kullback-Leibler divergence,
Erdoğan and Iyengar [2006] the Prohorov metric, and Shafieezadeh-Abadeh et al. [2015], Blanchet and Murthy
[2019], Blanchet et al. [2019], Esfahani and Kuhn [2018] the Wasserstein distance, Hashimoto et al. [2018]
chi-square divergence, and so forth. In this work, we focus on the Wasserstein distance.

Most relevant to our work within literature on distributionally robust optimization literature is that of
Shafieezadeh-Abadeh et al. [2015]. They show that regularizing the model parameter of the logistic regres-
sion has the effect of robustly hedging the model’s performance against distributions whose distribution over
just the covariates is slightly different than that of the empirical distribution over the training data. Distri-
butionally robust logistic regression is a generalization of p-norm regularized logistic regression because it
allows for a distribution shift not only in the covariates but also over the labels. In a couple of real world
datasets, they show that distributionally robust logistic regression seems to outperform regularized logistic
regression by the same amount that regularized logistic regression outperforms vanilla logistic regression.
Our work is a natural extension of this work in that we take additional unlabeled dataset with auxiliary
features into account. Taskesen et al. [2020] extend Shafieezadeh-Abadeh et al. [2015] by adding a fairness
regularization term as we also do, but the demographic information is not available in the original training
data in their setting.

Semi-supervised Learning: There have been significant advances in semi-supervised learning where
the learner has access to not only labeled data but also unlabeled data [Zhu, 2005, Zhu and Goldberg, 2009,
Chapelle et al., 2009]. While our model subsumes semi-supervised settings, we capture a broader class of
possible problems in two ways. First, our approach allows the unlabeled dataset to have additional auxiliary
features, and second, we explicitly take distribution shift into account.

Imputation: Numerous imputation methods for missing values in data exist, many of which have few
or no theoretical guarantees [Donders et al., 2006, Royston, 2004]. Many of these methods work best (or
only have guarantees) when data values are missing at random. Our work, on the other hand, assumes all
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prediction labels are missing from the second dataset and all auxiliary features are missing from the first
dataset. Another related problem is the matrix factorization problem which is also referred to as matrix
completion problem [Mnih and Salakhutdinov, 2008, Koren et al., 2009, Candès and Recht, 2009]: here the
goal is to find a low rank matrix that can well approximate the given data matrix with missing values. Our
problem is different in that we don’t make such structural assumption about the data matrix effectively being
of low rank, but instead we assume all the auxiliary features are only available from a separate unlabeled
dataset.

Fairness: Many practical prediction tasks have disparate performance across demographic groups, and
explicit demographic information may not be available in the original training data. Several lines of work
aim to reduce the gap in performance of a predictor between groups even when the group information may
not be directly available during training.

Hashimoto et al. [2018] show that the chi-square divergence between the overall distribution and the
distribution of any subgroup can be bounded by the size of the subgroup: e.g. for any sufficiently large
subgroup, its divergence to the overall distribution cannot be too big. Therefore, by performing distribu-
tionally robust learning with ambiguity set defined by chi-square divergence, they are able to optimize for
the worst-case risk over all possible sufficiently large subgroups even when the demographic information is
not available. Diana et al. [2020] provide provably convergence oracle-efficient learning algorithms with the
same kind of minimax fairness guarantees when the demographic group information is available.

One may naively think that given auxiliary demographic group information data, the most accurate
imputation for the demographic group may be enough to not only estimate the unfairness of given predictor
but also build a predictor with fairness guarantees. However, Awasthi et al. [2021] show that due to different
underlying base rates across groups, the Bayes optimal predictor for the demographic group information
can result in maximally biased estimate of unfairness. Diana et al. [2021] demonstrate that one can rely on
a multi-accurate regressor, which was first introduced by Kim et al. [2019], as opposed to a 0-1 classifier
in order to estimate the unfairness without any bias and also build a fair classifier for downstream tasks.
When only some data points are missing demographic information, Jeong et al. [2021] show how to bypass
the need to explicitly impute the missing values and instead rely on some decision tree based approach in
order to optimize a fairness-regularized objective function. Kallus et al. [2021], given two separate datasets
like in our setting, show how to construct confidence intervals for unfairness that is consistent with the given
datasets via Fréchet and Hoeffding inequalities; our work is different in that we allow a little bit of slack
by forming a Wasserstein ball around both datasets and can actually construct a fair model as opposed to
only measuring unfairness. Celis et al. [2021a] and Celis et al. [2021b] show when the demographic group
information is available but possibly noisy, stochastically and adversarially respectively, how to build a fair
classifier.

2 Preliminaries

2.1 Notations

We have two kinds of datasets, the auxiliary feature dataset and the prediction label dataset denoted in the
following way:

SA = {(xA
i , a

A
i )}

nA

i=1, SP = {(xP
i , y

P
i )}

nP

i=1

where the domain for feature vector x is X ⊆ Rm1 , the domain for auxiliary features a is A ⊆ Rm2 , and
the label space is y ∈ Y = {±1}. For any vector v ∈ Rm and d1, d2 ∈ [m], we write v[d1 : d2] to denote
the coordinates from d1 to d2 of vector v and v[d] to denote the dth coordinate. For convenience, we write
SX
A = {x : (x, a) ∈ SA}, SX

P = {x : (x, y) ∈ SP } to denote just the feature vectors of the dataset.
Given any dataset S = {zi}ni=1, we will write P̃S = 1

n

∑n
i=1 δ(zi) to denote the empirical distribution

over the dataset S where δ is the Dirac delta funcion. We’ll write PZ to denote the set of all probability
distributions over Z. Similarly, we write P(Z,Z′) to denote a set of all possible joint distributions over Z and
Z ′. Also, given a joint distribution P ∈ P(Z,Z′), we write PZ and PZ′ to denote the marginal distribution
over Z and Z ′ respectfully, meaning PZ(z) =

∫

P(z, dz′) and PZ′(z′) =
∫

P(dz, z′). We extend the notation
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when the joint distribution is over more than two sets: e.g. Pz,z′((z, z′)) =
∫

P(z, z′, dz′′) where we have
marginalized over Z ′′ for P which is a joint distribution over Z,Z ′, Z ′′.

We write the set of all possibly couplings between two distributions P ∈ PZ and P ′ ∈ PZ′ as

Π(P ,P ′) =
{

π ∈ P(Z,Z′) : πZ = P ,πZ′ = P ′} .

For a coupling between more than two distributions, we use the same convention and write Π(P ,P ′,P ′′) for
instance.

Given any metric d : Z × Z → R and two probability distributions P ,P ′ ∈ PZ , we write the Wasserstein
distance between them as

Dd(P ,P ′) = inf
π∈Π(P,P′)

E
(z,z′)∼π

[d(z, z′)].

Given some distribution P ∈ P over some set Z, metric d : Z × Z → R, a radius r > 0, we will write
Bd(P , r) = {Q ∈ P : Dd(P ,Q) ≤ r} to denote the Wasserstein ball of radius r around the given distribution
P . When the metric is obvious from the context, we may simply write B(P , r).

In our case, the relevant metrics are

dX (x, x′) = ||x− x′||p
dA((x, a), (x

′, a′)) = ||x− x′||p + κA||a− a′||p′

dP ((x, y), (x
′, y′)) = ||x− x′||p + κP |y − y′|

where ||v||p = (
∑

d |v[d]|p)
1
p is some p-norm. We’ll write ||v||p,∗ = sup||v′||p≤1〈v, v′〉 to denote its dual norm.

Also, for convenience, given any vector v, we’ll write vp = v
||v||p and vp,∗ = v

||v||p,∗ to denote the normalized

vectors. When it’s clear from the context which norm is being used, we write || · ||, || · ||∗, v, and v∗. Now,
we are ready to describe distributionally robust data join problem.

2.2 Distributionally Robust Data Join

We are given an auxiliary dataset SA and a prediction label dataset SP . We are interested in a joint
distribution over (x, a, y) whose marginal distribution over (x, a) is at most rA away from P̃SA in Wasserstein
distance and similarly whose marginal distribution over (x, y) is at most rP away from P̃SP in Wasserstein
distance.

More formally, the set of distributions we are interested in is

W (SA, SP , rA, rP ) = {Q ∈ P(X ,A,Y) : DdA(P̃SA ,QX ,A) ≤ rA, DdP (P̃Sp ,QX ,Y) ≤ rP }

= {Q ∈ P(X ,A,Y) : QX ,A ∈ BdA(P̃SA , rA), QX ,Y ∈ BdP (P̃SP , rP )}.

Now, we consider some learning task where the performance is measured according to the worst case distri-
bution in the above set of distributions:

min
θ∈Θ

sup
Q∈W (SA,SP ,rA,rP )

E
(x,a,y)∼Q

["(θ, (x, a, y))]. (1)

where " : Θ × (X × A × Y) → R is a convex loss function evaluated at θ. For the sake of concreteness, we
focus on logistic loss1 "(θ, (x, a, y)) = log(1 + exp(−y〈θ, (x, a)〉)).

Also, we sometimes make use of the following functions f(t) = log(1 + exp(t)) and h(θ, (x, a)) =
f(−〈θ, (x, a)〉) instead of ", as it is more convenient due to not having to worry about y in certain cases:
"(θ, (x, a,+1)) = h(θ, (x, a)) and "(θ, (x, a,−1)) = h(−θ, (x, a)). We write the convex conjugate of f as

f∗(b) = sup
x
〈x∗, x〉 − f(x)

=











b log b+ (1− b) log(1− b) if b ∈ (0, 1)

0 if b = 0 or 1

∞ otherwise
1All our results still hold for any other convex loss with minimal modifications.
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3 Tractable Optimization

Note that the optimization problem in (1) is a saddle point problem. In Section 3.1, we make the coupling
in the optimal transport more explicit in the inner sup term. Then, as in Shafieezadeh-Abadeh et al. [2015],
by leveraging Kantorovich duality, we replace the sup term with its dual problem which is a minimization
problem, thereby making the original saddle problem into minimization problem. However, the resulting
dual problem has constraints that each involve some sup term, meaning it’s an semi-infinite program (i.e.
supz∈Z constraint(z) ≤ 0 is equivalent to constraint(z) ≤ 0, ∀z ∈ Z). However, in Section 3.3, we show how
each sup term can be approximated and be replaced by a single constraint.

3.1 Formulation through Coupling

We show how to rewrite the problem (1) by surfacing the underlying coupling π between the “anchor”
distributions (SA, SP ) and our target distribution Q ∈ W (SA, SP , rA, rP ). Because π ∈ Π(P̃SA , P̃SP ,Q) is a
coupling between P̃SA , P̃SP , and some distribution Q, we must have the following for π:

1. Marginalizing π over i ∈ [nA] must yield a coupling πSP ,(X ,A,Y) between P̃SP and Q:

πSP ,(X ,A,Y)((x
P
j , y

P
j ), (x, a, y)) =

nA
∑

i=1

π
(

(xA
i , a

A
i ), (x

P
j , y

P
j ), (x, a, y)

)

2. Marginalizing over j ∈ [nP ] must yield a coupling πSA,(X ,A,Y) between P̃SA and Q:

πSA,(X ,A,Y)((x
A
i , a

A
i ), (x, a, y)) =

nP
∑

j=1

π
(

(xA
i , a

A
i ), (x

P
j , y

P
j ), (x, a, y)

)

3. π’s marginal distribution over (X ,A,Y), SA and SP is exactly Q, P̃SA , P̃SP respectively:

πSA(x
A
i , a

A
i ) =

nP
∑

j=1

∫

π
(

(xA
i , a

A
i ), (x

P
j , y

P
j ), (dx, da, dy)

)

=
1

nA

πSP (x
P
j , y

P
j ) =

nA
∑

i=1

∫

π
(

(xA
i , a

A
i ), (x

P
j , y

P
j ), (dx, da, dy)

)

=
1

nP

Q = π(X ,A,Y)(x, a, y) =
nA
∑

i=1

nP
∑

j=1

π
(

(xA
i , a

A
i ), (x

P
j , y

P
j ), (x, a, y)

)

Using the above notations, we can re-write the constraint in W (SA, SP , rA, rP ) where π’s marginal
distribution over (X ,A) must be at most rA away from P̃SA in Wasserstein distance as follows:

E
(xA

i ,aA
i ),(x,a,y))∼πSA,(X,A,Y)

[

dA((x
A
i , a

A
i ), (x, a))

]

=
nA
∑

i=1

∫

dA((x
A
i , a

A
i ), (x, a))πSA ,(X ,A,Y)(x

A
i , a

A
i , (dx, da, dy))

=
nA
∑

i=1

nP
∑

j=1

∫

dA((x
A
i , a

A
i ), (x, a))π

(

(xA
i , a

A
i ), (x

P
j , y

P
j ), (dx, da, dy)

)

≤ rA.
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Similarly, we can write the other constraint that π’s marginal distribution over (X ,Y) must be at most
rP away from P̃SP as

E
(xP

j ,yP
j ),(x,a,y))∼πSP ,(X,A,Y)

[

dP ((x
P
j , y

P
j ), (x, y))

]

=
nA
∑

i=1

nP
∑

j=1

∫

dP ((x
P
j , a

P
j ), (x, a))π

(

(xA
i , a

A
i ), (x

P
j , y

P
j ), (dx, da, dy)

)

≤ rP .

Lastly, the constraint that in order π to be a valid coupling, its marginal distribution over SA and SP

should be exactly 1
nA

and 1
nP

over its support is equivalent to

nP
∑

j=1

∑

a∈A

∑

y∈Y

∫

π
(

(xA
i , a

A
i ), (x

P
j , y

P
j ), (dx, da, dy)

)

=
1

nA
∀i ∈ [nA]

nA
∑

i=1

∑

a∈A

∑

y∈Y

∫

π
(

(xA
i , a

A
i ), (x

P
j , y

P
j ), (dx, da, dy)

)

=
1

nP
∀j ∈ [nP ].

