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Abstract

Suppose we are given two datasets: a labeled dataset and unlabeled dataset which also has additional
auxiliary features not present in the first dataset. What is the most principled way to use these datasets
together to construct a predictor?

The answer should depend upon whether these datasets are generated by the same or different dis-
tributions over their mutual feature sets, and how similar the test distribution will be to either of those
distributions. In many applications, the two datasets will likely follow different distributions, but both
may be close to the test distribution. We introduce the problem of building a predictor which minimizes
the maximum loss over all probability distributions over the original features, auxiliary features, and
binary labels, whose Wasserstein distance is 71 away from the empirical distribution over the labeled
dataset and r2 away from that of the unlabeled dataset. This can be thought of as a generalization of
distributionally robust optimization (DRO), which allows for two data sources, one of which is unlabeled
and may contain auxiliary features.
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1 Introduction

For a variety of prediction tasks, a number of sources of data may be available on which to train, each
possibly following a distinct distribution. For example, health records might be available from at a number
of geographically and demographically distinct hospitals. How should one combine these data sources to
build the best possible predictor?

If the datasets S7,.S2 follow different distributions P;, Po, the test distribution P will necessarily differ
from at least one. A refinement of our prior question is to ask for which test distributions, then, can training
with S, 52 give a good predictor?

More generally, very common issues of mismatch between training and test distributions (and uncertainty
over which test distribution one might face) have led to a great deal of interest in applying tools from distribu-
tionally robust optimization (DRO) to machine learning [Duchi and Namkoong, 2021, |Shafieezadeh-Abadeh et all,
2015, Lee and Raginsky, [2018, [Rahimian and Mehrotra, [2019]. In contrast to classical statistical learning
theory, DRO picks a function f whose maximum loss (over a set of distributions near S) is minimized. This
set of potential test distributions, often referred to as the ambiguity or uncertainty set, captures the uncer-
tainty over the test distribution, along with knowledge that the test distribution will be close to the training
distribution.

The ambiguity set is usually defined as a set of distributions with distance at most r from the empirical

distribution over the training data: B (755, r)= {Q : D(755, Q) < r} where Pg is the empirical distribution

over training dataset S and D is some distance measure between two probability distributions. Then, DRO
aims to find a model @ such that for some loss ¢,

f = argmin  sup E [0, (x,y))]
QeB(Ps,r) (#:9)~Q

The larger r, the more distributions over which DRO hedges its performance, leading to a tension between
performance (minimizing worst-case error) and robustness (over the set of distributions on which performance
is measured).

In this work, we introduce a natural extension of distributionally robust learning, two anchor distri-
butionally robust learning, which we also refer to as the distributionally robust data join problem. Two
anchor distributionally robust learning has access to two sources of training data, the first source containing
labels and the second source without labels but with auxilliary features not present in the first source. The
optimization is then over the set of distributions close to both the labeled and auxilliary data distributions.

Formally, suppose one has two training datasets. The first dataset S7 consists of feature vectors X C R™
and binary prediction labels for some task ) = {£1}. The other dataset S; contains feature vectors
X and auxiliary features A C R™2 but not the labels. The goal is to find a model 6 that hedges its
performance against any distribution Q over (X,.A4,)) whose Wasserstein distance is r1 away from the
empirical distribution over S7 and ro away from that of So. Note that our setting is a strict generalization of
semi-supervised setting: for mo = 0, there are no additional features in the second dataset, and Ss is simply
some additional unlabeled dataset. In contrast to pure semi-supervised settings, our method and setting
allow the learner to not only take advantage of the additional auxiliary features but also learn a model robust
to additional distribution shift.

In practice, it is quite common to have the datasets fragmented as our setting captures. For instance,
suppose some dataset has been collected at a hospital in order to build a predictive model that is to be used
at a nearby hospital. After collecting this data, some other research may have found other useful features
that could have been collected for the prediction task. Fortunately, another nearby hospital may have data
that contains both the original features and the useful auxiliary features but does not have labels for this
prediction task. Our data join approach allows to find a model that utilizes such auxiliary features and
explicitly considers the distribution mismatch between the hospital where the model is deployed and the
hospitals from which these two datasets have been collected.

Auxilliary features may be useful not only for improving accuracy of the model but for guaranteeing
additional properties including notions of fairness. We show that one can solve a two-anchor distributionally



robust learning instance penalizing models for their difference in performance across demographic groups,
where demographic information is present only in one dataset. This extension is motivated by design-
ing equitable predictors (e.g., which equalize false positive rate over a collection of demographic groups)
where one training set contains labels for the relevant task but no demographic information, and another
training set contains demographic information but may not contain task labels. Such settings are quite
common in practice, where demographic data is not collected for every dataset — indeed, collection of de-
mographic data is difficult to do well or sometimes even illegal |[Awasthi et al., 2021, [Fremont et all, 2016,
Weissman and Hasnain-Wynia, 2011, [Zhang, 2018].
The contribution of our work can be summarized as follows:

1. New problem formulation of distributionally robust data join (Section [2.2),

2. Tractable reformulation with an approximation guarantee (Section B and Section 4): we show how
to approximate the distributionally robust data join problem with a tractable convex optimization
problem with an approximation guarantee,

3. Applications to fairness with missing demographic group information (Section [5): with slight modifi-
cations, we show how to penalize the model for its unfairness even when the labeled dataset lacks the
demographic group information,

4. Experiments (Section [Al): we perform some experiments to demonstrate the usefulness of our distribu-
tionally robust data join method.

1.1 Related Work

Distributionally Robust Optimization: Prior work has looked at many different ways to define the ambi-
guity set: characterizing the set with moment and support information [Delage and Ye, 2010, |Goh and Sim,
2010, [Wiesemann et all, [2014], or using various distance measures on probability space and defined the
ambiguity set to be all the probability measures that are within certain distance e of the empirical distri-
bution: [Duchi and Namkoong [2021] use f-divergence, Hu and Hong [2013] the Kullback-Leibler divergence,
Erdogan and Ivengar [2006] the Prohorov metric, and|Shafieezadeh-Abadeh et al/[2015],Blanchet and Murthy
[2019], Blanchet et all |2019], [Esfahani and Kuhn [2018] the Wasserstein distance, [Hashimoto et al. [2018]
chi-square divergence, and so forth. In this work, we focus on the Wasserstein distance.

Most relevant to our work within literature on distributionally robust optimization literature is that of
Shafieezadeh-Abadeh et all [2015]. They show that regularizing the model parameter of the logistic regres-
sion has the effect of robustly hedging the model’s performance against distributions whose distribution over
just the covariates is slightly different than that of the empirical distribution over the training data. Distri-
butionally robust logistic regression is a generalization of p-norm regularized logistic regression because it
allows for a distribution shift not only in the covariates but also over the labels. In a couple of real world
datasets, they show that distributionally robust logistic regression seems to outperform regularized logistic
regression by the same amount that regularized logistic regression outperforms vanilla logistic regression.
Our work is a natural extension of this work in that we take additional unlabeled dataset with auxiliary
features into account. [Taskesen et al. [2020] extend |Shafieezadeh-Abadeh et all [2015] by adding a fairness
regularization term as we also do, but the demographic information is not available in the original training
data in their setting.

Semi-supervised Learning: There have been significant advances in semi-supervised learning where
the learner has access to not only labeled data but also unlabeled data |[Zhu, 12005, |Zhu and Goldberg, 2009,
Chapelle et al., [2009]. While our model subsumes semi-supervised settings, we capture a broader class of
possible problems in two ways. First, our approach allows the unlabeled dataset to have additional auxiliary
features, and second, we explicitly take distribution shift into account.

Imputation: Numerous imputation methods for missing values in data exist, many of which have few
or no theoretical guarantees [Donders et al., 12006, [Royston, 2004]. Many of these methods work best (or
only have guarantees) when data values are missing at random. Our work, on the other hand, assumes all



prediction labels are missing from the second dataset and all auxiliary features are missing from the first
dataset. Another related problem is the matrix factorization problem which is also referred to as matrix
completion problem |[Mnih and Salakhutdinow, 2008, Koren et all, 2009, [Candés and Recht, 2009]: here the
goal is to find a low rank matrix that can well approximate the given data matrix with missing values. Our
problem is different in that we don’t make such structural assumption about the data matrix effectively being
of low rank, but instead we assume all the auxiliary features are only available from a separate unlabeled
dataset.

Fairness: Many practical prediction tasks have disparate performance across demographic groups, and
explicit demographic information may not be available in the original training data. Several lines of work
aim to reduce the gap in performance of a predictor between groups even when the group information may
not be directly available during training.

Hashimoto et al. [2018] show that the chi-square divergence between the overall distribution and the
distribution of any subgroup can be bounded by the size of the subgroup: e.g. for any sufficiently large
subgroup, its divergence to the overall distribution cannot be too big. Therefore, by performing distribu-
tionally robust learning with ambiguity set defined by chi-square divergence, they are able to optimize for
the worst-case risk over all possible sufficiently large subgroups even when the demographic information is
not available. [Diana et all [2020] provide provably convergence oracle-efficient learning algorithms with the
same kind of minimax fairness guarantees when the demographic group information is available.

One may naively think that given auxiliary demographic group information data, the most accurate
imputation for the demographic group may be enough to not only estimate the unfairness of given predictor
but also build a predictor with fairness guarantees. However, |/Awasthi et al. [2021] show that due to different
underlying base rates across groups, the Bayes optimal predictor for the demographic group information
can result in maximally biased estimate of unfairness. [Diana et al. [2021] demonstrate that one can rely on
a multi-accurate regressor, which was first introduced by [Kim et al. [2019], as opposed to a 0-1 classifier
in order to estimate the unfairness without any bias and also build a fair classifier for downstream tasks.
When only some data points are missing demographic information, |lJeong et al/ [2021] show how to bypass
the need to explicitly impute the missing values and instead rely on some decision tree based approach in
order to optimize a fairness-regularized objective function. [Kallus et al. [2021], given two separate datasets
like in our setting, show how to construct confidence intervals for unfairness that is consistent with the given
datasets via Fréchet and Hoeffding inequalities; our work is different in that we allow a little bit of slack
by forming a Wasserstein ball around both datasets and can actually construct a fair model as opposed to
only measuring unfairness. [Celis et al) [2021a] and |Celis et al/ [2021b| show when the demographic group
information is available but possibly noisy, stochastically and adversarially respectively, how to build a fair
classifier.

2 Preliminaries

2.1 Notations

We have two kinds of datasets, the auxiliary feature dataset and the prediction label dataset denoted in the
following way:

Sa={(=" a2, Sp={(], ¥}
where the domain for feature vector z is X C R™!, the domain for auxiliary features a is A C R™2, and
the label space is y € ¥ = {£1}. For any vector v € R™ and dy,ds € [m], we write v[d; : d2] to denote
the coordinates from d; to ds of vector v and v[d] to denote the dth coordinate. For convenience, we write
S ={x:(v,a) € Sa}, S¥ ={x:(z,y) € Sp} to denote just the feature vectors of the dataset.

Given any dataset S = {z;}7,, we will write Pg = LS 1 6(2:) to denote the empirical distribution
over the dataset S where ¢ is the Dirac delta funcion. We’ll write Pz to denote the set of all probability
distributions over Z. Similarly, we write P(; 7 to denote a set of all possible joint distributions over Z and
Z'. Also, given a joint distribution P € P(z z/), we write Pz and Pz to denote the marginal distribution
over Z and Z' respectfully, meaning Pz(z) = [ P(z,dz’) and Pz (') = [ P(dz,2'). We extend the notation



when the joint distribution is over more than two sets: e.g. P..((z,2")) = [P(z,2',dz") where we have
marginalized over Z” for P which is a joint distribution over Z, Z', Z".
We write the set of all possibly couplings between two distributions P € Pz and P’ € Pz as

(P, P')={r€Pzz): 77 =P,mz =P'}.

For a coupling between more than two distributions, we use the same convention and write II(P, P’, P") for
instance.

