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Accelerators

Advances, trends, and emerging designs

or state-of-the-art

artificial intelli-

gence (Al) accelera-

tors, there have been

large advances in

both all-digital and analog/mixed-

Digital Object Identifier 10.1109/MSSC.2022.3182935
Date of current version: 24 August 2022

1943-0582/220©2022IEEE

signal circuit-based designs. This
article presents a practical overview
and comparison of recent digital
and analog Al accelerators. We first
introduce hardware-efficient Al algo-
rithms, which have been targeted for
many Al hardware designs. Next, we
present a survey of 1) all-digital Al
accelerators, including designs with
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new dataflow, low precision, and
sparsity, and 2) analog/mixed-signal
Al accelerators featuring switch-
capacitor circuits and in-memory
computing (IMC) with ADCs. Recent
advances of Al accelerators in both
digital and analog design approaches
are summarized, and emerging Al
accelerator designs are discussed.
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Background

Al and deep neural network (DNN)
algorithms have been very successful
across many tasks, including com-
puter vision, natural language pro-
cessing, and medical diagnosis. While
Al algorithms have largely improved
over recent years to achieve high
accuracy with a smaller number of
operations and fewer weights, state-
of-the-art ImageNet algorithms still
require billions of MAC operations
per single image inference and stor-
age for millions of weights [1].

It is challenging to map such
complex algorithms onto various
hardware platforms, especially with
divergent power and area constraints,
from embedded systems to mobile
smartphones and wearable devices.
To that end, both hardware-efficient
algorithms and custom Al accelera-
tors that can efficiently map such
algorithms are required:

To benchmark Al inference accel-
erators, there are several well-known
metrics that have been used through-
out the literature [2], such as power,
throughput, and energy efficiency.
Power is the rate at which you do
computations times the energy per
inference. The energy per inference
for a given application is the ultimate
metric we care about (1). The energy
per inference has two components:
1) how many operations you have per
inference and 2) the energy per such
operation. In the machine learning
community, there have been many
works on tuning the first knob by
using a smaller number of neces-
sary operations per inference, com-
pressing the model via exploiting
sparsity, and so on. The hardware
community has presented various
methods for tuning the second knob,
with new hardware fabrics and pro-
cess technologies.

Hardware-Efficient Algorithms
Hardware-efficient algorithms include
approaches such as quantization [3],
pruning [4], compact model trans-
formation [5], tensor decomposition
[6], and so on. Arguably, quantiza-
tion and pruning have been the two
main approaches for making Al algo-
rithms hardware efficient. Quantiza-
tion aims to use fewer bits per each
weight and/or activation, and this is
done by discretizing each weight to
a finite number of specific values.
Pruning exploits the fact that zero
weights/activations do not change
the MAC result and the final DNN
result. To that end, we can prune out
zero weights and activations with-
out affecting the DNN outcome. By
using fewer total weights, the stor-
age requirement is largely alleviated.
Both of these techniques can signifi-
cantly reduce the area and energy of
the resultant Al accelerator.

Low-Precision Quantization
Conventionally, DNNs are first trained
with 32- or 64-b floating-point pre-
cision, and then the trained DNN is
quantized with fixed-point preci-
sion. For posttraining quantization,
dynamic quantization [7] or hardware-
aware quantization [8] can be per-
formed, where a different number
of integers versus fractional bits are
used for different layers within the
same model to improve the accuracy-
versus-precision tradeoff. However,
the DNN accuracy of such posttrain-
ing quantization works sharply wors-
ens for <6-b precision.

To achieve high DNN accuracy
with even lower precision values,
in-training quantization, or quanti-
zation-aware training [9], has been
proposed. The key idea is that the
target low precision for quantization
should be incorporated in the DNN
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training process so that the DNN
weights can be trained, reflecting the
low-precision quantization. In partic-
ular, during the forward/backward
passes of DNN training, the same
target low fixed-point precision for
inference will be used, while, for the
weight update, high floating-point
precision will still be used. Since the
forward pass of DNN training is the
same as DNN inference, after training
is complete, the DNN inference can
achieve high accuracy with the tar-
get low-precision quantization. The
extreme case of low-precision quan-
tization is binarizing both weights
and inputs (1-b precision), where the
multiplication between weights and
inputs become a simple XNOR opera-
tion, and accumulate becomes the
bitcount operation of XNOR outputs
[10]. A large amount of memory as
well as computation can be saved.

