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or state-of-the-art  
artificial intelli
gence (AI) accelera
tors, there have been 

large advances in 
both all-digital and analog/mixed-

signal circuit-based designs. This 
article presents a practical overview 
and comparison of recent digital 
and analog AI accelerators. We first 
introduce hardware-efficient AI algo-
rithms, which have been targeted for 
many AI hardware designs. Next, we 
present a survey of 1) all-digital AI 
accelerators, including designs with 

new dataflow, low precision, and 
sparsity, and 2) analog/mixed-signal 
AI accelerators featuring switch-
capacitor circuits and in-memory 
computing (IMC) with ADCs. Recent 
advances of AI accelerators in both 
digital and analog design approaches 
are summarized, and emerging AI 
accelerator designs are discussed.
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Background 
AI and deep neural network (DNN) 
algorithms have been very successful 
across many tasks, including com-
puter vision, natural language pro-
cessing, and medical diagnosis. While 
AI algorithms have largely improved 
over recent years to achieve high 
accuracy with a smaller number of 
operations and fewer weights, state-
of-the-art ImageNet algorithms still 
require billions of MAC operations 
per single image inference and stor-
age for millions of weights [1].

It is challenging to map such 
complex algorithms onto various  
hardware platforms, especially with  
divergent power and area constraints, 
from embedded systems to mobile 
smartphones and wearable devices. 
To that end, both hardware-efficient 
algorithms and custom AI accelera-
tors that can efficiently map such 
algorithms are required:

To benchmark AI inference accel-
erators, there are several well-known 
metrics that have been used through-
out the literature [2], such as power, 
throughput, and energy efficiency. 
Power is the rate at which you do 
computations times the energy per 
inference. The energy per inference 
for a given application is the ultimate 
metric we care about (1). The energy 
per inference has two components: 
1) how many operations you have per 
inference and 2) the energy per such 
operation. In the machine learning 
community, there have been many 
works on tuning the first knob by 
using a smaller number of neces-
sary operations per inference, com-
pressing the model via exploiting 
sparsity, and so on. The hardware 
community has presented various 
methods for tuning the second knob, 
with new hardware fabrics and pro-
cess technologies.

Hardware-Efficient Algorithms
Hardware-efficient algorithms include 
approaches such as quantization [3], 
pruning [4], compact model trans-
formation [5], tensor decomposition 
[6], and so on. Arguably, quantiza-
tion and pruning have been the two 
main approaches for making AI algo-
rithms hardware efficient. Quantiza-
tion aims to use fewer bits per each 
weight and/or activation, and this is 
done by discretizing each weight to 
a finite number of specific values. 
Pruning exploits the fact that zero 
weights/activations do not change 
the MAC result and the final DNN 
result. To that end, we can prune out 
zero weights and activations with-
out affecting the DNN outcome. By 
using fewer total weights, the stor-
age requirement is largely alleviated. 
Both of these techniques can signifi-
cantly reduce the area and energy of 
the resultant AI accelerator.

Low-Precision Quantization
Conventionally, DNNs are first trained 
with 32- or 64-b floating-point pre-
cision, and then the trained DNN is 
quantized with fixed-point preci-
sion. For posttraining quantization, 
dynamic quantization [7] or hardware-
aware quantization [8] can be per-
formed, where a different number 
of integers versus fractional bits are 
used for different layers within the 
same model to improve the accuracy-
versus-precision tradeoff. However, 
the DNN accuracy of such posttrain-
ing quantization works sharply wors-
ens for <6-b precision.

To achieve high DNN accuracy 
with even lower precision values, 
in-training quantization, or quanti-
zation-aware training [9], has been 
proposed. The key idea is that the 
target low precision for quantization 
should be incorporated in the DNN 

training process so that the DNN 
weights can be trained, reflecting the 
low-precision quantization. In partic-
ular, during the forward/backward 
passes of DNN training, the same 
target low fixed-point precision for 
inference will be used, while, for the 
weight update, high floating-point 
precision will still be used. Since the 
forward pass of DNN training is the 
same as DNN inference, after training 
is complete, the DNN inference can 
achieve high accuracy with the tar-
get low-precision quantization. The 
extreme case of low-precision quan-
tization is binarizing both weights 
and inputs (1-b precision), where the 
multiplication between weights and 
inputs become a simple XNOR opera-
tion, and accumulate becomes the 
bitcount operation of XNOR outputs 
[10]. A large amount of memory as 
well as computation can be saved.

In-training quantization has been 
further optimized with wider DNN 
models in [11], where it has been 
reported that wider DNNs perform 
in-training quantization effectively 
with lower precision. By trading off  
a higher number of raw compute oper-
ations with an aggressively reduced 
precision of weights and activations 
for isoaccuracy, the overall com-
pute cost becomes lower with wider  
DNN models.