Given any metric d : Z x Z — R and two probability distributions P, P’ € Pz, we write the Wasserstein
distance between them as

D N = inf d N].
d(Pvp ) 7761—[1%%)17)/) (z,zl%rvw[ (sz )]

Given some distribution P € P over some set Z, metric d : Z x Z — R, a radius r > 0, we will write
By(P,r) ={Q € P: Dy4(P, Q) < r} to denote the Wasserstein ball of radius r around the given distribution
P. When the metric is obvious from the context, we may simply write B(P,r).

In our case, the relevant metrics are

dx(w,2') = ||z = 2l
da((x,a), (2',a")) = ||z = 2l + Kalla = a'l|,y
dp((z,y), (2", ¢) = |z — 2'|l + £ply — ¥/l

where |[v]|, = (>, |vld ]|p)p is some p-norm. We'll write ||v||« = SuP||v'|| <1(v,v') to denote its dual norm.
Also, for convenience, given any vector v, we’ll write 7, = ﬁ and Tp . W to denote the normalized
vectors. When it’s clear from the context which norm is being used, we write || - ||, || - ||+, U, and T.. Now,

we are ready to describe distributionally robust data join problem.

2.2 Distributionally Robust Data Join

We are given an auxiliary dataset S4 and a prediction label dataset Sp. We are interested in a joint
distribution over (z, a,y) whose marginal distribution over (x, a) is at most r4 away from Pg, in Wasserstein
distance and similarly whose marginal distribution over (z,y) is at most rp away from 75513 in Wasserstein
distance.

More formally, the set of distributions we are interested in is

W(Sa,Sp,ra,rp) ={Q € Px 4,y): Da, (Psas Qx,a) <74,Dap(Ps,, Qux,y) <7p}
={Q€Pwx ay) Qx4 € Bai,(Ps,,r4),Qxy € Ba.(Ps,,rp)}.

Now, we consider some learning task where the performance is measured according to the worst case distri-
bution in the above set of distributions:

min  sup E [0, ()] 1)
S QeEW (Sa,Sp,ra,rp) (%,a,y)~Q

where £: © x (X x A % y) — R is a convex loss function evaluated at 6. For the sake of concreteness, we
focus on logistic losd! L0, (z,a,y)) = log(l + exp(—y(0, (z,a)))).

Also, we sometimes make use of the following functions f(t) = log(l + exp(t)) and h(0, (z,a)) =
f(—=(8,(z,a))) instead of ¢, as it is more convenient due to not having to worry about y in certain cases:
00, (z,a,4+1)) = h(0, (z,a)) and £(0, (x,a,—1)) = h(—0, (x,a)). We write the convex conjugate of f as

F7(b) = sup(a”, z) — f(z)
blogb+ (1 — b)log(1l —b) ifbe(0,1)
=<0 ifb=0or1

00 otherwise

LAll our results still hold for any other convex loss with minimal modifications.



3 Tractable Optimization

Note that the optimization problem in (1) is a saddle point problem. In Section [3.1] we make the coupling
in the optimal transport more explicit in the inner sup term. Then, as in [Shafieezadeh-Abadeh et al/ [2015],
by leveraging Kantorovich duality, we replace the sup term with its dual problem which is a minimization
problem, thereby making the original saddle problem into minimization problem. However, the resulting
dual problem has constraints that each involve some sup term, meaning it’s an semi-infinite program (i.e.
sup, ¢ constraint(z) < 0 is equivalent to constraint(z) < 0,Vz € Z). However, in Section [3.3] we show how
each sup term can be approximated and be replaced by a single constraint.

3.1 Formulation through Coupling

We show how to rewrite the problem (L) by surfacing the underlying coupling 7 between the “anchor”
distributions (S4, Sp) and our target distribution Q@ € W (S, Sp,74,7p). Because m € II(Ps,, Ps,, Q) is a
coupling between Pg,, Ps,, and some distribution Q, we must have the following for 7:

1. Marginalizing 7 over i € [n4] must yield a coupling 7, (x 4,y) between Ps, and Q:

7TS’p,(z"C',.A,y)((175’37 y]P)v ({E, a, y)) = Z T ((x?a a?)v (va y]P)v ({E, a, y))

T‘—SA,(X.,.A,'.V)((CC?v a?)v (CL‘, a, y)) = Z Q0 ((‘fov azA)v (‘va yjp)v (‘Ta a, y))

3. m’s marginal distribution over (X, A,Y), S4 and Sp is exactly Q, 755A, 75513 respectively:

np 1
. Z/ (af ) (o, da dy) = =
na 1
7TSP ]7y] Z/ z' €T ay_]) (dx,da,dy)) :E
na np
Q_W(XAy)xay ZZ J?yg ),(x,a,y))
=1 j=1

Using the above notations, we can re-write the constraint in W (Sa,Sp,7a,7p) where 7’s marginal
distribution over (X,.4) must be at most r4 away from Pg, in Wasserstein distance as follows:

E [dA(( :4’ ;4)7({57@))]

(a8, (z,a,9)~Ts , (x,4,)

na
= Z/dz‘l((‘r?va?)v (‘Taa))WSA,(X,A,y)(vaafv (dxudaudy))

—zzfdA o af), (. a)m ((af a), (e y]). (de,da, dy)) < ra.



Similarly, we can write the other constraint that m’s marginal distribution over (X’,)) must be at most
rp away from Pg, as

[dp((@F yD). (.9))]

(@F ) (z,a.9)~Tsp, (x,4,9)
na np

= ZZ/dp((xf,af), (z,a))m ((x?,a?), (xf,yf), (da:,da,dy)) <rp.

i=1 j=1

Lastly, the constraint that in order 7 to be a valid coupling, its marginal distribution over S4 and Sp
should be exactly % and % over its support is equivalent to

> Z/w((x?,a?%(zf,yf>,(dx,da,dy)) L viepa

n
J=lacAycy A

na 1 .

Z Z Z /ﬂ- ((I?,G?), (Ifayf)a (da:,da,dy)) = n_ Vj € [np]
i=1 acAyey P

For simplicity, instead of 7 (7', af), («F,yT), (z,a,y)), we write ) (v,a) =7 (=8, a), (@, yF), (z,a,y)).

Then, combining all these together, we can rewrite the problem (L) as choosing 6 € © that minimizes the

following value:

na np

sy SOSS [ w0 o)t da)
Q.5 i=1 j=1yey ’
na np

s.t. ZZ Z/ d%(x,a)wzj(dx,da) <ra
i=1 j=1yey’ ¥4
na np )
Z Z Z/ dp(x,y)r} ;(dx,da) < rp (2)
i=1 j=1yey’ ¥4
np 1
ZZ/ 7 (dx,da) = — Vi € [n4]
=1 yey /A A
na 1
Z Z/ ) (dx,da) = — Vj € [np]
i=1 yey /XA np

where dy(z,a) = da((z#,a'), (z,a)) and dgp(a:,y) = dp((xf,yf), (z,y)). For any fixed parameter 6, we’ll
denote the optimal value of the above problem (2) as p*(0,74,rp) and p*(ra,rp) = infg p*(0,74,7p).

It can be shown that minimizing over the above supremum value in (L) and the optimization problem (2])
are equivalent as shown in the following theorem. We also provide a tight characterization of the feasibility
of (2). The proof of Theorem [3.1] and [3.2] can be found in Appendix [AT.

Theorem 3.1. For any fized 0 € ©, p*(0,r4,7p) = SUPQEW (Sa,Sp,rarrr) E(z,a,)~Q[(0, (z,a,y))]

Theorem 3.2. D, (ﬁsjaﬁsg) <ra+rp, if and only if there exists a feasible solution for (2).



3.2 Strong Duality

We claim that the following problem is the dual to problem (2) and show that strong duality holds between
them:

. 1 1 /
Juf o aarataprpt— 3 fit— > B
{Biticm 1> i€[nq] j€np]

{Bi}iempl (3)
s.t. sup (6(9, (z,a,9)) — aady(z,a) — apdgg(x,y)) < B+ B}Vi € [nal,j € npl,yceY

(z,a)

For fixed 6, we’ll write d*(6,r4,7p) to denote the optimal value for the above dual problem (3). As
in [Shafieezadeh-Abadeh et al. |2015] and [Esfahani and Kuhn [2018], strong duality directly follows from
proposition 3.4 of |Shapiro [2001], but to be self-contained, we include the proof in Appendix [A.3 which
follows the same proof structure presented in [Villani [2003]. For clarity, we assume in the proof that X and
A is compact, but for more interested readers, we refer to the strong duality proof in Theorem 1.3 of [Villani
[2003] to see how to remove the compactness assumption on X and A.

Theorem 3.3. Assume X and A are compact spaces. If there exists a feasible solution for the primal
problem (2), then we have that strong duality holds between the primal problem (2) and its dual problem (3):
p*(0,7a,7p) = d*(0,74,7P) for fized 6.

In other words, we have successfully transformed the saddle point problem into a minimization problem:

. 1 1 /
min 04A7”A+OZP7"P+E.Z [314—”—‘2 B
aa,ap, i€[na) j€[np]

{Biticm 41>
{ﬁ; }jE[nP]

st sup (06, (v,a,9)) — aadh(2,0) — apdp(e,y)) < B+ Bi¥i € na],j € ply € Y

(z,a)

3.3 Replacing the sup Term

Note that sup, ,) in the constraint makes it hard to actually compute the expression: it’s neither concave
or convex in terms of (z,a) as it’s the difference between convex functions 4(0, (z,a,y)) and aady(z,a) +
« pd?;(:t, y). In that regard, we show how to approximate the sup term in the constraint of dual problem
([B) with some closed form expression by extending the techniques used in [Shafieezadeh-Abadeh et al) [2015]
who study when there’s only one “anchor” point — i.e. sup, £(6,x) — adx(z;,x).

With some rearranging, let’s focus only on the terms that actually depend on (z,a).

sup 00, (2, a,y)) — aady(z,a) — apdp(z,y)

= rpaply; —y|+ sup h(yl, (z,0)) = aallz = zll, — aplle] —2[l, + aarallai —ally
z,a

During this discussion, we drop y by using A4 and also for simplicity, we write R to denote

R= sup 10, (2,0) = aallef =y = aple] ~ el — aamala’ = al
x,a

We now rearrange some terms of R and use convex conjugate of h to represent the supremum term with
what is known as an infimal convolution:

2Note that all our arguments are based on some fixed 0, so if y = +1, proceed with the original 6, and for y = —1, proceed
with a new fixed 6/ = —6.



Lemma 3.1. Fiz any 0, (z*,a',2), and (aa,ap,ka). If [|0[1 : mi]l[pe > aa + ap or [|0lmi + 1 :
mi +mallly x> Kaaa, then sup, o) h(0, (z,0)) — aallz — 2ll, — apllz] - zll, — aarallaf — ally = co.

Otherwise, we have
sup h(8, (x,a)) — aallef —zll, —apllz] — 2l|l, — aaralla;’ — ally
= e —f*(b) + (9i0g3) (b0[1 : ma]) + (b0[ma + 1 my + ma),af')
be[0,1

where

00 otherwise 00 otherwise

4i(6) {<9,xf‘> o San o {<9,x5> if 6. < ap

and (gziDg%)(ﬁ) = infg, 1 g,—0 g4 (01) + 95(6‘2) is the infimal convolution of gi and g%.

Then, by noting that an infimal convolution of two linear functions over bounded norm domain is convex,
we show how to upper bound the infimal convolution with a linear term:

Theorem 3.4. Suppose the norm ||-|| is some p-norm where p # 1 and p # oo. Fix 0 where ||0]|. < asa+ap.
Then, for any b € [0,1],

b

v P
as+ap I

) (01l min(oa, ap)llef — 27| + (0, aazi + apa])) — min(aa, ap)||zf -z

o) <
Combining Lemma [3.1] and Theorem [3.4], we can show the following upper bound on R:

Theorem 3.5. We write 61 = 0[1 : my] and 02 = [m1 + 1 : mq + ma]. Suppose p # 1 and p # oo. If
[161]lp,« < aa +ap and ||02||p « < Kaca, then

min(aa,ap)||01]||zf — 2P| (01, szt + apzl) A . A P
= f(( as+ap l = OéAl‘f' ap = |+ (02,a7) | —min(aa, ap)lai =@ |lp-

Otherwise, sup(, .y h(0, (z,a)) — aallz — x|, — apllr — fop —aakallat —al|y evaluates to oo.
xf if og < ap
A
3

and & = min(a4, ap).