In-training quantization has been
further optimized with wider DNN
models in [11], where it has been
reported that wider DNNs perform
in-training quantization effectively
with lower precision. By trading off
a higher number of raw compute oper-
ations with an aggressively reduced
precision of weights and activations
for isoaccuracy, the overall com-
pute cost becomes lower with wider
DNN models.

In [12], for various DNNs for Ima-
geNet, low-precision quantization
from 8, 4, and down to 2 b has been
evaluated. Inanother recent work [13],
the accuracy of 4-b MobileNet models
has been optimized. As shown in Fig-
ure 1, the variants of ResNet and VGG
models for ImageNet data set show
reasonable accuracy down to 3-4-b
precision. For more compact models,
such as MobileNet and SqueezeNet, it
is more difficult to achieve low preci-
sion, as noticeable accuracy degrada-
tion is observed below 4-b precision.

Pruning

The conventional pruning method is
magnitude-based pruning [4], where
the weights whose magnitudes are
close to zero are pruned out from
the DNN model. As we prune the
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DNNs, the DNN accuracy needs to
be carefully monitored. One of the
recent works that further improved
the accuracy-versus-sparsity trad-
eoff is lookahead pruning [14], which
extends the layerwise approxima-
tion of magnitude-based pruning to
a block of layers by looking ahead at
the impact of pruning on neighbor-
ing layers. While high sparsity can be
achieved, these elementwise sparsity
techniques require indexes to store
the location of the remaining nonzero
weights after pruning, and this can
be a larger burden for low-precision
weights. In addition, the sparsity
with elementwise pruning is typi-
cally formed in an irregular manner,
which can hurt the memory access
and efficient hardware acceleration.
To address such challenges of
elementwise pruning, structured prun-
ing has been proposed [15]-[17],
where weights are pruned in row-
wise, columnwise, or blockwise man-
ner. Such structured pruning largely
reduces the index storage since the
index can be shared among the row/
column/block structure, and it also
enhances regular memory access and
hardware acceleration. If we apply
rowwise or columnwise structured
sparsity for general matrix multi-
plication, we can remove the entire
rows or columns, effectively reduc-
ing the size of the matrix. Group
least absolute shrinkage and selec-
tion operator (LASSO) regularization

was performed in [15] to also remove
2D filters in convolutional neural net-
works (CNNs) to achieve channelwise
or filterwise structured sparsity.

When we try to naively combine
structured pruning with low-pre-
cision quantization, nonnegligible
accuracy loss occurs because group
LASSO pruning acts like normal
regularization, forcing all weights
toward smaller values. A weight pen-
alty clipping technique with a self-
adapting threshold was presented
in [18]. Essentially, if the overall
group weight is large in terms of
L2 norm, the group is not pruned
by group LASSO, and only when
the group weight is small are the
weights pruned in a groupwise man-
ner. By optimally combining large
structured compression with ternary
weights for DNNs, a lower accuracy
drop was achieved.

All-Digital Al Accelerators

To efficiently execute the complex Al
algorithms that accompany the quan-
tization and/or pruning techniques
discussed in the “Hardware-Efficient
Algorithms” section, many custom
ASIC accelerators have been pre-
sented in the literature. These include
chips from major industry companies
(Google TPU, Tesla Dojo, and so on), a
number of recent start-up companies
(Sambanova, Graphcore, Groq, and so
on), and new prototype chips from
many research groups in academia.

MAC operations occupy >90% of
DNN workloads. To compute such
a large number of MAC operations,
all-digital DNN accelerators typically
employ a large number of parallel
processing engines (PEs), where each
PE performs one or several MAC
computations. Considering different
memory hierarchies, off-chip DRAM
access consumes higher energy by
a couple orders of magnitude than
MAC computation or local register
file access. To that end, DNN accel-
erators are designed to support spe-
cialized processing dataflows that
leverage this memory hierarchy.

Many digital Al accelerators have
commonly employed a 2D systolic
array of PEs or MAC engines with
specific dataflows to reuse input acti-
vations and/or weights while keep-
ing the weight, partial sum, or input
stationary in each PE (Figure 2). In
the weight-stationary dataflow (WSD),
each filter weight remains station-
ary, input activations get loaded
and shifted horizontally, and par-
tial sums are accumulated vertically.
The static weights can be reused and
computed with multiple pixels in the
same feature map or with different
feature maps. In the output-station-
ary dataflow (OSD), the accumulation
of each output pixel stays stationary
in each PE, while the input activa-
tions get loaded and shifted horizon-
tally, and the weights get loaded and
shifted vertically across the PEs.
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FIGURE 1: Low-precision DNN algorithms and ImageNet accuracy [12], [13].
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The OSD minimizes the read/write
energy of the partial sum, which
requires higher precision than the
input or weights.

