
Active Sampling for Min-Max Fairness

Jacob Abernethy 1 Pranjal Awasthi 2 Matthäus Kleindessner 3 Jamie Morgenstern 4 Chris Russell 3 Jie Zhang 4

Abstract
We propose simple active sampling and reweight-
ing strategies for optimizing min-max fairness
that can be applied to any classification or regres-
sion model learned via loss minimization. The
key intuition behind our approach is to use at
each timestep a datapoint from the group that is
worst off under the current model for updating
the model. The ease of implementation and the
generality of our robust formulation make it an at-
tractive option for improving model performance
on disadvantaged groups. For convex learning
problems, such as linear or logistic regression, we
provide a fine-grained analysis, proving the rate
of convergence to a min-max fair solution.

1. Introduction
A model trained on a dataset containing multiple demo-
graphic groups typically has unequal error rates across the
different groups, either because some groups are underrep-
resented in the training data or the underlying learning task
is inherently harder for particular groups. Many existing
fairness notions aim to equalize the performance on dif-
ferent demographic groups (e.g., Hardt et al., 2016; Zafar
et al., 2019), which can result in deliberately down-grading
the performance on the better off groups and unnecessarily
reducing overall performance. This degradation of perfor-
mance can correspond to a loss of access to relevant services,
which is referred to as “leveling-down” in law and ethics
where it has received substantial criticism (Holtug, 1998;
Temkin, 2000; Doran, 2001; Mason, 2001; Brown, 2003;
Christiano and Braynen, 2008). In contrast, min-max no-
tions of fairness offer an alternative approach. These notions
“level-up”, by adopting an optimization perspective that pri-
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oritizes improving the model’s performance on the group for
which performance is the worst. Such optimizations only
degrade the performance on a group if it will improve the
performance on the worst off group (Martinez et al., 2020;
Diana et al., 2021).

In this paper, we propose simple and theoretically principled
algorithms for min-max fairness (formally defined in Sec-
tion 2). We provide a general template in Algorithm 1. The
key idea underlying our approach is to adaptively sample
or reweight data from worst off groups. The intent is that
by providing additional data for these groups, or increasing
the weights associated with them, we improve the model’s
performance on these groups. This is a compellingly simple
approach to mitigating loss disparity between groups, and
we show that for convex learning problems such methods
indeed provably minimize the maximum per-group loss.

We consider two concrete variants of Algorithm 1. The first
one (Algorithm 2) simply samples a point from the worst off
group and updates model parameters via stochastic gradient
descent. We show in Theorem 1 that Algorithm 2 converges
to a min-max fair solution at a rate of⇠ 1/

p
T (as a function

of the number of iterations T ), assuming a convex loss
function. Our second approach (Algorithm 3), accelerated

min-max gradient descent, converges to a min-max fair
solution at a faster rate of ⇠ 1/T .

The accelerated Algorithm 3 is based on an adaptive
reweighting scheme and performs in each iteration a gra-
dient descent step for optimizing a weighted population
loss. In contrast, Algorithm 2 samples, in each iteration, a
datapoint from the worst off group and uses it for perform-
ing a stochastic gradient descent step. While Algorithm 3
achieves a faster rate of convergence, Algorithm 2 is concep-
tually simpler, easier to implement and efficient in practice
due to the stochastic nature of the updates. We also pro-
vide finite sample generalization bounds for Algorithm 2.
We present an empirical evaluation of both our proposed
algorithms in Section 5.

2. Preliminaries
Let Z be our data space; any z 2 Z represents a popu-
lation sample containing both the observed features and
the unobserved label. We assume that there are g disjoint
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Algorithm 1 A generic group-specific loss aware sampling
strategy

1: Initialize classifier / regressor f with initial model
2: repeat:
3: Determine the group for which the current model f

has the highest loss
4: Sample a labelled datapoint from that group and use

it to update f

5: (optional) Set f to the average over all past f
6: Return f

demographic groups, indexed by the set [g] := {1, . . . , g}.1

Let D1, . . . , Dg be a family of distributions over Z , where
Dj 2 �(Z) := {distributions over Z} is the distribution
of the data for group j. Let q 2 �g := {v 2 [0, 1]g :Pg

i=1 vi = 1} denote a vector of mixture weights over
groups. Given any q, we define the mixture distribution Dq

on Z as follows: we first sample a group index i ⇠ q, and
then we sample z ⇠ Di from the randomly chosen group i.

The models considered are based on a parameterized family
of functions F := {f✓ : ✓ 2 ⇥}, where each f✓ operates on
examples z 2 Z and ⇥ ⇢ Rd is a d-dimensional parameter
space. We assume that ⇥ is a compact convex set. We
evaluate each f✓ according to a loss function ` : F⇥Z ! R,
and we assume the loss `(f✓; z) to be convex in ✓ for any
fixed z 2 Z:
Assumption 1. For any z 2 Z , the function ✓ 7! `(f✓; z)
is convex in ✓.

Assumption 1 is satisfied in several common scenarios, e.g.,
when f✓ is linear in ✓ and ` is the standard logistic loss or
hinge loss (binary classification), the cross entropy loss com-
posed with softmax activation (multiclass classification), or
the squared loss (regression). While we use r` throughout
the paper to refer to the gradient, we do not strictly need
✓ 7! `(f✓; z) to be differentiable as we may consider any
sub-gradient instead.