Suppose we write 2; ; = {
x

Then, via Holder’s inequality, we can show that evaluating the constraint at (z; ;, af) is pretty close to

to the upperbound of R in Theorem [3.5] and hence, it is also close to R because the constraint evaluated at

(22, af') is a lower bound for R.

Theorem 3.6. Suppose p#1 and p # co. If ||01]|p.« < aa + ap and ||02]]py « < Kaaa, then

(A0, (21,4,0{")) = éllzi* = 27l],) — R < 26[a — a7 |-

A

Therefore, we can approximate R with (h(0, 2; ;,ai")) — @|lz;* — 2¥]|,). In the next section, we try to

justify why the approximation error 2a||z! — xf || is reasonable.

4 Optimization

4.1 Approximation

We will first try to reformulate the original problem by making some structural assumption about the optimal
transport w;/ j(:v, a). Because it is an optimal transport, we most likely have that for every (z,a,y) whose
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measure is non-zero (i.e. m/;(z,a) > 0), its distance to (z,a!) and (2, yI") should be small. In other

words, we most likely have that for any (4,5) where ||z — z¥|] is big, 7} ;(x,a) will be zero. Therefore, we
assume that for every i € [na], we only consider its k-closest neighbors out of {:zrf }iemp) and do the same
for j € [np]. We will denote this set of pairs by M

A P> : A
xi is one of x;’s k-nearest neighbors among {7} }

M=<(,5): " p. .
{(Z’]) or xf is one of z!’s k-nearest neighbors among {xf,}j/.

Noting that the dual constraint for each ¢ € [n4],j € [np], and y € Y corresponds to the primal variable
wz ;» this assumption allows us to only consider constraints (i,7) € M. Then, after multiplying the objective
by nanp with some rearranging, the dual problem becomes

min nanp(aara + aprp) + Z (ﬂz"’ﬁ;)
0,aa,ap, L
{B:,85} i, jyem (L.)eM (4)
s.t. max sup (6(9, (z,a,y)) — aady(z,a) — oepdfa(x,y)) <Bi+B; Y(,j)e M.
Y (z,a)

In the case where the k-nearest-neighbor graph M between S and Sp is nicely structure, we should be
always able to find {f;, 3;} such that for each (¢,j) € M

max sup (€(6‘, (z,a,y)) — aady(z,a) — apdgp(ac, y)) =B+ ;. (5)
yey (z,a)

Note that if there exists {8;, 3;} that satisfy (5), the optimal solution to () must satisfy (5). Therefore,
assuming such {3;, 8;} exists, we get to re-write the optimization problem as

min nanp(aara + aprp) + Z max sup (£(0, (z,a,y)) — aady (z,a) — apdgg(:zr, Y)).
aa,ap,0 G eM yey (z,a)

Using the following fact about logistic function f(—t) = f(¢) 4+ t, we know that
max(f(t), f(=t)) = f(t) + max(t,0).

In other WOI‘dS, max (f(yJP<05 (iiﬁj ) a{‘»)v f(_yJP <97 (‘fiiyja a?») - Oép/ip) - f(yjp <95 (jji,jv CL?»)—FIH&X(yJP <95 (ii,j ) a?»_
apkp,0). Using our approximation of the supremum term as in Theorem [B.6land the above fact, the problem
then becomes

: DO (w0, (#igrai)

i=1 j=1 (6)
+max(y; (0, (£:,a{")) — aprp,0) — &||z] —27||)

min (aara + aprp) +
O(A,O(P,Gheg nAnP

st |61« < aa+ ap,||02]]x < Kaaa.

Note that because we have restricted our attention only to pairs who are close to one another, the ad-
ditive approximation error due to using evaluating the constraint only at (ﬁ:iyj,a{‘) which amounts to

nif‘lp Do ieM |lz* — 2F|| in the objective must be small.

3More formally, this is equivalent to assuming that there exists a feasible solution to the following system following linear
equations. Suppose A is a [M| X (na + np) matrix where for every lth pair (¢,7) in M, M[l,i] =1 and M[l,na + j] =1. And
b is a vector of length |M| where for every lth pair (,5) € M,

bl = o6 —aud —apd’ .
(1] 21355(?5)( 0, (z,a,y)) — aady(z,a) — ap p(x,y))

Our assumption is equivalent to assuming that there exists a vector z of length na + np such that Az = b or equivalently, A
is left-invertible. Note that the very first n4 coordinates correspond to {3;} and the last np coordinates correspond to {B;}
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4.2 Projected Gradient Descent

To solve the optimization problem (), we employ first-order projected gradient descent. In order to handle
& = min(a, ap), we can just solve the optimization twice: once with a4 < ap as one of the constraints and
the other time with oy > ap. Suppose & = o4, meaning ; ; = xf. Then we write the objective function
as

1

nanp

> (Fwl 0, @Fa))) + max(yf (6, («F ,a)) — apkp,0) — aallz — 2F])
(1,7)eM

Q4 aa,ap,0) = (aara +aprp) +

and the constraint set is
cA ={(aa,ap,0) : ||01|]« < aa+ap,||f2]| < Kaca,an < ap}.

Similarly, when & = ap, we write QF (a4, ap, ) and CF where the o constraint is replaced by a4 > ap.
Note that in both cases, we have a convex optimization problem.

Claim 4.1. The objective functions Q*(aa,ap,0) and QF (aa, ap,0) are convex in (aa, ap,d). The con-
straint sets C* and CT are also conver in (aa,ap,0).

Suppose we write

(04470/1359/) = arg( mig)EC’A QA(QA;aPaG)
xA,0p,

" " " : P
(@' 4,a"p,0") = arg min Q" (aa,ap,b).
(aa,ap,0)eCP

Claim 4.2. The optimal solution to problem (6) is (o/y,a/p,0') if QA (a4, a/p,0') < QF (" 4,0" p,0") and
(" 4,0 p,0") otherwise.

Typical regularized models either constrain the norm of the parameter 6 to be directly bounded by some
constants specified initially or include the norm as part of the objective multiplied by some multiplicative
penalty constant. However, our optimization problem is a hybrid of both as (1) the norms of the parameter 6
are to be bounded by a4 and ap but (2) (aa,ap) are part of the optimization variables that are multiplied
by some penalty constants r4 and rp in the objective function.

Nevertheless, the constraint set is convex so Euclidean projection can be solved via any convex solver,
and in the case of p = 2, we have exactly characterized a closed form solution of the output of the projection
in Appendix [BIl Therefore, in order to solve (), we can use projected gradient descent (PGD)

(af4+1, agl, 9t+1) = Projecto ((a’;‘, abs, 0" —nvQ(ay, o, Gt)) .

It is well known that the rate of convergence for PGD is O(ﬁ) with appropriately chosen step size 7. We
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present the overall algorithm to solve problem (6) in Algorithm [I.

Algorithm 1: Distributionally Robust Data Join
1: Input: Sa, Sp, ra, rp, ka, kp, k, T
Run k-nearest neighbors on S4 and Sp to calculate the matching pairs M
choose arbitrary 6, a4, ap
Set 04 =0,aYy = aa,ab = ap

Set 0" = 0,0’ = aa,ab
fori=1toT —1do
t+1 t+1 1 . A
(@, a5, 0") = Projecta ((ai‘,a},@t) —nVQ (a%,aﬁ;,@t))
(a'f:l,a’glﬁ’”l) = Projector ((a'i,,a'?;,@’t) — nVQP(a’Q,a’},H't))
— _ 1T t — _ 17T t g_ 1T pt
9 DA =Dy g Oy, 0P = 7D 4y Op,0 T 4=l 0
— 1 T it —— 1 T ol 1 T /1t
10: 04" = 7 ) &y, 0P = th:1/a Pt =730
11: if Q4 (ax, ap,0) < QF (@a’,ap’,0 ) then
12:  Return (aa,ap, )
13: else )
14:  Return (aa’,ap’,0)

Write Q(aa, ap,0) = Q4(aa,ap,0)if aa < ap and QF (aa, ap, d) otherwise to denote the objective solu-

tion to problem (6). Then, the optimal value (o, a}, 0%) of problem (6) is (o, ap, 0) = argmin g, op.0)ccavcr Qaa, ap,d

Theorem 4.1. With appropriately chosen step size n), Algorithm[L returns (ca, ap, 8) such that Q(aa, ap,0) <
Q0 0p,0%) +0 ().

5 Application: Fairness

In many situations, the actual demographic group information may not be available in the original labeled

dataset, but another auxiliary unlabeled dataset may contain the needed demographic group information.

We can leverage our data join method in order to incorporate this auxiliary dataset to penalize the model for

model’s unfairness. Suppose A represents two different groups that an individual can belong to — A = {0, 1}.
Given 0, we define its unfairness with respect to distribution P over X, A, as

0,P)=| P h —lLy=1- P h —0,y =
UO.P)=| Prlulbgla=Ly=1= Pr [ulh@)a=0.y=1

where u(t) = log(t) and ho(z) = m as in [Taskesen et al. [2020]. This term is similar to the
difference in true positive rates as in the case of equal opportunity, but it differs in that it looks at the log-
probability — this fairness criterion is referred to as log-probabilistic equalized opportunity in|Taskesen et al.
[2020].

Also, as in [Taskesen et al. [2020], we suppose that we know the underlying positive rates for each group
and constrain the joint distribution’s marginal distribution over A and ) in the following manner: given
some po,p1 € (0,1), we define

W(po_’pl)(SA,Sp,T‘A,rp):{QEW(SA,SP,TA,TP):(IGI?JI)' Q[a:O,y:l]:po,(zalzr) Q[a:O,y:l]:pl}.

Then, the problem we are interested in is

min sup E [0, (z,a,y))] +nU 0, Q)
0€e© QEW (g .p1)(Sa,Sp,ra,rp) (T,a,9)~Q (7)
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where we are adding a fairness regularization term multiplied by some constant  where |n| < min(pg, p1)-
Following the same argument as in Section [3.I] we can re-write the problem as

na np

s> Y- 3 X [ (#6000 + 0 (uthole,a) T g L ) ey

TG i=1 j=1 ac A ycy P Do

na np

s.t. ZZ Z Z /dil(x,a)wf”jy(dx) <rg
i=1 j=1 acAyey

na np

Z Z Z Z /dié(:r, y)miY (de) <rp

i=1 j=1a€Ayey

NS [ =5 vie )

j=lacAyey

2> Z/Wﬁ’f’(dw) =1 vicnsl

i=1 a€Ayey

SN [ =0y = ) =

i=1 a€Ayey

SN [ty = x ) =

i=1 a€Ayey

®)

Denoting the value of the above optimization as p™"(pg, p1,7), the same argument as in Theorem [B.1] can
be used to see that the value of (7) is exactly max(p™"(po, p1,7), p™" (po, p1, —1)) where we need to try out
n and —n in order to handle the absolute value in U/.

As in Section [3.2] the dual problem of (8) can be derived by looking at the Lagrangian, which after
rearranging the terms a little bit is as follows:

L(m,aa,ap,{Bi}, {ﬁ;‘}}a'YOa'Yl)

fair(

-3y yy/ (f(e, (2,0,9)) + 1 (u<h9<<x, a»)% — u(h((a, a»)W)
i=1 j=1acAyey

- CYAdQ((E, (L) - O‘Pd{?(xay) - ﬁl - ﬁ;

—Ylla=0y=1-mnlla=1y= 1])%2“’,3“@1?)