In [12], for various DNNs for Ima-
geNet, low-precision quantization 
from 8, 4, and down to 2 b has been 
evaluated. In another recent work [13], 
the accuracy of 4-b MobileNet models 
has been optimized. As shown in Fig-
ure 1, the variants of ResNet and VGG 
models for ImageNet data set show 
reasonable accuracy down to 3–4-b 
precision. For more compact models, 
such as MobileNet and SqueezeNet, it 
is more difficult to achieve low preci-
sion, as noticeable accuracy degrada-
tion is observed below 4-b precision.

Pruning
The conventional pruning method is 
magnitude-based pruning [4], where 
the weights whose magnitudes are 
close to zero are pruned out from 
the DNN model. As we prune the 
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DNNs, the DNN accuracy needs to 
be carefully monitored. One of the 
recent works that further improved 
the accuracy-versus-sparsity trad-
eoff is lookahead pruning [14], which 
extends the layerwise approxima-
tion of magnitude-based pruning to 
a block of layers by looking ahead at 
the impact of pruning on neighbor-
ing layers. While high sparsity can be 
achieved, these elementwise sparsity 
techniques require indexes to store 
the location of the remaining nonzero 
weights after pruning, and this can 
be a larger burden for low-precision 
weights. In addition, the sparsity 
with elementwise pruning is typi-
cally formed in an irregular manner, 
which can hurt the memory access 
and efficient hardware acceleration.

To address such challenges of 
elementwise pruning, structured prun-
ing has been proposed [15]–[17], 
where weights are pruned in row-
wise, columnwise, or blockwise man-
ner. Such structured pruning largely 
reduces the index storage since the 
index can be shared among the row/
column/block structure, and it also 
enhances regular memory access and 
hardware acceleration. If we apply 
rowwise or columnwise structured 
sparsity for general matrix multi-
plication, we can remove the entire 
rows or columns, effectively reduc-
ing the size of the matrix. Group 
least absolute shrinkage and selec-
tion operator (LASSO) regularization 

was performed in [15] to also remove 
2D filters in convolutional neural net-
works (CNNs) to achieve channelwise 
or filterwise structured sparsity.

When we try to naively combine 
structured pruning with low-pre-
cision quantization, nonnegligible 
accuracy loss occurs because group 
LASSO pruning acts like normal 
regularization, forcing all weights 
toward smaller values. A weight pen-
alty clipping technique with a self-
adapting threshold was presented 
in [18]. Essentially, if the overall 
group weight is large in terms of 
L2 norm, the group is not pruned 
by group LASSO, and only when 
the group weight is small are the 
weights pruned in a groupwise man-
ner. By optimally combining large 
structured compression with ternary 
weights for DNNs, a lower accuracy 
drop was achieved.

All-Digital AI Accelerators
To efficiently execute the complex AI 
algorithms that accompany the quan-
tization and/or pruning techniques 
discussed in the “Hardware-Efficient 
Algorithms” section, many custom 
ASIC accelerators have been pre-
sented in the literature. These include 
chips from major industry companies 
(Google TPU, Tesla Dojo, and so on), a 
number of recent start-up companies 
(Sambanova, Graphcore, Groq, and so 
on), and new prototype chips from 
many research groups in academia.

MAC operations occupy >90% of 
DNN workloads. To compute such 
a large number of MAC operations, 
all-digital DNN accelerators typically 
employ a large number of parallel  
processing engines (PEs), where each 
PE performs one or several MAC 
computations. Considering different 
memory hierarchies, off-chip DRAM 
access consumes higher energy by 
a couple orders of magnitude than 
MAC computation or local register 
file access. To that end, DNN accel-
erators are designed to support spe-
cialized processing dataflows that 
leverage this memory hierarchy.

Many digital AI accelerators have 
commonly employed a 2D systolic 
array of PEs or MAC engines with 
specific dataflows to reuse input acti-
vations and/or weights while keep-
ing the weight, partial sum, or input 
stationary in each PE (Figure  2). In 
the weight-stationary dataflow (WSD), 
each filter weight remains station-
ary, input activations get loaded 
and shifted horizontally, and par-
tial sums are accumulated vertically. 
The static weights can be reused and 
computed with multiple pixels in the 
same feature map or with different 
feature maps. In the output-station-
ary dataflow (OSD), the accumulation 
of each output pixel stays stationary 
in each PE, while the input activa-
tions get loaded and shifted horizon-
tally, and the weights get loaded and 
shifted vertically across the PEs. 
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FIGURE 1: Low-precision DNN algorithms and ImageNet accuracy [12], [13]. 

Authorized licensed use limited to: Cornell University Library. Downloaded on April 18,2023 at 06:00:00 UTC from IEEE Xplore.  Restrictions apply. 