Digital Al Accelerators

Featuring Low Precision

Different DNN models have different
optimal weight precisions, and dif-
ferent layers in a given DNN model
have different optimal precisions.
Therefore, to obtain the optimal
energy-accuracy tradeoff, support-
ing variable weight precision is
important for DNN accelerators.

In the UNPU accelerator [22], vari-
able weight precision from 1 to 16 b
is supported by bit serial process-
ing, where MAC operations with N-b
weight precision are computed sequen-
tially from the LSB to the MSB of the
weights for N cycles by shifting and
accumulating the partial sums.

Higher energy efficiency is achieved
for lower-precision weights, while
the accuracy degradation could occur
depending on the DNN. In addition,
by efficiently reusing input feature
maps, the same UNPU chip can be
fully shared for convolution, recur-
rent, and fully connected layers.

In [23], Intel presented a digital
binary neural network (BNN) accel-
erator in 10-nm CMOS. When N-b

—_— —
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precision is reduced to 1-b precision,
the memory storage is reduced lin-
early, while the compute complexity
is reduced quadratically (e.g., 8-b
MAC energy is 10-100x higher than
1-b MAC energy). To that end, the pro-
posed BNN accelerator employs much
higher parallelism of very-low-preci-
sion MACs and data reuse to amortize
the cost of memory access and data
movement across many operations.
The accelerator chip has 131,000
binary MAC units or XNOR gates split
between a total of 128 memory exe-
cution units. At 0.37 V, 617 TOPS/W
energy efficiency is achieved.

IBM presented a 7-nm Al chip [24]
that supports both fixed-point pre-
cision inference and floating-point
precision training. This chip consists
of four Al cores, where each core has
two corelets with a private LO and a
shared L1 scratchpad.

Each corelet contains an 8x8
array of mixed-precision engines
(MPEs), where MPEs implement sepa-
rate compute pipelines for various
precisions. Inference workloads can
be executed with 2- or 4-b fixed-
point precision and training work-
loads can be operated with hybrid
8- or 16-b floating-point precision to
meet diverse application demands
for both Al inference and training.

For inference with 4-b fixed-point
precision, with a 0.55-V core and
0.7-V  SRAM supply, 16.5 TOPS/W
are reported. A scaled-up chip with
32 cores achieves >60% utilization
for ResNet-50 and >70% utilization
for the Google Neural Machine Trans-
lation model.

Digital Al Accelerators

Featuring Pruning/Sparsity

The STICKER-T accelerator [25] employed
block-circulant weights as a struc-
tured compression technique, where
each row vector circulantly rotates
one element to the right side to gen-
erate the next row vector. Therefore,
the first row includes all informa-
tion in this matrix block, leading
to Nx storage reduction. By train-
ing weights in the block-circulant
matrix format, the matrix-vector
multiplication can be performed
with frequency-domain elementwise
production, and FFT operations can
reduce the computation complexity
from O(n?) to O(nlogn).

With the block-circulant technique,
STICKER-T has a frequency-domain
16 x 16 MAC array with bit serial
processing to flexibly support 1-12-b
precision. Sixteen activations are
shared by the same PE row, and 16
weights are shared by the same PE
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FIGURE 2: (a) The weight-stationary dataflow [19], [20] and (b) output-stationary dataflow [21]. P: partial sum; W: weight.
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column. An energy efficiency of up
to 140 TOPS/W is reported for 1-b
precision, while this decreases pro-
gressively for higher-bit precision. At
the same bit precision, a larger block
size leads to higher energy efficiency
due to the reduced FFT and MAC
operations, while this is achieved at
moderately lower DNN accuracy. Dif-
ferent types of neural networks, such
as tiny YOLO CNN, RNN, and so on for
different data sets have been demon-
strated, using different block sizes
and precision.

Long short-term memory (LSTM)
is a type of RNN that is widely used
for speech applications, but LSTMs
pose difficulties for efficient hard-
ware due to the large number of
weights and amount of computation
complexity. In [17], a new hierarchi-
cal coarse-grain sparsity (HCGS)
scheme is presented that struc-
turally compresses the weights of
LSTM models. HCGS removes block
weights for weight matrices in LSTMs
in a hierarchical blockwise manner.
Within the first-level coarse block
sparsity, a second-level fine block
sparsity is applied recursively. With
16x hierarchical blockwise sparsity,
all weights for a three-layer LSTM
fully fit on chip with 288 kB of mem-
ory, and only 8.5 kB of memory are
employed for index and bias. Since
HCGS ensures a regular blockwise
sparse weight structure and access,
the MAC engines exhibit a high
utilization ratio of >98% through-
out the LSTM operation. The HCGS
accelerator achieves an average
energy efficiency of 8.9/7.2 TOPS/W
for LSTMs for TIMIT/TED-LIUM data
sets while performing real-time
speech recognition.