For simplicity, instead of π
(

(xA
i , a

A
i ), (x

P
j , y

P
j ), (x, a, y)

)

, we write πy
i,j(x, a) = π

(

(xA
i , a

A
i ), (x

P
i , y

P
i ), (x, a, y)

)

.
Then, combining all these together, we can rewrite the problem (1) as choosing θ ∈ Θ that minimizes the
following value:

sup
πa,y
i,j

nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

X ,A
"(θ, (x, a, y))πy

i,j(dx, da)

s.t.
nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

X ,A
diA(x, a)π

y
i,j(dx, da) ≤ rA

nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

X ,A
djP (x, y)π

y
i,j(dx, da) ≤ rP

nP
∑

j=1

∑

y∈Y

∫

X ,A
πy
i,j(dx, da) =

1

nA
∀i ∈ [nA]

nA
∑

i=1

∑

y∈Y

∫

X ,A
πy
i,j(dx, da) =

1

nP
∀j ∈ [nP ]

(2)

where diA(x, a) = dA((xA
i , a

A
i ), (x, a)) and djP (x, y) = dP ((xP

j , y
P
j ), (x, y)). For any fixed parameter θ, we’ll

denote the optimal value of the above problem (2) as p∗(θ, rA, rP ) and p∗(rA, rP ) = infθ p∗(θ, rA, rP ).
It can be shown that minimizing over the above supremum value in (1) and the optimization problem (2)

are equivalent as shown in the following theorem. We also provide a tight characterization of the feasibility
of (2). The proof of Theorem 3.1 and 3.2 can be found in Appendix A.1.

Theorem 3.1. For any fixed θ ∈ Θ, p∗(θ, rA, rP ) = supQ∈W (SA,SP ,rA,rP ) E(x,a,y)∼Q["(θ, (x, a, y))]

Theorem 3.2. DdX
(P̃SX

A
, P̃SX

P
) ≤ rA + rP , if and only if there exists a feasible solution for (2).
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3.2 Strong Duality

We claim that the following problem is the dual to problem (2) and show that strong duality holds between
them:

inf
αA,αP ,

{βi}i∈[nA],

{β′
j}j∈[nP ]

αArA + αP rP +
1

nA

∑

i∈[na]

βi +
1

nP

∑

j∈[nP ]

β′

s.t. sup
(x,a)

(

"(θ, (x, a, y))− αAd
i
A(x, a)− αPd

j
P (x, y)

)

≤ βi + β′
j∀i ∈ [nA], j ∈ [nP ], y ∈ Y

(3)

For fixed θ, we’ll write d∗(θ, rA, rP ) to denote the optimal value for the above dual problem (3). As
in Shafieezadeh-Abadeh et al. [2015] and Esfahani and Kuhn [2018], strong duality directly follows from
proposition 3.4 of Shapiro [2001], but to be self-contained, we include the proof in Appendix A.3 which
follows the same proof structure presented in Villani [2003]. For clarity, we assume in the proof that X and
A is compact, but for more interested readers, we refer to the strong duality proof in Theorem 1.3 of Villani
[2003] to see how to remove the compactness assumption on X and A.

Theorem 3.3. Assume X and A are compact spaces. If there exists a feasible solution for the primal
problem (2), then we have that strong duality holds between the primal problem (2) and its dual problem (3):
p∗(θ, rA, rP ) = d∗(θ, rA, rP ) for fixed θ.

In other words, we have successfully transformed the saddle point problem into a minimization problem:

min
θ∈Θ,
αA,αP ,

{βi}i∈[nA],

{β′
j}j∈[nP ]

αArA + αP rP +
1

nA

∑

i∈[na]

βi +
1

nP

∑

j∈[nP ]

β′

s.t. sup
(x,a)

(

"(θ, (x, a, y))− αAd
i
A(x, a)− αPd

j
P (x, y)

)

≤ βi + β′
j∀i ∈ [nA], j ∈ [nP ], y ∈ Y

3.3 Replacing the sup Term

Note that sup(x,a) in the constraint makes it hard to actually compute the expression: it’s neither concave

or convex in terms of (x, a) as it’s the difference between convex functions "(θ, (x, a, y)) and αAd
i
A(x, a) +

αPd
j
P (x, y). In that regard, we show how to approximate the sup term in the constraint of dual problem

(3) with some closed form expression by extending the techniques used in Shafieezadeh-Abadeh et al. [2015]
who study when there’s only one “anchor” point — i.e. supx "(θ, x) − αdX (xi, x).

With some rearranging, let’s focus only on the terms that actually depend on (x, a).

sup
(x,a)

"(θ, (x, a, y))− αAd
i
A(x, a)− αP d

j
P (x, y)

= κPαP |yPj − y|+ sup
(x,a)

h(yθ, (x, a))− αA||xA
i − x||p − αP ||xP

j − x||p + αAκA||aAi − a||p′

During this discussion, we drop y by using h2 and also for simplicity, we write R to denote

R = sup
(x,a)

h(θ, (x, a)) − αA||xA
i − x||p − αP ||xP

j − x||p − αAκA||aAi − a||p′ .

We now rearrange some terms of R and use convex conjugate of h to represent the supremum term with
what is known as an infimal convolution:

2Note that all our arguments are based on some fixed θ, so if y = +1, proceed with the original θ, and for y = −1, proceed
with a new fixed θ′ = −θ.
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Lemma 3.1. Fix any θ, (xA
i , a

A
i , x

P
j ), and (αA,αP ,κA). If ||θ[1 : m1]||p,∗ > αA + αP or ||θ[m1 + 1 :

m1 + m2]||p′,∗ > κAαA, then sup(x,a) h(θ, (x, a)) − αA||xA
i − x||p − αP ||xP

j − x||p − αAκA||aAi − a||p′ = ∞.
Otherwise, we have

sup
(x,a)

h(θ, (x, a)) − αA||xA
i − x||p − αP ||xP

j − x||p − αAκA||aAi − a||p′

= sup
b∈[0,1]

−f∗(b) + (gi1!gj2)(bθ[1 : m1]) + 〈bθ[m1 + 1 : m1 +m2], a
A
i 〉

where

gi1(θ) =

{

〈θ, xA
i 〉 if ||θ||p,∗ ≤ αA

∞ otherwise
gj2(θ) =

{

〈θ, xP
j 〉 if ||θ||p,∗ ≤ αP

∞ otherwise

and (gi1!gj2)(θ) = infθ1+θ2=θ g
i
1(θ1) + gj2(θ2) is the infimal convolution of gi1 and gj2.

Then, by noting that an infimal convolution of two linear functions over bounded norm domain is convex,
we show how to upper bound the infimal convolution with a linear term:

Theorem 3.4. Suppose the norm || · || is some p-norm where p += 1 and p += ∞. Fix θ where ||θ||∗ ≤ αA+αP .
Then, for any b ∈ [0, 1],

(gi1!gj2)(bθ) ≤
(

b

αA + αP

)

(||θ||∗ min(αA,αP )||xA
i − xP

j ||+ 〈θ,αAx
A
i + αPx

P
j 〉)−min(αA,αP )||xA

i − xP
j ||

Combining Lemma 3.1 and Theorem 3.4, we can show the following upper bound on R:

Theorem 3.5. We write θ1 = θ[1 : m1] and θ2 = [m1 + 1 : m1 + m2]. Suppose p += 1 and p += ∞. If
||θ1||p,∗ ≤ αA + αP and ||θ2||p′,∗ ≤ κAαA, then

R ≤ f

((

min(αA,αP )||θ1||∗||xA
i − xP

j ||
αA + αP

+
〈θ1,αAx

A
i + αPx

P
j 〉

αA + αP

)

+ 〈θ2, aAi 〉

)

−min(αA,αP )||xA
i − xP

j ||p.

Otherwise, sup(x,a) h(θ, (x, a)) − αA||x− xA
i ||p − αP ||x− xP

j ||p − αAκA||aAi − a||p′ evaluates to ∞.

Suppose we write x̂i,j =

{

xP
j if αA < αP

xA
i

and α̂ = min(αA,αP ).

Then, via Hölder’s inequality, we can show that evaluating the constraint at (x̂i,j , a
A
i ) is pretty close to

to the upperbound of R in Theorem 3.5 and hence, it is also close to R because the constraint evaluated at
(x̂A

i , a
A
i ) is a lower bound for R.

Theorem 3.6. Suppose p += 1 and p += ∞. If ||θ1||p,∗ ≤ αA + αP and ||θ2||p′,∗ ≤ κAαA, then
(

h(θ, (x̂i,j , a
A
i ))− α̂||xA

i − xP
j ||p

)

−R ≤ 2α̂||xA
i − xP

j ||.

Therefore, we can approximate R with
(

h(θ, x̂i,j , a
A
i ))− α̂||xA

i − xP
j ||p

)

. In the next section, we try to

justify why the approximation error 2α̂||xA
i − xP

j || is reasonable.

4 Optimization

4.1 Approximation

We will first try to reformulate the original problem by making some structural assumption about the optimal
transport πy

i,j(x, a). Because it is an optimal transport, we most likely have that for every (x, a, y) whose
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measure is non-zero (i.e. πy
i,j(x, a) > 0), its distance to (xA

i , a
A
i ) and (xP

j , y
P
j ) should be small. In other

words, we most likely have that for any (i, j) where ||xA
i − xP

j || is big, πy
i,j(x, a) will be zero. Therefore, we

assume that for every i ∈ [nA], we only consider its k-closest neighbors out of {xP
j }j∈[nP ] and do the same

for j ∈ [nP ]. We will denote this set of pairs by M

M =

{

(i, j) :
xA
i is one of xP

j ’s k-nearest neighbors among {xA
i′ }i′

or xP
j is one of xA

i ’s k-nearest neighbors among {xP
j′}j′ .

}

Noting that the dual constraint for each i ∈ [nA], j ∈ [nP ], and y ∈ Y corresponds to the primal variable
πy
i,j , this assumption allows us to only consider constraints (i, j) ∈ M . Then, after multiplying the objective

by nAnP with some rearranging, the dual problem becomes

min
θ,αA,αP ,

{βi,β
′
j}(i,j)∈M

nAnP (αArA + αP rP ) +
∑

(i,j)∈M

(βi + β′
j)

s.t. max
y∈Y

sup
(x,a)

(

"(θ, (x, a, y))− αAd
i
A(x, a)− αPd

j
P (x, y)

)

≤ βi + β′
j ∀(i, j) ∈ M.

(4)

In the case where the k-nearest-neighbor graph M between SA and SP is nicely structured3, we should be
always able to find {βi,βj} such that for each (i, j) ∈ M

max
y∈Y

sup
(x,a)

(

"(θ, (x, a, y))− αAd
i
A(x, a)− αPd

j
P (x, y)

)

= βi + β′
j . (5)

Note that if there exists {βi,βj} that satisfy (5), the optimal solution to (4) must satisfy (5). Therefore,
assuming such {βi,βj} exists, we get to re-write the optimization problem as

min
αA,αP ,θ

nAnP (αArA + αP rP ) +
∑

(i,j)∈M

max
y∈Y

sup
(x,a)

(

"(θ, (x, a, y))− αAd
i
A(x, a)− αP d

j
P (x, y)

)

.

Using the following fact about logistic function f(−t) = f(t) + t, we know that

max(f(t), f(−t)) = f(t) + max(t, 0).

In other words, max
(

f(yPj 〈θ, (x̂i,j , a
A
i )〉), f(−yPj 〈θ, (x̂i,j , a

A
i )〉)− αPκP

)

= f(yPj 〈θ, (x̂i,j , a
A
i )〉)+max(yPj 〈θ, (x̂i,j , a

A
i )〉−

αPκP , 0). Using our approximation of the supremum term as in Theorem 3.6 and the above fact, the problem
then becomes

min
αA,αP ,θ1,θ2

(αArA + αP rP ) +
1

nAnP

nA
∑

i=1

nP
∑

j=1

(f(yPj 〈θ, (x̂i,j , a
A
i )〉)

+ max(yPj 〈θ, (x̂i,j , a
A
i )〉 − αPκP , 0)− α̂||xA

i − xP
j ||)

s.t. ||θ1||∗ ≤ αA + αP , ||θ2||∗ ≤ κAαA.

(6)

Note that because we have restricted our attention only to pairs who are close to one another, the ad-
ditive approximation error due to using evaluating the constraint only at (x̂i,j , a

A
i ) which amounts to

2α̂
nAnP

∑

(i,j)∈M ||xA
i − xP

j || in the objective must be small.

3More formally, this is equivalent to assuming that there exists a feasible solution to the following system following linear
equations. Suppose A is a |M |× (nA + nP ) matrix where for every lth pair (i, j) in M , M [l, i] = 1 and M [l, nA + j] = 1. And
b is a vector of length |M | where for every lth pair (i, j) ∈ M ,

b[l] = max
y∈Y

sup
(x,a)

(

"(θ, (x, a, y)) − αAdiA(x, a) − αP d
j
P (x, y)

)

.

Our assumption is equivalent to assuming that there exists a vector x of length nA + nP such that Ax = b or equivalently, A
is left-invertible. Note that the very first nA coordinates correspond to {βi} and the last nP coordinates correspond to {β′

j}.
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4.2 Projected Gradient Descent

To solve the optimization problem (6), we employ first-order projected gradient descent. In order to handle
α̂ = min(αA,αP ), we can just solve the optimization twice: once with αA < αP as one of the constraints and
the other time with αA ≥ αP . Suppose α̂ = αA, meaning x̂i,j = xP

j . Then we write the objective function
as

ΩA(αA,αP , θ) = (αArA + αP rP ) +
1

nAnP

∑

(i,j)∈M

(f(yPj 〈θ, (xP
j , a

A
i )〉) + max(yPj 〈θ, (xP

j , a
A
i )〉 − αPκP , 0)− αA||xA

i − xP
j ||)

and the constraint set is

CA ={(αA,αP , θ) : ||θ1||∗ ≤ αA + αP , ||θ2|| ≤ κAαA,αA < αP }.

Similarly, when α̂ = αP , we write ΩP (αA,αP , θ) and CP where the α constraint is replaced by αA ≥ αP .
Note that in both cases, we have a convex optimization problem.

Claim 4.1. The objective functions ΩA(αA,αP , θ) and ΩP (αA,αP , θ) are convex in (αA,αP , θ). The con-
straint sets CA and CP are also convex in (αA,αP , θ).

