
1943-0582/22©2022IEEE	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 SUMMER 202 2	 65

or state-of-the-art
artificial intelli
gence (AI) accelera
tors, there have been

large advances in
both all-digital and analog/mixed-

signal circuit-based designs. This
article presents a practical overview
and comparison of recent digital
and analog AI accelerators. We first
introduce hardware-efficient AI algo-
rithms, which have been targeted for
many AI hardware designs. Next, we
present a survey of 1) all-digital AI
accelerators, including designs with

new dataflow, low precision, and
sparsity, and 2) analog/mixed-signal
AI accelerators featuring switch-
capacitor circuits and in-memory
computing (IMC) with ADCs. Recent
advances of AI accelerators in both
digital and analog design approaches
are summarized, and emerging AI
accelerator designs are discussed.

Digital Object Identifier 10.1109/MSSC.2022.3182935

Date of current version: 24 August 2022

Advances, trends, and emerging designs

Digital Versus Analog
Artificial Intelligence

Accelerators

Jae-sun Seo, Jyotishman Saikia, Jian Meng, Wangxin He, Han-sok Suh, Anupreetham,
Yuan Liao, Ahmed Hasssan, and Injune Yeo

F
Authorized licensed use limited to: Cornell University Library. Downloaded on April 18,2023 at 06:00:00 UTC from IEEE Xplore. Restrictions apply.

66	 SUMMER 202 2	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

Background
AI and deep neural network (DNN)
algorithms have been very successful
across many tasks, including com-
puter vision, natural language pro-
cessing, and medical diagnosis. While
AI algorithms have largely improved
over recent years to achieve high
accuracy with a smaller number of
operations and fewer weights, state-
of-the-art ImageNet algorithms still
require billions of MAC operations
per single image inference and stor-
age for millions of weights [1].

It is challenging to map such
complex algorithms onto various
hardware platforms, especially with
divergent power and area constraints,
from embedded systems to mobile
smartphones and wearable devices.
To that end, both hardware-efficient
algorithms and custom AI accelera-
tors that can efficiently map such
algorithms are required:

To benchmark AI inference accel-
erators, there are several well-known
metrics that have been used through-
out the literature [2], such as power,
throughput, and energy efficiency.
Power is the rate at which you do
computations times the energy per
inference. The energy per inference
for a given application is the ultimate
metric we care about (1). The energy
per inference has two components:
1) how many operations you have per
inference and 2) the energy per such
operation. In the machine learning
community, there have been many
works on tuning the first knob by
using a smaller number of neces-
sary operations per inference, com-
pressing the model via exploiting
sparsity, and so on. The hardware
community has presented various
methods for tuning the second knob,
with new hardware fabrics and pro-
cess technologies.

Hardware-Efficient Algorithms
Hardware-efficient algorithms include
approaches such as quantization [3],
pruning [4], compact model trans-
formation [5], tensor decomposition
[6], and so on. Arguably, quantiza-
tion and pruning have been the two
main approaches for making AI algo-
rithms hardware efficient. Quantiza-
tion aims to use fewer bits per each
weight and/or activation, and this is
done by discretizing each weight to
a finite number of specific values.
Pruning exploits the fact that zero
weights/activations do not change
the MAC result and the final DNN
result. To that end, we can prune out
zero weights and activations with-
out affecting the DNN outcome. By
using fewer total weights, the stor-
age requirement is largely alleviated.
Both of these techniques can signifi-
cantly reduce the area and energy of
the resultant AI accelerator.

Low-Precision Quantization
Conventionally, DNNs are first trained
with 32- or 64-b floating-point pre-
cision, and then the trained DNN is
quantized with fixed-point preci-
sion. For posttraining quantization,
dynamic quantization [7] or hardware-
aware quantization [8] can be per-
formed, where a different number
of integers versus fractional bits are
used for different layers within the
same model to improve the accuracy-
versus-precision tradeoff. However,
the DNN accuracy of such posttrain-
ing quantization works sharply wors-
ens for <6-b precision.

To achieve high DNN accuracy
with even lower precision values,
in-training quantization, or quanti-
zation-aware training [9], has been
proposed. The key idea is that the
target low precision for quantization
should be incorporated in the DNN

training process so that the DNN
weights can be trained, reflecting the
low-precision quantization. In partic-
ular, during the forward/backward
passes of DNN training, the same
target low fixed-point precision for
inference will be used, while, for the
weight update, high floating-point
precision will still be used. Since the
forward pass of DNN training is the
same as DNN inference, after training
is complete, the DNN inference can
achieve high accuracy with the tar-
get low-precision quantization. The
extreme case of low-precision quan-
tization is binarizing both weights
and inputs (1-b precision), where the
multiplication between weights and
inputs become a simple XNOR opera-
tion, and accumulate becomes the
bitcount operation of XNOR outputs
[10]. A large amount of memory as
well as computation can be saved.