Given a distribution D 2 �(Z) and any ✓ 2 ⇥, we define
the expected loss of ✓ with respect to D as

v (✓;D) := E
z⇠D

`(f✓, z).

Similarly, given mixture weights q 2 �g, we consider the
performance of f✓ with respect to Dq. Thus

v (✓;Dq) = E
i⇠q


E

z⇠Di

[`(✓, z)]

�
=

gX

i=1

q(i) E
z⇠Di

`(✓, z).

1Sometimes we want to be fair w.r.t. demographic groups that
are not disjoint, e.g., to men and women and also to old and young
people. In this case, as it is standard in the literature, we simply
consider all intersections of these groups, i.e., young females,
young males, etc..

For each group i 2 [g] we assume we have an IID sample
of mi examples z1, . . . , zmi ⇠ Di. We use D̂i to represent
the empirical distribution over these samples. Hence,

v

⇣
✓; D̂i

⌘
=

1

mi

miX

j=1

`(f✓, zj).

Throughout, we use the notation PROJK(x) to refer to
the `2-projection of point x 2 Rd onto compact convex
set K ⇢ Rd, that is PROJK(x) := argminy2K kx� yk2.

Our goal is to learn a model f✓? that is min-max fair w.r.t.
the g demographic groups. This means that ✓? satisfies

max
i2[g]

v (✓?;Di) = inf
✓2⇥

max
i2[g]

v (✓;Di) .

Remark 1. A criticism of the min-max approach to fairness
is that it puts too much focus on improving the performance
of a single group. If some class j is particularly hard to learn,
so that any ✓ 2 ⇥ will have a large value v (✓;Dj), larger
than for all other classes j0, then the training procedure will
aim to optimize the loss with respect to only Dj . This is a
reasonable concern, but we can mitigate it by considering
blended distributions: let p 2 [0, 1] be a trade-off parameter,
and define the mixture distribution

D̃i
p
:= (1� p)Di + pDq̂,

where Dq̂ is the true population-level distribution; that is,
the full population is made up of a mixture of subpopula-
tions D1, . . . , Dg weighted by the true mixture q̂. If we run
our min-max fairness procedures on the blended distribu-
tions D̃i

p
instead of on Di, we are biasing our algorithm,

with bias parameter p, to focus more on the full population
and less on any particular group.

3. Algorithms and Analysis
Here we present formal versions of Algorithm 1, and an-
alyze their theoretical performance. To formalize Algo-
rithm 1 fully, we describe how we evaluate which group has
the highest loss in each iteration, and how we either sam-
ple additional data from that group or reweight and update
the model. Both algorithms use their updating schemes to
reduce their training error on the min-max objective, and
while we also present theorems which bound the test error
as well, this work does not use reweighting or resampling
to explicitly decrease generalization error.

3.1. Stochastic Optimization

Algorithm 2 maintains a validation set, that is a fixed com-
parison sample set on which the group-specific loss is re-
peatedly measured. It samples a fresh point from the group
with highest loss on the comparison set, then takes a single
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gradient step in the direction of that fresh sample. Its perfor-
mance is governed by two quantities: the regret term, which
decreases with the number of iterations T , and the uniform
deviation bound of the comparisons of group-specific loss.

Algorithm 2 Min-max Stochastic Gradient Descent

1: Init: ✓1 2 ⇥ arbitrary
2: for t = 1 . . . T � 1 do
3: compute it = argmax

i2[g]
v

⇣
✓t; D̂i

⌘

4: sample zt ⇠ Dit

5: compute rt  r✓`(f✓t ; zt)
6: update ✓t+1  PROJ⇥(✓t � ⌘rt)
7: end for
8: return ✓̄T =

PT
t=1 ✓t
T

As is common in gradient descent, the following proof as-
sumes that the Lipschitz constant L and a domain radius W
are known. When this is not the case, the step size ⌫ is
typically tuned empirically.

Theorem 1. Assume we have a function R� =
R(m1, . . . ,mg; �) which guarantees that

sup
✓2⇥

max
i2[g]

|v (✓;Di)� v

⇣
✓; D̂i

⌘
|  R�

with probability at least 1� �. Let W := sup✓2⇥ k✓� ✓1k2
and L := sup✓2⇥ maxi2[g] kr✓v (✓;Di) k2. With ⌘ :=
W

L
p
T

, Algorithm 2 ensures that

E
z1:T


max
i2[g]

v
�
✓̄T ;Di

��
 inf

✓2⇥
max
i2[g]

v (✓;Di)+
WLp
T
+2RT�

with probability at least 1� �.

Proof. This bound is obtained by combining a number of
classical results from empirical process theory, as well as
common tricks from using online convex optimization tools
to solve min-max problems. This sequence of steps is given
in Figure 1, with further discussion here.