1 & 1 &
+aara+oaprp+ A Zﬁz + n Zﬁ; + poYo + P11
i=1 j=1
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The dual problem is then
nf 1 1 /
et S s L S g
{Bi}icin41:{85}ietnp] i€[nal j€np]

s.t.  sup <€(6‘, (x,a,9)) + nu(he((z,a))) (]l[a =lLy=1] 1a=0,y= 1])

x P1 Po

9)
—aady(z,a) — apdgg(:c,y)> —Bi— B
—lla=0y=1]-mnlla=1y=1<0 icnal,jenplacAyec)y

Note that when y = —1, then the term in the supremum simply becomes

[(97 (:I;v a7y)) - O‘Adfél(xv a) - angD(:Eu y)

When y = 1, then we get

foa(1-+ exp(— (6, (2.0)) = mog(1 + exp(~ (0, (z. ) (2= - 22 00, - )

— log(1 + exp(— {6, (x,)))) <1 —n (““pl‘ 1 _ ““p; °]>) = aadiy(2,a) — apdh(z,y)

= (1 (He= - 22 40, 00 - audiw,) - ardonn)

For simplicity, we write

cla,y)=1-1y=1]n (Mapl: 1 ]l[apj 0]) '

Note that c(a,y) > 0 because n > min(pg, p1). Write ¢ = max, , c(a,y).
Then, the above dual problem can be re-written as

. 1 1
inf aarataprp+— Y Bi+— > B +povo+pm
@a,ap, na . np .
{ﬁi}ie[nA]v{ﬁj}jE[nP] 'LG[HA] JG[HP]

. _ (10)
s.t. sgp <c(a,y) A0, (x,a,y)) — aady(z,a) — oepdig(x,y)> — B — ﬂ;

_Vol[azoayzl]_’}/l]l[a:lvyzl] SO S [nA]vje [”P]aGGA,ZJGy-

We remark that the c(a,y) that folds the fairness constraint into the original loss is essentially equivalent
to the cost plugged into the cost-sensitive oracle in [Agarwal et al. [2018] and [Kearns et al. [2018].

Note that the constant can be taken out of the sup as c¢(a, y) is always positive and the same proof as in
Lemma [3.1] can be used:

sup (e(a.y) - 10, (r,0.9)) — aady(z.) — apdp(r,y)) = cla,y) -sup (w, (r,0,)) = i datea) = s dh(e, y))

We have intentionally taken a outside the sup to not worry about ¢(a,y) in the supremum. Just as
Lemma [3.1] we write down the supremum using the convex conjugate f*.
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Lemma 5.1. Fiz any 0, (z',a,2L), and (aa,ap,ka). If[|0[1: mi]||p« > aa+ap, then sup, h(0, (z,a)) —

aallzdt —z||, — ap||xf —z||p = 00. Otherwise, we have

suph(@, (I,CL)) - O[AHI;A - IHZD - O[PHI;’D - IHZD
T

= sup = *(0) + (giOg) (b0 s mal) o+ (90hm 1+l )
belo,1

where gt and g% 1s the same as defined in Lemma[3.1.

As before, via the convexity of infimal convolution of two linear functions (Lemma [A.2), we can upper
bound the supremum. The only difference is that af has been replaced with a. For simplicity, in the following

lemma and theorem, we use g := =4~ and ap := 22,
c(a,y) c(a,y)

Theorem 5.1. Fiz any 0, (x*,a,2F), and (aa,ap,ca). If ||01]lp« > aa + ap, then sup, h(0, (z,a)) —

aallz — z||, — apllzl — 2|, = co Otherwise, we have

sup h(0, (z,a)) — aallzf — 2l — apllz] — ||,
x

: A P A P
Sf<<m1n(a,4,ap)||91||*||xi Al . (01, caz + apal

>> —+ <92,a>> — rnin(O/,A,Ozp)”:tg4 — Ipr

ap+ ap aas+ ap
Now, note that depending on (a,y), as = C(O;Ay) and ap = C(‘zPy) in the above lemma and theorem
changes. Therefore, unless [[6||p,« < min(,y) 545 + 25

max sup (c(a,y) (0, (x,a,y)) — ozAdfg(:E, a) — ozpdgg(x,y)) = 00.

a,y T

In other words, we need

aa+a
101]]p,e < —2——L

or the term evaluates to co otherwise. Then, via our approximation with &; ; as in Section[3] the optimization
problem is

. !/
Jmin nanp(aara +aprp +poyo+pm)+np Y Bi+na Yy B
{Bi}icin 41:{B5Yicmp] i€[na] Jj€[np]

st ca,y) L0, (215, a,9)) + aaralai —a| + aprply] —y| - allzft — 27|

+vla=0,y=1+mlla=1y=1< B+ 5; i€ [nal,jc[npl,ac Aye {1},
ap+ ap
||91||*§ —

Under the same assumption as in Section , the optimization problem can be re-written as

i + + poo + + a ) - 00, (20, a,y)) + A
o (@ara+apretpoyotpm)+o— ) max | c(a,9) U0 (i, a,y) + aaralei —a
{Biticm 41185 iempl (i,j)eM
+aprplyl —y|— &z — 27|
aas+«a
s.t. ||91||*§fp'

Note that this is still a convex optimization problem as taking max still preserves convexity of the functions
inside. As before, we can get the same kind of approximation error. For each fixed (a,y), approximating the
sup, term with #; ; will result in approximation error of 2¢(a, y)| |z —xf || as in Theorem[3.6l Therefore, even

when we take the max over all (a,y), the overall gap must be bounded by 2¢(a, y)||z — zF|| < 4|z —2T|.

4That is, the k-nearest-neighbor matching matrix A as formed as in Section [ is left-invertible
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Theorem 5.2. Suppose p # 1 and p # oo. If ||01]|p.« < aa + ap, then

max sup (c(a, ) - €0, (@,0,1)) — aadi (2, 0) — apdp(z,y))
&Y rex

— max (c(a,y) - €6, (345, ,9)) + @analet — al +aprplyf — y| = min(aa, ap)lfef - 2f|)
< 4d[e — 7.

We remark that solving for SUPQEW . »1)(Sa,Sp rarp) U(0, Q) for some fixed 0, which can be indeed solved
with minimal modifications, corresponds to estimating the worst case unfairness of 6 over all distributions
Q € Wipypi)(Sa,Sp,ra,rp). Kallus et al. [2021] consider a special case where 74,7p = 0,0, but they can
handle various fairness measures.

6 Experiments

In all our experiments, we use 2-norm for our data join method: i.e. p,p’ = 2. We note that as it’s
standard in practice to use the last iterate instead of the averaged iterate, we use the last iterate of the
projected gradient descent steps instead of the averaged one for all our experiments — we use (a®,a”, 67)
if Q4(a7,aT,07) < QP (', a/",0'") and (/" a’",0'") otherwise. The code used for the experiments can
be found at https://github.com/chrisjung/Distributionally-Robust-Data-Join.

6.1 UCI datasets

Here we discuss some experiments we have run on UCI datasets. The UCI datasets that we used are the
following;:

1. Breast Cancer dataset (BC: 569 points with 30 features,
2. Ionosphere dataset (IO)@: 351 points with 34 features,

3. Heart Disease dataset (HD: 300 points with 13 features,
4

. Handwritten Digits dataset (1vs8)|§: It originally contains 1797 points with 64 points. But after filtering
out all the digits except for 1’s and 8’s, there are 356 points. The task we considered was distinguishing
between 1’s and 8’s.

For every dataset, we preprocess the data by standardizing each feature — that is, removing the mean and
scaling to unit variance. After standardizing our dataset, each experiment run consists of the following;:

1. Randomly divide the dataset into Sirain = {(i, @4, ¥i) }io™ and Sest-

2. Create the prediction label dataset and auxiliary dataset where v data points belong to both datasets:
Sp = {(zi,y:) 5T and Sa = {(xi, a;) } e,

We take the common feature to be the first 5 features for (BC, HD) and 4 for IO — i.e. m; =5 and 4
respectively. For 1vs8, we used m; = 32, the first half bits of the 8x8 image. And the remaining features are
the auxiliary features A: mo = 25,30, 8, and 32 for BC, I0, HD, and 1vs8 respectively. For all datasets, we
set the test size to be 30% of the entire dataset. Then, we set (np,v) = (20,5), (20,10), (30,5), (30, 10) for
BC, 10, HD, 1vs8 respectively. In other words, we imagine the total number of points in our labeled sets
Sp and the number of features to be very small. For BC and 10, we also try a case when the number of
common features is a lot more — mq = 25.

We compare our method of joining S4 and Sp, which we denote as DJ, to the following baselines:

Shttps://archive.ics.uci.edu/ml/datasets/breast+cancer

Shttps://archive.ics.uci.edu/ml/datasets/ionosphere

“https://archive.ics.uci.edu/ml/datasets/Heart+Disease

8https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits}
This is a copy of the test dataset from https://archive.ics.uci.edu/ml/datasets/Optical+Recognitiontof+HandwrittentDigits
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1. LR: Logistic regression trained on Sp

2. RLR: Regularized logistic regression on Sp

3. LRO: Logistic regression on overlapped data {(x;, a;,y;)

np+v
i=np-+1

4. RLRO: Regularized logistic regression on overlapped data {(x;, a;,y;)
)

. FULL: full training on {(x;, a;, y;) }rre=

np+v
i=np+1"

where FULL is simply to show the highest accuracy we could have achieved if the labeled dataset actually
had the auxiliary features and the unlabeled dataset had the labels.

BC (m; = 5) BC (m; = 25) 10 (my = 4) 10 (my = 25) HD 1vs8
DJ | 0.9199 £ 0.0283 | 0.9415 + 0.0165 | 0.8226 & 0.0764 | 0.7906 + 0.0484 | 0.7495 & 0.0374 | 0.9206 + 0.0322
LR | 0.9012+0.0294 | 0.9140+ 0.0393 | 0.7764%0.1560 | 0.7868 =+ 0.0653 | 0.7286 & 0.0504 | 0.8729 =+ 0.0337
RLR | 0.9053 = 0.0228 | 0.9287 £0.0199 | 0.7915 + 0.1417 | 0.7868 =0.0690 | 0.7363 =+ 0.0565 | 0.8953 % 0.0250
LRO | 0.8789+0.0318 | 0.8789 =+ 0.0318 | 0.7330 £ 0.0788 | 0.7330 £ 0.0788 | 0.6626 = 0.0569 | 0.7766 = 0.0599
RLRO | 0.8953 +0.0212 | 0.8953£0.0212 | 0.7377 +0.0800 | 0.7377 £0.0800 | 0.6714 £ 0.0568 | 0.8710 % 0.0450

[ FULL [ 0.9684+0.0143 | 0.9684 £ 0.0143 | 0.8754=0.0764 | 0.8754+0.0764 | 0.8319 % 0.0311 | 0.9495 £ 0.0222 |

Table 1: Average accuracy of each method over 10 experiment runs and standard deviations for three UCI
datasets

We include the parameters used for each of these baselines and our method (DJ) and how they were
chosen in Appendix [Dl It can be seen that the use of the additional auxiliary features through our data join
method seems to help achieve better accuracy than the baselines that we considered.

6.2 Synthetic Dataset

Through a simple experiment on synthetically generated data, we demonstrate how our approach (DJ) can
handle distribution shifts well. Note that in the previous experiment with the UCI datasets, each points
have been all drawn iid, so how well our method can handle distribution shift wasn’t really tested in those
experiments.

LR
0.4126 £ 0.1049

RLR
0.5786 £+ 0.3992

DRLR
0.9068 £ 0.0076

DJ
0.9923 + 0.0057

Accuracy

Table 2: Average accuracy of each method over 10 experiment runs and standard deviations for synthetic
dataset with a distribution shift

We first describe the data generation process. At a high level, there are two groups whose covariate and
label distributions are different. The majority of the points in the labeled dataset Sp is the first group, but

in the unlabeled and test dataset (Sa, Stest), the majority is the second group. More specifically, define
61 =11,0,0,0,0,0,0,0,0,0] and po=1[1,1,1,1,1,1,1,1,1,1].

For the first group, the positive points and negative points were drawn from a multivariate normal

distribution with mean $; and —f; respectively, both with the standard deviation of 0.2:
zly=+1,9=1~ N($1,0.2) and zly=-1,9=1~ N(—01,0.2).