Suppose we write

(α′
A,α

′
P , θ

′) = arg min
(αA,αP ,θ)∈CA

ΩA(αA,αP , θ)

(α′′
A,α

′′
P , θ

′′) = arg min
(αA,αP ,θ)∈CP

ΩP (αA,αP , θ).

Claim 4.2. The optimal solution to problem (6) is (α′
A,α

′
P , θ

′) if ΩA(α′
A,α

′
P , θ

′) ≤ ΩP (α′′
A,α

′′
P , θ

′′) and
(α′′

A,α
′′
P , θ

′′) otherwise.

Typical regularized models either constrain the norm of the parameter θ to be directly bounded by some
constants specified initially or include the norm as part of the objective multiplied by some multiplicative
penalty constant. However, our optimization problem is a hybrid of both as (1) the norms of the parameter θ
are to be bounded by αA and αP but (2) (αA,αP ) are part of the optimization variables that are multiplied
by some penalty constants rA and rP in the objective function.

Nevertheless, the constraint set is convex so Euclidean projection can be solved via any convex solver,
and in the case of p = 2, we have exactly characterized a closed form solution of the output of the projection
in Appendix B.1. Therefore, in order to solve (6), we can use projected gradient descent (PGD)

(αt+1
A ,αt+1

P , θt+1) = ProjectC
(

(αt
A,α

t
P , θ

t)− η∇Ω(αt
A,α

t
P , θ

t)
)

.

It is well known that the rate of convergence for PGD is O( 1√
T
) with appropriately chosen step size η. We
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present the overall algorithm to solve problem (6) in Algorithm 1.

Algorithm 1: Distributionally Robust Data Join

1: Input: SA, SP , rA, rP , κA, κP , k, T
2: Run k-nearest neighbors on SA and SP to calculate the matching pairs M
3: choose arbitrary θ,αA,αP

4: Set θ1A = θ,α1
A = αA,α

1
P = αP

5: Set θ′1A = θ,α′1
A = αA,α

1
P

6: for i = 1 to T − 1 do

7: (αt+1
A ,αt+1

P , θt+1) = ProjectCA

(

(αt
A,α

t
P , θ

t)− η∇ΩA(αt
A,α

t
P , θ

t)
)

8: (α′t+1
A ,α′t+1

P , θ′
t+1) = ProjectCP

(

(α′t
A,α

′t
P , θ

′t)− η∇ΩP (α′t
A,α

′t
P , θ

′t)
)

9: αA = 1
T

∑T
t=1 α

t
A,αP = 1

T

∑T
t=1 α

t
P , θ =

1
T

∑T
t=1 θ

t

10: αA
′ = 1

T

∑T
t=1 α

′t
A,αP

′ = 1
T

∑T
t=1 α

′t
P , θ

′
= 1

T

∑T
t=1 θ

′t

11: if ΩA(αA,αP , θ) < ΩP (αA
′,αP

′, θ
′
) then

12: Return (αA,αP , θ)
13: else
14: Return (αA

′,αP
′, θ

′
)

Write Ω(αA,αP , θ) = ΩA(αA,αP , θ) if αA < αP and ΩP (αA,αP , θ) otherwise to denote the objective solu-
tion to problem (6). Then, the optimal value (α∗

A,α
∗
P , θ

∗) of problem (6) is (α∗
A,α

∗
P , θ

∗) = argmin(αA,αP ,θ)∈CA∪CP Ω(αA,αP , θ).

Theorem 4.1. With appropriately chosen step size η, Algorithm 1 returns (αA,αP , θ) such that Ω(αA,αP , θ) ≤
Ω(α∗

A,α
∗
P , θ

∗) +O
(

1√
T

)

.

5 Application: Fairness

In many situations, the actual demographic group information may not be available in the original labeled
dataset, but another auxiliary unlabeled dataset may contain the needed demographic group information.
We can leverage our data join method in order to incorporate this auxiliary dataset to penalize the model for
model’s unfairness. Suppose A represents two different groups that an individual can belong to — A = {0, 1}.

Given θ, we define its unfairness with respect to distribution P over X ,A,Y as

U(θ,P) =

∣

∣

∣

∣

∣

Pr
(x,a,y)∼P

[u(hθ(x))|a = 1, y = 1]− Pr
(x,a,y)∼P

[u(hθ(x))|a = 0, y = 1]

∣

∣

∣

∣

∣

where u(t) = log(t) and hθ(x) = 1
1+exp(−〈θ,x〉) as in Taskesen et al. [2020]. This term is similar to the

difference in true positive rates as in the case of equal opportunity, but it differs in that it looks at the log-
probability — this fairness criterion is referred to as log-probabilistic equalized opportunity in Taskesen et al.
[2020].

Also, as in Taskesen et al. [2020], we suppose that we know the underlying positive rates for each group
and constrain the joint distribution’s marginal distribution over A and Y in the following manner: given
some p0, p1 ∈ (0, 1), we define

W(p0,p1)(SA, SP , rA, rP ) =

{

Q ∈ W (SA, SP , rA, rP ) : Pr
(x,a,y)∼Q

[a = 0, y = 1] = p0, Pr
(x,a,y)∼Q

[a = 0, y = 1] = p1

}

.

Then, the problem we are interested in is

min
θ∈Θ

sup
Q∈W(p0,p1)(SA,SP ,rA,rP )

E
(x,a,y)∼Q

["(θ, (x, a, y))] + ηU(θ,Q) (7)
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where we are adding a fairness regularization term multiplied by some constant η where |η| < min(p0, p1).
Following the same argument as in Section 3.1, we can re-write the problem as

sup
πa,y
i,j

nA
∑

i=1

nP
∑

j=1

∑

a∈A

∑

y∈Y

∫
(

"(θ, (x, a, y)) + η

(

u(hθ((x, a)))
[a = 1, y = 1]

p1
− u(hθ((x, a)))

[a = 0, y = 1]

p0

))

πa,y
i,j (dx)

s.t.
nA
∑

i=1

nP
∑

j=1

∑

a∈A

∑

y∈Y

∫

diA(x, a)π
a,y
i,j (dx) ≤ ra

nA
∑

i=1

nP
∑

j=1

∑

a∈A

∑

y∈Y

∫

djP (x, y)π
a,y
i,j (dx) ≤ rP

nP
∑

j=1

∑

a∈A

∑

y∈Y

∫

πa,y
i,j (dx) =

1

nA
∀i ∈ [nA]

nA
∑

i=1

∑

a∈A

∑

y∈Y

∫

πa,y
i,j (dx) =

1

nP
∀j ∈ [nP ]

nA
∑

i=1

∑

a∈A

∑

y∈Y

∫

[a = 0, y = 1]πa,y
i,j (dx) = p0

nA
∑

i=1

∑

a∈A

∑

y∈Y

∫

[a = 1, y = 1]πa,y
i,j (dx) = p1

(8)

Denoting the value of the above optimization as pfair(p0, p1, η), the same argument as in Theorem 3.1 can
be used to see that the value of (7) is exactly max(pfair(p0, p1, η), pfair(p0, p1,−η)) where we need to try out
η and −η in order to handle the absolute value in U .

As in Section 3.2, the dual problem of (8) can be derived by looking at the Lagrangian, which after
rearranging the terms a little bit is as follows:

L(π,αA,αP , {βi}, {β′
j}}, γ0, γ1)

=
nA
∑

i=1

nP
∑

j=1

∑

a∈A

∑

y∈Y

∫

(

"(θ, (x, a, y)) + η

(

u(hθ((x, a)))
[a = 1, y = 1]

p1
− u(hθ((x, a)))

[a = 0, y = 1]

p0

)

− αAd
i
A(x, a)− αP d

j
P (x, y)− βi − β′

j

− γ0 [a = 0, y = 1]− γ1 [a = 1, y = 1]

)

πy,a
i,j (dx)

+ αArA + αP rP +
1

nA

nA
∑

i=1

βi +
1

nP

nP
∑

j=1

β′
j + p0γ0 + p1γ1.

14



The dual problem is then

inf
αA,αP ,

{βi}i∈[nA],{β′
j}j∈[nP ]

αArA + αP rP +
1

nA

∑

i∈[nA]

βi +
1

nP

∑

j∈[nP ]

β′
j + p0γ0 + p1γ1

s.t. sup
x

(

"(θ, (x, a, y)) + ηu(hθ((x, a)))

(

[a = 1, y = 1]

p1
−

[a = 0, y = 1]

p0

)

− αAd
i
A(x, a)− αPd

j
P (x, y)

)

− βi − β′
j

− γ0 [a = 0, y = 1]− γ1 [a = 1, y = 1] ≤ 0 i ∈ [nA], j ∈ [nP ], a ∈ A, y ∈ Y

(9)

Note that when y = −1, then the term in the supremum simply becomes

"(θ, (x, a, y))− αAd
i
A(x, a)− αP d

j
P (x, y).

When y = 1, then we get

log(1 + exp(−〈θ, (x, a)〉)) − η log(1 + exp(−〈θ, (x, a)〉)
(

[a = 1]

p1
−

[a = 0]

p0

)

− αAd
i
A(x, a)− αP d

j
P (x, y)

= log(1 + exp(−〈θ, (x, a)〉))
(

1− η

(

[a = 1]

p1
−

[a = 0]

p0

))

− αAd
i
A(x, a) − αPd

j
P (x, y)

=

(

1− η

(

[a = 1]

p1
−

[a = 0]

p0

))

"(θ, (x, a, y))− αAd
i
A(x, a)− αP d

j
P (x, y)

For simplicity, we write

c(a, y) = 1− [y = 1]η

(

[a = 1]

p1
−

[a = 0]

p0

)

.

Note that c(a, y) > 0 because η > min(p0, p1). Write c = maxa,y c(a, y).
Then, the above dual problem can be re-written as

inf
αA,αP ,

{βi}i∈[nA],{β′
j}j∈[nP ]

αArA + αP rP +
1

nA

∑

i∈[nA]

βi +
1

nP

∑

j∈[nP ]

β′ + p0γ0 + p1γ1

s.t. sup
x

(

c(a, y) · "(θ, (x, a, y))− αAd
i
A(x, a)− αPd

j
P (x, y)

)

− βi − β′
j

− γ0 [a = 0, y = 1]− γ1 [a = 1, y = 1] ≤ 0 i ∈ [nA], j ∈ [nP ], a ∈ A, y ∈ Y.

(10)

We remark that the c(a, y) that folds the fairness constraint into the original loss is essentially equivalent
to the cost plugged into the cost-sensitive oracle in Agarwal et al. [2018] and Kearns et al. [2018].

Note that the constant can be taken out of the sup as c(a, y) is always positive and the same proof as in
Lemma 3.1 can be used:

sup
x

(

c(a, y) · "(θ, (x, a, y)) − αAd
i
A(x, a)− αP d

j
P (x, y)

)

= c(a, y) · sup
x

(

"(θ, (x, a, y))−
αA

c(a, y)
diA(x, a) −

αP

c(a, y)
djP (x, y)

)

We have intentionally taken a outside the sup to not worry about c(a, y) in the supremum. Just as
Lemma 3.1, we write down the supremum using the convex conjugate f∗.
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Lemma 5.1. Fix any θ, (xA
i , a, x

P
j ), and (αA,αP ,κA). If ||θ[1 : m1]||p,∗ > αA+αP , then supx h(θ, (x, a))−

αA||xA
i − x||p − αP ||xP

j − x||p = ∞. Otherwise, we have

sup
x

h(θ, (x, a)) − αA||xA
i − x||p − αP ||xP

j − x||p

= sup
b∈[0,1]

−f∗(b) + (gi1!gj2)(−bθ[1 : m1]) + 〈bθ[m1 + 1 : m1 +m2], a〉

where gi1 and gj2 is the same as defined in Lemma 3.1.

As before, via the convexity of infimal convolution of two linear functions (Lemma A.2), we can upper
bound the supremum. The only difference is that aAi has been replaced with a. For simplicity, in the following
lemma and theorem, we use αA := αA

c(a,y) and αP := αP

c(a,y) .

Theorem 5.1. Fix any θ, (xA
i , a, x

P
j ), and (αA,αP ,κA). If ||θ1||p,∗ > αA + αP , then supx h(θ, (x, a)) −

αA||xA
i − x||p − αP ||xP

j − x||p = ∞ Otherwise, we have

sup
x

h(θ, (x, a)) − αA||xA
i − x||p − αP ||xP

j − x||p

≤ f

((

min(αA,αP )||θ1||∗||xA
i − xP

j ||
αA + αP

+
〈θ1,αAx

A
i + αPx

P
j 〉

αA + αP

)

+ 〈θ2, a〉

)

−min(αA,αP )||xA
i − xP

j ||p.

Now, note that depending on (a, y), αA := αA

c(a,y) and αP := αP

c(a,y) in the above lemma and theorem

changes. Therefore, unless ||θ||p,∗ ≤ min(a,y)
αA

c(a,y) +
αP

c(a,y) ,

max
a,y

sup
x

(

c(a, y) · "(θ, (x, a, y)) − αAd
i
A(x, a)− αP d

j
P (x, y)

)

= ∞.

In other words, we need

||θ1||p,∗ ≤
αA + αP

c
or the term evaluates to ∞ otherwise. Then, via our approximation with x̂i,j as in Section 3, the optimization
problem is

min
αA,αP ,

{βi}i∈[nA],{β′
j}j∈[nP ]

nAnP (αArA + αP rP + p0γ0 + p1γ1) + nP

∑

i∈[nA]

βi + nA

∑

j∈[nP ]

β′

s.t. c(a, y) · "(θ, (x̂i,j , a, y)) + αAκA|aAi − a|+ αPκP |yPj − y|− α̂||xA
i − xP

j ||
+ γ0 [a = 0, y = 1] + γ1 [a = 1, y = 1] ≤ βi + β′

j i ∈ [nA], j ∈ [nP ], a ∈ A, y ∈ {±1},

||θ1||∗ ≤
αA + αP

c

Under the same assumption as in Section 44, the optimization problem can be re-written as

min
αA,αP ,

{βi}i∈[nA],{β′
j}j∈[nP ]

(αArA + αP rP + p0γ0 + p1γ1) +
1

nAnP

∑

(i,j)∈M

max
a∈A,y∈{±1}

c(a, y) · "(θ, (x̂i,j , a, y)) + αAκA|aAi − a|

+ αPκP |yPj − y|− α̂||xA
i − xP

j ||

s.t. ||θ1||∗ ≤
αA + αP

c
.