One observes that we need to swap between v

⇣
✓; D̂

⌘
and

v (✓;D) on two separate inequalities, and on each we have
to add the deviation bound RT�; the T factor is necessary
because we need a union bound over all T rounds. We then
replace v (✓t;Dit) with `(f✓t ; zt), which is valid since ✓t is
independent of zt, zt is distributed according to Dit , and we
have the outer expectation over all z1, . . . , zT (more details
on this technique can be found in the paper of Cesa-Bianchi
et al., 2004). Next, since the ✓t’s are chosen using the
Online Gradient Descent (OGD) algorithm on loss functions
ht(·) := `(f·; zt), we can immediately apply the OGD
regret bound—see Hazan (2019) for details.

The most subtle part of this proof may be the final two ob-
servations. The sequence z1:T is generated stochastically
and sequentially, where each zt may depend on the pre-
vious samples chosen. But in the end, the sample S

T is
produced by taking some combination of samples from
the various D1, . . . , Dg, and ultimately we marginalize

the quantity v
�
✓
?;ST

�
over the randomness generated by

z1, . . . , zT . On average, the z’s in S
T will have been drawn

from some mixture over the various groups, and we refer to
those mixture weights as q̃. It then follows by this obser-
vation that Ez1:T

⇥
v
�
✓
?;ST

�⇤
= v (✓?;Dq̃). Finally, since

v (✓?;Dq̃) = Ei⇠q̃ v (✓?;Di), we upper bound Ei⇠q̃ with
maxi to complete the proof.

While not the focus of our paper, it is easy enough to give a
uniform deviation bound as Theorem 1 employs.

Lemma 1. With probability at least 1� �, for every ✓ 2 ⇥
and for every q 2 �g it holds that

v

⇣
✓; D̂q

⌘
 v (✓;Dq) + c

s
P-dim(⇥) log(g ·mmin/�)

mini mi

where c > 0 is some constant and P-dim is the pseudo-

dimension of the class (Pollard, 1990).

Proof. This follows from a standard uniform convergence
argument over ⇥ for any fixed group i, as D̂i is a sample of
mi IID points drawn from Di. Taking a union bound over
all g groups yields the bound.

This implies that the total error of using Algorithm 2 is com-
prised of two terms, one upper bounding the optimization
error (which decays with 1/

p
T ), and the generalization

error, which is governed by the sample size of the smallest
dataset across all groups.

A key benefit of Theorem 1 is that it provides both an opti-

mization guarantee as well as a sample complexity bound.
The proof’s core is the classical “online to batch conver-
sion” (Cesa-Bianchi et al., 2004) that provides generaliza-
tion based on regret bounds, combined with tools from
min-max optimization.

One downside of this method is that it relies on having two
sources of data: a “comparison set” D̂i for each i 2 [g],
as well as the ability to draw fresh (independent) samples
from each Di. Alternatively, we consider a version that only
focuses on training error that reweights rather than samples
fresh data, by considering zt drawn from D̂i. This variant
will still allow for the min-max empirical risk to decay at
the standard 1/

p
T rate.

Corollary 1. Consider a version of Algorithm 2 that, on

line 4, draws samples IID from the empirical distribu-

tion D̂it as opposed to fresh samples from Dit . Then, with
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Figure 1. Main steps in the proof of Theorem 1. The proof proceeds along the lines of the classical online-to-batch conversion (Cesa-
Bianchi et al., 2004), but hinges on a few additional tricks.

Ez1:T

⇥
maxi2[g] v

�
✓̄T ;Di

�⇤

(Jensen’s inequality)  Ez1:T

h
1
T maxi2[g]

PT
t=1 v (✓t;Di)

i

(max sum  sum max)  Ez1:T

h
1
T

PT
t=1

�
maxi2[g] v (✓t;Di)

�i

�
deviation between D, D̂ + union bound

�
 Ez1:T

h
1
T

PT
t=1 maxi2[g] v

⇣
✓t; D̂i

⌘i
+RT�

(definition of it) = Ez1:T

h
1
T

PT
t=1 v

⇣
✓t; D̂it

⌘i
+RT�

�
additional deviation between D̂, D

�
 Ez1:T

h
1
T

PT
t=1 v (✓t;Dit)

i
+ 2RT�

(since zt ⇠ Dit + outer expectation ) = Ez1:T

h
1
T

PT
t=1 `(f✓t ; zt)

i
+ 2RT�

(apply OGD regret bound)  Ez1:T

h
1
T

PT
t=1 `(f✓? ; zt) +

⌘L2

2 + W 2

2T⌘

i
+ 2RT�

⇣
⌘ := W

L
p
T

, ST := {z1, . . . , zT }
⌘

= Ez1:T

⇥
v
�
✓
?;ST

�⇤
+ WLp

T
+ 2RT�

= v (✓?;Dq̃) +
WLp

T
+ 2RT�

 maxi2[g] v (✓
?;Di) +

WLp
T

+ 2RT�

W,L defined as in Theorem 1, we have

E
z1:T


max
i2[g]

v

⇣
✓̄T ; D̂i

⌘�
 inf

✓2⇥
max
i2[g]

v

⇣
✓; D̂i

⌘
+

WLp
T
.