For the second group, the positive points and negative points were drawn from a multivariate normal
distribution with mean 5 and —f5 respectively, both with the standard deviation of 0.2:

(E|y = —|—17g =1~ N(62,02) and x|y = _1,9 =1~ N(_ﬁ2102)
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Now, for the first dataset S; = {(x]l, yjl) ?;1, we set the number of points from group 1 and from group
2 to be 400 and 20 respectively. And we had the number of positive and negative points in each group to be
exactly the same: i.e. 200 positive and negative points for group 1, and 10 positive and 10 negative points
for group 2.

For the second dataset, So = {(z7,y?)}12,, the number of points from group 1 and from group 2 was 200
and 2000 respectively. The number of positive and negative points in each group was exactly the same once
again here.

Our labeled dataset will be the first two coordinates of the fist dataset, meaning m; = 2:
Sp = {(z;[0: 2], y;)}}2;.

Then, we will randomly divide the second dataset so that the 70% of it will be used as unlabeled dataset S
and the other 30% is to be used as the test dataset Siest.

SA = {xg}?:?lnz and StCSt = {(xzzvyzz)}?:zo.’?ng—i-l'

Note that mo =10 — m, = 8.
The baselines that we consider for this synthetic data experiment are

1. Logistic regression trained (LR) on Sp,
2. Regularized regression trained (RLR) on Sp with A = 10,
3. Distributionally logistic regression (DLR) trained on Sp with r = 100, x = 10.

Depending on which group is the majority in the dataset, the ideal hyperplane is different. If the majority
is the first group, the ideal hyperplane is such that it ignores all the features except for the fist one and
returns 1 if the first feature is positive and -1 otherwise. However, if the majority is the second group, the
ideal hyperplane is such that it does the same process for all the features: predict +1 if all the features all
mostly positive -1 otherwise. This is the reason why vanilla logistic regression puts most of its weights only
on the first feature and not the second, but because the majority has been flipped in the test distribution,
it performs very poorly. Regularized and distributionally logistic regression seems to mitigate against this
effect. However, they still need to hedge against all the distributions that is nearby the empirical distribution
over Sp, so the accuracy isn’t as high.

By contrast, the reason why our data join approach method does well as compared to other methods is
mainly due to its k-nearest-neighbor matching. The group identity is actually encoded in the second feature:
the second feature of a point is 0 if it’s from the first group, and if it’s from the second group, it is -1 or 1
depending on the label. Therefore, k-nearest-neighbor should be able to match each of the points to another
point that belongs to the same group and the correct label. And as a result of joining the second unlabeled
dataset via this knn matching, which group is the majority included in the dataset must have been flipped.
Furthermore, with the availability of the auxiliary features, namely feature 3 to 10, the data join can nearly
predict the label of each point perfectly (i.e. 99.45% as shown in Table [2)).

In other words, one can expect our distributionally robust data join method to perform well, when
the information embedded in the common features X allows the k-nearest-neighbors to match the points
very well. Nevertheless, we remark that the k-nearest-neighbor’s matching doesn’t have to be perfect as the
regularization of the model parameters (i.e. ||01|| < aa+ap and ||02|| < kaaa) and the label uncertainty (i.e.
max(f(y(0, & ;,a))), f(—y(0,Zi;,a))) + apkrp)) should be able to tolerate some amount of the mismatches
that happen from k-nearest-neighbor.
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Appendices

A Missing Details from Section (3]

A.1 Missing Details from Section 3.1
Theorem 3.1. For any fized 8 € O, p*(0,r4,7p) = SUPQEW (Sa,Spyrarrr) E(z,a,)~Q(0, (z,a,y))]

Proof. Tt’s clear that for any feasible solution 7 for (2), we must have that
Tx,4,y) € W(Sa, Sp,ra,7p)
as we have a coupling 7g, (x,4,y) between ’ﬁsA and m(x 4,y such that

E [dA((ZE?,a?),(ZE,CL))] <A

(x,a8),(2,0,9))~Ts 4 (2,4, D)

and
(zF & [dp(($f7yjp)v(x7y))] <rp.

2P y7),(@,a,9))~Ts b (x,4,0)

Also, for any Q € W(S4,Sp,ra,7rp), let’s write the optimal transport between 755A and Q as g (X,A)
and the optimal transport between 7551: and Q as mg, | (X, AD)" Then consider the following coupling between
Ps, Psp, and Q:

w((:c?a?), ('rfv y]P)v (CC, a, y)) = WEA,(X,A,)))((‘I?Q?% (Ia a, y)) ' ng,(X,A,y)(('rfa yf)a (Ia a, y))

which is a product of g (X,A) and 7 | (X,A)" This 7 is clearly a feasible solution for [2). 7s, x,4,y) =
ng (X,A)) which witnesses that its Wasserstein distance to 755 . 1s at most r4, and the same argument

applies for ’ﬁsP. Also, its marginal distribution over S4 and Sp will be exactly Ps , and 75513 respectively
because both 75 (3 4 ) and 75 (X,A,Y) is a valid coupling for Pg, and Pg, respectively.

Therefore, as their feasible solution spaces are equivalent and the objective functions are the same, we
must have

P (0,7a,7p) = sup E [0, (z,a,9))].
QEW(SA,SP,T‘A,T‘P) (1xa3y)NQ

A.2 Feasibility of Problem (2)

Here we focus on the feasibility of problem (2): more specifically, how big r4 and rp needs to be in order
for W(Sa,Sp,ra,7p) to be a non-empty set.

Theorem 3.2. Dy, (ﬁsjaﬁsg) <ra+rp, if and only if there exists a feasible solution for (2).

Proof. (=) direction: Suppose 7* = argmin,_.ppx px) Ex[d(z,z’))] is the coupling between 7555 and 7555<
from that results in the Wasserstein distance Dy, (ﬁsfvﬁsg) = Eup,of)mn [dx (z£, zP)].
For every i € [na] and j € [np], define

rA
xiyj:xA— xf—xf)
ra+Trp
T
—of 4 Tt )
ra+Trp
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which is essentially a weighted average of :Ef‘ and :Ef .
Note that we have

rA
ety = ol = llef = —TA—(af —af) —af|
= lef ]|
ra+Trp
p
ety = afll = llaf + —F—(af = a) = af)|
:7"7” A _ 2P
ra+Trp
Then, construct 7T Y as follows:
P
Wzy,]g( ;j,a?):w*(x?,xf)

and 0 otherwise: in other words, for each (7, ) there’s a point mass of 7*(z, z a¥) at a7}, Zj with y =y .

We now show that the constructed coupling 7/ jisa feasible solution for (2).
First, note that we can prove that its marginal distribution transport cost is bounded by r4 and rp. In
the case of S4, we have

na np na Mp
I WY DL AR B BLACHLAC Y
=1 j=1yey =1 j=1
na Mp
=Y (llaf; ==l + rallaf = af|l) 7" (@, =)
i=1 j=1
na Mp
= A o] — el @)
=1 j=1
<7ra.
For Sp, we can similarly show
na np na Np
S [ ooyt da) = 33y ) o)
1=1 j=1yey =1 j=1
na TMp
=> > (lai; ==l +rply) =y ) 7" (=, f)
i=1 j=1
na Np
=———> > llaf —ailln"(z,2])
TA+TP1 1j5=1
<rp.

Finally, the constructed 7r Y is a valid coupling:

ZZ/ ;(dz,da) nzpﬂ'*(xf‘,xf)—% Vi € [nal
j=1

J=lyey

na 1
ZZ/ J(drda) = Y ow (@t af) = = ¥ € e,
=1 ye)y 1=1
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as " was a valid coupling between Ps , and 755P.
(«=) direction: We'll use 7{; to denote the feasible solution to (2). Now, construct a coupling 7 such

that the expected transport cost between 755;'¥ and 755?; under 7 is at most r4 +rp, meaning the Wasserstein
distance is at most min(rq, rp).
Construct the coupling 7 between Pgx and Pgx as

w(x?,:vf) = Z /X Aw;{j(dx,da).

yey

It’s easy to see that 7 is a valid coupling as

na na 1 np np 1
Soahal) =YY [ wtdnde) = o ad Y oattal) =33 [ wl(deda) =
i=1 i=1 yey /A ne j=1 j=1yey /XA A

for each i € [na] and j € [np].

Finally, due to its feasibility, we get
naA np )
XY [ e e de) < v
i=1 j=1yey /A
na np
S35 [ it~ all + allaf ~ all) a?, (. da) <
i=1 j=1ycy
na np
ZZZ/ 2t — || (d, da) < (1)
i=1 j=1yey XA

Similarly, we get

na np

. —x||m (dx,da) <71
SN il alla e da) < (12)
i=1 j=1yey /XA

By adding ([I1) and ([12)), we get

na np
3 Z/ (Il = ol + llaF - o) 72, (dw, da) < ra +rp
i=1 j=1 yey /XA
na np
SN [ Nl el o d) < rat
i=1 j=1yey’/¥A
na np
ZZ ||z — xf””@?ﬂf) <ra+rp.
i=1 j=1

The second line follows from the triangle inequality ||z;* —2'|| < ||z — z[| + ||z} — z||. Therefore, we have
Dy (Psx,Psx) < ra+rp. O

A.3 Missing Details from Section [3.2

Theorem 3.3. Assume X and A are compact spaces. If there exists a feasible solution for the primal
problem (2), then we have that strong duality holds between the primal problem ([2) and its dual problem (3):
p*(0,7a,7p) = d*(0,74,7p) for fized 6.
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Proof. This theorem essentially follows from Fenchel-Rokafellar Duality which is formally stated later in the
proof. Before applying the duality theorem, it is instructive to take a look at the corresponding Lagrangian

for [2):

na np

Limanar B} =Y. 3. 3 [ 60, (@ 0, (do.do))
i=1 j=1 yey /XA
na np )
+as|ra —ZZZ/ dy(x,a)7} ;(dz, da)
i=1 j=1yecy XA
naA np .
vap [re =335 [dbwya dr.do
i=1 j=1yey
na 1 np
+ | — — Y (dz,da
Z;ﬁ na ZZ/XAW’J( )
i= j=lyey )

—I—Zlﬁ; i—ZZ/ ng(dx,da)

Rearranging the terms yields

E(F,OéAaaPu{Bi}v{ﬁ;‘}})

naA np

= Z Z Z /X B (6(9, (z,a,y)) — aady(z,a) — apdh(z,y) — Bi — ﬂ;) 7 ;(dz, da)
=1 j=1yey /¥

1 1
+ qara +aprp + — Zﬂi + —Zﬂ;
na np i
Note that the optimal primal value can be written in terms of its Lagrangian:

L(m,ax,ap,{Bi}, {5}

*(0,74,7p) = su inf
prOrarp)=swp i e

For notational economy, we’ll write

Q/J(CYAa ap, {ﬁl}u {B_;}u x,a, y) = _OéAde(fEu (l) - apng(‘ru y) - Bi - B_;
Now, we state Fenchel’s duality theorem:

Theorem A.1 (Fenchel-Rokafellar Duality). Let E be a normed vector space, and let f,g: E — RU{+o0}
be two convex functions. Assume there exists zo € E such that f(zo) < oo and g(z) < oo, and f and g are
continuous at zg. Then,

inf(g+f) = sup (=g"(==") = f7(z7))
z*eE*

By Riesz’s theorem, we have that the dual space of the Radon measure 7 . is the continuous bounded

functions which we denote as u(i, j, z,a,y). In our case, define

Yy
.3

Fu) 0 if u(i,j,z,a,y) + €0, (z,a,y)) <0forall i € [na] and j € [np]
w) =
00 otherwise
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g(u)
1 nA 1 np / if u(i1j>z#a>y) :w(O‘AvaF“v{ﬁi}v{ﬁr/‘}vzvavy)
_ {(OZATA +aprp + na Ei:l ﬂz + np Ej:l ﬂj) for some a4, ap, {ﬂi},{B;}J

00 otherwise

Note that both f and g are convex:

1. f is convex
Consider any u,v such that f(u) < oo and f(v) < oo, then u(i,j,z,a,y) < —£€(0,z,a,y) and
v(i,j,:c,a,y) < —K(G,x,a,y). Thenv because tu(iajv'rva’ay) + (1 - t)v(i,j,z,a,y) < —K(G,I,a,y), we

have
tf(u) + (1 =0 f(v) = 0= f(t(w) + (1 - t)v).
If either f(u) = oo or f(v) = oo, then

ftw) + 1 =t)v) <tf(u)+ (1 —1t)f(v).