Based on recent works that jointly
optimize pruning and low-precision
quantization, the relative cost of
index storage for elementwise prun-
ing will be even higher for DNNs
with low-precision weights. To that
end, structured compression works
become more important with low-
precision quantization since it can
share the index per block, substan-
tially reduce the index overhead,

and also make the weight memory

access regular.

Samsung presented an activation
sparsity-aware neural processing
unit (NPU) for mobile SoCs in 5-nm
CMOS [20]. This NPU chip consists
of three cores, where each core has
2,048 8-b MACs that employ a WSD to
maximize the reuse of weights. The
convolution engine needs to maintain
a high utilization factor for diverse
convolutions with different parame-
ters, such as dilation, stride, and ker-
nel sizes. Since most DNN layers have
many channels, 16 channels are com-
puted in parallel so that the MAC uti-
lization remains high across diverse
convolutions. The NPU performs
zero skipping for activation sparsity
by selecting only a set of nonzero
values to form a dense tensor, and
the weight matrix is adjusted accord-
ingly to improve the compute effi-
ciency. By optimizing zero skipping,
reconfiguration, and multithreading,
the overall inference throughput for
the Inception-V3 model is improved
to 623 inferences/s at 1.2-GHz fre-
quency. Including DMA power, an
energy efficiency of 13.6 TOPS/W
was measured at 0.6 V, where MAC
utilization reached 84%.

The recent trends of digital Al
accelerators can be summarized
as follows:

m First, in many digital accelerators,
the MAC array exhibits a high de-
gree of reconfiguration capability,
e.g., suitably reconfiguring the
dataflow, stationary scheme, or
MAC computation has been report-
ed to achieve high utilization and
energy efficiency.

= Second, high to low precision is
flexibly supported for both acti-
vations and weights for Al infer-
ence. The surveyed accelerators
supported variable precision from
16 b down to 1 b in the chip design.

m Third, sparsity-aware hardware
design has been incorporated in
many accelerator designs. The stat-
ic weight sparsity can be formed
in both elementwise and struc-
tured sparsity manners, which
have tradeoffs in the achievable
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level of sparsity, index storage,
and regularity of memory access.
On the other hand, to efficiently
handle the dynamic activation
sparsity, zero skipping and form-
ing a dense activation tensor with
only nonzero activations have
been investigated.

Analog/Mixed-Signal

Al Accelerators

From the digital Al accelerators in the
literature that reported power/energy
breakdown [27], [28] (Figure 3), it can
be seen that data access energy to/
from on-chip SRAMs constitute two
thirds or more of the total system
power/energy. This is because large
amounts of memory access and data
communication (from the memory
to compute engine) are required to
perform the computation. To address
such bottlenecks, colocating memory
and compute and performing com-
putation in the analog domain have
been proposed as the remedies.

Switched- Capacitor Circuit-Based
Accelerators

In an early work [29], an analog MAC
engine design based on switched-
capacitor circuits was presented.
The 40-nm chip exploited 300-aF
unit fringe capacitors for efficient
charge-domain processing with local
memory and achieved 8.7 TOPS/W
at 1 GHz.

A mixed-signal binary CNN pro-
cessor was presented in [30]. Digital
XNOR gates were employed for the
multiplication operation of BNNs,
and the wide accumulation of XNOR
results were implemented with low-
energy switched-capacitor circuits.
By adapting the BNN algorithm, such
as fixing the number of channels
to be 256 and the convolution ker-
nel size to be 2 x 2, the customized
accelerator stores all weights on chip
and exploits data locality and reuse,
demonstrating a low 3.8-uJ energy per
inference for 86% CIFAR-10 accuracy.

IMC Scheme
To make computation more immersed
with the weight storage and to
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alleviate the memory bottlenecks, an
IMC scheme was proposed in recent
years, where we aim to embed com-
puting inside the memory. In con-
ventional digital Al accelerators, we
read out weights from the memory
row by row and convey them to a
separate compute or MAC engine. In
IMC, we turn on multiple or all rows
of the subarray simultaneously and
perform the MAC computation inside
the memory, typically along the bit-
line in an analog manner, which
can largely reduce the data trans-
fer since there is no separate com-
pute engine. By asserting all rows
together, compute parallelism is also
largely increased. These advantages
can lead to high energy efficiency.