Remark 2 (Mini-batching). Many online training scenarios
use mini-batch gradient updates, where instead of a single
sample a set of samples is taken, an average gradient is
computed across these samples, and the average gradient
is used to update the current parameter estimate. Indeed, it
requires a straightforward modification to implement mini-
batch training in Algorithm 2. While this may have practical
benefits, providing faster empirical training times, we note
that this is not likely to provide improved theoretical guaran-
tees. Our convergence guarantee in Theorem 1 still applies
in the mini-batch setting, with convergence depending on
the number of updates T , rather than the total amount of data
used. Batches of size k then require k times more data over-
all for the same convergence guarantee. One might hope for
a decrease in variance from the mini-batch averaging, and
indeed this often empirically leads to better convergence,
though not promised by our results.

3.2. Accelerated Optimization

Algorithm 3’s optimization error shrinks much faster as a
function of T . However, it is non-stochastic and has a more
complex update rule. This algorithm explicitly maintains
a distribution over groups which it updates relative to the

current group losses, increasing the probability mass as-
signed to groups with higher loss. Then the algorithm takes
a gradient step with respect to the full, weighted distribution
over (empirical) group distributions. While each iteration
requires a full pass over the data, the convergence rate is
O(1/T ) rather than O(1/

p
T ).

Unlike Algorithm 2, Algorithm 3 does not have a natural
“sampling” analogue. The update rule is with respect to
the entire weighted empirical distribution, rather than a
single datapoint. Below we present the main algorithmic
guarantee associated with the algorithm. See Appendix A
for the proof.

Algorithm 3 Accelerated Min-max Gradient Descent

1: Init: q0 = ( 1g , . . . ,
1
g ), ✓1 2 ⇥ arbitrary, r0 = 0

2: for t = 1 . . . T do
3: Compute ut(i) v

⇣
✓t; D̂i

⌘
, for i = 1, . . . , g

4: Update qt(i)  qt�1(i) exp(�ut(i)), for i =
1, . . . , g

5: Normalize qt  qt

kqtk1

6: Compute rt  r✓v

⇣
✓t; D̂qt

⌘

7: Update ✓t+1  PROJ⇥(✓t � 2⌘rt + ⌘rt�1)
8: end for
9: return ✓̄T =

PT
t=1 ✓t
T

Theorem 2. Algorithm 3, with parameters ⌘ = W
L
p
log g

and
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� =
p
log g
WL , outputs ✓̄T that satisfies

max
i2[g]

v

⇣
✓̄T ; D̂i

⌘
 inf

✓2⇥
max
i2[g]

v

⇣
✓; D̂i

⌘
+

2WL
p
log g

T
,

where W and L are defined as in Theorem 1.

Remark 3 (Averaging versus final iterate). A careful reader
may note that Algorithms 2 and 3 output a time-weighted
average ✓̄T , whereas in typical online training methods one
simply outputs the final iterate ✓T . Indeed, for the min-max
framework we propose, our theory requires returning the av-
erage iterate. Some work exists on last-iterate convergence
for special cases of min-max optimization (Abernethy et al.,
2021), but this is beyond the scope of the present work.

4. Related Work
Fair ML. There is a large body of work on fairness in
machine learning (Barocas et al., 2018), much of it focus-
ing on supervised learning. Many fairness notions balance
performance measures across different groups (e.g., Hardt
et al., 2016). These notions suffer from the “leveling-down”
discussed in the introduction. Min-max fairness notions
have been proposed as a remedy.

Min-max fairness. Martinez et al. (2020) consider the
search for min-max Pareto optimal classifiers and present
structural results regarding the case of unbounded hypothe-
sis sets. By appropriately reparameterizing the space, they
show that one can, in principle, model the case of learning
min-max Pareto optimal classifiers over the class of deep
neural networks. Martinez et al. propose an algorithm to
find optimal classifiers (based on sub-gradient descent), but
unlike our work, their proposed algorithm has no perfor-
mance guarantees, and is not guaranteed to converge.

Diana et al. (2021) propose a multiplicative weights update
based method to achieve min-max fairness. While they do
not require convexity, they assume access to a weighted
empirical risk minimization (ERM) oracle, and it is unclear
how to implement such oracles in a non-convex setting.
Furthermore, the analysis in Diana et al. (2021) is only
carried out in the population setting where it is assumed that
certain weighted ERM problems can be exactly optimized
over the distribution. As a result, their work ignores the
complexity of the analysis arising from the stochastic nature
of gradient updates. One key contribution of our work
is the analysis of gradient-based updates, which allow for
more efficient computation and the use of highly-optimised
frameworks and tools. Finally, at least in the non-convex
case, the hypothesis output by Diana et al. (2021) needs
to be randomized, which can be problematic in scenarios
strongly affecting people (Cotter et al., 2019b).

A previous arxiv version of this paper introduced a restricted
variant of Algorithm 1, where a single sample was drawn

from the worst off group, and each round’s model was the
global optimum on the current dataset, and analyzed its
behaviour. Shekhar et al. (2021) claimed that the sampling
scheme proposed in our previous draft and closely related to
our Algorithm 1 converges to min-max fair solutions. While
their paper does not impose convexity constraints, their
algorithm has no rate of convergence guarantees, and their
assumptions (particularly Assumption 2) needed to prove
convergence frequently fail to hold in practice.2 We improve
those results empirically and theoretically and guarantee fast
rates of convergence.