68	 SUMMER 202 2	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

The OSD minimizes the read/write 
energy of the partial sum, which 
requires higher precision than the 
input or weights.

Digital AI Accelerators  
Featuring Low Precision
Different DNN models have different 
optimal weight precisions, and dif-
ferent layers in a given DNN model 
have different optimal precisions. 
Therefore, to obtain the optimal 
energy–accuracy tradeoff, support-
ing variable weight precision is 
important for DNN accelerators.

In the UNPU accelerator [22], vari-
able weight precision from 1 to 16 b 
is supported by bit serial process-
ing, where MAC operations with N-b  
weight precision are computed sequen-
tially from the LSB to the MSB of the 
weights for N cycles by shifting and 
accumulating the partial sums.

Higher energy efficiency is achieved 
for lower-precision weights, while 
the accuracy degradation could occur 
depending on the DNN. In addition, 
by efficiently reusing input feature 
maps, the same UNPU chip can be 
fully shared for convolution, recur-
rent, and fully connected layers.

In [23], Intel presented a digital 
binary neural network (BNN) accel-
erator in 10-nm CMOS. When N-b 

precision is reduced to 1-b precision, 
the memory storage is reduced lin-
early, while the compute complexity 
is reduced quadratically (e.g., 8-b 
MAC energy is 10–100× higher than 
1-b MAC energy). To that end, the pro-
posed BNN accelerator employs much 
higher parallelism of very-low-preci-
sion MACs and data reuse to amortize 
the cost of memory access and data 
movement across many operations. 
The accelerator chip has 131,000 
binary MAC units or XNOR gates split 
between a total of 128 memory exe-
cution units. At 0.37 V, 617 TOPS/W 
energy efficiency is achieved.

IBM presented a 7-nm AI chip [24] 
that supports both fixed-point pre-
cision inference and floating-point 
precision training. This chip consists 
of four AI cores, where each core has 
two corelets with a private L0 and a 
shared L1 scratchpad.

Each corelet contains an 8 8#  
array of mixed-precision engines 
(MPEs), where MPEs implement sepa-
rate compute pipelines for various 
precisions. Inference workloads can 
be executed with 2- or 4-b fixed-
point precision and training work-
loads can be operated with hybrid 
8- or 16-b floating-point precision to 
meet diverse application demands 
for both AI inference and training. 

For inference with 4-b fixed-point 
precision, with a 0.55-V core and 
0.7-V SRAM supply, 16.5 TOPS/W 
are reported. A scaled-up chip with  
32 cores achieves >60% utilization 
for ResNet-50 and >70% utilization 
for the Google Neural Machine Trans-
lation model.

Digital AI Accelerators  
Featuring Pruning/Sparsity
The STICKER-T accelerator [25] employed 
block-circulant weights as a struc-
tured compression technique, where 
each row vector circulantly rotates 
one element to the right side to gen-
erate the next row vector. Therefore, 
the first row includes all informa-
tion in this matrix block, leading 
to N# storage reduction. By train-
ing weights in the block-circulant 
matrix format, the matrix–vector 
multiplication can be performed 
with frequency-domain elementwise 
production, and FFT operations can 
reduce the computation complexity 
from ( )O n2  to ( )logO n n . 

With the block-circulant technique, 
STICKER-T has a frequency-domain 
16 16#  MAC array with bit serial 
processing to flexibly support 1–12-b 
precision. Sixteen activations are 
shared by the same PE row, and 16 
weights are shared by the same PE 
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FIGURE 2: (a) The weight-stationary dataflow [19], [20] and (b) output-stationary dataflow [21]. P: partial sum; W: weight.
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column. An energy efficiency of up 
to 140 TOPS/W is reported for 1-b 
precision, while this decreases pro-
gressively for higher-bit precision. At 
the same bit precision, a larger block 
size leads to higher energy efficiency 
due to the reduced FFT and MAC 
operations, while this is achieved at 
moderately lower DNN accuracy. Dif-
ferent types of neural networks, such 
as tiny YOLO CNN, RNN, and so on for 
different data sets have been demon-
strated, using different block sizes 
and precision.

Long short-term memory (LSTM) 
is a type of RNN that is widely used 
for speech applications, but LSTMs 
pose difficulties for efficient hard-
ware due to the large number of 
weights and amount of computation 
complexity. In [17], a new hierarchi-
cal coarse-grain sparsity (HCGS) 
scheme is presented that struc-
turally compresses the weights of 
LSTM models. HCGS removes block 
weights for weight matrices in LSTMs 
in a hierarchical blockwise manner. 
Within the first-level coarse block 
sparsity, a second-level fine block 
sparsity is applied recursively. With 
16× hierarchical blockwise sparsity, 
all weights for a three-layer LSTM 
fully fit on chip with 288 kB of mem-
ory, and only 8.5 kB of memory are 
employed for index and bias. Since 
HCGS ensures a regular blockwise 
sparse weight structure and access, 
the MAC engines exhibit a high  
utilization ratio of >98% through-
out the LSTM operation. The HCGS 
accelerator achieves an average 
energy efficiency of 8.9/7.2 TOPS/W 
for LSTMs for TIMIT/TED-LIUM data 
sets while performing real-time 
speech recognition.