However, IMC exhibits some chal-
lenges, including analog variability,
potential DNN accuracy loss, large-
scale integration, and making it
programmable to flexibly map vari-
ous Al workloads. While there have
been different memory technologies
presented for IMC, in this work, we
mostly focus on the SRAM-based IMC
designs due to their robustness and
viability for large-scale integration in
any CMOS node.

Figure 4 categorizes analog SRAM
IMC schemes based on the bitcell
design and location/method of ana-
log computation, focusing on the
SRAM column slice. Some early
works employed the conventional

9.06% NTV-PEs

4.3%
IMEM + Controller

18.71%
Weight Banks

(a)

six-transistor (6T) SRAM and pursued
activating multiple/all rows of a sub-
array [31]-[34] [Figure 4(a)], thereby
performing analog computation along
the bitline. The 6T SRAM is, evidently,
the densest SRAM bitcell. However,
analog computation results can drive
the bitline to a very low or high volt-
age, and, with all wordlines turned
on, this could result in a read disturb
by flipping the storage value of a bit-
cell. To prevent a read disturb, the
wordline voltages in some of these
works were lowered to ~0.4 V [32], [34].

Some other works dedicated ana-
log compute engines that can be
shared by a group of rows [35]-[37]
[Figure 4(b)], for example, 16 rows
in a 256-row subarray [37]. Within a
group, the SRAM access and compu-
tation occur in a row-by-row manner,
but different groups in the subar-
ray are computed in parallel. The
local analog compute circuits add
some area overhead, but the small-
est 6T cells can be used for the bit-
cell, while some works used larger
bitcells. Overall, the area overhead
is relatively small, but the parallel-
ism is reduced due to the row-by-row
operation within a group.

To be more aggressive on the par-
allelism, a number of works pursued
activating all rows, but, to eliminate
the read disturb issue, a new bitcell
was employed with at least a couple
of additional transistors per bitcell

Router
(18 fJ/op)

67.93%
Activation Banks

Buffer
(77 fJlop)

45%

Accumulation

on top of the 6T [38]-[43] [Figure 4(c)].
The new bitcell could be foundry 8T
[38], a custom 8T1C design [40], [43],
and so on. Considering this, an area
overhead exists compared to 6T
SRAMs. However, by turning on all of
the rows, the elementwise multipli-
cation computed in each bitcell can
be accumulated at once by connect-
ing the read bitline (RBL) together,
and this results in very high par-
allelism and low latency. We will go
through representative design exam-
ples for this highly parallel SRAM
IMC scheme.

Resistive and Capacitive SRAM IMC
The analog SRAM IMC can be largely
categorized into two types, namely,
resistive IMC and capacitive IMC.

Resistive SRAM IMC

Let’s look into the resistive IMC works
by examining two representative
papers [39], [42]. In the IMC bitcell
itself, bitwise multiplication between
the input activation and weight is
performed [Figure 5(a)]. In [39], the
input and weight are represented
by “1” or “0,” and the multiplication
between these two can be done by
pulling down the RBL only when both
the input and weight are “1” and leav-
ing it as is when either of them is “0.”
In the XNOR SRAM work [42], several
additional transistors are employ-
ed in the bitcell to implement the
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Datapath
(54 fJ/op)

Weight

Buffer
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oy // Input

- Activation
Buffer
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FIGURE 3: The power/energy breakdown of digital Al accelerators: the (a) EOS chip power for AlexNet [27], and (b) MCM chip PE energy
[28]. EOS: enhanced output stationary; IMEM: instruction memory; NTV: near-threshold voltage; op: operation.
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XNOR-based multiplication for BNNs.
If the input and weight have the same
polarity, the RBL will be pulled up,
and, if the input and weight have
different polarities, the RBL will be
pulled down.

Figure 5(b) shows the analog accu-
mulation along the column in resis-
tive IMC designs. By activating N
rows simultaneously, N cells in the
SRAM column connect to the same
RBL. In [39], the precharged RBL will
discharge with different strengths
depending on how many bitcells are
pulling down. The analog RBL volt-
age will be evaluated after a specific
amount of time, which can make the
evaluation time sensitive. In [42],
depending on how many bitcells pull
up versus pull down the RBL, a robust
resistive divider is formed without
time dependency, but, depending on
the RBL voltage level, a crowbar cur-
rent could flow.