In-training quantization has been
further optimized with wider DNN
models in [11], where it has been
reported that wider DNNs perform
in-training quantization effectively
with lower precision. By trading off
a higher number of raw compute oper-
ations with an aggressively reduced
precision of weights and activations
for isoaccuracy, the overall com-
pute cost becomes lower with wider
DNN models.

In [12], for various DNNs for Ima-
geNet, low-precision quantization
from 8, 4, and down to 2 b has been
evaluated. In another recent work [13],
the accuracy of 4-b MobileNet models
has been optimized. As shown in Fig-
ure 1, the variants of ResNet and VGG
models for ImageNet data set show
reasonable accuracy down to 3–4-b
precision. For more compact models,
such as MobileNet and SqueezeNet, it
is more difficult to achieve low preci-
sion, as noticeable accuracy degrada-
tion is observed below 4-b precision.

Pruning
The conventional pruning method is
magnitude-based pruning [4], where
the weights whose magnitudes are
close to zero are pruned out from
the DNN model. As we prune the

	 Inference
Energy

Inference
Number of Operations

Operation
Energy

Care About Exploit Sparsity Process Technology
Ultimate Compress Model Improve Hardware Fabric

#=
1 2 3444 444 1 2 34444444 4444444 1 2 3444 444 �

(1)

Authorized licensed use limited to: Cornell University Library. Downloaded on April 18,2023 at 06:00:00 UTC from IEEE Xplore. Restrictions apply.

	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 SUMMER 202 2	 67

DNNs, the DNN accuracy needs to
be carefully monitored. One of the
recent works that further improved
the accuracy-versus-sparsity trad-
eoff is lookahead pruning [14], which
extends the layerwise approxima-
tion of magnitude-based pruning to
a block of layers by looking ahead at
the impact of pruning on neighbor-
ing layers. While high sparsity can be
achieved, these elementwise sparsity
techniques require indexes to store
the location of the remaining nonzero
weights after pruning, and this can
be a larger burden for low-precision
weights. In addition, the sparsity
with elementwise pruning is typi-
cally formed in an irregular manner,
which can hurt the memory access
and efficient hardware acceleration.

To address such challenges of
elementwise pruning, structured prun-
ing has been proposed [15]–[17],
where weights are pruned in row-
wise, columnwise, or blockwise man-
ner. Such structured pruning largely
reduces the index storage since the
index can be shared among the row/
column/block structure, and it also
enhances regular memory access and
hardware acceleration. If we apply
rowwise or columnwise structured
sparsity for general matrix multi-
plication, we can remove the entire
rows or columns, effectively reduc-
ing the size of the matrix. Group
least absolute shrinkage and selec-
tion operator (LASSO) regularization

was performed in [15] to also remove
2D filters in convolutional neural net-
works (CNNs) to achieve channelwise
or filterwise structured sparsity.

When we try to naively combine
structured pruning with low-pre-
cision quantization, nonnegligible
accuracy loss occurs because group
LASSO pruning acts like normal
regularization, forcing all weights
toward smaller values. A weight pen-
alty clipping technique with a self-
adapting threshold was presented
in [18]. Essentially, if the overall
group weight is large in terms of
L2 norm, the group is not pruned
by group LASSO, and only when
the group weight is small are the
weights pruned in a groupwise man-
ner. By optimally combining large
structured compression with ternary
weights for DNNs, a lower accuracy
drop was achieved.

All-Digital AI Accelerators
To efficiently execute the complex AI
algorithms that accompany the quan-
tization and/or pruning techniques
discussed in the “Hardware-Efficient
Algorithms” section, many custom
ASIC accelerators have been pre-
sented in the literature. These include
chips from major industry companies
(Google TPU, Tesla Dojo, and so on), a
number of recent start-up companies
(Sambanova, Graphcore, Groq, and so
on), and new prototype chips from
many research groups in academia.

MAC operations occupy >90% of
DNN workloads. To compute such
a large number of MAC operations,
all-digital DNN accelerators typically
employ a large number of parallel
processing engines (PEs), where each
PE performs one or several MAC
computations. Considering different
memory hierarchies, off-chip DRAM
access consumes higher energy by
a couple orders of magnitude than
MAC computation or local register
file access. To that end, DNN accel-
erators are designed to support spe-
cialized processing dataflows that
leverage this memory hierarchy.