Based on recent works that jointly 
optimize pruning and low-precision 
quantization, the relative cost of 
index storage for elementwise prun-
ing will be even higher for DNNs 
with low-precision weights. To that 
end, structured compression works 
become more important with low-
precision quantization since it can 
share the index per block, substan-
tially reduce the index overhead, 

and also make the weight memory 
access regular.

Samsung presented an activation 
sparsity-aware neural processing 
unit (NPU) for mobile SoCs in 5-nm 
CMOS [20]. This NPU chip consists 
of three cores, where each core has 
2,048 8-b MACs that employ a WSD to 
maximize the reuse of weights. The 
convolution engine needs to maintain 
a high utilization factor for diverse 
convolutions with different parame-
ters, such as dilation, stride, and ker-
nel sizes. Since most DNN layers have 
many channels, 16 channels are com-
puted in parallel so that the MAC uti-
lization remains high across diverse 
convolutions. The NPU performs 
zero skipping for activation sparsity 
by selecting only a set of nonzero 
values to form a dense tensor, and 
the weight matrix is adjusted accord-
ingly to improve the compute effi-
ciency. By optimizing zero skipping, 
reconfiguration, and multithreading, 
the overall inference throughput for 
the Inception-V3 model is improved 
to 623 inferences/s at 1.2-GHz fre-
quency. Including DMA power, an 
energy efficiency of 13.6 TOPS/W 
was measured at 0.6 V, where MAC 
utilization reached 84%.

The recent trends of digital AI 
accelerators can be summarized 
as follows:

■■ First, in many digital accelerators, 
the MAC array exhibits a high de-
gree of reconfiguration capability, 
e.g., suitably reconfiguring the 
dataflow, stationary scheme, or 
MAC computation has been report-
ed to achieve high utilization and 
energy efficiency.

■■ Second, high to low precision is 
flexibly supported for both acti-
vations and weights for AI infer-
ence. The surveyed accelerators 
supported variable precision from 
16 b down to 1 b in the chip design.

■■ Third, sparsity-aware hardware 
design has been incorporated in 
many accelerator designs. The stat-
ic weight sparsity can be formed  
in both elementwise and struc-
tured sparsity manners, which 
have tradeoffs in the achievable 

level of sparsity, index storage, 
and regularity of memory access. 
On the other hand, to efficiently 
handle the dynamic activation 
sparsity, zero skipping and form-
ing a dense activation tensor with 
only nonzero activations have 
been investigated.

Analog/Mixed-Signal  
AI Accelerators
From the digital AI accelerators in the 
literature that reported power/energy 
breakdown [27], [28] (Figure 3), it can 
be seen that data access energy to/
from on-chip SRAMs constitute two 
thirds or more of the total system 
power/energy. This is because large 
amounts of memory access and data 
communication (from the memory 
to compute engine) are required to 
perform the computation. To address 
such bottlenecks, colocating memory 
and compute and performing com-
putation in the analog domain have 
been proposed as the remedies.

Switched-Capacitor Circuit-Based 
Accelerators
In an early work [29], an analog MAC 
engine design based on switched-
capacitor circuits was presented. 
The 40-nm chip exploited 300-aF 
unit fringe capacitors for efficient 
charge-domain processing with local 
memory and achieved 8.7 TOPS/W 
at 1 GHz.

A mixed-signal binary CNN pro-
cessor was presented in [30]. Digital 
XNOR gates were employed for the 
multiplication operation of BNNs, 
and the wide accumulation of XNOR 
results were implemented with low-
energy switched-capacitor circuits. 
By adapting the BNN algorithm, such 
as fixing the number of channels 
to be 256 and the convolution ker-
nel size to be ,2 2#  the customized 
accelerator stores all weights on chip 
and exploits data locality and reuse, 
demonstrating a low 3.8-μJ energy per 
inference for 86% CIFAR-10 accuracy.

IMC Scheme
To make computation more immersed 
with the weight storage and to  
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alleviate the memory bottlenecks, an 
IMC scheme was proposed in recent 
years, where we aim to embed com-
puting inside the memory. In con-
ventional digital AI accelerators, we 
read out weights from the memory 
row by row and convey them to a 
separate compute or MAC engine. In 
IMC, we turn on multiple or all rows 
of the subarray simultaneously and 
perform the MAC computation inside 
the memory, typically along the bit-
line in an analog manner, which 
can largely reduce the data trans-
fer since there is no separate com-
pute engine. By asserting all rows 
together, compute parallelism is also 
largely increased. These advantages 
can lead to high energy efficiency. 