Note that this is still a convex optimization problem as taking max still preserves convexity of the functions
inside. As before, we can get the same kind of approximation error. For each fixed (a, y), approximating the
supx term with x̂i,j will result in approximation error of 2c(a, y)||xA

i −xP
j || as in Theorem 3.6. Therefore, even

when we take the max over all (a, y), the overall gap must be bounded by 2c(a, y)||xA
i − xP

j || ≤ 4||xA
i − xP

j ||.

4That is, the k-nearest-neighbor matching matrix A as formed as in Section 4 is left-invertible
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Theorem 5.2. Suppose p += 1 and p += ∞. If ||θ1||p,∗ ≤ αA + αP , then

max
a,y

sup
x∈X

(

c(a, y) · "(θ, (x, a, y))− αAd
i
A(x, a)− αPd

j
P (x, y)

)

−max
a,y

(

c(a, y) · "(θ, (x̂i,j , a, y)) + αAκA|aAi − a|+ αPκP |yPj − y|−min(αA,αP )||xA
i − xP

j ||
)

≤ 4α̂||xA
i − xP

j ||.

We remark that solving for supQ∈W(p0,p1)(SA,SP ,rA,rP ) U(θ,Q) for some fixed θ, which can be indeed solved
with minimal modifications, corresponds to estimating the worst case unfairness of θ over all distributions
Q ∈ W(p0,p1)(SA, SP , rA, rP ). Kallus et al. [2021] consider a special case where rA, rP = 0, 0, but they can
handle various fairness measures.

6 Experiments

In all our experiments, we use 2-norm for our data join method: i.e. p, p′ = 2. We note that as it’s
standard in practice to use the last iterate instead of the averaged iterate, we use the last iterate of the
projected gradient descent steps instead of the averaged one for all our experiments — we use (αT ,αT , θT )
if ΩA(αT ,αT , θT ) < ΩP (α′T ,α′T , θ′

T ) and (α′T ,α′T , θ′
T ) otherwise. The code used for the experiments can

be found at https://github.com/chrisjung/Distributionally-Robust-Data-Join.

6.1 UCI datasets

Here we discuss some experiments we have run on UCI datasets. The UCI datasets that we used are the
following:

1. Breast Cancer dataset (BC)5: 569 points with 30 features,

2. Ionosphere dataset (IO)6: 351 points with 34 features,

3. Heart Disease dataset (HD)7: 300 points with 13 features,

4. Handwritten Digits dataset (1vs8)8: It originally contains 1797 points with 64 points. But after filtering
out all the digits except for 1’s and 8’s, there are 356 points. The task we considered was distinguishing
between 1’s and 8’s.

For every dataset, we preprocess the data by standardizing each feature — that is, removing the mean and
scaling to unit variance. After standardizing our dataset, each experiment run consists of the following:

1. Randomly divide the dataset into Strain = {(xi, ai, yi)}ntrain

i=1 and Stest.

2. Create the prediction label dataset and auxiliary dataset where v data points belong to both datasets:
SP = {(xi, yi)}nP+v

i=1 and SA = {(xi, ai)}ntrain

nP+1.

We take the common feature to be the first 5 features for (BC, HD) and 4 for IO — i.e. m1 = 5 and 4
respectively. For 1vs8, we used m1 = 32, the first half bits of the 8x8 image. And the remaining features are
the auxiliary features A: m2 = 25, 30, 8, and 32 for BC, IO, HD, and 1vs8 respectively. For all datasets, we
set the test size to be 30% of the entire dataset. Then, we set (nP , v) = (20, 5), (20, 10), (30, 5), (30, 10) for
BC, IO, HD, 1vs8 respectively. In other words, we imagine the total number of points in our labeled sets
SP and the number of features to be very small. For BC and IO, we also try a case when the number of
common features is a lot more — m1 = 25.

We compare our method of joining SA and SP , which we denote as DJ, to the following baselines:
5https://archive.ics.uci.edu/ml/datasets/breast+cancer
6https://archive.ics.uci.edu/ml/datasets/ionosphere
7https://archive.ics.uci.edu/ml/datasets/Heart+Disease
8https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits:

This is a copy of the test dataset from https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
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1. LR: Logistic regression trained on SP

2. RLR: Regularized logistic regression on SP

3. LRO: Logistic regression on overlapped data {(xi, ai, yi)}nP+v
i=nP+1

4. RLRO: Regularized logistic regression on overlapped data {(xi, ai, yi)}nP+v
i=nP+1.

5. FULL: full training on {(xi, ai, yi)}ntrain

i=1

where FULL is simply to show the highest accuracy we could have achieved if the labeled dataset actually
had the auxiliary features and the unlabeled dataset had the labels.

BC (m1 = 5) BC (m1 = 25) IO (m1 = 4) IO (m1 = 25) HD 1vs8
DJ 0.9199± 0.0283 0.9415± 0.0165 0.8226± 0.0764 0.7906± 0.0484 0.7495± 0.0374 0.9206± 0.0322
LR 0.9012± 0.0294 0.9140± 0.0393 0.7764± 0.1560 0.7868± 0.0653 0.7286± 0.0504 0.8729± 0.0337

RLR 0.9053± 0.0228 0.9287± 0.0199 0.7915± 0.1417 0.7868± 0.0690 0.7363± 0.0565 0.8953± 0.0250
LRO 0.8789± 0.0318 0.8789± 0.0318 0.7330± 0.0788 0.7330± 0.0788 0.6626± 0.0569 0.7766± 0.0599

RLRO 0.8953± 0.0212 0.8953± 0.0212 0.7377± 0.0800 0.7377± 0.0800 0.6714± 0.0568 0.8710± 0.0450

FULL 0.9684± 0.0143 0.9684± 0.0143 0.8754± 0.0764 0.8754± 0.0764 0.8319± 0.0311 0.9495± 0.0222

Table 1: Average accuracy of each method over 10 experiment runs and standard deviations for three UCI
datasets

We include the parameters used for each of these baselines and our method (DJ) and how they were
chosen in Appendix D. It can be seen that the use of the additional auxiliary features through our data join
method seems to help achieve better accuracy than the baselines that we considered.

6.2 Synthetic Dataset

Through a simple experiment on synthetically generated data, we demonstrate how our approach (DJ) can
handle distribution shifts well. Note that in the previous experiment with the UCI datasets, each points
have been all drawn iid, so how well our method can handle distribution shift wasn’t really tested in those
experiments.

LR RLR DRLR DJ
Accuracy 0.4126± 0.1049 0.5786± 0.3992 0.9068± 0.0076 0.9923± 0.0057

Table 2: Average accuracy of each method over 10 experiment runs and standard deviations for synthetic
dataset with a distribution shift

We first describe the data generation process. At a high level, there are two groups whose covariate and
label distributions are different. The majority of the points in the labeled dataset SP is the first group, but
in the unlabeled and test dataset (SA, Stest), the majority is the second group. More specifically, define

β1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] and β2 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

For the first group, the positive points and negative points were drawn from a multivariate normal
distribution with mean β1 and −β1 respectively, both with the standard deviation of 0.2:

x|y = +1, g = 1 ∼ N(β1, 0.2) and x|y = −1, g = 1 ∼ N(−β1, 0.2).

For the second group, the positive points and negative points were drawn from a multivariate normal
distribution with mean β2 and −β2 respectively, both with the standard deviation of 0.2:

x|y = +1, g = 1 ∼ N(β2, 0.2) and x|y = −1, g = 1 ∼ N(−β2, 0.2).
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Now, for the first dataset S1 = {(x1
j , y

1
j )}

n1
j=1, we set the number of points from group 1 and from group

2 to be 400 and 20 respectively. And we had the number of positive and negative points in each group to be
exactly the same: i.e. 200 positive and negative points for group 1, and 10 positive and 10 negative points
for group 2.

For the second dataset, S2 = {(x2
i , y

2
i )}

n2
i=1, the number of points from group 1 and from group 2 was 200

and 2000 respectively. The number of positive and negative points in each group was exactly the same once
again here.

Our labeled dataset will be the first two coordinates of the fist dataset, meaning m1 = 2:

SP = {(x1
j [0 : 2], y1j )}

n1
j=1.

Then, we will randomly divide the second dataset so that the 70% of it will be used as unlabeled dataset SA

and the other 30% is to be used as the test dataset Stest.

SA = {x2
i }

0.7n2
i=1 and Stest = {(x2

i , y
2
i )}

n2
i=0.7n2+1.

Note that m2 = 10−m1 = 8.
The baselines that we consider for this synthetic data experiment are

1. Logistic regression trained (LR) on SP ,

2. Regularized regression trained (RLR) on SP with λ = 10,

3. Distributionally logistic regression (DLR) trained on SP with r = 100,κ = 10.

Depending on which group is the majority in the dataset, the ideal hyperplane is different. If the majority
is the first group, the ideal hyperplane is such that it ignores all the features except for the fist one and
returns 1 if the first feature is positive and -1 otherwise. However, if the majority is the second group, the
ideal hyperplane is such that it does the same process for all the features: predict +1 if all the features all
mostly positive -1 otherwise. This is the reason why vanilla logistic regression puts most of its weights only
on the first feature and not the second, but because the majority has been flipped in the test distribution,
it performs very poorly. Regularized and distributionally logistic regression seems to mitigate against this
effect. However, they still need to hedge against all the distributions that is nearby the empirical distribution
over SP , so the accuracy isn’t as high.

By contrast, the reason why our data join approach method does well as compared to other methods is
mainly due to its k-nearest-neighbor matching. The group identity is actually encoded in the second feature:
the second feature of a point is 0 if it’s from the first group, and if it’s from the second group, it is -1 or 1
depending on the label. Therefore, k-nearest-neighbor should be able to match each of the points to another
point that belongs to the same group and the correct label. And as a result of joining the second unlabeled
dataset via this knn matching, which group is the majority included in the dataset must have been flipped.
Furthermore, with the availability of the auxiliary features, namely feature 3 to 10, the data join can nearly
predict the label of each point perfectly (i.e. 99.45% as shown in Table 2).

In other words, one can expect our distributionally robust data join method to perform well, when
the information embedded in the common features X allows the k-nearest-neighbors to match the points
very well. Nevertheless, we remark that the k-nearest-neighbor’s matching doesn’t have to be perfect as the
regularization of the model parameters (i.e. ||θ1|| ≤ αA+αP and ||θ2|| ≤ κAαA) and the label uncertainty (i.e.
max(f(y〈θ, x̂i,j , a)〉), f(−y〈θ, x̂i,j , a)〉) + αPκP )) should be able to tolerate some amount of the mismatches
that happen from k-nearest-neighbor.
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Appendices

A Missing Details from Section 3

A.1 Missing Details from Section 3.1

Theorem 3.1. For any fixed θ ∈ Θ, p∗(θ, rA, rP ) = supQ∈W (SA,SP ,rA,rP ) E(x,a,y)∼Q["(θ, (x, a, y))]

Proof. It’s clear that for any feasible solution π for (2), we must have that

π(X ,A,Y) ∈ W (SA, SP , rA, rP )

as we have a coupling πSA,(X ,A,Y) between P̃SA and π(X ,A,Y) such that

E
(xA

i ,aA
i ),(x,a,y))∼πSA,(X,A,Y)

[

dA((x
A
i , a

A
i ), (x, a))

]

≤ rA

and
E

(xP
j ,yP

j ),(x,a,y))∼πSP ,(X,A,Y)

[

dP ((x
P
j , y

P
j ), (x, y))

]

≤ rP .

Also, for any Q ∈ W (SA, SP , rA, rP ), let’s write the optimal transport between P̃SA and Q as π∗
SA,(X ,A,Y)

and the optimal transport between P̃SP and Q as π∗
SP ,(X ,A,Y). Then consider the following coupling between

P̃SA , P̃SP , and Q:

π((xA
i a

A
i ), (x

P
j , y

P
j ), (x, a, y)) = π∗

SA,(X ,A,Y)((x
A
i a

A
i ), (x, a, y)) · π∗

SP ,(X ,A,Y)((x
P
j , y

P
j ), (x, a, y)).

which is a product of π∗
SA,(X ,A,Y) and π∗

SP ,(X ,A,Y). This π is clearly a feasible solution for (2). πSA,(X ,A,Y) =

π∗
SA,(X ,A,Y) which witnesses that its Wasserstein distance to P̃SA is at most rA, and the same argument

applies for P̃SP . Also, its marginal distribution over SA and SP will be exactly P̃SA and P̃SP respectively
because both π∗

SA,(X ,A,Y) and π∗
SP ,(X ,A,Y) is a valid coupling for P̃SA and P̃SP respectively.

Therefore, as their feasible solution spaces are equivalent and the objective functions are the same, we
must have

p∗(θ, ra, rp) = sup
Q∈W (SA,SP ,rA,rP )

E
(x,a,y)∼Q

["(θ, (x, a, y))].

A.2 Feasibility of Problem (2)

Here we focus on the feasibility of problem (2): more specifically, how big rA and rP needs to be in order
for W (SA, SP , rA, rP ) to be a non-empty set.

Theorem 3.2. DdX
(P̃SX

A
, P̃SX

P
) ≤ rA + rP , if and only if there exists a feasible solution for (2).

Proof. (⇒) direction: Suppose π∗ = argminπ∈Π(P̃X
a ,P̃X

a ) Eπ[d(x, x
′))] is the coupling between P̃SX

a
and P̃SX

p

from that results in the Wasserstein distance DdX
(P̃SX

A
, P̃SX

P
) = E(xA

i ,xP
j )∼π∗ [dX(xA

i , x
P
j )].