Many digital AI accelerators have
commonly employed a 2D systolic
array of PEs or MAC engines with
specific dataflows to reuse input acti-
vations and/or weights while keep-
ing the weight, partial sum, or input
stationary in each PE (Figure 2). In
the weight-stationary dataflow (WSD),
each filter weight remains station-
ary, input activations get loaded
and shifted horizontally, and par-
tial sums are accumulated vertically.
The static weights can be reused and
computed with multiple pixels in the
same feature map or with different
feature maps. In the output-station-
ary dataflow (OSD), the accumulation
of each output pixel stays stationary
in each PE, while the input activa-
tions get loaded and shifted horizon-
tally, and the weights get loaded and
shifted vertically across the PEs.

75

70

65

60

55Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

(%
) [13]

MobileNet-V2
MobileNet-V3

SqueezeNext-23-2x

ResNet-18
ResNet-34

ResNet-50 ResNet-101
ResNet-152

VGG-16bn

1 2 4 8 16 32 64 128
Model Size (MB)

Full Precision Model Sizes (MB)
ResNet-18: 45
ResNet-34: 83
ResNet-50: 97
ResNet-101: 170
ResNet-152: 230
VGG-16bn: 528
SqueezeNext-23-2x: 10

Precision
2
3
4
8

FIGURE 1: Low-precision DNN algorithms and ImageNet accuracy [12], [13].

Authorized licensed use limited to: Cornell University Library. Downloaded on April 18,2023 at 06:00:00 UTC from IEEE Xplore. Restrictions apply.

68	 SUMMER 202 2	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

The OSD minimizes the read/write
energy of the partial sum, which
requires higher precision than the
input or weights.

Digital AI Accelerators
Featuring Low Precision
Different DNN models have different
optimal weight precisions, and dif-
ferent layers in a given DNN model
have different optimal precisions.
Therefore, to obtain the optimal
energy–accuracy tradeoff, support-
ing variable weight precision is
important for DNN accelerators.

In the UNPU accelerator [22], vari-
able weight precision from 1 to 16 b
is supported by bit serial process-
ing, where MAC operations with N-b
weight precision are computed sequen-
tially from the LSB to the MSB of the
weights for N cycles by shifting and
accumulating the partial sums.

Higher energy efficiency is achieved
for lower-precision weights, while
the accuracy degradation could occur
depending on the DNN. In addition,
by efficiently reusing input feature
maps, the same UNPU chip can be
fully shared for convolution, recur-
rent, and fully connected layers.

In [23], Intel presented a digital
binary neural network (BNN) accel-
erator in 10-nm CMOS. When N-b

precision is reduced to 1-b precision,
the memory storage is reduced lin-
early, while the compute complexity
is reduced quadratically (e.g., 8-b
MAC energy is 10–100× higher than
1-b MAC energy). To that end, the pro-
posed BNN accelerator employs much
higher parallelism of very-low-preci-
sion MACs and data reuse to amortize
the cost of memory access and data
movement across many operations.
The accelerator chip has 131,000
binary MAC units or XNOR gates split
between a total of 128 memory exe-
cution units. At 0.37 V, 617 TOPS/W
energy efficiency is achieved.

IBM presented a 7-nm AI chip [24]
that supports both fixed-point pre-
cision inference and floating-point
precision training. This chip consists
of four AI cores, where each core has
two corelets with a private L0 and a
shared L1 scratchpad.

Each corelet contains an 8 8#
array of mixed-precision engines
(MPEs), where MPEs implement sepa-
rate compute pipelines for various
precisions. Inference workloads can
be executed with 2- or 4-b fixed-
point precision and training work-
loads can be operated with hybrid
8- or 16-b floating-point precision to
meet diverse application demands
for both AI inference and training.

For inference with 4-b fixed-point
precision, with a 0.55-V core and
0.7-V SRAM supply, 16.5 TOPS/W
are reported. A scaled-up chip with
32 cores achieves >60% utilization
for ResNet-50 and >70% utilization
for the Google Neural Machine Trans-
lation model.

Digital AI Accelerators
Featuring Pruning/Sparsity
The STICKER-T accelerator [25] employed
block-circulant weights as a struc-
tured compression technique, where
each row vector circulantly rotates
one element to the right side to gen-
erate the next row vector. Therefore,
the first row includes all informa-
tion in this matrix block, leading
to N# storage reduction. By train-
ing weights in the block-circulant
matrix format, the matrix–vector
multiplication can be performed
with frequency-domain elementwise
production, and FFT operations can
reduce the computation complexity
from ()O n2 to ()logO n n .

With the block-circulant technique,
STICKER-T has a frequency-domain
16 16# MAC array with bit serial
processing to flexibly support 1–12-b
precision. Sixteen activations are
shared by the same PE row, and 16
weights are shared by the same PE

Input
Activation

Weight Partial Sum

W11 W12 W13

W21 W22 W23

W31 W32 W33

P11 P12 P13

P21 P22 P23

P31 P32 P33

Partial Sum Weight

Weight Memory

Ac
tiv

at
io

n
M

em
or

y

Ac
tiv

at
io

n
M

em
or

y

(a) (b)

FIGURE 2: (a) The weight-stationary dataflow [19], [20] and (b) output-stationary dataflow [21]. P: partial sum; W: weight.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 18,2023 at 06:00:00 UTC from IEEE Xplore. Restrictions apply.