Min-max fairness has also been studied in unsupervised
settings such as dimensionality reduction (Samadi et al.,
2018; Tantipongpipat et al., 2019) and clustering (Ghadiri
et al., 2021) as well as in federated learning scenarios (Mohri
et al., 2019; Papadaki et al., 2022).

Min-max optimization. Many problems beyond fairness
can be formulated as min-max optimization problems, and
the study of generic methods for solving these remains an
active field of research (e.g., Thekumparampil et al., 2019;
Razaviyayn et al., 2020; Ouyang and Xu, 2021). We are
unaware of any generic methods that would be appropriate
for our fairness problem with a discrete group variable.

Group reweighting. Other works study the problem of
debiasing a dataset via group reweighting. Li and Vas-
concelos (2019) propose a reweighting scheme to reduce
representation bias. While based on a min-max formulation,
their problem setting is different to ours. Rolf et al. (2021)
study structural properties of optimal group allocations for a
dataset. They present structural results regarding the nature
of optimal allocations, but no algorithmic results.

Agarwal et al. (2019) consider a fair regression problem
under a bounded group loss constraint, which in their setting
is equivalent to finding a min-max fair classifier. Similar
to Diana et al. (2021), they design a near optimal regressor
assuming access to a weighted risk minimization oracle
that can be optimized exactly on the population. Achieving
fairness under bounded loss constraints assuming oracle
access has also been studied by Cotter et al. (2019a).

2Their Assumption 2 states “For any two distinct at-

tributes z, z0 2 Z, we must have L(z, f⇤
z ) < L(z0, f⇤

z ), for any

f⇤
z 2 argminf2F L(z, f).” This rarely holds in practice. In par-

ticular, let f̂ be a min-max optimal predictor. Consider a group z
with largest loss under f̂ : we know that L(f̂ , z) � L(f̂ , z0) for
any other group z0. When this inequality is strict and L(f̂ , z) >
maxz0 6=z L(f̂ , z

0), we actually know that L(f̂ , z) = L(f⇤
z , z), or

mixing f̂ and f⇤
z would reduce the min-max risk of f̂ . So, in many

applications of interest (for instance, where the min-max optimal
predictor has a unique worst off group), their assumption will not
hold—it never held in any of our experiments.
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Martinez et al. (2020) 0.4122 0.5889 0.4771 0.5198
OURS (Alg. 2 with TRAIN=VAL; Avg. over 5 runs) 0.4114 0.5889 0.4766 0.5195
OURS (Alg. 2 with SMALL VAL; Avg. over 5 runs) 0.4112 0.5889 0.4766 0.5195
OURS (Algorithm 3) 0.4108 0.5889 0.4761 0.5193
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Martinez et al. (2020) 0.1598 0.2950 0.2183 0.2435
OURS (Alg. 2 with TRAIN=VAL; Avg. over 5 runs) 0.1634 0.2971 0.2218 0.2463
OURS (Alg. 2 with SMALL VAL; Avg. over 5 runs) 0.1601 0.2960 0.2211 0.2446
OURS (Algorithm 3) 0.1598 0.2960 0.2183 0.2440

Figure 2. Logistic regression on the Drug Consumption dataset. Top row: Logistic loss and classification error for the three groups over
time, both for Diana et al. (2021) and our Algorithms 2 and 3. Middle row: Same as top row, but for a validation set that comprises only
60 datapoints (20 datapoints sampled uniformly at random from each group). Bottom row: Trade-off curves obtained by varying � in a
variant of the algorithm by Diana et al. (2021) and a probability parameter p with which we sample from the whole population in our
Algorithm 2. (Average) Per-group losses and errors as well as overall losses and errors from the final iteration are shown in the table. For
every method, the maximum loss / error among the groups is shown in bold.

Active sampling. Active / adaptive sampling lies at the
heart of active learning (Settles, 2010). Related to our work
is the paper by Anahideh and Asudeh (2020). In each round
their sampling strategy queries the label of a datapoint that
is both informative and expected to yield a classifier with
small violation of a fairness measure (they do not consider
min-max fairness but mainly demographic parity, which re-
quires the classifier’s prediction to be independent of group
membership). Unlike our work, their approach requires
training a classifier for every datapoint which might be
queried before actually querying a datapoint, resulting in a
significant computational overhead. Moreover, their work
does not provide any theoretical analysis. Also related is the
paper by Noriega-Campero et al. (2019), who propose to
actively collect additional features for datapoints to equalize
the performance on different groups.

5. Experiments
Before presenting empirical results,3 we once more high-
light the key advantages of our method over existing ones:
(a) simplicity and computational efficiency—we only per-
form one (stochastic) gradient step in every iteration, while
the other methods fully retrain in every iteration; (b) stronger
convergence guarantees—our proposed Algorithm 2 (Algo-
rithm 3) is guaranteed to converge at a rate of ⇠ 1/

p
T

(⇠ 1/T ) SGD (GD) steps. In contrast, the algorithm pre-
sented in Diana et al. (2021) is guaranteed to converge at a
rate of ⇠ 1/

p
T oracle calls, and Martinez et al. (2020) do

not prove convergence of their proposed algorithm.