However, IMC exhibits some chal-
lenges, including analog variability, 
potential DNN accuracy loss, large-
scale integration, and making it 
programmable to flexibly map vari-
ous AI workloads. While there have 
been different memory technologies 
presented for IMC, in this work, we 
mostly focus on the SRAM-based IMC 
designs due to their robustness and 
viability for large-scale integration in 
any CMOS node.

Figure 4 categorizes analog SRAM 
IMC schemes based on the bitcell 
design and location/method of ana-
log computation, focusing on the 
SRAM column slice. Some early 
works employed the conventional 

six-transistor (6T) SRAM and pursued 
activating multiple/all rows of a sub-
array [31]–[34] [Figure 4(a)], thereby 
performing analog computation along  
the bitline. The 6T SRAM is, evidently, 
the densest SRAM bitcell. However, 
analog computation results can drive 
the bitline to a very low or high volt-
age, and, with all wordlines turned 
on, this could result in a read disturb 
by flipping the storage value of a bit-
cell. To prevent a read disturb, the 
wordline voltages in some of these 
works were lowered to ~0.4 V [32], [34].

Some other works dedicated ana-
log compute engines that can be 
shared by a group of rows [35]–[37] 
[Figure 4(b)], for example, 16 rows 
in a 256-row subarray [37]. Within a 
group, the SRAM access and compu-
tation occur in a row-by-row manner, 
but different groups in the subar-
ray are computed in parallel. The 
local analog compute circuits add 
some area overhead, but the small-
est 6T cells can be used for the bit-
cell, while some works used larger 
bitcells. Overall, the area overhead 
is relatively small, but the parallel-
ism is reduced due to the row-by-row 
operation within a group.

To be more aggressive on the par-
allelism, a number of works pursued 
activating all rows, but, to eliminate 
the read disturb issue, a new bitcell 
was employed with at least a couple 
of additional transistors per bitcell 

on top of the 6T [38]–[43] [Figure 4(c)]. 
The new bitcell could be foundry 8T 
[38], a custom 8T1C design [40], [43], 
and so on. Considering this, an area 
overhead exists compared to 6T 
SRAMs. However, by turning on all of 
the rows, the elementwise multipli-
cation computed in each bitcell can 
be accumulated at once by connect-
ing the read bitline (RBL) together, 
and this results in very high par-
allelism and low latency. We will go 
through representative design exam-
ples for this highly parallel SRAM 
IMC scheme.

Resistive and Capacitive SRAM IMC
The analog SRAM IMC can be largely 
categorized into two types, namely, 
resistive IMC and capacitive IMC.

Resistive SRAM IMC
Let’s look into the resistive IMC works 
by examining two representative 
papers [39], [42]. In the IMC bitcell 
itself, bitwise multiplication between 
the input activation and weight is 
performed [Figure 5(a)]. In [39], the 
input and weight are represented 
by “1” or “0,” and the multiplication 
between these two can be done by 
pulling down the RBL only when both 
the input and weight are “1” and leav-
ing it as is when either of them is “0.” 
In the XNOR SRAM work [42], several 
additional transistors are employ
ed in the bitcell to implement the 
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XNOR-based multiplication for BNNs. 
If the input and weight have the same 
polarity, the RBL will be pulled up, 
and, if the input and weight have 
different polarities, the RBL will be 
pulled down.

Figure 5(b) shows the analog accu-
mulation along the column in resis-
tive IMC designs. By activating N 
rows simultaneously, N cells in the 
SRAM column connect to the same 
RBL. In [39], the precharged RBL will 
discharge with different strengths 
depending on how many bitcells are 
pulling down. The analog RBL volt-
age will be evaluated after a specific 
amount of time, which can make the 
evaluation time sensitive. In [42], 
depending on how many bitcells pull 
up versus pull down the RBL, a robust 
resistive divider is formed without 
time dependency, but, depending on 
the RBL voltage level, a crowbar cur-
rent could flow.

Figure 5(c) shows the MAC com-
putation of resistive IMC designs. By 
turning on N rows together, an N-input 
binary MAC could be performed in 
a single cycle. The transfer curves  

of the two resistive IMC designs 
exhibit a monotonic relationship 
between the partial MAC value and 
the RBL voltage.