	 	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 SUMMER 202 2	 69

column. An energy efficiency of up
to 140 TOPS/W is reported for 1-b
precision, while this decreases pro-
gressively for higher-bit precision. At
the same bit precision, a larger block
size leads to higher energy efficiency
due to the reduced FFT and MAC
operations, while this is achieved at
moderately lower DNN accuracy. Dif-
ferent types of neural networks, such
as tiny YOLO CNN, RNN, and so on for
different data sets have been demon-
strated, using different block sizes
and precision.

Long short-term memory (LSTM)
is a type of RNN that is widely used
for speech applications, but LSTMs
pose difficulties for efficient hard-
ware due to the large number of
weights and amount of computation
complexity. In [17], a new hierarchi-
cal coarse-grain sparsity (HCGS)
scheme is presented that struc-
turally compresses the weights of
LSTM models. HCGS removes block
weights for weight matrices in LSTMs
in a hierarchical blockwise manner.
Within the first-level coarse block
sparsity, a second-level fine block
sparsity is applied recursively. With
16× hierarchical blockwise sparsity,
all weights for a three-layer LSTM
fully fit on chip with 288 kB of mem-
ory, and only 8.5 kB of memory are
employed for index and bias. Since
HCGS ensures a regular blockwise
sparse weight structure and access,
the MAC engines exhibit a high
utilization ratio of >98% through-
out the LSTM operation. The HCGS
accelerator achieves an average
energy efficiency of 8.9/7.2 TOPS/W
for LSTMs for TIMIT/TED-LIUM data
sets while performing real-time
speech recognition.

Based on recent works that jointly
optimize pruning and low-precision
quantization, the relative cost of
index storage for elementwise prun-
ing will be even higher for DNNs
with low-precision weights. To that
end, structured compression works
become more important with low-
precision quantization since it can
share the index per block, substan-
tially reduce the index overhead,

and also make the weight memory
access regular.

Samsung presented an activation
sparsity-aware neural processing
unit (NPU) for mobile SoCs in 5-nm
CMOS [20]. This NPU chip consists
of three cores, where each core has
2,048 8-b MACs that employ a WSD to
maximize the reuse of weights. The
convolution engine needs to maintain
a high utilization factor for diverse
convolutions with different parame-
ters, such as dilation, stride, and ker-
nel sizes. Since most DNN layers have
many channels, 16 channels are com-
puted in parallel so that the MAC uti-
lization remains high across diverse
convolutions. The NPU performs
zero skipping for activation sparsity
by selecting only a set of nonzero
values to form a dense tensor, and
the weight matrix is adjusted accord-
ingly to improve the compute effi-
ciency. By optimizing zero skipping,
reconfiguration, and multithreading,
the overall inference throughput for
the Inception-V3 model is improved
to 623 inferences/s at 1.2-GHz fre-
quency. Including DMA power, an
energy efficiency of 13.6 TOPS/W
was measured at 0.6 V, where MAC
utilization reached 84%.

The recent trends of digital AI
accelerators can be summarized
as follows:

■■ First, in many digital accelerators,
the MAC array exhibits a high de-
gree of reconfiguration capability,
e.g., suitably reconfiguring the
dataflow, stationary scheme, or
MAC computation has been report-
ed to achieve high utilization and
energy efficiency.

■■ Second, high to low precision is
flexibly supported for both acti-
vations and weights for AI infer-
ence. The surveyed accelerators
supported variable precision from
16 b down to 1 b in the chip design.

■■ Third, sparsity-aware hardware
design has been incorporated in
many accelerator designs. The stat-
ic weight sparsity can be formed
in both elementwise and struc-
tured sparsity manners, which
have tradeoffs in the achievable

level of sparsity, index storage,
and regularity of memory access.
On the other hand, to efficiently
handle the dynamic activation
sparsity, zero skipping and form-
ing a dense activation tensor with
only nonzero activations have
been investigated.

Analog/Mixed-Signal
AI Accelerators
From the digital AI accelerators in the
literature that reported power/energy
breakdown [27], [28] (Figure 3), it can
be seen that data access energy to/
from on-chip SRAMs constitute two
thirds or more of the total system
power/energy. This is because large
amounts of memory access and data
communication (from the memory
to compute engine) are required to
perform the computation. To address
such bottlenecks, colocating memory
and compute and performing com-
putation in the analog domain have
been proposed as the remedies.