Figure 5(c) shows the MAC com-
putation of resistive IMC designs. By
turning on Nrows together, an N-input
binary MAC could be performed in
a single cycle. The transfer curves
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To make computation more immersed with the
weight storage and to alleviate the memory
bottlenecks, an IMC scheme was proposed
in recent years, where we aim to embed
computing inside the memory.

of the two resistive IMC designs
exhibit a monotonic relationship
between the partial MAC value and
the RBL voltage.

Capacitive SRAM IMC

For analog capacitive IMC designs,
we describe the design of two rep-
resentative works [40], [43]. In [40],
the modified SRAM bitcell includes
two additional PMOS transistors
and a capacitor, where the XNOR
multiplication result between the
activation and a weight of -1 or +1
will discharge the capacitor to the
ground or charge the capacitor to
Vdd. In C3SRAM [43], the bitcell
consists of two additional NMOS
transistors and a serially con-
nected capacitor, where an XNOR
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LBLy, LBLBy,

A Ars - e
ocal
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multiplication result of -1 or +1 will
drive the middle node Vc with 0 V
or Vdd.

Figure 6(b) shows the analog
accumulation along the column in
capacitive IMC designs. In [40], as
N bitcells are activated simultane-
ously, the individual cell’s capacitor
discharged at 0 V or charged at Vdd
gets connected together and goes
through a charge-sharing operation.
In [43], N bitcells connect to the same
MAC bitline (MBL) through the series
capacitor, and capacitive coupling is
performed based on the bitcell multi-
plication result. As a result, a capaci-
tive divider is formed, where some
bitcells’ capacitors will sit between
the MBL and Vdd, and others will be
between the MBL and ground.

New Bitcell E 6T E RBL
! [Extra T} s
| p——— § E
6T | x |2
< |3
[&]
=y |ExtraT 1<
n O
° Eg
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w—p | Extra T
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% Area Overhead
(c)

FIGURE 4: The categorization of SRAM IMC schemes: (a) 6T bitcell plus parallel compute [31]-[34], (b) 6T bitcell plus local compute [35], [36]
and 10T plus local compute [37], and (c) (6 + extra)T bitcell parallel compute [38]-[43]. BL and BLB represent differential bitlines. LBL and LBLB
represent local differential bitlines. 6T: six-transistor; 10T: 10-transistor; T: transistor.
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(c)
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FIGURE 5: The resistive IMC circuits and operation: (a) the IMC SRAM bitcell design, (b) N bitcells connected to the same RBL, and (c) the N-input MAC computation. a.u.: arbitrary units.

Figure 6(c) shows the transfer
curves of the MAC computation of
the capacitive IMC designs when N
rows are activated together. Due to
the nature of the charge sharing or
capacitive divider, capacitive IMC
designs exhibit a more linear rela-
tionship between the partial MAC
value and the RBL voltage compared
to their resistive IMC counterparts.

IMC System Designs

Figure 7 shows the trend from IMC
macro designs toward IMC system
designs in the literature. SRAM IMC
designs started from single-macro
IMC designs, including CONV-SRAM
[37], XNOR SRAM [42], Twin-8T SRAM
[38], C3SRAM [43], and the 7-nm IMC
macro by TSMC [39]. Evidently, there
is a large gap between single IMC
macros and an end-to-end accelera-
tor, so, more recently, researchers
have presented IMC system designs
where a small to large number of IMC
macros have been integrated [16],
[41], [44]-[47], up to several mega-
bits of IMC SRAM. Here, we describe
two of the largest SRAM IMC system
integrations to date [46], [47].

In [46], a 16-nm scalable IMC
accelerator design was presented,
occupying a 25-mm? area. This IMC
accelerator includes a 4 x4 array
of compute-in-memory unit (CIMU)
cores, an on-chip network between
cores, buffers, control circuits, and
off-chip interfaces. The CIMU con-
sists of 1) the compute-in-memory
array (CIMA) for IMC operations, 2) a
near-memory computing digital SIMD
with a custom instruction set for
flexible elementwise operations,
and 3) buffering and control for
enabling a range of dataflows. The
IMC engine is a capacitive CIMA with
1,152 rows and 256 columns, which
executes fully row/column-parallel
analog computation, which is digi-
tized by an 8-b ADC. The capacitive
IMC allows linearity between the par-
tial MAC value and ADC output, and
it achieved high CNN accuracy for
both the CIFAR-10 and ImageNet data
sets. For 4-b activation and weight
precision, an energy efficiency of
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121 TOPS/W and a MAC compute den-
sity of 2.67 TOPS/mm? are reported.