2. g is convex
: _ 1
Suppose u,v is such that g(u) < oo and g(v) < oo and g(u) = afra + apre + 75 X icma B +

# Zje[np] B’y and g(v) = a4ra + aprp + ﬁ Zie[nA] Bi + % Zje[np] B';. Then, we have tg(u) +
(1 —-t)g(v) = gtu+ (1 —t)v). If g(u) = 0o or g(v) = o0, it’s easy to see that g(tu + (1 — t)v) < oo as
well.

Note that
inf(f () + g(u)

= inf OCATA+OCPT'P+_ Bz+_ ﬁ
e(e (may)) O‘Ad (I a) O‘PdP(m y) Bi— ﬁ;go 'LG[ZHA] np JG[ZHP]
=d*(ra,rp)
We derive their convex conjugates:
na np
CSTEETS 959 Y ST ETLHTND
u <0 T Sy
na np
:—zzz/ 0, (a,0,)!(d, )
=1 j=1ye)y

g ({7}
nA np

= sup ZZ/ (i, 4,2, a,y)7} ;(dz, da)

u(i,j7w7a7y):w(0¢A,aP,{61}7{,3;},w,a,u) i=1 j=1yey

1 1
— | caratapre o= Z Bi+ — Z B;
i€[nal Jj€[np]

na np

_ 3y (/ —aady(z,a) — apdp(z,y) — Bi — ﬂ;> 7} ;(dzr,da)

ap,ap, {ﬁz} {ﬁ }] =1 j=1ye)y

- aATA+apTP+— > BH—— > B

lE[nA] Jj€[np]
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Also, note that

sglrp(—g*(—ﬂ) — f*(m))

= sup inf Z Z Z (/X B —aady(z,a) — apdp(z,y) — Bi — B;) ) ;(dz, da)

m aa,ap,{Bi;}i,j =1 =1 yey

1 1 ,
+ OéATA-i-OéPTP-Fa Z 5i+n— Z B;
i€[na) Jj€[np]

na np

+ZZZ/X)AE(9, (z,a,y))7};(dz, da)

i=1 j=1yey
= sup inf L(m,aa,ap, {Bi},{B}})

n
m aa,ap,{B:},{8}}

= p*(97TA,rP)-

Therefore, by Theorem [A.T, we see that p*(0,74,7p) = d*(0,74,7p). O

A.4 Missing Details from Section 3.3

Lemma 3.1. Fiz any 0, (z*,a',2), and (aa,ap,ka). If |01 : mi]l[pe > aa + ap or [|0lmi + 1 :
mi +mallly x> Kaaa, then sup, o) h(0, (z,0)) — aallz — 2ll, — apllz] - zll, — aarallaf - ally = co.

Otherwise, we have

sup h(0, (2,0)) — aallzf — 2|, — apllz] — |l — aaralla’ —ally

(z,a)

- sl[lp] —*(b) + (¢i0g)) (061 : ma]) + (BB[my + 1 : my + ma), ait)
be[o,1

where

g1 . 2 .
00 otherwise 00 otherwise

1(9) _ {<9,5E;A> Zf||9||p,* <y gj(t?) _ {<9,CE§D> Zf||9||iﬂ7* <ap

and (gi0g3)(0) = inf, 1a,—0 g% (1) + g3 (02) is the infimal convolution of gi and g3.
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Proof. Noting that h is convex and thus h is equal to its biconjugate h**, we have

sup h(0, (2,0)) — aallzf — |l, — apllz] - |l, — aaralla’ - ally

(z,a)

= sup sup (b0, (z,a)) — f*(b) — aallz;' — z|l, — apl|lz] — /[, — aaralla — all,y
(z,a) be[0,1]

= sup sup(bl, (z,a)) — f*(b)— sup (q, :Ef‘ —z)y—  sup <q2,x§3 —z)— sup (g3, af‘ —a)
b€(0,1] (z,a) llaillp,«<cea llazllp,«<ap [lgsll,r «Saara

= sup sup(bb, (z,a)) — f*(b)
b€(0,1] (z,a)

- sup <(q17 0)7 (‘T?v a) - (‘Ta a)> - sup <((J2, 0)7 (‘va a) - (CL‘, a)> - sup <(07 Q3)7 (CL‘, a?) - (CL‘, a)>
lla1llp,«<ca llgz2|lp.«<ap llasllpr «Saara

= sup sup inf (b0, (z,a)) — f*(b)
be[0,1] (z,a) larllp.«<ca,
[lgz]lp,«<ap,
[lgsllyr «<aara

- <(q1a0)7 (‘T?aa) - (:E,(I)> - <(q2a0)7 (xf,a) - (Iaa» - <(0aq3)7 (x,af) - (:E,(I)>

= Ssup sup inf <b6‘+(q170)+(q270)+(07Q3)7(x70“)> _f*(b)_ <q17x?> _<q27$§3> _<Q37a?>'
be[0,1] (z,a) larllp.«<ca,
llgz|lp,«<ap,
llas|l,/ «<aara

We can swap the order of inf and sup due to proposition 5.5.4 of [Bertsekas.

= Sup inf sup (b0 + (q1,0) + (2,0) + (0, g3), (z, @) — f*(b) = (@1, 7{") — (g2, 2] ) — (g3, ")
bel0,1] larllpxSaa, (z,q)
a@2llp,«<ap,
[lgs|lpr «Saaka

Note that unless b8 + (¢1,0) + (g2,0) + (0,¢3) = 0, (z,a) can be chosen arbitrarily big. Also, if  + (¢1,0) +
(g2,0) + (0,g3) # 0, then b can be chosen to be 1. Therefore, if there doesn’t exist (¢1,¢2,qs) such that
0+ (q1,0) + (¢2,0) + (0,g3) = 0, everything evaluates to co. In other words, the expression evaluates to oo
unless both of the following conditions are true:

L (161 s ]l < aa + ap

2. ||10m1 +1:m1 +ma)|lp« < Kaaa

as q1 = W’:ﬁ‘lmﬁ[l tmyl, g2 = m@[l :my], and g3 = Olm1 + 1 : mq + ms] is one
such triplet that satisfy 6 + (q1,0) + (g2,0) + (0,¢3) = 0.

Now, suppose 6 satisfies the above conditions as we know it evaluates to co otherwise. Then, we get

KAQA
[10[m1+1:m1+ma]||«

= sup —f*(b)
be(0,1]
f —(ql,xf>—<q2,:vf>+<b9[m1+1 :my + mal, af) ifb[l:mi]+q1 +q2=0
llaillp,«<ca, o0 otherwise
llgzllp.«<ap,
[[=b0[mi+1:mi+ma]||, Saaka
A P if =bo[1 :
= sup —f*(b)+  inf (a1, 27) + (a2, 27) ' q1+?2 [L:m] + (b0[my + 1 : my 4+ ma),a)
be[0,1] lla1llp,«<aa, | 00 otherwise

llgz|lp,« <cp

— SFp] —f*(b) + (¢:0g3) (b6[1 : ma]) + (BB[my1 + 1 : my + ma), aft)
be[0,1
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Now, using the fact that the infimal convolution of linear functions is convex which we prove in Appendix
[AF, we show how to upperbound the supremum term.

Theorem 3.5. We write 61 = 0[1 : my] and 02 = [m1 + 1 : mq + ma]. Suppose p # 1 and p # oo. If
[161]lp,« < aa+ap and ||02||p « < Kaaa, then

min(aa, ap)||01]].||z2 — 2F 01, axz? + apxl
Rgf(( (ca, ap)||1]]«||=; J||+<1 AT PT;

> A A
+{0,. a min(ca. o A _ 2P
oA+ ap apg + ap {02, 07) in(aq, ap)lz; Zj Il

Otherwise, sup(, .y h(0, (z,a)) — aallz — 2|, — apllr — fop —aakallait —al|y evaluates to oo.
Proof. Because f is a convex function, its biconjugate is itself, so
sup —f*(b) +b- X = f(X).
be[0,1]
Therefore, we have
sup h(b, (z,a)) = aallzr — 2f|l, — apllz — o ||, — aarallai’ — ally
= sup —f"(0) + (91093) (b01) + (b0, a7')

be(0,1]

< sup —f*(b) + (7) (min(aa, ap)[|f1]]«|z] = & || + (01, aazf + apa])) — min(aa, ap)lzi — ] ||, + b(62, a;')
be[0,1] as+ap

= sup —f*(b)
be(0,1]

1 . .
+b <<7a,4 a > (min(aa, ap)l[f1]lllf — a7’ [| + (01, anzf +apa)) + <92,a?>) —min(aq, ap)|lzf — 27 |l
P

min(as, ap) |01 L[l — 22| + (6, anzf + ape?) |
=f << z J + (62, a) —mln(aA,ap)H;vf‘—fop.

ap +ap
The first inequality follows from Theorem [3.41 O

Lemma A.1l.

inf(aalle — 27| + apllz — «]'|)) = min(aa, ap)|lzf — 27
and when oy < ap, the infimum is achieved at x = xf and otherwise at 3:{‘.

Proof.

: A P
inf sup (q,r—;)+ sup (g2, T —zj)
T larll«<aa llgz|l«<ap

=inf sup (g1 + qo,x) + (g1, —xi) + (go, _If>
T g1« <aa,
llgz2ll«<ap

We are able to swap inf and sup due to proposition 5.5.4 of [Bertsekas.

= sup inflq + g2, 2) + (g1, —z) + (go, _$5>
1]« <ca,
Hq2H*SOtp

- Sup (g, + xf}
[lg||+<min(aa,ap)

= rnin(aA,ap)ch;4 - xf”

The second inequality holds true because The sum of two norms has to be non-negative, and unless ¢; = g2,
the inf term can be made arbitrarily small, meaning we need to set ¢ = —gs. O
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Theorem 3.6. Suppose p #1 and p # co. If ||01]|p.« < aa + ap and ||02]]py « < Kaaa, then
(A8, (#14,0{")) = éllzi* = 2|l,) — R < 28[a — a7 |-

Proof. Fix 1,7,0,a4,ap. For convenience, we write

N x
xTr =
x

Also, we write the supremum sup, .y f((¢, (z,a))) — aallz — 2| —ap||r — xf” — kaaalai — al is achieved

fag < ap . .
and & = min(au, ap).

sy

at (z*,a*). We write U(z,a) = —aallz — 2| — aplle — 2F'|| — kacale® — af, meaning (z*,a*) =
argmax f ({0, (z,a))) + U(z, a).
From Theorem [3.5] we have

FUO, (2% a")) + U(z",a*) < f((0, (2,a]"))) + U(&,ai")

where

apzf + aprl 4+ av(0)]|zf — ||

j:
aas+ap

Therefore, we have
FUO, (#,a)) + U@, a') < f((0, (%, a"))) + U(z*,a*) < f((0, (& a))) + U(&,af").
In other words,
(f((6, (@*,a"))) + U(z*,a")) = (f(0, (&, a{"))) + U(&,ai")) < f(0, (&, a"))) = F((0, (&, ai"))).

Holder’s inequality gives us

Y Ol —aP)ld| < D 1ol — 2| < ll6wlllzf — 2]

ce [ml] ce [m1]

Suppose a4 < ap, meaning & = x¥

FUO. (@, al)) = F(0. (2,a7))

aal|0i||«||xf — 2P| + (61, cax? + apxl .
< el Z o T P ¢t 0f) ~ (0, (2.0
as +ap
_ aalltflollof — Pl + (01, 0a2 +apaf)  aa X ey (@] — 1)l + (0, qaz + apay)
ap+ ap oA+ ap
_aalltall 2 = 27l = aa(Eeepmy Olel(@7 — f)ld)
A+ ap

_ 20allbull]l= — =7l

A+ ap
< 2a4ljzf — 2] |

where the first inequality follows from f’s 1-Lipschitzness — i.e. |f(z)— f(2’) < |z —2'|. The same argument
works when a4 > ap. O
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A.5 Infimal Convolution

Now, we prove a few lemmas regarding the infimal convolution of two linear functions¥. Since the domain
of gt and g} invovles the same p-norm, we elide p in the following lemmas.