Switched-Capacitor Circuit-Based
Accelerators
In an early work [29], an analog MAC
engine design based on switched-
capacitor circuits was presented.
The 40-nm chip exploited 300-aF
unit fringe capacitors for efficient
charge-domain processing with local
memory and achieved 8.7 TOPS/W
at 1 GHz.

A mixed-signal binary CNN pro-
cessor was presented in [30]. Digital
XNOR gates were employed for the
multiplication operation of BNNs,
and the wide accumulation of XNOR
results were implemented with low-
energy switched-capacitor circuits.
By adapting the BNN algorithm, such
as fixing the number of channels
to be 256 and the convolution ker-
nel size to be ,2 2# the customized
accelerator stores all weights on chip
and exploits data locality and reuse,
demonstrating a low 3.8-μJ energy per
inference for 86% CIFAR-10 accuracy.

IMC Scheme
To make computation more immersed
with the weight storage and to

Authorized licensed use limited to: Cornell University Library. Downloaded on April 18,2023 at 06:00:00 UTC from IEEE Xplore. Restrictions apply.

70	 SUMMER 202 2	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

alleviate the memory bottlenecks, an
IMC scheme was proposed in recent
years, where we aim to embed com-
puting inside the memory. In con-
ventional digital AI accelerators, we
read out weights from the memory
row by row and convey them to a
separate compute or MAC engine. In
IMC, we turn on multiple or all rows
of the subarray simultaneously and
perform the MAC computation inside
the memory, typically along the bit-
line in an analog manner, which
can largely reduce the data trans-
fer since there is no separate com-
pute engine. By asserting all rows
together, compute parallelism is also
largely increased. These advantages
can lead to high energy efficiency.

However, IMC exhibits some chal-
lenges, including analog variability,
potential DNN accuracy loss, large-
scale integration, and making it
programmable to flexibly map vari-
ous AI workloads. While there have
been different memory technologies
presented for IMC, in this work, we
mostly focus on the SRAM-based IMC
designs due to their robustness and
viability for large-scale integration in
any CMOS node.

Figure 4 categorizes analog SRAM
IMC schemes based on the bitcell
design and location/method of ana-
log computation, focusing on the
SRAM column slice. Some early
works employed the conventional

six-transistor (6T) SRAM and pursued
activating multiple/all rows of a sub-
array [31]–[34] [Figure 4(a)], thereby
performing analog computation along
the bitline. The 6T SRAM is, evidently,
the densest SRAM bitcell. However,
analog computation results can drive
the bitline to a very low or high volt-
age, and, with all wordlines turned
on, this could result in a read disturb
by flipping the storage value of a bit-
cell. To prevent a read disturb, the
wordline voltages in some of these
works were lowered to ~0.4 V [32], [34].

Some other works dedicated ana-
log compute engines that can be
shared by a group of rows [35]–[37]
[Figure 4(b)], for example, 16 rows
in a 256-row subarray [37]. Within a
group, the SRAM access and compu-
tation occur in a row-by-row manner,
but different groups in the subar-
ray are computed in parallel. The
local analog compute circuits add
some area overhead, but the small-
est 6T cells can be used for the bit-
cell, while some works used larger
bitcells. Overall, the area overhead
is relatively small, but the parallel-
ism is reduced due to the row-by-row
operation within a group.

To be more aggressive on the par-
allelism, a number of works pursued
activating all rows, but, to eliminate
the read disturb issue, a new bitcell
was employed with at least a couple
of additional transistors per bitcell

on top of the 6T [38]–[43] [Figure 4(c)].
The new bitcell could be foundry 8T
[38], a custom 8T1C design [40], [43],
and so on. Considering this, an area
overhead exists compared to 6T
SRAMs. However, by turning on all of
the rows, the elementwise multipli-
cation computed in each bitcell can
be accumulated at once by connect-
ing the read bitline (RBL) together,
and this results in very high par-
allelism and low latency. We will go
through representative design exam-
ples for this highly parallel SRAM
IMC scheme.

Resistive and Capacitive SRAM IMC
The analog SRAM IMC can be largely
categorized into two types, namely,
resistive IMC and capacitive IMC.

Resistive SRAM IMC
Let’s look into the resistive IMC works
by examining two representative
papers [39], [42]. In the IMC bitcell
itself, bitwise multiplication between
the input activation and weight is
performed [Figure 5(a)]. In [39], the
input and weight are represented
by “1” or “0,” and the multiplication
between these two can be done by
pulling down the RBL only when both
the input and weight are “1” and leav-
ing it as is when either of them is “0.”
In the XNOR SRAM work [42], several
additional transistors are employ
ed in the bitcell to implement the

4.3%
IMEM + Controller

18.71%
Weight Banks

9.06% NTV-PEs

67.93%
Activation Banks

(a) (b)

Router
(18 fJ/op)

Control (5 fJ/op)

Datapath
(54 fJ/op)

Weight
Buffer

(4 fJ/op)

Input
Activation

Buffer
(15 fJ/op)

Accumulation
Buffer

(77 fJ/op)

10%
3%

31%

2%
9%

45%

FIGURE 3: The power/energy breakdown of digital AI accelerators: the (a) EOS chip power for AlexNet [27], and (b) MCM chip PE energy
[28]. EOS: enhanced output stationary; IMEM: instruction memory; NTV: near-threshold voltage; op: operation.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 18,2023 at 06:00:00 UTC from IEEE Xplore. Restrictions apply.