For every i ∈ [nA] and j ∈ [nP ], define

x∗
i,j = xA

i −
rA

rA + rP
(xA

i − xP
j )

= xP
j +

rp
rA + rP

(xA
i − xP

j )
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which is essentially a weighted average of xA
i and xP

j .
Note that we have

||x∗
i,j − xA

i || = ||xA
i −

rA
rA + rP

(xA
i − xP

j )− xA
i ||

=
rA

rA + rP
||xA

i − xP
j ||

||x∗
i,j − xP

j || = ||xP
j +

rP
rA + rP

(xA
i − xP

j )− xP
i ||

=
rP

rA + rP
||xA

i − xP
j ||

Then, construct πa,y
i,j as follows:

π
yP
j

i,j (x
∗
i,j , a

A
i ) = π∗(xA

i , x
P
j )

and 0 otherwise: in other words, for each (i, j), there’s a point mass of π∗(xA
i , x

P
j ) at x∗

i,j , a
A
i,j with y = yPj .

We now show that the constructed coupling πy
i,j is a feasible solution for (2).

First, note that we can prove that its marginal distribution transport cost is bounded by rA and rP . In
the case of SA, we have

nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

X ,A
diA(x, a)π

y
i,j(dx, da) =

nA
∑

i=1

np
∑

j=1

diA(x
∗
i,j)π

yp
j

i,j(x
∗
i,j , a

A
i )

=
nA
∑

i=1

np
∑

j=1

(

||x∗
i,j − xA

i ||+ κA||aAi − aAi ||
)

π∗(xA
i , x

P
j )

=
rA

rA + rP

nA
∑

i=1

np
∑

j=1

||xP
j − xA

i ||π∗(xA
i , x

P
j )

≤ rA.

For SP , we can similarly show

nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

X ,A
djP (x, a)π

y
i,j(dx, da) =

nA
∑

i=1

np
∑

j=1

djP (x
∗
i,j)π

yp
j

i,j(x
∗
i,j , a

A
i )

=
nA
∑

i=1

np
∑

j=1

(

||x∗
i,j − xP

j ||+ κP |yPj − yPj |
)

π∗(xA
i , x

P
j )

=
rP

rA + rP

nA
∑

i=1

np
∑

j=1

||xP
j − xA

i ||π∗(xA
i , x

P
j )

≤ rP .

Finally, the constructed πa,y
i,j is a valid coupling:

nP
∑

j=1

∑

y∈Y

∫

X ,A
πy
i,j(dx, da) =

nP
∑

j=1

π∗(xA
i , x

P
j ) =

1

nA
∀i ∈ [nA]

nA
∑

i=1

∑

y∈Y

∫

X ,A
πy
i,j(dx, da) =

nA
∑

i=1

π∗(xA
i , x

P
j ) =

1

nP
∀j ∈ [nP ],
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as π∗ was a valid coupling between P̃SA and P̃SP .
(⇐) direction: We’ll use πa

i,j to denote the feasible solution to (2). Now, construct a coupling π such

that the expected transport cost between P̃SX
A

and P̃SX
P

under π is at most rA+rP , meaning the Wasserstein
distance is at most min(ra, rp).

Construct the coupling π between P̃SX
A

and P̃SX
P

as

π(xA
i , x

P
j ) =

∑

y∈Y

∫

X ,A
πy
i,j(dx, da).

It’s easy to see that π is a valid coupling as

nA
∑

i=1

π(xA
i , x

P
j ) =

nA
∑

i=1

∑

y∈Y

∫

X ,A
πy
i,j(dx, da) =

1

nP
and

nP
∑

j=1

π(xA
i , x

P
j ) =

nP
∑

j=1

∑

y∈Y

∫

X ,A
πy
i,j(dx, da) =

1

nA

for each i ∈ [nA] and j ∈ [nP ].
Finally, due to its feasibility, we get

nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

X ,A
diA(x, y)π

y
i,j(dx, da) ≤ rA

nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

(

||xA
i − x||+ κa||aAi − a||

)

πy
i,j(dx, da) ≤ rA

nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

X ,A
||xA

i − x||πy
i,j(dx, da) ≤ rA (11)

Similarly, we get

nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

X ,A
||xP

j − x||πy
i,j(dx, da) ≤ rP (12)

By adding (11) and (12), we get

nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

X ,A

(

||xA
i − x||+ ||xP

j − x||
)

πy
i,j(dx, da) ≤ rA + rP

nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

X ,A
||xA

i − xP
j ||π

y
i,j(dx, da) ≤ rA + rP

nA
∑

i=1

nP
∑

j=1

||xA
i − xP

j ||π(xA
i , x

P
j ) ≤ rA + rP .

The second line follows from the triangle inequality ||xA
i − xP

j || ≤ ||xA
i − x||+ ||xP

j − x||. Therefore, we have

DdX
(P̃SX

A
, P̃SX

P
) ≤ rA + rP .

A.3 Missing Details from Section 3.2

Theorem 3.3. Assume X and A are compact spaces. If there exists a feasible solution for the primal
problem (2), then we have that strong duality holds between the primal problem (2) and its dual problem (3):
p∗(θ, rA, rP ) = d∗(θ, rA, rP ) for fixed θ.
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Proof. This theorem essentially follows from Fenchel-Rokafellar Duality which is formally stated later in the
proof. Before applying the duality theorem, it is instructive to take a look at the corresponding Lagrangian
for (2):

L(π,αA,αP , {βi,j}i,j) =
nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

X ,A
"(θ, (x, a, y))πy

i,j(dx, da))

+ αA



rA −
nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

X ,A
diA(x, a)π

y
i,j(dx, da)





+ αP



rP −
nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

djP (x, y)π
y
i,j(dx, da)





+
nA
∑

i=1

βi





1

nA
−

nP
∑

j=1

∑

y∈Y

∫

X ,A
πy
i,j(dx, da)





+
nP
∑

j=1

β′
j





1

nP
−

nA
∑

i=1

∑

y∈Y

∫

X ,A
πy
i,j(dx, da)



 .

Rearranging the terms yields

L(π,αA,αP , {βi}, {β′
j}})

=
nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

X ,A

(

"(θ, (x, a, y))− αAd
i
A(x, a)− αP d

j
P (x, y)− βi − β′

j

)

πy
i,j(dx, da)

+ αArA + αP rP +
1

nA

nA
∑

i=1

βi +
1

nP

nP
∑

j=1

β′
j .

Note that the optimal primal value can be written in terms of its Lagrangian:

p∗(θ, rA, rP ) = sup
π

inf
αA,αP ,{βi},{β′

j}
L(π,αA,αP , {βi}, {β′

j}).

For notational economy, we’ll write

ψ(αA,αP , {βi}, {β′
j}, x, a, y) = −αAd

i
A(x, a) − αPd

j
P (x, y)− βi − β′

j

Now, we state Fenchel’s duality theorem:

Theorem A.1 (Fenchel-Rokafellar Duality). Let E be a normed vector space, and let f, g : E → R∪ {+∞}
be two convex functions. Assume there exists z0 ∈ E such that f(z0) < ∞ and g(z0) < ∞, and f and g are
continuous at z0. Then,

inf
E
(g + f) = sup

z∗∈E∗

(−g∗(−z∗)− f∗(z∗))

By Riesz’s theorem, we have that the dual space of the Radon measure πy
i,j is the continuous bounded

functions which we denote as u(i, j, x, a, y). In our case, define

f(u) =

{

0 if u(i, j, x, a, y) + "(θ, (x, a, y)) ≤ 0 for all i ∈ [nA] and j ∈ [nP ]

∞ otherwise
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g(u)

=

{

(

αArA + αP rP + 1
nA

∑nA

i=1 βi +
1
nP

∑nP

j=1 β
′
j

)

if u(i, j, x, a, y) = ψ(αA,αP , {βi}, {β′
j}, x, a, y)

for some αA,αP , {βi}, {β′
j}

∞ otherwise

Note that both f and g are convex:

1. f is convex
Consider any u, v such that f(u) < ∞ and f(v) < ∞, then u(i, j, x, a, y) ≤ −"(θ, x, a, y) and
v(i, j, x, a, y) ≤ −"(θ, x, a, y). Then, because tu(i, j, x, a, y) + (1 − t)v(i, j, x, a, y) ≤ −"(θ, x, a, y), we
have

tf(u) + (1− t)f(v) = 0 = f(t(u) + (1− t)v).

If either f(u) = ∞ or f(v) = ∞, then

f(t(u) + (1− t)v) ≤ tf(u) + (1− t)f(v).

2. g is convex
Suppose u, v is such that g(u) < ∞ and g(v) < ∞ and g(u) = αu

ArA + αu
P rP + 1

nA

∑

i∈[nA] β
u
i +

1
nP

∑

j∈[nP ] β
′u
j and g(v) = αv

ArA + αv
P rP + 1

nA

∑

i∈[nA] β
v
i + 1

nP

∑

j∈[nP ] β
′v
j . Then, we have tg(u) +

(1 − t)g(v) = g(tu+ (1 − t)v). If g(u) = ∞ or g(v) = ∞, it’s easy to see that g(tu+ (1− t)v) ≤ ∞ as
well.

Note that

inf
u
(f(u) + g(u))

= inf
&(θ,(x,a,y))−αAdi

A(x,a)−αP dj
P (x,y)−βi−β′

j≤0



αArA + αP rP +
1

nA

∑

i∈[nA]

βi +
1

nP

∑

j∈[nP ]

β′
j





= d∗(rA, rP )

We derive their convex conjugates:

f∗({πa,y
i,j }) = sup

u+&≤0

nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

X ,A
u(i, j, x, a, y)πy

i,j(dx, da)

= −
nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

X ,A
"(θ, (x, a, y))πy

i,j(dx, da)

g∗({πa,y
i,j })

= sup
u(i,j,x,a,y)=ψ(αA,αP ,{βi},{β′

j},x,a,y)

nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

X ,A
u(i, j, x, a, y)πy

i,j(dx, da)

−



αArA + αP rP +
1

nA

∑

i∈[nA]

βi +
1

nP

∑

j∈[nP ]

β′
j





= sup
αA,αP ,{βi},{β′

j}j

nA
∑

i=1

nP
∑

j=1

∑

y∈Y

(
∫

X ,A
−αAd

i
A(x, a)− αP d

j
P (x, y)− βi − β′

j

)

πy
i,j(dx, da)

−



αArA + αP rP +
1

nA

∑

i∈[nA]

βi +
1

nP

∑

j∈[nP ]

β′
j



 .
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Also, note that

sup
π
(−g∗(−π)− f∗(π))

= sup
π

inf
αA,αP ,{βi,j}i,j

nA
∑

i=1

nP
∑

j=1

∑

y∈Y

(
∫

X ,A
−αAd

i
A(x, a)− αPd

j
P (x, y)− βi − β′

j

)

πy
i,j(dx, da)

+



αArA + αP rP +
1

nA

∑

i∈[nA]

βi +
1

nP

∑

j∈[nP ]

β′
j





+
nA
∑

i=1

nP
∑

j=1

∑

y∈Y

∫

X ,A
"(θ, (x, a, y))πy

i,j(dx, da)

= sup
π

inf
αA,αP ,{βi},{β′

j}
L(π,αA,αP , {βi}, {β′

j})

= p∗(θ, rA, rP ).

Therefore, by Theorem A.1, we see that p∗(θ, rA, rP ) = d∗(θ, rA, rP ).

A.4 Missing Details from Section 3.3

Lemma 3.1. Fix any θ, (xA
i , a

A
i , x

P
j ), and (αA,αP ,κA). If ||θ[1 : m1]||p,∗ > αA + αP or ||θ[m1 + 1 :

m1 + m2]||p′,∗ > κAαA, then sup(x,a) h(θ, (x, a)) − αA||xA
i − x||p − αP ||xP

j − x||p − αAκA||aAi − a||p′ = ∞.
Otherwise, we have

sup
(x,a)

h(θ, (x, a)) − αA||xA
i − x||p − αP ||xP

j − x||p − αAκA||aAi − a||p′

= sup
b∈[0,1]

−f∗(b) + (gi1!gj2)(bθ[1 : m1]) + 〈bθ[m1 + 1 : m1 +m2], a
A
i 〉

where

gi1(θ) =

{

〈θ, xA
i 〉 if ||θ||p,∗ ≤ αA

∞ otherwise
gj2(θ) =

{

〈θ, xP
j 〉 if ||θ||p,∗ ≤ αP

∞ otherwise

and (gi1!gj2)(θ) = infθ1+θ2=θ g
i
1(θ1) + gj2(θ2) is the infimal convolution of gi1 and gj2.
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Proof. Noting that h is convex and thus h is equal to its biconjugate h∗∗, we have

sup
(x,a)

h(θ, (x, a)) − αA||xA
i − x||p − αP ||xP

j − x||p − αAκA||aAi − a||p′

= sup
(x,a)

sup
b∈[0,1]

〈bθ, (x, a)〉 − f∗(b)− αA||xA
i − x||p − αP ||xP

j − x||p − αAκA||aAi − a||p′

= sup
b∈[0,1]

sup
(x,a)

〈bθ, (x, a)〉 − f∗(b)− sup
||q1||p,∗≤αA

〈q1, xA
i − x〉 − sup

||q2||p,∗≤αP

〈q2, xP
j − x〉 − sup

||q3||p′,∗≤αAκA

〈q3, aAi − a〉

= sup
b∈[0,1]

sup
(x,a)

〈bθ, (x, a)〉 − f∗(b)

− sup
||q1||p,∗≤αA

〈(q1, 0), (xA
i , a)− (x, a)〉 − sup

||q2||p,∗≤αP

〈(q2, 0), (xP
j , a)− (x, a)〉 − sup

||q3||p′,∗≤αAκA

〈(0, q3), (x, aAi )− (x, a)〉

= sup
b∈[0,1]

sup
(x,a)

inf
||q1||p,∗≤αA,
||q2||p,∗≤αP ,

||q3||p′,∗≤αAκA

〈bθ, (x, a)〉 − f∗(b)

− 〈(q1, 0), (xA
i , a)− (x, a)〉 − 〈(q2, 0), (xP

j , a)− (x, a)〉 − 〈(0, q3), (x, aAi )− (x, a)〉

= sup
b∈[0,1]

sup
(x,a)

inf
||q1||p,∗≤αA,
||q2||p,∗≤αP ,

||q3||p′,∗≤αAκA

〈bθ + (q1, 0) + (q2, 0) + (0, q3), (x, a)〉 − f∗(b)− 〈q1, xA
i 〉 − 〈q2, xP

j 〉 − 〈q3, aAi 〉.