Capacitive SRAM IMC
For analog capacitive IMC designs, 
we describe the design of two rep-
resentative works [40], [43]. In [40], 
the modified SRAM bitcell includes 
two additional PMOS transistors 
and a capacitor, where the XNOR 
multiplication result between the 
activation and a weight of –1 or +1 
will discharge the capacitor to the 
ground or charge the capacitor to 
Vdd. In C3SRAM [43], the bitcell 
consists of two additional NMOS 
transistors and a serially con-
nected capacitor, where an XNOR 

multiplication result of –1 or +1 will 
drive the middle node Vc with 0 V  
or Vdd. 

Figure 6(b) shows the analog 
accumulation along the column in 
capacitive IMC designs. In [40], as 
N bitcells are activated simultane-
ously, the individual cell’s capacitor 
discharged at 0 V or charged at Vdd 
gets connected together and goes 
through a charge-sharing operation. 
In [43], N bitcells connect to the same 
MAC bitline (MBL) through the series 
capacitor, and capacitive coupling is 
performed based on the bitcell multi-
plication result. As a result, a capaci-
tive divider is formed, where some 
bitcells’ capacitors will sit between 
the MBL and Vdd, and others will be 
between the MBL and ground.
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To make computation more immersed with the 
weight storage and to alleviate the memory 
bottlenecks, an IMC scheme was proposed 
in recent years, where we aim to embed 
computing inside the memory.
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Figure 6(c) shows the transfer 
curves of the MAC computation of 
the capacitive IMC designs when N 
rows are activated together. Due to 
the nature of the charge sharing or 
capacitive divider, capacitive IMC 
designs exhibit a more linear rela-
tionship between the partial MAC 
value and the RBL voltage compared 
to their resistive IMC counterparts.

IMC System Designs
Figure 7 shows the trend from IMC 
macro designs toward IMC system 
designs in the literature. SRAM IMC 
designs started from single-macro 
IMC designs, including CONV-SRAM 
[37], XNOR SRAM [42], Twin-8T SRAM 
[38], C3SRAM [43], and the 7-nm IMC 
macro by TSMC [39]. Evidently, there 
is a large gap between single IMC 
macros and an end-to-end accelera-
tor, so, more recently, researchers 
have presented IMC system designs 
where a small to large number of IMC 
macros have been integrated [16], 
[41], [44]–[47], up to several mega-
bits of IMC SRAM. Here, we describe 
two of the largest SRAM IMC system 
integrations to date [46], [47].

In [46], a 16-nm scalable IMC 
accelerator design was presented, 
occupying a 25-mm2 area. This IMC 
accelerator includes a 4 4#  array 
of compute-in-memory unit (CIMU) 
cores, an on-chip network between 
cores, buffers, control circuits, and 
off-chip interfaces. The CIMU con-
sists of 1) the compute-in-memory 
array (CIMA) for IMC operations, 2) a  
near-memory computing digital SIMD 
with a custom instruction set for 
flexible elementwise operations, 
and 3) buffering and control for 
enabling a range of dataflows. The 
IMC engine is a capacitive CIMA with 
1,152 rows and 256 columns, which 
executes fully row/column-parallel 
analog computation, which is digi-
tized by an 8-b ADC. The capacitive 
IMC allows linearity between the par-
tial MAC value and ADC output, and 
it achieved high CNN accuracy for 
both the CIFAR-10 and ImageNet data 
sets. For 4-b activation and weight 
precision, an energy efficiency of  
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121 TOPS/W and a MAC compute den-
sity of 2.67 TOPS/mm2 are reported.

In [47], a 28-nm programmable 
IMC accelerator chip with 20  mm2 
has been presented. Using a capaci-
tive coupling-based SRAM IMC bit-
cell, a 256 × 128 SRAM IMC macro 
is designed with a column-parallel 
4-b ADC, and 108 such macros are 
integrated for the total chip. A total 
of 3.4 Mb of memory was dedicated 
for SRAM IMC, and 1.5 Mb of off-the-
shelf activation memory was also 
employed. A custom instruction set 
architecture (ISA) was developed 
for programmability support with 
IMC and SIMD operations, where 
the hardware loop control feature 
was able to reduce the total num-
ber of instructions by 4×. A peak 
system-level energy efficiency of 
437 TOPS/W and peak throughput 
of 4.9 TOPS for binary precision 
were demonstrated. These energy 
numbers include all components of 
the overall accelerator chip, such 
as the activation memory, 256-way 
SIMD unit for vector operations, and  
on-chip communication.

The recent trends of analog/
mixed-signal AI accelerators can be 
summarized as follows:

■■ Many single-macro IMC designs 
have been presented in recent 
years, and, currently, the best IMC 
designs report >1,000 TOPS/W at 
the single-macro level [49], [50]. 
Both resistive IMC and capaci-
tive IMC have been demonstrated, 
where capacitive IMC shows high-
er linearity between MAC results 
and analog voltage values.