	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 SUMMER 202 2	 71

XNOR-based multiplication for BNNs.
If the input and weight have the same
polarity, the RBL will be pulled up,
and, if the input and weight have
different polarities, the RBL will be
pulled down.

Figure 5(b) shows the analog accu-
mulation along the column in resis-
tive IMC designs. By activating N
rows simultaneously, N cells in the
SRAM column connect to the same
RBL. In [39], the precharged RBL will
discharge with different strengths
depending on how many bitcells are
pulling down. The analog RBL volt-
age will be evaluated after a specific
amount of time, which can make the
evaluation time sensitive. In [42],
depending on how many bitcells pull
up versus pull down the RBL, a robust
resistive divider is formed without
time dependency, but, depending on
the RBL voltage level, a crowbar cur-
rent could flow.

Figure 5(c) shows the MAC com-
putation of resistive IMC designs. By
turning on N rows together, an N-input
binary MAC could be performed in
a single cycle. The transfer curves

of the two resistive IMC designs
exhibit a monotonic relationship
between the partial MAC value and
the RBL voltage.

Capacitive SRAM IMC
For analog capacitive IMC designs,
we describe the design of two rep-
resentative works [40], [43]. In [40],
the modified SRAM bitcell includes
two additional PMOS transistors
and a capacitor, where the XNOR
multiplication result between the
activation and a weight of –1 or +1
will discharge the capacitor to the
ground or charge the capacitor to
Vdd. In C3SRAM [43], the bitcell
consists of two additional NMOS
transistors and a serially con-
nected capacitor, where an XNOR

multiplication result of –1 or +1 will
drive the middle node Vc with 0 V
or Vdd.

Figure 6(b) shows the analog
accumulation along the column in
capacitive IMC designs. In [40], as
N bitcells are activated simultane-
ously, the individual cell’s capacitor
discharged at 0 V or charged at Vdd
gets connected together and goes
through a charge-sharing operation.
In [43], N bitcells connect to the same
MAC bitline (MBL) through the series
capacitor, and capacitive coupling is
performed based on the bitcell multi-
plication result. As a result, a capaci-
tive divider is formed, where some
bitcells’ capacitors will sit between
the MBL and Vdd, and others will be
between the MBL and ground.

A1

A2

AN–1

A1, A2, ...

Ak, Ak+1, ...

AN

Ac
tiv

at
io

ns

6T

6T

6T

6T

WLN

WLN–1

WL2

WL1BL BLB
LBL1

LBLM LBLBM

LBLB1

6T
6T

6T

6T
6T

6T

New Bitcell RBL6T

6T

6T

6T

Extra T

Extra T

Extra T

Extra T

A
 ×

 W
El

em
en

tw
is

e
M

ul
tip

lic
at

io
n Ac

cu
m

ul
at

io
n

A × WΣ

High Parallelism

Area Overhead

High Density

Read Disturb Issue

Small Area Overhead

Less Parallelism

Local
Analog Compute

Local
Analog Compute

(a) (b) (c)

FIGURE 4: The categorization of SRAM IMC schemes: (a) 6T bitcell plus parallel compute [31]–[34], (b) 6T bitcell plus local compute [35], [36]
and 10T plus local compute [37], and (c) (6 + extra)T bitcell parallel compute [38]–[43]. BL and BLB represent differential bitlines. LBL and LBLB
represent local differential bitlines. 6T: six-transistor; 10T: 10-transistor; T: transistor.

To make computation more immersed with the
weight storage and to alleviate the memory
bottlenecks, an IMC scheme was proposed
in recent years, where we aim to embed
computing inside the memory.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 18,2023 at 06:00:00 UTC from IEEE Xplore. Restrictions apply.

72	 SUMMER 202 2	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

Figure 6(c) shows the transfer
curves of the MAC computation of
the capacitive IMC designs when N
rows are activated together. Due to
the nature of the charge sharing or
capacitive divider, capacitive IMC
designs exhibit a more linear rela-
tionship between the partial MAC
value and the RBL voltage compared
to their resistive IMC counterparts.