We can swap the order of inf and sup due to proposition 5.5.4 of Bertsekas.

= sup
b∈[0,1]

inf
||q1||p,∗≤αA,
||q2||p,∗≤αP ,

||q3||p′,∗≤αAκA

sup
(x,a)

〈bθ + (q1, 0) + (q2, 0) + (0, q3), (x, a)〉 − f∗(b)− 〈q1, xA
i 〉 − 〈q2, xP

j 〉 − 〈q3, aAi 〉.

Note that unless bθ + (q1, 0) + (q2, 0) + (0, q3) = 0, (x, a) can be chosen arbitrarily big. Also, if θ + (q1, 0) +
(q2, 0) + (0, q3) += 0, then b can be chosen to be 1. Therefore, if there doesn’t exist (q1, q2, q3) such that
θ + (q1, 0) + (q2, 0) + (0, q3) = 0, everything evaluates to ∞. In other words, the expression evaluates to ∞
unless both of the following conditions are true:

1. ||θ[1 : m1]||p,∗ ≤ αA + αP

2. ||θ[m1 + 1 : m1 +m2]||p′,∗ ≤ κAαA

as q1 = −αA

||θ[1:m1]||θ[1 : m1], q2 = −αP

||θ[1:m1]||θ[1 : m1], and q3 = κAαA

||θ[m1+1:m1+m2]||∗ θ[m1 + 1 : m1 + m2] is one

such triplet that satisfy θ + (q1, 0) + (q2, 0) + (0, q3) = 0.
Now, suppose θ satisfies the above conditions as we know it evaluates to ∞ otherwise. Then, we get

= sup
b∈[0,1]

−f∗(b)

+ inf
||q1||p,∗≤αA,
||q2||p,∗≤αP ,

||−bθ[m1+1:m1+m2]||p′,∗≤αAκA

{

−〈q1, xA
i 〉 − 〈q2, xP

j 〉+ 〈bθ[m1 + 1 : m1 +m2], aAi 〉 if bθ[1 : m1] + q1 + q2 = 0

∞ otherwise

= sup
b∈[0,1]

−f∗(b) + inf
||q1||p,∗≤αA,
||q2||p,∗≤αP

{

〈q1, xA
i 〉+ 〈q2, xP

j 〉 if q1 + q2 = bθ[1 : m1]

∞ otherwise
+ 〈bθ[m1 + 1 : m1 +m2], a

A
i 〉

= sup
b∈[0,1]

−f∗(b) + (gi1!gj2)(bθ[1 : m1]) + 〈bθ[m1 + 1 : m1 +m2], a
A
i 〉
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Now, using the fact that the infimal convolution of linear functions is convex which we prove in Appendix
A.5, we show how to upperbound the supremum term.

Theorem 3.5. We write θ1 = θ[1 : m1] and θ2 = [m1 + 1 : m1 + m2]. Suppose p += 1 and p += ∞. If
||θ1||p,∗ ≤ αA + αP and ||θ2||p′,∗ ≤ κAαA, then

R ≤ f

((

min(αA,αP )||θ1||∗||xA
i − xP

j ||
αA + αP

+
〈θ1,αAx

A
i + αPx

P
j 〉

αA + αP

)

+ 〈θ2, aAi 〉

)

−min(αA,αP )||xA
i − xP

j ||p.

Otherwise, sup(x,a) h(θ, (x, a)) − αA||x− xA
i ||p − αP ||x− xP

j ||p − αAκA||aAi − a||p′ evaluates to ∞.

Proof. Because f is a convex function, its biconjugate is itself, so

sup
b∈[0,1]

−f∗(b) + b ·X = f(X).

Therefore, we have

sup
(x,a)

h(θ, (x, a)) − αA||x− xA
i ||p − αP ||x− xP

j ||p − αAκA||aAi − a||p′

= sup
b∈[0,1]

−f∗(b) + (gi1!gj2)(bθ1) + 〈bθ2, aAi 〉

≤ sup
b∈[0,1]

−f∗(b) +

(

b

αA + αP

)

(

min(αA,αP )||θ1||∗||xA
i − xP

j ||+ 〈θ1,αAx
A
i + αPx

P
j 〉
)

−min(αA,αP )||xA
i − xP

j ||p + b〈θ2, aAi 〉

= sup
b∈[0,1]

−f∗(b)

+ b

((

1

αA + αP

)

(

min(αA,αP )||θ1||∗||xA
i − xP

j ||+ 〈θ1,αAx
A
i + αPx

P
j 〉
)

+ 〈θ2, aAi 〉
)

−min(αA,αP )||xA
i − xP

j ||p

= f

((

min(αA,αP )||θ1||∗||xA
i − xP

j ||+ 〈θ,αAx
A
i + αPx

P
j 〉

αA + αP

)

+ 〈θ2, aAi 〉

)

−min(αA,αP )||xA
i − xP

j ||p.

The first inequality follows from Theorem 3.4.

Lemma A.1.

inf
x
(αA||x− xA

i ||+ αP ||x− xP
j ||) = min(αA,αP )||xA

i − xP
j ||.

and when αA < αP , the infimum is achieved at x = xP
j and otherwise at xA

i .

Proof.

inf
x

sup
||q1||∗≤αA

〈q1, x− xA
i 〉+ sup

||q2||∗≤αP

〈q2, x− xP
j 〉

= inf
x

sup
||q1||∗≤αA,
||q2||∗≤αP

〈q1 + q2, x〉+ 〈q1,−xA
i 〉+ 〈q2,−xP

j 〉

We are able to swap inf and sup due to proposition 5.5.4 of Bertsekas.

= sup
||q1||∗≤αA,
||q2||∗≤αP

inf
x
〈q1 + q2, x〉+ 〈q1,−xA

i 〉+ 〈q2,−xP
j 〉

= sup
||q||∗≤min(αA,αP )

〈q,−xA
i + xP

j 〉

= min(αA,αP )||xA
i − xP

j ||.

The second inequality holds true because The sum of two norms has to be non-negative, and unless q1 = q2,
the inf term can be made arbitrarily small, meaning we need to set q1 = −q2.

30



Theorem 3.6. Suppose p += 1 and p += ∞. If ||θ1||p,∗ ≤ αA + αP and ||θ2||p′,∗ ≤ κAαA, then

(

h(θ, (x̂i,j , a
A
i ))− α̂||xA

i − xP
j ||p

)

−R ≤ 2α̂||xA
i − xP

j ||.

Proof. Fix i, j, θ,αA,αP . For convenience, we write

x̂ =

{

xP
j if αA < αP

xA
i

and α̂ = min(αA,αP ).

Also, we write the supremum sup(x,a) f(〈θ, (x, a)〉)−αA||x− xA
i ||−αP ||x− xP

j ||− κAαA|aAi − a| is achieved

at (x∗, a∗). We write U(x, a) = −αA||x − xA
i || − αP ||x − xP

j || − κAαA|aAi − a|, meaning (x∗, a∗) =
argmax f(〈θ, (x, a)〉) + U(x, a).

From Theorem 3.5, we have

f(〈θ, (x∗, a∗)〉) + U(x∗, a∗) ≤ f(〈θ, (x̌, aAi )〉) + U(x̂, aAi )

where

x̌ =
αAx

A
i + αPx

P
j + α̂v(θ1)||xA

i − xP
j ||

αA + αP
.

Therefore, we have

f(〈θ, (x̂, aAi )〉) + U(x̂, aAi ) ≤ f(〈θ, (x∗, a∗)〉) + U(x∗, a∗) ≤ f(〈θ, (x̌, aAi )〉) + U(x̂, aAi ).

In other words,

(f(〈θ, (x∗, a∗)〉) + U(x∗, a∗))− (f(〈θ, (x̂, aAi )〉) + U(x̂, aAi )) ≤ f(〈θ, (x̌, aAi )〉)− f(〈θ, (x̂, aAi )〉).

Hölder’s inequality gives us
∣

∣

∣

∣

∣

∣

∑

c∈[m1]

θ[c](xA
i − xP

j )[c]

∣

∣

∣

∣

∣

∣

≤
∑

c∈[m1]

∣

∣θ[c](xA
i − xP

j )[c]
∣

∣ ≤ ||θ1||∗||xA
i − xP

j ||

Suppose αA < αP , meaning x̂ = xP
j

f(〈θ, (x̌, aAi )〉)− f(〈θ, (x̂, aAi )〉)

≤
αA||θ1||∗||xA

i − xP
j ||+ 〈θ1,αAx

A
i + αPx

P
j 〉

αA + αP
+ 〈θ2, aAi 〉 − 〈θ, (x̂, aAi )〉

=
αA||θ1||∗||xA

i − xP
j ||+ 〈θ1,αAx

A
i + αPx

P
j 〉

αA + αP
−
αA
∑

c∈[m1]
θ[c](xP

j − xA
i )[c] + 〈θ,αAx

A
i + αPx

P
j 〉

αA + αP

=
αA||θ1||∗||xA

i − xP
j ||− αA(

∑

c∈[m1]
θ[c](xP

j − xA
i )[c])

αA + αP

≤
2αA||θ1||∗||xA

i − xP
j ||

αA + αP

≤ 2αA||xA
i − xP

j ||

where the first inequality follows from f ’s 1-Lipschitzness — i.e. |f(x)−f(x′) ≤ |x−x′|. The same argument
works when αA ≥ αP .
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A.5 Infimal Convolution

Now, we prove a few lemmas regarding the infimal convolution of two linear functions9. Since the domain
of gi1 and gj2 invovles the same p-norm, we elide p in the following lemmas.

Lemma A.2. (gi1!gj2)(θ) is convex in θ.

Proof. In order to show a function is convex, it suffices to show that its epigraph is convex. Note that
epigraphs of gi1 and gj2 are both convex:

S1 = epi gi1 = {(q, r) : ||q||∗ ≤ αA, r ≥ gi1(q)}

S2 = epi gj2 = {(q, r) : ||q||∗ ≤ αP , r ≥ gj2(q)}.

Note that the epigraph of (gi1!gj2)(θ) is the Minkowski sum of S1 and S2 [Strömberg, 1994]:

S3 = epi (gi1!gj2) = {(x1 + x2, r1 + r2) : (x1, r1) ∈ S1, (x2, r2) ∈ S2}.

For any (x1+x2, r1+r2) ∈ S3 and (x′
1+x′

2, r
′
1+r′2) ∈ S3 where (x1, r1), (x′

1, r
′
1) ∈ S1 and (x2, r2), (x′

2, r
′
2) ∈ S2,

the convex combination with t ∈ [0, 1]

(t(x1 + x2) + (1− t)(x′
1 + x′

2), t(r1 + r2) + (1 − t)(r′1 + r′2)

must belong in S3 because (tx1 + (1 − t)x′
1, tr1 + (1 − t)r′1) ∈ S1 and (tx2 + (1 − t)x′

2, tr2 + (1 − t)r′2) ∈ S2

due to the convexity of S1 and S2.

Lemma A.3.

(gi1!gj2)(0) = −min(αA,αP )||xP
j − xA

i ||.

Proof.

(gi1!gj2)(0) = inf
q:||q||∗≤min(αA,αP )

gi1(q) + gj2(−q)

= inf
q:||q||∗≤min(αA,αP )

〈q, xA
i 〉 − 〈q, xP

j 〉

= − sup
q:||q||∗≤min(αA,αP )

〈q,−xA
i + xP

j 〉

= −min(αA,αP )||xA
i − xP

j ||.

Now, for any q, we write
v(q) = arg max

v:||v||≤1
〈v, q〉.

Note that 〈v(q), q〉 = ||q||∗. In words, v(q) is the vector whose inner product with q evaluates to the dual
norm of q. Note that for any scalar c > 0, v(q) = v(cq), meaning only the direction matters.

In the lemma below, we show that given two different directions (q, q′), we must have v(q) += v(q′).

Lemma A.4. Suppose the norm || · || is some p-norm where p += 1 and p += ∞, meaning corresponding dual
norm || · ||p,∗ is r-norm where r += 1 and r += ∞. Given q and q′ where ||q||∗ = ||q′||∗ = 1 and q += q′, we
must have v(q) += v(q′).

9Readers more interested in the properties of infimal convolution may refer to Strömberg [1994].
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Proof. For any q where ||q||∗ = 1, let’s consider v(q) = maxv:||v||≤1〈v, q〉. Because the linear objective forces
the optimal solution be at the boundary of the feasible convex set, it is equivalent to solving maxv:||v||=1〈v, q〉.
Lagrange multiplier approach yields the following conditions for the optimal solution:

q[i] + λ · sign(v(q)[i]) ·
(

|v(q)[i]|
||v(q)||

)p−1

= 0 ∀i ∈ [n]

||v(q)|| = 1

(13)

where λ corresponds to the Lagrange multiplier.
Consider the following two unnormalized vectors v+1 and v−1:

v+1(q) =
(

sign(q[i]) ·
∣

∣

∣
|q[1]|

1
p−1

∣

∣

∣
, . . . , sign(q[n]) ·

∣

∣

∣
|q[n]|

1
p−1

∣

∣

∣

)

v−1(q) =
(

sign(−q[i]) ·
∣

∣

∣
|q[1]|

1
p−1

∣

∣

∣
, . . . , sign(−q[n]) ·

∣

∣

∣
|q[n]|

1
p−1

∣

∣

∣

)

.

The solutions to the equations in (13) are the normalized v+1(q)
||v+1(q)|| and v−1(q)

||v−1(q)|| , meaning they are the local
optima.

Because 〈 v+1(q)
||v+1(q)|| , q〉 = −〈 v−1(q)

||v−1(q)|| , q〉 and 〈 v+1(q)
||v+1(q)|| , q〉 > 0, we must have that

v(q) = arg max
v:||v||≤1

〈v, q〉 =
v+1(q)

||v+1(q)||
.