Lemma A.2. (¢i0g))(0) is convex in 6.

Proof. In order to show a function is convex, it suffices to show that its epigraph is convex. Note that
epigraphs of ¢} and gj are both convex:

S1=epi g; = {(¢.7) : lall+ < aa,r > gi(a)}
Sz =epi gh = {(0,7) : llall < ap.r > g3(0)}.
Note that the epigraph of (g¢[lg})(6) is the Minkowski sum of S; and Sy [Stromberg, 1994|:
Ss =epi (gi0gd) = {(z1 + x2,71 +12) : (¥1,71) € S1, (22,72) € Sa}.

For any (x1+4x2,71+72) € Sz and (z] +x5, ) +75) € S3 where (x1,71), (x],71) € Sy and (22,72), (25,75) € Sa,
the convex combination with ¢ € [0, 1]

(t(z1 +x2) + (1 =) (@) +25),t(r1 +12) + (1 = t)(r] +75)

must belong in S3 because (tx; + (1 —t)xf,tr1 + (1 —)r}) € Sy and (tze + (1 — t)ah, tra + (1 — t)rh) € Sa
due to the convexity of S7 and Ss.

O
Lemma A.3. ‘ ‘
(910g3)(0) = —min(aa, ap)|lz] — |-
Proof.
(910g3)(0) = inf g9i(q) + g(—0q)
¢:|lq|l+<min(aa,ap)
= inf I R (/s
q:||q||*Smin(aA,ap><q ) =@y
=- sup (g, —2f + )
¢:|lq|l+<min(aa,ap)
— —min(aa, ap)|z — 27
O

Now, for any g, we write
v(q) = arg max (v,q).
(q) gvsllvHS1< )
Note that (v(q),q) = ||¢||«. In words, v(q) is the vector whose inner product with ¢ evaluates to the dual
norm of ¢. Note that for any scalar ¢ > 0, v(q) = v(cq), meaning only the direction matters.
In the lemma below, we show that given two different directions (g, ¢’), we must have v(q) # v(q’).

Lemma A.4. Suppose the norm || -|| is some p-norm where p # 1 and p # oo, meaning corresponding dual
norm || - ||p,« is r-norm where r # 1 and r # oco. Given q and ¢ where ||g||« = ||¢'||« =1 and g # ¢/, we
must have v(q) # v(q').

9Readers more interested in the properties of infimal convolution may refer to [Strémberg [1994].
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Proof. For any g where [[q||« = 1, let’s consider v(q) = max,,||y||<1(v,q). Because the linear objective forces
the optimal solution be at the boundary of the feasible convex set, it is equivalent to solving max,.||,||=1(v, q)-
Lagrange multiplier approach yields the following conditions for the optimal solution:

. p—1
gli] + X - sign(v(q)[i]) - <||1|’£Z[)Z|]||) =0 Vi€ ln

lo(g)l] =1

(13)

where A corresponds to the Lagrange multiplier.
Consider the following two unnormalized vectors v*! and v~!:

v*i(q) = (sign(gli) - |laL)| 7

v q) = (sign(—qli) - |la[L)| 7

)

(- ssign(—gln]) - |lgln] |7

-+ ssign(gln]) - |laln] |7

+1 —1
The solutions to the equations in (I3) are the normalized HZ“EZ;H and HZ*lEZ;H’ meaning they are the local
optima.

o+l vl o+l
Because <ﬁ,q> = —<vagggu,q> and <WEZ§H’Q> > 0, we must have that
vt(q)
v(q) = arg max (v,q) = —————.
(0= 0,0 = o

Hence, for any two different directions ¢ and ¢’, we must have that IIZE% will be different by construc-
tion, as long as p # 1 or p # oo. Hence, v(q) # v(q'). O

Corollary A.1. Suppose the norm ||-|| is some p-norm where p # 1 and p # oco. For any q where ||g||« = «,
we have that for any other ¢' where ¢’ # q and ||¢'||+« < a,

(v(9),q) > (v(q),q).

Proof. As said in Section 2, given any vector ¢, we’ll write g, = ﬁ. If g, = ¢',, then there exists some
scalar ¢ > 1 such that ¢ = c¢’ since ||q||« > ||¢||«. Then, we must have

(v(q),q) = c¢(v(q),q') > (v(q),q")

as v(q) = v(q’) in this case.
Now, in the case where G, # ¢’,, we see that

(@), q) = a> ¢l = (v(d),q") > (v(g),q)-
n

Lemma A.5. Suppose the norm || -|| is some p-norm where p # 1 and p # oco. Fir some direction 0, where
[10«||« = 1. Then,

(91093 (a + ap)fs) = (B, anzi' + apay).

Proof. We first claim that when given (a4 + ap)f., there exists only one pair (q1,g2) such that ||g1]|« < aa,

llg2ll« < ap, and 1 + g2 = (aq + ap)fs: namely,
q = asf, and q2 = ap,.

By construction, ||q1||« = @4, ||g2]|« = ap, and ¢1 + ¢2 = (@4 + ap)b..
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Now, for the sake of contradiction, suppose there exists another (g1, ¢g5) such that the above condition
holds true. Because ¢} + ¢4 = (a4 +ap)f, let’s say that ¢f = g1 +u and ¢4 = g2 — u for some u # 0. However,
we argue that it must be the case that either ||¢} ||« > a4 or [|¢5]]« > ap. Without loss of generality, suppose
[lg1 + ||« = aa — € for some € > 0.

Now, consider v() = v(q1) = v(gz). Corollary [AT tells us that for any other ¢’ where ||¢||+« < aa,
<U(§*),q/> < <U(§*),q1> = QA.
Because the dual norm of ¢; + w is still bounded by « 4, we have

<1}(§*),q1 —|—U> < <’U(§*)7Q1>
(v(6,),u) < 0.

Then, we must have
llgsll« = (v(g5), g2 — u) > (v(B.), g2 — u) = ap — (v(B.),u) > ap,

giving us the needed contradiction. B B
Therefore, because there’s only pair (q1,q2) = (@af.,apl.) where |[g1]|« < aa, [|g2[[« < ap, and
@1+ q2 = (s + ap)f,, we must have

(91093)((a + ap)fs) = gi(@abs) + gj(apb.)
= (0., aqz? + oszf>
O

Theorem 3.4. Suppose the norm ||-|| is some p-norm where p # 1 and p # oco. Fix 0 where ||0]|. < asa+ap.
Then, for any b € [0,1],

P

(6i0g3) (b6) < (m) (16l min(an, ap)llef — 7|l + 6, anc? + ape?)) — min(as, ap)lad — |

Proof. Because Lemma [A.2 tells us that the infimal convolution of g and g% is convex, we know that
(¢¢0g3)(b0,) must be convex in b. By convexity, we have that for any b, € [0,a4 + ap] and t € [0,1]

(910g3) (1 = )b+ t6)8.) < (1 —1)(gi0g3) (b0.) + t(g10g3) (V6.
When we set (b,b’) = (0,xa + ap) and use the above upper bound, we get for any ¢ € [0, 1]

(6100 (Haa + ap)8) < ~(1 = ) min(aa,ap)llaft — 2l || + 1., aaaf + apal)
P

= t(min(aq, ap)|lzft — 2| + (Bx, aazf + apef)) —min(aa, ap)le — 27|

due to Lemma[A.3 and [A5]
In other words, given any 6 where ||0||. < a4 + ap, we can upper bound the infimal convolution as

(91093)(b8) = (910g3) (b116]1.6.)

b0
= (91093) (ﬁ

aa+ap (oa+ ap)H*)

11611« . A PG A P . D
<b (m (min(aa, ap)||z; —zj || + (0, aaz] + apz;)) — min(aa, ap)||z; — =5 ||

b : A P A P . A P
~ (st ) in(ananlpllllo? = af|l+ (0. anat +apef) - minfar,ar)af - of|

O
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B Missing Details from Section |4

B.1 Missing Details from Section [4.2

Theorem 4.1. With appropriately chosen step sizen, Algorithml[l returns (aa, ap, ) such that Q(aa, ap,d) <
Qak,ap,0%)+ 0 (%)

Proof. Note that due to convergence rate of projected gradient descent, we have

QA (az,ap,0) < Q4 (dy,ap,0) + 0O (%)
_ 1
QP T/7T/79/ < QP Oc” 70// ,9// + o) ( )
(@a’,ap’,0) <Q (a"4,0"p,0") 77

Also, we have

QA(aA,ap,H

) =

QA(aAv an 0/) = Q(o‘;&a 0433, 9/)
) =
)=

Therefore, we must have

1
Qaa,ap,b) < Qal,ap,0) +0 (ﬁ)

O

Here we try to give a characterization of the projection when p = 2. It is not immediate clear how to
perform a projection onto C: given 6, a4, ap, we need to find

arg | min_[|(0,04,ap) = (0,0, ap) | = avg | min_ (|0 = 0/|3 +|aa - alf? + |ar — o

’ ’ ’
0,0’y ,a’peCy oy, ap€CY

Suppose we are given (6, a4, ap) such that ||61]]2 > aa + ap and/or ||f2||2 > kaaa. The Lagrangian
for the above optimization problem we are interested in is the following:
L(61,05, 0/, p)
1 iy 2 L v e Loy 2, L.y 2
=5 2(91[2] — 01[i])" + B Z(ez[l] — 02[i])” + 5(04,4 —aa)” + 5(0413 —ap)
+ (OO = oy = alp) + 2 (B5[i))* = kacly) + As(aly — ap).

The stationary part of the KKT condition requires that the gradient with respect to 61,05, ¢/, and o/p is
0. In other words, we have

AN . )\1 29 (3 Azoli
Tt ‘92“]”7@@% il
VO/AEZO‘QX_OCA_)H —Xka+A3=0

VO/PL:Oé;j—OéP—/\l—)\g:O

= (05[] — 62]i]) + =0
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With some arranging, we get

Similarly, we have

o) + ﬁ‘;fﬁ =0,
— 017 + M = 6y
. 0
=
01|16
== i
01116
= 1630 = |t
/
— 1631 = i
641+ M = 6]
9’24—%—92
— 1051 + = 6y
. 6
=%
/
==
— 1163]) = ]
/
— 163] = g e

= [|05]] + A2 = [|62]-

Note that 6] is simply a rescaling of 6;:

Case 0] = 6, and 0} = 0,:
Because we have A1, Ao =0,

The complementary slackness condition requires Az(a/y —a’p) = 0. In other words, when A3 = 0, we have
(a4, 0’p) = (@4, ap). In other case where oy = o/p, we have (o4, a/p) = (

101]] = M1

0, = | 0.
]

The complementary slack conditions require that

M ([104]] = oy — alp) = 0.

In other words, either 6] = 67 or ||0}|| = &/4 + o/p. The same argument applies for 05: either 6, = 6, or
[165]] = kaaa. Now, we consider all four cases, and for each of those cases, we repeatedly consider the case
where A3 = 0 and A3 > 0 (i.e. &/, — o/ = 0 from the complementary slack condition).

In this case, we need only concern ourselves with how to set o'y and o/p.

o'y —as+A3=0

)\320/1:;—0413.
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Case 0] =60y and ||05|| = kad/y: We have A\ =0 and
Az = [[02]] = 105]] = [|02]] — racly
Plugging in A\; = 0, we have

ay —aa—Aoka+ A3 =0

ap—ap—2A3=0.
Substituting in Ay value, we get
oy —aa—ra(]|02]] — kady) + A3 =0
— o (14 K%)= aa + kallfa]| — A3

o o aatrallfell — A
=

1+H?4
If A3 = 0, we have
o = QA rallbl
=2 Al
1+H?4
OAIP = ap.