IMC System Designs
Figure 7 shows the trend from IMC
macro designs toward IMC system
designs in the literature. SRAM IMC
designs started from single-macro
IMC designs, including CONV-SRAM
[37], XNOR SRAM [42], Twin-8T SRAM
[38], C3SRAM [43], and the 7-nm IMC
macro by TSMC [39]. Evidently, there
is a large gap between single IMC
macros and an end-to-end accelera-
tor, so, more recently, researchers
have presented IMC system designs
where a small to large number of IMC
macros have been integrated [16],
[41], [44]–[47], up to several mega-
bits of IMC SRAM. Here, we describe
two of the largest SRAM IMC system
integrations to date [46], [47].

In [46], a 16-nm scalable IMC
accelerator design was presented,
occupying a 25-mm2 area. This IMC
accelerator includes a 4 4# array
of compute-in-memory unit (CIMU)
cores, an on-chip network between
cores, buffers, control circuits, and
off-chip interfaces. The CIMU con-
sists of 1) the compute-in-memory
array (CIMA) for IMC operations, 2) a
near-memory computing digital SIMD
with a custom instruction set for
flexible elementwise operations,
and 3) buffering and control for
enabling a range of dataflows. The
IMC engine is a capacitive CIMA with
1,152 rows and 256 columns, which
executes fully row/column-parallel
analog computation, which is digi-
tized by an 8-b ADC. The capacitive
IMC allows linearity between the par-
tial MAC value and ADC output, and
it achieved high CNN accuracy for
both the CIFAR-10 and ImageNet data
sets. For 4-b activation and weight
precision, an energy efficiency of

(a
)

(b
)

(c
)

Tr
an

sf
er

 C
ur

ve
:

M
AC

 C
om

pu
ta

tio
n

M
ec

ha
ni

sm
:

Pa
ra

lle
l P

ul
l-D

ow
n

of
 R

BL

Pa
ra

lle
l P

ul
l-U

p/
Pu

ll-
D

ow
n

of
 R

BL

Bi
tw

is
e

M
ul

tip
lic

at
io

n
Im

pl
em

en
ta

tio
n:

R
es

is
tiv

e
Pu

ll-
U

p/
Pu

ll-
D

ow
n

R
es

is
tiv

e
Pu

ll-
U

p/
Pu

ll-
D

ow
n

Resistive IMC [39] Resistive IMC:
XNOR SRAM [42]

Input = 0 Input = 1

W
ei

gh
t =

 0
W

ei
gh

t =
 1

W
L

W
L

W
L

W
L

BL

BL BL

BL

0 0

1 1

I O
FF

I O
FF

I D
S I D
S

∆V
BL

 ≈
 0

∆V
BL

 ≈
 0

 =
 0

 ×
 ∆

V
∆V

BL
 =

 1
 ×

 ∆
V

∆V
BL

 ≈
 0

In
pu

t =
 +

1

W
ei

gh
t =

 +
1

W
ei

gh
t =

 –
1

In
pu

t =
 –

1

6T
 S

R
AM

St
or

ag
e

0

0
0

0
0

0

0

T7
T7

T1
0

T1
0

0

0

0
T7 T9

T9

T8
T8

T9
T9

T8
T8

T7

0

0

VD
D

VD
D

VD
D

T1
0

T1
0

VD
D

VD
D

VD
D

VD
D

VD
D

VD
D

VD
D

R
B

L
R

B
L

VD
D

VD
D

XN
O

R
 =

 +
1

XN
O

R
 =

 +
1

XN
O

R
 =

 –
1

XN
O

R
 =

 –
1

W
L 1

I 1 I 2 I R

W
L 2

W
L R

0/
1

0/
1

0/
1

BL

6T 6T

R
BL

R
W

L_
P[

1]

R
W

L_
P[

N
]

R
W

L_
N

[1
]

R
W

LB
_P

[1
]

R
W

LB
_P

[N
]

R
W

LB
_N

[N
]

R
W

LB
_N

[1
]

R
W

L_
N

[N
]

VD
D

VD
D

R
BL R
BL

a

a

V
S

S

V
S

S

Pr
ec

ha
rg

e

N
-a

Ti
m

e-
D

ep
en

de
nt

 P
ul

l-D
ow

n

R
es

is
tiv

e
D

iv
id

er

80
0

70
0

60
0

50
0

40
0

30
0

20
0

10
0 0

0
1

2
3

4
5

6
7

8
9

10
11

12
13

15
14

M
ul

tip
lic

at
io

n
R

es
ul

t (
a.

u.
)

Li
ne

ar
N

on
lin

ea
r

RBL Voltage (mV)

M
ea

su
re

m
en

t
0.