Hence, for any two different directions q and q′, we must have that v+1(q)
||v+1(q)|| will be different by construc-

tion, as long as p += 1 or p += ∞. Hence, v(q) += v(q′).

Corollary A.1. Suppose the norm || · || is some p-norm where p += 1 and p += ∞. For any q where ||q||∗ = α,
we have that for any other q′ where q′ += q and ||q′||∗ ≤ α,

〈v(q), q〉 > 〈v(q), q′〉.

Proof. As said in Section 2, given any vector q, we’ll write q∗ = q
||q||∗ . If q∗ = q′∗, then there exists some

scalar c > 1 such that q = cq′ since ||q||∗ > ||q′||∗. Then, we must have

〈v(q), q〉 = c〈v(q), q′〉 > 〈v(q), q′〉

as v(q) = v(q′) in this case.
Now, in the case where q∗ += q′∗, we see that

〈v(q), q〉 = α ≥ ||q′||∗ = 〈v(q′), q′〉 > 〈v(q), q′〉.

Lemma A.5. Suppose the norm || · || is some p-norm where p += 1 and p += ∞. Fix some direction θ∗ where
||θ∗||∗ = 1. Then,

(gi1!gj2)((αA + αP )θ∗) = 〈θ∗,αAx
A
i + αPx

P
j 〉.

Proof. We first claim that when given (αA +αP )θ∗, there exists only one pair (q1, q2) such that ||q1||∗ ≤ αA,
||q2||∗ ≤ αP , and q1 + q2 = (αa + αP )θ∗: namely,

q1 = αAθ∗ and q2 = αP θ∗.

By construction, ||q1||∗ = αA, ||q2||∗ = αP , and q1 + q2 = (αA + αP )θ∗.
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Now, for the sake of contradiction, suppose there exists another (q′1, q
′
2) such that the above condition

holds true. Because q′1+q′2 = (αA+αP )θ, let’s say that q′1 = q1+u and q′2 = q2−u for some u += 0. However,
we argue that it must be the case that either ||q′1||∗ > αA or ||q′2||∗ > αP . Without loss of generality, suppose
||q1 + u||∗ = αA − ε for some ε ≥ 0.

Now, consider v(θ) = v(q1) = v(q2). Corollary A.1 tells us that for any other q′ where ||q′||∗ ≤ αA,

〈v(θ∗), q′〉 < 〈v(θ∗), q1〉 = αA.

Because the dual norm of q1 + u is still bounded by αA, we have

〈v(θ∗), q1 + u〉 < 〈v(θ∗), q1〉
〈v(θ∗), u〉 < 0.

Then, we must have

||q′2||∗ = 〈v(q′2), q2 − u〉 > 〈v(θ∗), q2 − u〉 = αP − 〈v(θ∗), u〉 > αP ,

giving us the needed contradiction.
Therefore, because there’s only pair (q1, q2) = (αAθ∗,αP θ∗) where ||q1||∗ ≤ αA, ||q2||∗ ≤ αP , and

q1 + q2 = (αA + αP )θ∗, we must have

(gi1!gj2)((αA + αP )θ∗) = gi1(αAθ∗) + gj2(αP θ∗)

= 〈θ∗,αAx
A
i + αPx

P
j 〉

Theorem 3.4. Suppose the norm || · || is some p-norm where p += 1 and p += ∞. Fix θ where ||θ||∗ ≤ αA+αP .
Then, for any b ∈ [0, 1],

(gi1!gj2)(bθ) ≤
(

b

αA + αP

)

(||θ||∗ min(αA,αP )||xA
i − xP

j ||+ 〈θ,αAx
A
i + αPx

P
j 〉)−min(αA,αP )||xA

i − xP
j ||

Proof. Because Lemma A.2 tells us that the infimal convolution of gi1 and gj2 is convex, we know that
(gi1!gj2)(bθ∗) must be convex in b. By convexity, we have that for any b, b′ ∈ [0,αA + αP ] and t ∈ [0, 1]

(gi1!gj2)(((1 − t)b + tb′)θ∗) ≤ (1 − t)(gi1!gj2)(bθ∗) + t(gi1!gj2)(b
′θ∗).

When we set (b, b′) = (0,αA + αP ) and use the above upper bound, we get for any t ∈ [0, 1]

(gi1!gj2)(t(αA + αP )θ∗) ≤ −(1− t)min(αA,αP )||xA
i − xP

j ||+ t〈θ∗,αAx
A
i + αPx

P
j 〉

= t(min(αA,αP )||xA
i − xP

j ||+ 〈θ∗,αAx
A
i + αPx

P
j 〉)−min(αA,αP )||xA

i − xP
j ||

due to Lemma A.3 and A.5.
In other words, given any θ where ||θ||∗ ≤ αA + αP , we can upper bound the infimal convolution as

(gi1!gj2)(bθ) = (gi1!gj2)(b||θ||∗θ∗)

= (gi1!gj2)

(

b||θ||∗
αA + αP

(αA + αP )θ∗

)

≤ b

(

||θ||∗
αA + αP

)

(min(αA,αP )||xA
i − xP

j ||+ 〈θ,αAx
A
i + αPx

P
j 〉)−min(αA,αP )||xA

i − xP
j ||

=

(

b

αA + αP

)

(

min(αA,αP )||θ||∗||xA
i − xP

j ||+ 〈θ,αAx
A
i + αPx

P
j 〉
)

−min(αA,αP )||xA
i − xP

j ||
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B Missing Details from Section 4

B.1 Missing Details from Section 4.2

Theorem 4.1. With appropriately chosen step size η, Algorithm 1 returns (αA,αP , θ) such that Ω(αA,αP , θ) ≤
Ω(α∗

A,α
∗
P , θ

∗) +O
(

1√
T

)

.

Proof. Note that due to convergence rate of projected gradient descent, we have

ΩA(αA,αP , θ) ≤ ΩA(α′
A,α

′
P , θ

′) +O

(

1√
T

)

ΩP (αA
′,αP

′, θ
′
) ≤ ΩP (α′′

A,α
′′
P , θ

′′) +O

(

1√
T

)

Also, we have

ΩA(αA,αP , θ) = Ω(αA,αP , θ)

ΩA(α′
A,α

′
P , θ

′) = Ω(α′
A,α

′
P , θ

′)

ΩP (αA
′,αP

′, θ
′
) = Ω(αA

′,αP
′, θ

′
)

ΩP (α′′
A,α

′′
P , θ

′′) = Ω(α′′
A,α

′′
P , θ

′′)

Therefore, we must have

Ω(αA,αP , θ) ≤ Ω(α∗
A,α

∗
P , θ

∗) +O

(

1√
T

)

Here we try to give a characterization of the projection when p = 2. It is not immediate clear how to
perform a projection onto C: given θ,αA,αP , we need to find

arg min
θ′,α′

A,α′
P∈C1

||(θ,αA,αP )− (θ′,α′
A,α

′
P )||22 = arg min

θ′,α′
A,α′

P∈C1

||θ − θ′||22 + |αA − α′
A|2 + |αP − α′

P |2.

Suppose we are given (θ,αA,αP ) such that ||θ1||2 > αA + αP and/or ||θ2||2 > κAαA. The Lagrangian
for the above optimization problem we are interested in is the following:

L(θ′1, θ′2,α′
A,α

′
P )

=
1

2

∑

i

(θ′1[i]− θ1[i])
2 +

1

2

∑

i

(θ′2[i]− θ2[i])
2 +

1

2
(α′

A − αA)
2 +

1

2
(α′

P − αP )
2

+ λ1((
∑

i

(θ′1[i])
2)1/2 − α′

A − α′
P ) + λ2((

∑

i

(θ′2[i])
2)1/2 − κAα

′
A) + λ3(α

′
A − α′

P ).

The stationary part of the KKT condition requires that the gradient with respect to θ′1, θ
′
2,α

′
A and α′

P is
0. In other words, we have

∇θ′1[i]
L = (θ′1[i]− θ1[i]) +

λ1
2

2θ′1[i]

(
∑

i(θ
′
1[i])

2)1/2
= (θ′1[i]− θ1[i]) +

λ1θ
′
1[i]

||θ′1||2
= 0

∇θ′2[i]
L = (θ′2[i]− θ2[i]) +

λ1
2

2θ′2[i]

(
∑

i(θ
′
2[i])

2)1/2
= (θ′2[i]− θ2[i]) +

λ2θ
′
1[i]

||θ′2||2
= 0

∇α′
A
L = α′

A − αA − λ1 − λ2κA + λ3 = 0

∇α′
P
L = α′

P − αP − λ1 − λ3 = 0
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With some arranging, we get

θ′1 +
λ1θ

′
1

||θ′1||
= θ1

=⇒ ||θ′1||θ̄′1 + λ1θ̄
′
1 = θ1

=⇒ θ̄′1 =
θ1

||θ′1||+ λ1

=⇒ θ′1 =
||θ′1||θ1

||θ′1||+ λ1

=⇒ ||θ′1|| =
∥

∥

∥

∥

||θ′1||θ1
||θ′1||+ λ1

∥

∥

∥

∥

=⇒ ||θ′1|| =
||θ′1||

||θ′1||+ λ1
||θ1||

=⇒ ||θ′1||+ λ1 = ||θ1||

Similarly, we have

θ′2 +
λ2θ

′
2

||θ′2||
= θ2

=⇒ ||θ′2||θ̄′2 + λ2θ̄
′
2 = θ1

=⇒ θ̄′2 =
θ2

||θ′2||+ λ2

=⇒ θ′2 =
||θ′2||θ2

||θ′2||+ λ2

=⇒ ||θ′2|| = ||
||θ′2||θ2

||θ′2||+ λ2
||

=⇒ ||θ′2|| =
||θ′2||

||θ′2||+ λ2
||θ2||

=⇒ ||θ′2||+ λ2 = ||θ2||.

Note that θ′1 is simply a rescaling of θ1:

θ′1 =
||θ1||− λ1

||θ1||
θ1.

The complementary slack conditions require that

λ1(||θ′1||− α′
A − α′

P ) = 0.

In other words, either θ′1 = θ1 or ||θ′1|| = α′
A + α′

P . The same argument applies for θ′2: either θ′2 = θ2 or
||θ′2|| = κAαA. Now, we consider all four cases, and for each of those cases, we repeatedly consider the case
where λ3 = 0 and λ3 > 0 (i.e. α′

A − α′
P = 0 from the complementary slack condition).

Case θ′1 = θ1 and θ′2 = θ2: In this case, we need only concern ourselves with how to set α′
A and α′

P .
Because we have λ1,λ2 = 0,

α′
A − αA + λ3 = 0

λ3 = α′
P − αP .

The complementary slackness condition requires λ3(α′
A−α′

P ) = 0. In other words, when λ3 = 0, we have
(α′

A,α
′
P ) = (αA,αP ). In other case where α′

A = α′
P , we have (α′

A,α
′
P ) = (αA+αP

2 , αA+αP

2 ).
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Case θ′1 = θ1 and ||θ′2|| = κAα
′
A: We have λ1 = 0 and

λ2 = ||θ2||− ||θ′2|| = ||θ2||− κAα
′
A

Plugging in λ1 = 0, we have

α′
A − αA − λ2κA + λ3 = 0

α′
P − αP − λ3 = 0.

Substituting in λ2 value, we get

α′
A − αA − κA(||θ2||− κAα

′
A) + λ3 = 0

=⇒ α′
A(1 + κ2A) = αA + κA||θ2||− λ3

=⇒ α′
A =

αA + κA||θ2||− λ3
1 + κ2A

If λ3 = 0, we have

α′
A =

αA + κA||θ2||
1 + κ2A

α′
P = αP .

If λ3 += 0 and hence α′
A = α′

P , then we have

α′
A(1 + κ2A) = αA + κA||θ2||− (α′

A − αP )

=⇒ α′
P = α′

A =
αA + αP + κA||θ2||

2 + κ2A

Case ||θ′1|| = α′
A + α′

P and θ′2 = θ2: We have that λ2 = 0 and λ1 > 0 and also

λ1 = ||θ1||− ||θ′1|| = ||θ1||− (α′
A + α′

P ).

Plugging in λ2 = 0, we have

α′
A − αA − λ1 + λ3 = 0

α′
P − αP − λ1 − λ3 = 0

If λ3 = 0, then

α′
A − αA − λ1 = 0 and α′

P − αP − λ1 = 0

=⇒ λ1 = α′
A − αA = α′

P − αP

Substituting α′
A = αA + α′

P − αP into α′
P − αP = λ1 = ||θ1||− (α′

A + α′
P ), we get

α′
P − αP = ||θ1||− (αA + 2α′

P − αP )

=⇒ α′
P − αP = ||θ1||− αA − 2α′

P + αP

=⇒ 3α′
P = ||θ1||− αA + 2αP

=⇒ α′
P =

||θ1||− αA + 2αP

3
.
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α′
A is then calculated as

α′
A = αA +

||θ1||− αA + 2αP

3
− αP .

If λ3 += 0 and hence α′
A = α′

P , then

||θ1||− 2α′
A = α′

A − αA + λ3 = α′
A − αP − λ3 = λ1

From the first equation, we get

λ3 = ||θ1||− 2α′
A − (α′

A − αA) = ||θ1||− 3α′
A + αA.

Plugging in this value for λ3 into the second equation, we get

||θ1||− 2α′
A = α′

A − αP − (||θ1||− 3α′
A + αA)

=⇒ − 2α′
A = 4α′

A − αP − αA − 2||θ1||

=⇒
αA + αP + 2||θ1||

6
= α′

A.