Our online stochastic approach is substantially faster than
the fully deterministic approaches that exactly solve sub-
problems at each iteration. To avoid being mislead by im-
plementation details, such as the choice of implementation
language, we consider a proxy for runtime: namely, the

3Code available on https://github.com/amazon-
research/active-sampling-for-minmax-
fairness

https://github.com/amazon-research/active-sampling-for-minmax-fairness
https://github.com/amazon-research/active-sampling-for-minmax-fairness
https://github.com/amazon-research/active-sampling-for-minmax-fairness
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Diana et al. (2021) 0.6200 0.6132 0.6104 0.5804 0.6145

Log
loss

Martinez et al. (2020) 0.6196 0.6162 0.6129 0.5830 0.6158
OURS (Algorithm 3) 0.6196 0.6161 0.6127 0.5828 0.6156

Diana et al. (2021) 0.3279 0.3292 0.3150 0.3074 0.3260 01
loss

Martinez et al. (2020) 0.3309 0.3370 0.3234 0.3185 0.3316
OURS (Algorithm 3) 0.3309 0.3370 0.3234 0.3185 0.3316

Figure 3. Logistic regression on the COMPAS dataset. Performance of Algorithm 3 in comparison to the method by Diana et al. (2021):
Logistic loss (left), classification error (center), and group weights (right) over time. In the table, for every method we show the maximum
loss / error among the groups in bold.

number of times any datapoint is examined. Under this
metric, the cost of computing a single SGD update of mini-
batch size k is k; the cost of evaluating the objective w.r.t. a
single point is 1; while the cost of evaluating the objective
for every datapoint of a dataset of size n is n. Logistic re-
gression has a cost of ni where i is the number of iterations
needed to reach convergence.

Looking at Algorithm 2, we see that a significant bottleneck
per iteration is line 3, which evaluates the loss over a valida-
tion set. Set size is potentially important: too small and the
method may not reliably select the worst off group, but if
it is too large, it will needlessly hurt runtime. As such, we
evaluate using small validation sets containing 20 random
members of each group, and larger validation sets. For all
experiments we use a mini-batch size of 32.

We compare with the public code of both Diana et al. (2021)
and Martinez et al. (2020). When evaluating efficiency, we
focus on the method of Diana et al. (2021), however, since
the method of Martinez et al. (2020) does not come with
theoretical guarantees of convergence (and as such it is in-
comparable to our methods anyway) and their experimental
evaluation does not look at the evolution of iterates over time
but only at the final iterate. As for our proposed strategy, we
focus on Algorithm 2 as the efficient variant of our general
strategy (Algorithm 1) in the convex case; however, we also
study the performance of Algorithm 3, and we run Algo-
rithm 2 without averaging using a simple neural network as
classification model to study the non-convex case.

Similarly to Diana et al., we report both optimization and
generalization performance. To evaluate optimization per-
formance, we use small datasets and report results on the
training data. When studying generalization performance,

we consider a large dataset and report results on a held-out
test set. Since our strategy (Algorithms 1 or 2) is random-
ized, we show its results for five runs with different random
seeds. See Appendix B.1 for implementation details.

Heuristics for estimating W and L. Algorithm 3 requires
estimates of the values ✓1, W := sup✓2⇥ k✓ � ✓1k2 and
L := sup✓2⇥ maxi2[g] kr✓v (✓;Di) k2 in order to set the
parameters ⌘ and �. We use the same method of estimating
them for both experiments shown in Figure 3 and the table
of Figure 2, respectively: as the data is whitened, we simply
take L :=

p
d, where d is the number of parameters in

our logistic regression model, as an upper bound for the
gradient of logistic regression. For ✓1, we run unweighted
logistic regression over the entire dataset and use this as the
initialisation of our model. Finally, we take W = k✓1k as
an approximate estimate of the size of the domain.

Performance on smaller datasets. We compare Algo-
rithms 2 and 3 with Diana et al. (2021) and Martinez et al.
(2020) on the Drug Consumption dataset (Fehrman et al.,
2015) and the COMPAS dataset (Angwin et al., 2016), re-
spectively. We provide some details about the datasets used
in our experiments in Appendix B.2.

On the Drug Consumption dataset, we train a logistic re-
gressor to predict if an individual consumed cannabis within
the last decade or not. The groups that we want to be fair
to are defined by an individual’s country. The dataset con-
tains 1885 records. We use the entire dataset for training
(sampling and performing SGD updates) and for reporting
performance metrics. We either use the entire dataset or a
small subset comprising 20 datapoints sampled uniformly at
random from each group as validation set (for determining
the group with the highest loss).
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Table 1. Logistic regression on the Diabetes dataset. (Average) Per-group log losses and classification errors from the final iteration. For
every method, the maximum loss / error among the groups is shown in bold.