■■ Analog IMC designs also support 
multibit and flexible precision 
from 1- to 8-b precision for both 
activations and weights of DNNs 
[33], [35], [38], [39], [50], [51]. Some 
sparsity-aware IMC designs have 
also been presented [16], [52] to 
further optimize energy with 
techniques such as zero skipping.

■■ More recently, larger-scale IMC 
accelerators that integrate more 
than 100 IMC macros have been 
recently reported in scaled CMOS 
technologies, where several megabits 
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of IMC SRAM are integrated on chip 
[46], [47].

■■ By design, IMC-based accelerators 
use a weight-stationary scheme, 
and recent IMC accelerators made 
efforts to support the program-
mability with a custom ISA so that 
various AI models can be flexibly 
mapped onto the same chip.
In [48], the energy efficiency, 

throughput, and compute density of 
digital accelerators and IMC designs 
based on SRAM and embedded non-
volatile memory (eNVM) have been 
benchmarked comprehensively, as 
shown in Figure 8. SRAM-based IMCs 
show much higher energy efficiency 
over digital accelerators at the macro 
level, but the energy efficiency gap 
noticeably reduces at the processor/
system level. Digital accelerators can 
achieve arbitrarily high throughput 
via scale-up without compromising 
on their accuracy. However, more 
design efforts are required for IMC-
based accelerators to preserve accu-
racy during scale-up.

Addressing Challenges and New AI 
Accelerator Design Directions
There are several notable challenges 
of analog SRAM IMC. First, IMC 
trades off the signal-to-noise ratio 
(SNR) [53], which makes it more sus-
ceptible to process, voltage, and 
temperature (PVT) variation as well 
as the ADC offset. These could result 
in a nonexact computation result 
and network-level DNN accuracy 
degradation, especially for complex 
and larger data sets. Second, the IMC 
peripheral circuitry requires the 
ADC to digitize the analog computa-
tion. Despite many advances in ADC 
designs, ADCs still consume a large 
area and high energy, and the ADC 
offset due to transistor mismatch 
can cause errors. Third, since a cou-
ple of transistors or passive compo-
nents, such as capacitors, could be 
added to each bitcell, the SRAM bit-
cell can be relatively large compared 
to the off-the-shelf 6T counterparts, 
and this brings density and leak-
age concerns. Fourth, the rigid 
crossbar structure used in SRAM 
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IMC is not particularly amenable for 
fine-grain weight pruning. Here, we 
introduce specific approaches that 
have been proposed to tackle each 
of these challenges.

Addressing a Low SNR
Associated with a lower SNR, ana-
log IMC involves inherent intrachip 
and interchip variability as well as 
ADC quantization. As shown in a 
number of IMC chips from the litera-
ture, variability can be observed in 
the ADC outputs for the same ideal 
MAC value, and accuracy degrada-
tion is often reported compared 
to the digital baseline. To mitigate 
this accuracy loss, some IMC SRAM 
works attempted to improve the SNR 
by limiting the number of activated 
rows for IMC, e.g., 18 rows in [38], 
but this reduces the computing par-
allelism and energy efficiency.

To improve the IMC hardware 
accuracy, recent works, such as [54], 
performed customized DNN training 
with noise injection at the individual 
weight level, where the injected noise 
is drawn from Gaussian distributions 
based on memory bitcell variations. 
However, such individual weight-
level Gaussian noise injections could 
be suboptimal for actual IMC chips 
for two reasons: 1) individual weight-
level noise does not consider the IMC 
crossbar structure and other hard-
ware noise, such as bitline or ADC 
noise, and 2) Gaussian noise does not 
necessarily represent the actual IMC 
hardware noise well [55].

Considering these, IMC noise-
aware DNN training is performed 
[55] by injecting the measured IMC 
hardware noise into the forward pass 
during DNN training. All MAC opera-
tions in DNNs are divided into mul-
tiple N-input MAC operations, where 
N is the number of rows activated 
together in the IMC macro. For each 
N-input MAC operation, the noisy and 
quantized partial sum results from 
IMC chip measurements are used, 
where the ADC outputs for given MAC 
values are randomly sampled based 
on the conditional probability of ADC 
output measurements for each MAC 

value. In [55], injecting actual IMC 
hardware noise measured from two 
different IMC chips of XNOR SRAM 
[42] and C3SRAM [43] has been evalu-
ated. The reported results show that 
the IMC noise-aware training scheme 
shows higher inference accuracy for 
the IMC hardware across multiple 
DNN models, different precision, and 
a different amount of noise, and the 
improvement is especially higher for 
higher-noise environments (e.g., a 
low Vdd for C3SRAM [43]).