In [47], a 28-nm programmable
IMC accelerator chip with 20 mm?
has been presented. Using a capaci-
tive coupling-based SRAM IMC bit-
cell, a 256 x 128 SRAM IMC macro
is designed with a column-parallel
4-b ADC, and 108 such macros are
integrated for the total chip. A total
of 3.4 Mb of memory was dedicated
for SRAM IMC, and 1.5 Mb of off-the-
shelf activation memory was also
employed. A custom instruction set
architecture (ISA) was developed
for programmability support with
IMC and SIMD operations, where
the hardware loop control feature
was able to reduce the total num-
ber of instructions by 4x. A peak
system-level energy efficiency of
437 TOPS/W and peak throughput
of 4.9 TOPS for binary precision
were demonstrated. These energy
numbers include all components of
the overall accelerator chip, such
as the activation memory, 256-way
SIMD unit for vector operations, and
on-chip communication.

The recent trends of analog/
mixed-signal Al accelerators can be
summarized as follows:
= Many single-macro IMC designs

have been presented in recent

years, and, currently, the best IMC
designs report >1,000 TOPS/W at

the single-macro level [49], [50].

Both resistive IMC and capaci-

tive IMC have been demonstrated,

where capacitive IMC shows high-
er linearity between MAC results
and analog voltage values.

= Analog IMC designs also support
multibit and flexible precision
from 1- to 8-b precision for both
activations and weights of DNNs

[33], [35], [38], [39], [50], [51]. Some

sparsity-aware IMC designs have

also been presented [16], [52] to
further optimize energy with
techniques such as zero skipping.
= More recently, larger-scale IMC
accelerators that integrate more
than 100 IMC macros have been
recently reported in scaled CMOS
technologies, where several megabits
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of IMC SRAM are integrated on chip
[46], [47].
= By design, IMC-based accelerators
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IMC is not particularly amenable for
fine-grain weight pruning. Here, we
introduce specific approaches that
have been proposed to tackle each
of these challenges.

Addressing a Low SNR

Associated with a lower SNR, ana-
log IMC involves inherent intrachip
and interchip variability as well as
ADC quantization. As shown in a
number of IMC chips from the litera-
ture, variability can be observed in
the ADC outputs for the same ideal
MAC value, and accuracy degrada-
tion is often reported compared
to the digital baseline. To mitigate
this accuracy loss, some IMC SRAM
works attempted to improve the SNR
by limiting the number of activated
rows for IMC, e.g., 18 rows in [38],
but this reduces the computing par-
allelism and energy efficiency.

To improve the IMC hardware
accuracy, recent works, such as [54],
performed customized DNN training
with noise injection at the individual
weight level, where the injected noise
is drawn from Gaussian distributions
based on memory bitcell variations.
However, such individual weight-
level Gaussian noise injections could
be suboptimal for actual IMC chips
for two reasons: 1) individual weight-
level noise does not consider the IMC
crosshar structure and other hard-
ware noise, such as bitline or ADC
noise, and 2) Gaussian noise does not
necessarily represent the actual IMC
hardware noise well [55].

Considering these, IMC noise-
aware DNN training is performed
[55] by injecting the measured IMC
hardware noise into the forward pass
during DNN training. All MAC opera-
tions in DNNs are divided into mul-
tiple N-input MAC operations, where
N is the number of rows activated
together in the IMC macro. For each
N-input MAC operation, the noisy and
quantized partial sum results from
IMC chip measurements are used,
where the ADC outputs for given MAC
values are randomly sampled based
on the conditional probability of ADC
output measurements for each MAC

We need ADCs and DACs because we perform
analog computation inside the IMC macro while
vtilizing digital activation storage and digital

communication between IMC macros.

value. In [55], injecting actual IMC
hardware noise measured from two
different IMC chips of XNOR SRAM
[42] and C3SRAM [43] has been evalu-
ated. The reported results show that
the IMC noise-aware training scheme
shows higher inference accuracy for
the IMC hardware across multiple
DNN models, different precision, and
a different amount of noise, and the
improvement is especially higher for
higher-noise environments (e.g., a
low Vdd for C3SRAM [43]).