[0-50) [50-60) [60-70) [70-80) [80-90) [0-50) [50-60) [60-70) [70-80) [80-90)

Diana et al. (2021) Train 0.6327 0.6425 0.6474 0.6550 0.6473

Log
loss

0.3256 0.3418 0.3500 0.3626 0.3498
Test 0.6357 0.6443 0.6495 0.6563 0.6509 0.3304 0.3450 0.3537 0.3652 0.3556 01

loss

Martinez et al. (2020) Train 0.6145 0.6219 0.6289 0.6458 0.6439 0.3228 0.3326 0.3435 0.3616 0.3573
Test 0.6113 0.6263 0.6329 0.6448 0.6456 0.3198 0.3396 0.3513 0.3650 0.3611

OURS (Alg. 2; Avg. 5 runs) Train 0.6161 0.6232 0.6299 0.6458 0.6439 0.3240 0.3333 0.3442 0.3618 0.3579
Test 0.6129 0.6277 0.6337 0.6449 0.6455 0.3197 0.3401 0.3511 0.3650 0.3600
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Figure 4. Algorithm 2 (returning the final iterate rather than the average) applied to a non-convex MLP on the Diabetes dataset. The plots
show the per-group logistic losses and classification errors over time, evaluated on the held-out test set. The first and the second plot show
the results for five runs of the experiment; the third and the fourth show the average results together with 95%-confidence intervals.

Figure 2 shows the results. The plots show the loss and
error for each group over the run of our algorithms or that
of Diana et al. (2021). Alongside loss or error curves, we
also plot baseline curves that are obtained by training a clas-
sifier or regressor using standard SGD on the training data
(dashed lines; denoted by Naive). The figure also provides
a plot showing trade-off curves, trading off the maximum
group loss vs the overall population loss. For Diana et al.
the curve is obtained by varying the parameter � in a variant
of their algorithm, for our strategy we exploit the simple
modification discussed in Remark 1: before determining
the worst off group, we flip a biased coin and with probabil-
ity p sample a datapoint from the whole population and with
probability 1� p sample from the worst off group. By vary-
ing the parameter p 2 [0, 1], we generate the trade-off curve.
The table shows the performance metrics for the model ob-
tained in the final iteration of an algorithm (including the
algorithm of Martinez et al. (2020)).

The loss (and also the error) of the worst off group de-
creases over time, while increasing for other groups. This
is consistent with Section 3, which guarantees improved
performance on the highest-loss group, but not for the other
groups. In terms of the solution found in the final iteration,
we perform similarly to Diana et al. (2021) and Martinez
et al. (2020) with all methods accurately solving the same
objective and finding similar cost solutions (cf. the table in
Figure 2). Also the two trade-off curves are almost identical.

Very clear trends can be seen in the graphs. While around
1e7 operations are required for Diana et al. (2021) to con-
verge (this is particular apparent in the blue curve represent-
ing loss on the US), our approaches converge much faster.

In particular, the intrinsic volatility of the SGD update is
largely masked by the fast convergence of our approach with
all runs converging much faster than any other approach,
leading to multiple overlayed plots. The performance bene-
fit is even more extreme when a small validation set is used.
Here convergence looks near instantaneous when plotted
on a scale that allows us to also see the behavior of the
algorithm by Diana et al.. In general, despite its better per-
formance guarantees, our deterministic accelerated version
has comparable performance to Algorithm 2 with a large
validation set, and lies midway in performance between Al-
gorithm 2 with a small validation set and Diana et al. (2021).
Note that as the parameters � and W are estimated heuristi-
cally, it is likely that better performance could be obtained if
they were known; however, we felt it was more informative
to report the performance obtained without tuning.

In Figure 3, we evaluate Algorithm 3 on the COMPAS
dataset (Angwin et al., 2016) and train a logistic regression
classifier to predict recidivism. The graphs show a com-
parison with Diana et al. (2021). For our method a single
iteration corresponds to one step of gradient descent, while
Diana et al. require the computation of an optimal classifier
in each iteration. Despite this, we still converge substantially
faster per iteration.

Generalization on a larger dataset. In Table 1, we evalu-
ate on the Diabetes 130-US Hospitals dataset (Strack et al.,
2014). The goal is to predict whether a patient was read-
mitted to hospital, and we want to be fair with respect to
different age groups. We train a linear logistic classifier.
The Diabetes dataset contains 101766 records, which we
split into a training, validation, and a held-out test set of
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equal size. The latter is not used in training. We initialize
our classifier training on a subset of 2000 training points.

All methods achieve similar loss and error, both when com-
paring between training and test sets and when comparing
the various methods. The former illustrates the good gen-
eralization performance of the algorithms. The results for
our Algorithm 2 and the method by Martinez et al. (2020)
are even more similar to each other than compared to the
method by Diana et al. (2021).

Algorithm 2 in non-convex learning. Minus the averag-
ing step, Algorithm 2 can also be applied, without guar-
antees, to non-convex learning problems including neural
network training. We demonstrate this by training a sim-
ple multilayer perceptron (MLP) with Algorithm 2 on the
Diabetes dataset, as in the setting of Table 1. Results are
shown in Figure 4. The plots show the per-group logistic
losses and classification errors on the test set. We improve
the loss and the error of the worst off group compared to
the naive baseline.

6. Discussion
Potential harms. Implicit to min-max fairness is the idea
that the labels are accurate and a trained classifier should
reproduce them with high fidelity. As argued by Wachter
et al. (2021), where this is not the case, for example: where
racially-biased law enforcement practices make stop and
arrest rates a poor surrogate for criminal activity (Baum-
gartner et al., 2018); where hiring data is based on biased
historic practices (Harvie et al., 1998); or when using ex-
isting diagnoses to train skin cancer detection (Gupta et al.,
2016); min-max fairness along with other error-based fair-
ness notions can give rise to classifiers that mimic the biases
present in the data, which if used to make substantive deci-
sions about individuals can perpetuate inequality.