Case ||θ′1|| = α′
A + α′

P and ||θ′2|| = κAα
′
A:

λ1 = ||θ1||− ||θ′1|| = ||θ1||− (α′
A + α′

P )

λ2 = ||θ2||− ||θ′2|| = ||θ2||− κAα
′
A

Putting these equations altogether with variables α′
A,α

′
P ,λ1,λ2,λ3, we have

||θ1|| = α′
A + α′

P + λ1

||θ2|| = κAα
′
A + λ2

α′
A − αA − λ1 − λ2κA + λ3 = 0

α′
P − αP − λ1 − λ3 = 0

We’ll use the first equation to substitute in λ1 = ||θ1||− α′
A − α′

P to get

||θ2|| = κAα
′
A + λ2

2α′
A − αA − ||θ1||+ α′

P − λ2κA + λ3 = 0

2α′
P − αP − ||θ1||+ α′

A − λ3 = 0

Similarly, use the last equation to substitute in λ3 = 2α′
P − αP − ||θ1||+ α′

A.

||θ2|| = κAα
′
A + λ2

3α′
A + 3α′

P − αA − αP − 2||θ1||− λ2κA = 0

Finally, plug in λ2 = ||θ2||− κAα
′
A.

3α′
A + 3α′

P − αA − αP − 2||θ1||− κA(||θ2||− κAα
′
A) = 0

=⇒ (3 + κ2A)α
′
A + 3α′

P − αA − αP − 2||θ1||− κA||θ2|| = 0

As before, when λ3 = 0, we get

2α′
P − αP − ||θ1||+ α′

A = 0

=⇒ α′
P =

||θ1||+ αP − α′
A

2
.
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Then, we get

(3 + κ2A)α
′
A + 3

(

||θ1||+ αP − α′
A

2

)

− αA − αP − 2||θ1||− κA||θ2|| = 0

=⇒
(

3

2
+ κ2A

)

α′
A = −3

(

||θ1||+ αP

2

)

+ αA + αP + 2||θ1||+ κA||θ2||

=⇒ α′
A =

−3
(

||θ1||+αP

2

)

+ αA + αP + 2||θ1||+ κA||θ2||
3
2 + κ2A

=⇒ α′
A =

−3
(

||θ1||+αP

2

)

+ αA + αP + 2||θ1||+ κA||θ2||
3
2 + κ2A

=⇒ α′
A =

2αA + αP + ||θ1||+ 2κA||θ2||
3 + 2κ2A

.

Consequently, we have

α′
P =

||θ1||+ αP

2
−
(

2αA + αP + ||θ1||+ 2κA||θ2||
6 + 4κ2A

)

.

Otherwise, when λ3 > 0, we have α′
A = α′

P . In this case, we get

(6 + κ2A)α
′
A = αA + αP + 2||θ1||+ κA||θ2||

=⇒ α′
A = α′

P =
αA + αP + 2||θ1||+ κA||θ2||

6 + κ2A
.

We summarize the results in the following tables:

Cases λ3 = 0
(θ′1, θ

′
2) = (θ1, θ2) (α′

A,α
′
P ) = (αA,αP )

(θ′1, θ
′
2) = (θ1,κAα′

Aθ2) (α′
A,α

′
P ) = (αA+κA||θ2||

1+κ2
A

,αP )

(θ′1, θ
′
2) = ((α′

A + α′
P )θ1, θ2) (α′

A,α
′
P ) = (αA + α′

P − αP ,
||θ1||−αA+2αP

3 )

(θ′1, θ
′
2) = ((α′

A + α′
P )θ1,κAα

′
Aθ2) (α′

A,α
′
P ) =

(

2αA+αP+||θ1||+2κA||θ2||
3+2κ2

A
, ||θ1||+αP

2 −
(

2αA+αP+||θ1||+2κA||θ2||
6+4κ2

A

))

Cases λ3 > 0
(θ′1, θ

′
2) = (θ1, θ2) α′

A = α′
P = αA+αP

2

(θ′1, θ
′
2) = (θ1,κAα′

Aθ2) α′
A = α′

P = αA+αP+κA||θ2||
2+κ2

A

(θ′1, θ
′
2) = ((α′

A + α′
P )θ1, θ2) α′

A = α′
P = αA+αP+2||θ1||

6

(θ′1, θ
′
2) = ((α′

A + α′
P )θ1,κAα

′
Aθ2) α′

A = α′
P = αA+αP+2||θ1||+κA||θ2||

6+κ2
A

C Missing Details from Section 5

Lemma 5.1. Fix any θ, (xA
i , a, x

P
j ), and (αA,αP ,κA). If ||θ[1 : m1]||p,∗ > αA+αP , then supx h(θ, (x, a))−

αA||xA
i − x||p − αP ||xP

j − x||p = ∞. Otherwise, we have

sup
x

h(θ, (x, a)) − αA||xA
i − x||p − αP ||xP

j − x||p

= sup
b∈[0,1]

−f∗(b) + (gi1!gj2)(−bθ[1 : m1]) + 〈bθ[m1 + 1 : m1 +m2], a〉
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where gi1 and gj2 is the same as defined in Lemma 3.1.

Proof. Noting that h is convex and thus h is equal to its biconjugate h∗∗, we have

sup
x

h(θ, (x, a)) − αA||xA
i − x||p − αP ||xP

j − x||p

= sup
x

sup
b∈[0,1]

〈bθ, (x, a)〉 − f∗(b)− αA||xA
i − x||p − αP ||xP

j − x||p

= sup
b∈[0,1]

sup
x
〈bθ, (x, a)〉 − f∗(b)− sup

||q1||p,∗≤αA

〈q1, xA
i − x〉 − sup

||q2||p,∗≤αP

〈q2, xP
j − x〉

= sup
b∈[0,1]

sup
x
〈bθ, (x, a)〉 − f∗(b)− sup

||q1||p,∗≤αA

〈(q1, ξ), (xA
i , a)− (x, a)〉 − sup

||q2||p,∗≤αP

〈(q2, 0), (xP
j , a)− (x, a)〉

= sup
b∈[0,1]

sup
x

inf
||q1||p,∗≤αA,
||q2||p,∗≤αP

〈bθ, (x, a)〉 − f∗(b)− 〈(q1, ξ), (xA
i , a)− (x, a)〉 − 〈(q2, 0), (xP

j , a)− (x, a)〉

= sup
b∈[0,1]

sup
x

inf
||q1||p,∗≤αA,
||q2||p,∗≤αP

〈bθ + (q1, ξ) + (q2, 0), (x, a)〉 − f∗(b)− 〈q1, xA
i 〉 − 〈q2, xP

j 〉

where ξ can be chosen arbitrarily.
We appeal to proposition 5.5.4 of Bertsekas to swap inf and sup:

= sup
b∈[0,1]

inf
||q1||p,∗≤αA,
||q2||p,∗≤αP

sup
x
〈bθ + (q1, ξ) + (q2, 0), (x, a)〉 − f∗(b)− 〈q1, xA

i 〉 − 〈q2, xP
j 〉.

Note that unless bθ + (q1, ξ) + (q2, 0) = 0, x can be chosen arbitrarily big. Also, if θ + (q1, ξ) + (q2, 0) += 0,
then b can be chosen to be 1. Therefore, if there doesn’t exist (q1, q2) such that θ + (q1, ξ) + (q2, 0) = 0,
everything evaluates to ∞. In other words, the expression evaluates to ∞ unless ||θ[1 : m1]||p,∗ ≤ αA + αP

and ξ = θ[m1 + 1 : m1 +m2].
Now, suppose θ satisfies the above condition as we know it evaluates to ∞ otherwise. Then, we get

= sup
b∈[0,1]

−f∗(b) + 〈bθ[m1 + 1 : m1 +m2], a〉+ inf
||q1||p,∗≤αA,
||q2||p,∗≤αP

{

−〈q1, xA
i 〉 − 〈q2, xP

j 〉 if bθ[1 : m1] + q1 + q2 = 0

∞ otherwise

= sup
b∈[0,1]

−f∗(b) + (gi1!gj2)(−bθ[1 : m1]) + 〈bθ[m1 + 1 : m1 +m2], a〉.

Theorem 5.1. Fix any θ, (xA
i , a, x

P
j ), and (αA,αP ,κA). If ||θ1||p,∗ > αA + αP , then supx h(θ, (x, a)) −

αA||xA
i − x||p − αP ||xP

j − x||p = ∞ Otherwise, we have

sup
x

h(θ, (x, a)) − αA||xA
i − x||p − αP ||xP

j − x||p

≤ f

((

min(αA,αP )||θ1||∗||xA
i − xP

j ||
αA + αP

+
〈θ1,αAx

A
i + αPx

P
j 〉

αA + αP

)

+ 〈θ2, a〉

)

−min(αA,αP )||xA
i − xP

j ||p.

Proof. Because f is a convex function, its biconjugate is itself, so

sup
b∈[0,1]

−f∗(b) + b ·X = f(X).
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Therefore, we have

sup
x

h(θ, (x, a)) − αA||x− xA
i ||p − αP ||x− xP

j ||p

= sup
b∈[0,1]

−f∗(b) + (gi1!gj2)(bθ1) + 〈bθ2, a〉

≤ sup
b∈[0,1]

−f∗(b) +

(

b

αA + αP

)

(

min(αA,αP )||θ1||∗||xA
i − xP

j ||+ 〈θ1,αAx
A
i + αPx

P
j 〉
)

−min(αA,αP )||xA
i − xP

j ||p + b〈θ2, a〉

= sup
b∈[0,1]

−f∗(b)

+ b

((

1

αA + αP

)

(

min(αA,αP )||θ1||∗||xA
i − xP

j ||+ 〈θ1,αAx
A
i + αPx

P
j 〉
)

+ 〈θ2, a〉
)

−min(αA,αP )||xA
i − xP

j ||p

= f

((

min(αA,αP )||θ1||∗||xA
i − xP

j ||+ 〈θ,αAx
A
i + αPx

P
j 〉

αA + αP

)

+ 〈θ2, a〉

)

−min(αA,αP )||xA
i − xP

j ||p.

The first inequality follows from Theorem 3.4.

Theorem 5.2. Suppose p += 1 and p += ∞. If ||θ1||p,∗ ≤ αA + αP , then

max
a,y

sup
x∈X

(

c(a, y) · "(θ, (x, a, y))− αAd
i
A(x, a)− αPd

j
P (x, y)

)

−max
a,y

(

c(a, y) · "(θ, (x̂i,j , a, y)) + αAκA|aAi − a|+ αPκP |yPj − y|−min(αA,αP )||xA
i − xP

j ||
)

≤ 4α̂||xA
i − xP

j ||.

Proof. First, fix any (a, y). Using the same argument as in Theorem 3.6,

(

sup
x
"(θ, (x, a, y)) −

αA

c(a, y)
||xA

i − x||p −
αP

c(a, y)
||xP

j − x||p
)

−
(

"(θ, (x̂i,j , a, y))−
α̂

c(a, y)
||xA

i − xP
j ||
)

≤
(

"(θ, (x̌, a, y)) −
α̂

c(a, y)
||xA

i − xP
j ||
)

−
(

"(θ, (x̂i,j , a, y))−
α̂

c(a, y)
||xA

i − xP
j ||
)

≤ 2||xA
i − xP

j ||

where x̌ is the same as in the proof of Theorem 3.6. Multiplying by c(a, y), we have

sup
x

(

c(a, y) · "(θ, (x, a, y))− αA||xA
i − x||p − αP ||xP

j − x||p
)

−
(

c(a, y) · "(θ, (x̂i,j , a, y))− αA||xA
i − x̂i,j ||p − αP ||xP

j − x̂i,j ||p
)

≤ 2c(a, y)||xA
i − xP

j || ≤ 4||xA
i − xP

j ||.

because c(a, y) ≤ 2 for any (a, y).
Finally, write

(x∗, a∗, y∗) = argmax
x,a,y

(

c(a, y) · "(θ, (x, a, y)) − αAd
i
A(x, a)− αP d

j
P (x, y)

)

.
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Then, we have

(

c(a∗, y∗) · "(θ, (x∗, a∗, y∗))− αAd
i
A(x

∗, a∗)− αPd
j
P (x

∗, y∗)
)

−max
(a,y)

(

c(a, y) · "(θ, (x̂i,j , a, y)) + αAκA|aAi − a|+ αPκP |yPj − y|−min(αA,αP )||xA
i − xP

j ||
)

≤
(

c(a∗, y∗) · "(θ, (x∗, a∗, y∗))− αAd
i
A(x

∗, a∗)− αPd
j
P (x

∗, y∗)
)

−
(

c(a∗, y∗) · "(θ, (x̂i,j , a
∗, y∗)) + αAκA|aAi − a∗|+ αPκP |yPj − y∗|−min(αA,αP )||xA

i − xP
j ||
)

=
(

c(a∗, y∗) · "(θ, (x∗, a∗, y∗))− αA||xA
i − x∗||p − αP ||xP

j − x∗||p
)

−
(

c(a∗, y∗) · "(θ, (x̂i,j , a
∗, y∗))− αA||xA

i − x̂i,j ||p − αP ||xP
j − x̂i,j ||p

)

≤ 4||xA
i − xP

j ||p

where the first inequality follows because −maxa,y term cannot be greater than when the inner term is
evaluated at (a∗, y∗), and the last inequality follows because for (a∗, y∗), maxx is achieved at x∗.

D Missing Details from Section 6

Now we report the best regularization penalties that maximize the accuracy of RLR and RLRO respectively
over all experiment runs at the granularity level of 10−2. The best regularization penalty for RLR and
RLRO were λ = (0.07, 0.04) for BC (m1 = 5), (0.04, 0.04) for BC (m1 = 25), (0.02, 0.02) for IO (m1 = 4),
(0.01, 0.02) for IO (m1 = 25), (0.08, 0.03) for HD, and (0.08, 0.08) for 1vs8. The parameters for data join
used for each of the datasets can be found in the table below:

BC (m1 = 5) BC (m1 = 25) IO (m1 = 4) IO (m1 = 25) HD 1vs8
rA 0.65 1.65 0.3 1.5 0.65 1.85
rP 0.65 1.65 0.3 1.5 0.65 1.85
κA 5 5 10 5 10 5
κP 5 5 10 5 10 5
k 1 1 1 1 1 1

Table 3: Parameters used for distributionally data join (DJ) for UCI datasets

For all of the methods (logistic regression, regularized logistic regression, distributionally robust logistic
regression, and our distributionally robust data join), the learning rate used was 7 ∗ 10−2 and the total
number of iterations was 1500.
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