Addressing Area-/

Energy-Hungry ADCs

Why are relatively high-resolution
ADCs necessary for IMC? Each IMC
macro has a finite number of rows
(e.g., 256), which computes the par-
tial sums of a DNN layer. When divid-
ing a large dot product into a number
of smaller ones, each partial sum
should not be prematurely quantized
and should have relatively high pre-

cision. With regard to the ADC chal-
lenge, different methods have been
proposed for possibly removing the
ADCs (and DACs) for IMC designs.
We need ADCs and DACs because we
perform analog computation inside
the IMC macro while utilizing digital
activation storage and digital com-
munication between IMC macros.
Then, we can think again about 1) an
all-digital design but with IMC and 2)
an all-analog Al accelerator where all
operations are performed in the ana-
log domain.

Digital IMC

All-digital IMC designs were recently
presented in [56] and [58] [Figure 9(a)].
In analog IMC, the bitwise multipli-
cation results are accumulated in
an analog manner along the bitline,
which then necessitates an ADC at
the column end. On the other hand,
the digital IMC design proposes
performing the accumulation with
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FIGURE 9: Addressing ADC challenges by (a) digital IMC [56] and (b) analog memory-based all-analog design [57]. WFB: write-with-feedback.

digital logic gates while adding such
digital accumulation circuitry inside
the IMC SRAM macro for every group
of columns. Such digital IMC designs
eliminate ADCs, since all computa-
tions are in the digital domain, and
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are also advantageous for CMOS
scaling and lower Vdd operation.
However, the digital implementation
of the wide adder tree can consume
a large area; thus, a compact imple-
mentation becomes important.
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All-Analog Al Accelerator

On the other hand, an all-analog DNN
accelerator “ARCHON” in 28 nm was
presented in [57] [Figure (9b)], which
comprises both analog computation
and capacitor-based analog memory
(AMEM). ARCHON features an analog
neuronal computation unit (ANU)
based on voltage-to-time converters
and weighted current summation as
well as an AMEM based on a 6T1C
bitcell that can store ~5-b precision
across PVT variations. The ANU and
AMEM can perform the computa-
tions needed for CNNs in the analog
domain across layers without data
conversions. ARCHON achieves an
energy efficiency of 332.7 TOPS/W (the
analog datapath) and 19.9 TOPS/W
(the processor level).

Addressing Density

To support IMC, the SRAM bitcell
and macro areas are both becoming
relatively large. To alleviate the den-
sity concerns, IMC designs based on
eNVM, such as RRAM (with a single-
level cell [59] and multilevel cell
[60]), PCM [61], MRAM [62], and Flash
[63], have been presented. Such
eNVMs are denser than SRAM and
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consume low leakage. Also, with the
resistive device, it can naturally sup-
port matrix-vector multiplication.
On the other hand, the nonidealities
of eNVM devices include endurance,
variation, drift, and so on. In several
recent works, the larger-scale inte-
gration of eNVM-based IMC systems
has been demonstrated. In [63], an
embedded Flash-based IMC system
with 79 million 8-b weights was pre-
sented, and [64] presented a 2.25-MB
RRAM-based IMC system with an
embedded ARM processor.

Addressing Pruning for IMC Designs
Applying random sparsity patterns
resulted from fine-grain nonstruc-
tured pruning to a fixed SRAM IMC
array structure can become ineffi-
cient [65]. If the IMC operation hap-
pens on a column basis, it will be
much more efficient to prune out
the entire/partial column in a struc-
tured manner. However, as shown
in Figure 10, smaller group sizes
achieve higher sparsity compared
to the large-sized groups. On the
other hand, a small-sized group will
restrict the number of rows that can
be activated simultaneously, which
requires a higher number of cycles to
go through the same crossbar array.
Other approaches include sparsity-
aware activation/weight process-
ing for IMC macro design [16] and
sparsity-optimized IMC bitcell design
[66]. Overall, this challenge needs a
carefully structured pruning algo-
rithm and supporting IMC hardware
co-design.

Conclusion

In this article, we presented how
both digital and analog Al accelera-
tors have largely advanced in recent
years. The trends of all-digital accel-
erators include a reconfigurable MAC
array, high utilization across various
Al models, flexible precision sup-
port, and weight/activation sparsity-
aware design. Regarding the trends
on analog/mixed-signal accelerators,
single IMC macro designs are scaled
up with a higher level of integration
for a many-macro IMC system design.

Flexible precision and program-
mability have been supported in
larger-scale IMC systems. The chal-
lenges for these designs are being
addressed in different ways. For ana-
log IMC designs, improving the DNN
accuracy, ADC overhead, density, and
sparsity are important. By address-
ing such challenges, new all-analog,
digital IMC- and NVM-based Al accel-
erators are being further presented
in the literature.
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