Addressing Area-/ 
Energy-Hungry ADCs
Why are relatively high-resolution 
ADCs necessary for IMC? Each IMC 
macro has a finite number of rows 
(e.g., 256), which computes the par-
tial sums of a DNN layer. When divid-
ing a large dot product into a number 
of smaller ones, each partial sum 
should not be prematurely quantized 
and should have relatively high pre-

cision. With regard to the ADC chal-
lenge, different methods have been 
proposed for possibly removing the 
ADCs (and DACs) for IMC designs. 
We need ADCs and DACs because we 
perform analog computation inside 
the IMC macro while utilizing digital 
activation storage and digital com-
munication between IMC macros. 
Then, we can think again about 1) an 
all-digital design but with IMC and 2) 
an all-analog AI accelerator where all 
operations are performed in the ana-
log domain.

Digital IMC
All-digital IMC designs were recently 
presented in [56] and [58] [Figure 9(a)]. 
In analog IMC, the bitwise multipli-
cation results are accumulated in 
an analog manner along the bitline, 
which then necessitates an ADC at 
the column end. On the other hand, 
the digital IMC design proposes 
performing the accumulation with 
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digital logic gates while adding such 
digital accumulation circuitry inside 
the IMC SRAM macro for every group 
of columns. Such digital IMC designs 
eliminate ADCs, since all computa-
tions are in the digital domain, and 

are also advantageous for CMOS 
scaling and lower Vdd operation. 
However, the digital implementation 
of the wide adder tree can consume 
a large area; thus, a compact imple-
mentation becomes important.

All-Analog AI Accelerator
On the other hand, an all-analog DNN 
accelerator “ARCHON” in 28 nm was 
presented in [57] [Figure (9b)], which 
comprises both analog computation 
and capacitor-based analog memory 
(AMEM). ARCHON features an analog 
neuronal computation unit (ANU) 
based on voltage-to-time converters 
and weighted current summation as 
well as an AMEM based on a 6T1C  
bitcell that can store ~5-b precision 
across PVT variations. The ANU and 
AMEM can perform the computa-
tions needed for CNNs in the analog 
domain across layers without data 
conversions. ARCHON achieves an 
energy efficiency of 332.7 TOPS/W (the 
analog datapath) and 19.9 TOPS/W 
(the processor level).

Addressing Density
To support IMC, the SRAM bitcell 
and macro areas are both becoming 
relatively large. To alleviate the den-
sity concerns, IMC designs based on 
eNVM, such as RRAM (with a single-
level cell [59] and multilevel cell 
[60]), PCM [61], MRAM [62], and Flash 
[63], have been presented. Such 
eNVMs are denser than SRAM and 
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consume low leakage. Also, with the 
resistive device, it can naturally sup-
port matrix–vector multiplication. 
On the other hand, the nonidealities 
of eNVM devices include endurance, 
variation, drift, and so on. In several 
recent works, the larger-scale inte-
gration of eNVM-based IMC systems 
has been demonstrated. In [63], an 
embedded Flash-based IMC system 
with 79 million 8-b weights was pre-
sented, and [64] presented a 2.25-MB 
RRAM-based IMC system with an 
embedded ARM processor.

Addressing Pruning for IMC Designs
Applying random sparsity patterns 
resulted from fine-grain nonstruc-
tured pruning to a fixed SRAM IMC 
array structure can become ineffi-
cient [65]. If the IMC operation hap-
pens on a column basis, it will be 
much more efficient to prune out 
the entire/partial column in a struc-
tured manner. However, as shown 
in Figure 10, smaller group sizes 
achieve higher sparsity compared 
to the large-sized groups. On the 
other hand, a small-sized group will 
restrict the number of rows that can 
be activated simultaneously, which 
requires a higher number of cycles to 
go through the same crossbar array. 
Other approaches include sparsity-
aware activation/weight process-
ing for IMC macro design [16] and 
sparsity-optimized IMC bitcell design 
[66]. Overall, this challenge needs a 
carefully structured pruning algo-
rithm and supporting IMC hardware 
co-design.

Conclusion
In this article, we presented how 
both digital and analog AI accelera-
tors have largely advanced in recent 
years. The trends of all-digital accel-
erators include a reconfigurable MAC 
array, high utilization across various 
AI models, flexible precision sup-
port, and weight/activation sparsity-
aware design. Regarding the trends 
on analog/mixed-signal accelerators, 
single IMC macro designs are scaled 
up with a higher level of integration 
for a many-macro IMC system design. 

Flexible precision and program-
mability have been supported in 
larger-scale IMC systems. The chal-
lenges for these designs are being 
addressed in different ways. For ana-
log IMC designs, improving the DNN 
accuracy, ADC overhead, density, and 
sparsity are important. By address-
ing such challenges, new all-analog, 
digital IMC- and NVM-based AI accel-
erators are being further presented 
in the literature.
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