Our contribution. We present a novel approach to min-
max algorithmic fairness. In contrast to existing approaches,
our approach stands out both for its efficient stochastic na-
ture and easy-to-implement formulations and its guaranteed
convergence rates. Our experiments on real-world datasets
show the merits of our approach.
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Appendix

A. Proof of Theorem 2
Let ENT(q) := �

Pg
i=1 q(i) logq(i) be the entropy function and KL(p||q) :=

Pg
i=1 p(i) log

p(i)
q(i) be the Kull-
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Now let us focus on the first summation on the last line. We notice that the ✓ update protocol follows the Optimistic Mirror
Descent algorithm (Chiang et al., 2012; Rakhlin and Sridharan, 2013), which leads to the following upper bound that holds
for arbitrary ✓⇤ 2 ⇥:
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We have assumed that krv (·; ·) k2 is uniformly upper bounded by L, and therefore it holds that krv
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Combining, we have
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If we set � = (⌘L2)�1, the final summation vanishes. Furthermore, if we let q̄ := 1
T
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t=1 qt, we see that
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Putting it all together gives
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and plugging in the parameter ⌘ = W
L
p
log g

completes the proof.

B. Details
B.1. Details About Implementation and Hyperparameters

We implemented Algorithm 2 based on Scikit-learn’s (Pedregosa et al., 2011; https://scikit-learn.org) SGDClas-
sifier class, and we implemented Algorithm 3 using Pytorch (https://pytorch.org/). When applying our strategy
(Algorithm 1) to the MLP on the Diabetes dataset, we used Scikit-learn’s MLPClassifier class. In that experiment, we used a
MLP with two hidden layers of size 10 and 5, respectively.

For the method by Diana et al. (2021) we used Scikit-learn’s LogisticRegression class with lbfgs-solver as oracle.

Regularization parameter: In the experiments on the Drug Consumption dataset and the COMPAS dataset, neither for our
algorithms nor for the method by Diana et al. (2021), we used regularization. In the experiments on the Diabetes dataset, for
our strategy, we set the regularization parameter for l2-regularization to 10�6 for the logistic regression classifier and to
10�4 for the MLP classifier. For the method by Diana et al. (2021), we set the regularization parameter for l2-regularization
to 10�4. When setting it to 10�6, the learnt classifier does not generalize well to the held-out test set. The code of Martinez
et al. (2020) does not provide the option to easily set the regularization parameter via an input argument, and we used
their “hard-coded” default value of 10�7

/(2n), where n is the number of training points, as regularization parameter for
l2-regularization.

Learning rate: In all experiments we used a constant learning rate for our methods. We described how to set the learning
rate for Algorithm 3 in the main body of the paper. For Algorithm 2, we used a learning rate of 0.01 on the Drug Consumption
dataset and 0.005 (logistic regression) or 0.001 (MLP) on the Diabetes dataset. The codes of Diana et al. (2021) or Martinez
et al. (2020) with logistic regression as the baseline classifier do not rely on a learning rate.

We used the same parameters as for our method to train the baseline (naive) classifiers, and in order to perform a fair
comparison with our method, we returned the average over the iterates instead of the last iterate (by setting the average
parameter to True in SGDClassifier; this does not apply to the MLP on the Diabetes dataset).

In all experiments except on the Diabetes dataset with the logistic regression classifier (cf. Section 5), we initialized our
strategy with the baseline classifier.

All other parameters in the code of Diana et al. (2021) or Martinez et al. (2020) are set as their default values.

B.2. Details About Datasets

In Section 5 we use the Drug Consumption dataset (Fehrman et al., 2015) and the Diabetes 130-US Hospitals dataset
(Diabetes dataset; Strack et al., 2014), which are both publicly available in the UCI repository (Dua and Graff, 2019). We also
use the COMPAS dataset (Angwin et al., 2016), which is publicly available at https://github.com/propublica/
compas-analysis.

On the Drug Consumption dataset we use the features Nscore, Escore, Oscore, Ascore, Cscore, Impulsive, and SS for
predicting whether an individual consumed cannabis within the last decade or not. We define the groups by an individ-
ual’s country, where we merge Australia, Canada, New Zealand, Republic of Ireland and Other into one group “Other”.
On the Diabetes dataset, we use the features gender, age, admission_type_id, time_in_hospital, num_lab_procedures,
num_procedures, num_medications, number_outpatient, number_emergency, number_inpatient, number_diagnoses,
max_glu_serum, A1Cresult, change, and diabetesMed for predicting whether a patient was readmitted to hospital or
not, and we define the groups by a patient’s age. On the Compas dataset we use the features age, sex, priors_count,
c_charge_degree, and juv_fel_count for predicting recidivism. Groups are defined by a person’s race, where we merge
Asian, Native American and Other into one group “Other”.

We never provide the group information as a feature.

https://scikit-learn.org
https://pytorch.org/
https://github.com/propublica/compas-analysis
https://github.com/propublica/compas-analysis