If A3 # 0 and hence o/y = a/p, then we have

a1+ K%)= aa+rallfa]| — (s —ap)

aa+ap + Kallfs|
/ — ! —
9P =4 2+ K4

Case ||0]]| = /4 + &/p and 05 = 0:  We have that Ay = 0 and A\; > 0 and also
Av= 10211 = [161]] = [161]] = (ol + op).
Plugging in A2 = 0, we have

a:4—aA—)\1+)\3=0

a/P—OéP—)\l—)\320

If A3 =0, then
ay—as—A=0 and ap—ap—X =0
Substituting o’y = a4 + s — ap into & —ap = A\ =01 — (/4 + ap), we get

ap —ap = ||61]| — (aa +2ap — ap)
= ap —ap = ||01]| — aa — 2dp + ap
= 3ap = ||01]| — aa + 2ap

||91|| — QA +2ap
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o4 is then calculated as

01]] — aa + 2
044:04,44— 6] 3A P —ap.

If A3 # 0 and hence oy = a/p, then

161]] =20y =y —a+ A3 =0ay —ap— A3 =X\
From the first equation, we get

Az = |[01]] = 20y — (aly — aa) = [|61]] = 30y + cva.
Plugging in this value for A3 into the second equation, we get

101 = 20y = &y — ap — (||61]] = 3a4 + @a)
= —2d/y =4d/y —ap —aa —2||64]|
aatap 26| _
6 —OéA.

Case ||0|| = o/4 + o/p and ||05|| = kacdy:

Av = (|04 = [161]] = [161]] — (els + op)
Ay = [|02] = [165]] = [|62]] — £acly

Putting these equations altogether with variables oy, a/p, A1, A2, A3, we have

1611 = oy + ap + M
||6‘2|| = IiAOéfA +)\2
a;x—aA—)\l —Xoka+A3=0

04;3—0413—/\1—)\3:0
We'll use the first equation to substitute in Ay = ||61]| — /4 — &p to get

||92|| = KACY;‘"F)\Q
20[14 — g — ||91|| +Oélp — AQK:A +>\3 =0

ZO/P —Qap — ||91|| —|—Oé£4 —A3=0
Similarly, use the last equation to substitute in A3 = 2a/p — ap — ||61]] + /4.

162]| = kaaly + X2

3aly +3ap —ag —ap —2||01|] — Aaka =0
Finally, plug in Ag = ||62]| — kac/y.

3aly +3ap —aa —ap —2|101|] — ka(]|02]| — kKady) =0
s (34 K2)0ly + Bl — ax — ap — 20101]| — rallosl| = 0

As before, when A3 = 0, we get
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Then, we get

(B+k )o/A+3<

= (i

[|61]] + ap — oy
2
[161]| + ap
2

)—aA—ap—mmn—numn—o

/

>+aA+ap+mwm+nuwm

3(”"1”““’) Fau+ap+ 2|61 + kal|ba]]
:>O‘:4: 3
—+/$A
3 (Lo ) 4oyt ap + 201611 + alloa]
:}a{A:
_+HA
o, = 20a o £ U+ 2nalll]
A 34 2r%
Consequently, we have
p N0l +ap (204 +ap + [[01]] + 2K4][02]]
P 2 6 + 4k%

Otherwise, when Az > 0, we have oy = o/5. In this case, we get

(6 + K%4)a!y = aa + ap + 2|61 + Kal|0:]|
aa+ap +2I|91|| + kallba]|

6+ /@A
We summarize the results in the following tables:
Cases A3 =0
(01,05) = (61,0 (a4, ap) = (an, ap)
Frall0

(61,05) = (el,nAaAea) (g, ap) = (%;“A‘“’”,ap)
(01,05) = (/4 + 0p)01,65) (a4, 0p) = (aa + ap — ap, =02 t50r)
(01.05) = (aly + a r, ) | (e, ) = (2o Gl Tl — (Beater sl
Cabes A3 >0
(01,05) = (61,0 W=l = *Aj0P
(01, 0%) = (ol,nAaAerz) oy = alp = 2aTer TraTle]

A
(%ﬂ)z&u+aﬂﬁﬁﬂ oy = afp = “Ater A
(01,85) = ((0ly + )1, ialaTs) | v = — T APl

C Missing Details from Section |5

P
10, T

aallzd —z||, — apllzf — ||, = co. Otherwise, we have

Lemma 5.1. Fiz any 0, (v

sup h(6, (z,a)) — aallz;" — 2|, — aplle] — =[],
= sup —f*(b) + (gi0g3)(—bO[1 : ma]) +
be[0,1]
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where gt and g% is the same as defined in Lemma[3.1.

Proof. Noting that h is convex and thus h is equal to its biconjugate h**, we have
suph(@, (Ia a)) - O‘AHI;A - ‘IHP - OZPH.If - ‘IHP
x

— sup sup (b0, (z,a)) — f*(5) — aalle — all, — aplla? — 2|,

T be(0,1]
= sup sup(bd,(x,a)) — f*(b)— sup (qi, :vf —z)y—  sup <q2,x§3 )
be[0,1] = [q1]]p,+«<ca llazllp,«<ap
= sup sup(bd, (z,a)) — f*(b) =  sup  ((q1,), (¢f',a) = (z,a)) =  sup  ((g2,0), (2] ,a) — (z,a))
be[0,1] = [lg1llp,«<ca llazllp,«<ap

= Sup sup inf <b9a (Iaa» _f*(b)_ <(Q1,§),($§4,a)— (Iaa» - <(L]2,0),({E§3,04)— (ZZ?,CL)>
be[0,1] « \‘\‘212\‘\‘1),1211,

= sup sup inf (00 + (q1,€) + (¢2,0), (z,a)) — f*(b) — (g1, ) — ((p,xf)
be[o,1] « \‘\‘m\‘\‘p,*éam
qQ2||p,xSap

where £ can be chosen arbitrarily.
We appeal to proposition 5.5.4 of Bertsekas to swap inf and sup:

= sup inf  sup(b0 + (q1,€) + (g2, 0), (z,a)) — f*(b) = (g1, 2]") — (g2, z).
be(0,1] ||I‘Z1 |I|Ip,*§<0¢A; T
qQ2||p,x SOP

Note that unless b0 + (¢1,&) + (g2,0) = 0, x can be chosen arbitrarily big. Also, if 6 + (q1,&) + (g2,0) # 0,
then b can be chosen to be 1. Therefore, if there doesn’t exist (g1, ¢2) such that 6 + (q1,&) + (¢2,0) = 0,
everything evaluates to co. In other words, the expression evaluates to co unless ||0[1 : mq]||p« < @4 + ap
and £ =0[my +1:mq + ma).

Now, suppose 6 satisfies the above condition as we know it evaluates to co otherwise. Then, we get

—<q1,a:f>—<q2,xf> fo0[l:mi]+q1+¢qg=0

be[0,1] lgillp,«<aa, | 0O otherwise

llaz|lp,« <ap

= sup —f*(b) + (bO[m1 +1:mq +ma],a) + inf {

= Sl[lp] —f*(b) + (g{l]g%)(—b@[l :ma]) + (bO[my1 + 1 : my + ma, a).
beo,1

O

Theorem 5.1. Fizx any 0, (x?,a,xf), and (aa,ap,ka). If [|61]]p« > aa + ap, then sup, h(0, (z,a)) —

aallz — ||, — apllzl — 2|, = co Otherwise, we have

suph(@, (I,CL)) - O‘AHI;A - 'r”P - OZPH.If - ‘IHP
T

< min(aa, ap)||f1]].||z —:Ef|| N 01,z +0¢pr
N as+ap as—+ ap

) .
+ (02, a) | —min(aa, ap)|lz — 2],
Proof. Because f is a convex function, its biconjugate is itself, so

sup —f*(b)+b- X = f(X).
be[0,1]
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Therefore, we have

sup h(6, (z,a)) — aallz — afl], — aplle — 27|,

x

= sup —f*(b) + (9i0g3) (b61) + (b2, a)

be(0,1]

< sup —f*(b) (—) (min(aa, ap)||61|lu]zf = 2F ||+ (01, aazit + apal)) - min(an, ap)lzf — o] ||, + b2, a)
be[0,1] ap+ap

= sup —f*(b)
be(0,1]

1 . .
0 (g ) uintenanlBrlllisd = af |+ 6. anat + apef)) + (02,0 ) ~ min(ar,apllsf - o7l

min(aq, ap)||]l]|z — a7 || + (0, aaz] + apa)) .
(( : L5 |+ (02,0) | — min(aa, ap)|le — 2],
as +ap

The first inequality follows from Theorem [3.4

Theorem 5.2. Suppose p #1 and p # co. If ||01]|p.« < @a + ap, then

max sup (c(a,y) - (0, (v, a,)) — aad)(z.a) — apdh(z.y))
DY zex

— max (cla,y) - €0, (#1,0,)) + caralalt — ol + aprely!” =yl - min(aa, ap)fo! - 7))

J
< 48z — 27|

Proof. First, fix any (a,y). Using the same argument as in Theorem [3.6]

S G R iy JUpSTE B b5 a,y)) — — |l — 2P
(sup 00, (0,0 = st = ol = 22sfief =l ) — (46, g 0o) = 2l =T

< (80,00 = st = 1)) (46, Gogeam) = ot o))

c(a,y)
< 2|z — ab|

where & is the same as in the proof of Theorem [B.6] Multiplying by ¢(a,y), we have

sup (c(a,y) - £(0, (z,a,y)) — aallz] — 2|, — ap|lzf —z|l,) = (c(a,y) - €0, (£ij,a,9)) — aallz] — &ijll, — apllal — i)
x

< 2¢(a,y)l|ef — a7 || < 4llaft -7 |-

because c(a,y) < 2 for any (a,y).
Finally, write

("E*a a*u y*) = argmax (c(a,y) ! [(97 (:I;v a7y)) - CYAdi‘(.’II, a) - apd';;(,’t, y)) .

z,a,y
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Then, we have

(et y) - €00, (2" ", y")) = aadi(a”,a*) = apdh(a*, "))

~ max (c(ay) - €0, (215, 0,9)) + aaralaf —al + aprply] —yl -
ay

< (c(a

min (a4, ap)||zd — $P||)

") (0, (2%, 0", y")) — aady(z",a") — apdp (I*vy*))

(el ") - €0, (815, 0% ")) + qaralad — o |+ aprply? — y*| — min(aa, ap)lfet — 27
= (cla®,y*) - £(0, (2", a ,y*)) aallz — 2%, — apllef —z*]p)
_(( *) f(@,(xm, *))_CVAHx _xw”p aP”xf_ji,ij)

P
<Al - z; ||p

where the first inequality follows because —max, , term cannot be greater than when the inner term is
evaluated at (a*,y*), and the last inequality follows because for (a*, y*), max, is achieved at x*. O

D Missing Details from Section [6]

Now we report the best regularization penalties that maximize the accuracy of RLR and RLRO respectively
over all experiment runs at the granularity level of 1072. The best regularization penalty for RLR and
RLRO were A = (0.07,0.04) for BC (m; = 5), (0.04, 0.04) for BC (m; = 25), (0.02,0.02) for IO (m; = 4),
(0.01,0.02) for 10 (m; = 25), (0.08,0.03) for HD, and (0.08,0.08) for 1vs8. The parameters for data join
used for each of the datasets can be found in the table below:

BC (m1 =5) | BC (my =25) | 10 (my =4) | 10 (m; = 25) | HD | 1vs8
T4 | 0.6 1.65 0.3 15 0.65 | 1.85
rp | 0.65 1.65 0.3 15 0.65 | 1.85
ka |5 5 10 5 10 |5
kp | b 5 10 5 10 |5
k|1 1 1 1 1 1

Table 3: Parameters used for distributionally data join (DJ) for UCI datasets

For all of the methods (logistic regression, regularized logistic regression, distributionally robust logistic

regression, and our distributionally robust data join), the learning rate used was 7 * 10~

number of iterations was 1500.
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