6

0.
5

0.
4

0.
3

0.
2

0.
1 0

VRBL (V)

–2
56

–1
28

0
12

8
25

6
Pa

rti
al

 M
AC

 V
al

ue

FI
G

U
RE

 5
: T

he
 re

si
st

iv
e

IM
C

cir
cu

its
 a

nd
 o

pe
ra

tio
n:

 (a
) t

he
 IM

C
SR

AM
 b

itc
el

l d
es

ig
n,

 (b
) N

 b
itc

el
ls

 c
on

ne
ct

ed
 to

 th
e

sa
m

e
RB

L,
 a

nd
 (c

) t
he

 N
-in

pu
t M

AC
 c

om
pu

ta
tio

n.
 a

.u
.:

ar
bi

tr
ar

y
un

its
.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 18,2023 at 06:00:00 UTC from IEEE Xplore. Restrictions apply.

	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 SUMMER 202 2	 73

121 TOPS/W and a MAC compute den-
sity of 2.67 TOPS/mm2 are reported.

In [47], a 28-nm programmable
IMC accelerator chip with 20 mm2
has been presented. Using a capaci-
tive coupling-based SRAM IMC bit-
cell, a 256 × 128 SRAM IMC macro
is designed with a column-parallel
4-b ADC, and 108 such macros are
integrated for the total chip. A total
of 3.4 Mb of memory was dedicated
for SRAM IMC, and 1.5 Mb of off-the-
shelf activation memory was also
employed. A custom instruction set
architecture (ISA) was developed
for programmability support with
IMC and SIMD operations, where
the hardware loop control feature
was able to reduce the total num-
ber of instructions by 4×. A peak
system-level energy efficiency of
437 TOPS/W and peak throughput
of 4.9 TOPS for binary precision
were demonstrated. These energy
numbers include all components of
the overall accelerator chip, such
as the activation memory, 256-way
SIMD unit for vector operations, and
on-chip communication.

The recent trends of analog/
mixed-signal AI accelerators can be
summarized as follows:

■■ Many single-macro IMC designs
have been presented in recent
years, and, currently, the best IMC
designs report >1,000 TOPS/W at
the single-macro level [49], [50].
Both resistive IMC and capaci-
tive IMC have been demonstrated,
where capacitive IMC shows high-
er linearity between MAC results
and analog voltage values.

■■ Analog IMC designs also support
multibit and flexible precision
from 1- to 8-b precision for both
activations and weights of DNNs
[33], [35], [38], [39], [50], [51]. Some
sparsity-aware IMC designs have
also been presented [16], [52] to
further optimize energy with
techniques such as zero skipping.

■■ More recently, larger-scale IMC
accelerators that integrate more
than 100 IMC macros have been
recently reported in scaled CMOS
technologies, where several megabits

M
AC

 C
om

pu
ta

tio
n

M
ec

ha
ni

sm
:

C
ha

rg
e

Sh
ar

in
g

Ne
ur

on
 T

ile

M
ul

tip
lyi

ng
 B

itc
el

l

Ne
ur

on
Pa

tc
h

(a
)

(b
)

(c
)

Tr
an

sf
er

 C
ur

ve
:

Bi
tw

is
e

M
ul

tip
lic

at
io

n
Im

pl
em

en
ta

tio
n:

C
ap

ac
ito

r C
ha

rg
e

or
 D

is
ch

ar
ge

D
riv

e
Vc

 W
ith

 Z
er

o
or

 O
ne

C
ap

ac
iti

ve
IM

C
 [4

0]

C
ap

ac
iti

ve
 IM

C
:

C
3S

R
AM

 [4
3]

Va
la

vi
 e

t a
l.,

JS
SC

 2
01

9

“C
3S

R
AM

”
Ji

an
g

et
 a

l.,
JS

SC
 2

02
0

W
L

IA
x,

y,
z

IA
b x

,y
,z

O
i,j

,kn

W
b i

,j,
k

n
W

i,j
,kn

M
7

M
8

M
2

M
5

M
4

M
3

M
6

M
1

B
L

W
L

M
W

L
M

W
LB

B
LB

M
B

L

B
Lb

Q
B

V
c

C
c

B
L

M
W

L[
1]

M
W

LB
[1

]

M
W

L[
2]

M
W

LB
[2

]

M
W

L[
n]

M
W

LB
[n

]

6T6T6T
C

ap
ac

iti
ve

 C
ou

pl
in

g

M
B

L

M
B

L

V
D

D

V
S

S

a

N
–a

C
ap

ac
iti

ve
 D

iv
id

er

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1 0

VMBL (V)

–2
56

–1
28

12
8

25
6

0
M

AC
 V

al
ue

M
ea

su
re

d
Tr

an
sf

er
Fu

nc
tio

n
C

ha
rg

e
Lo

ss
 d

ue
to

 W
ire

 P
ar

as
iti

cs

Sh
al

lo
w

er
 S

lo
pe

 d
ue

 to
C

ha
rg

e
Sh

ar
in

g
W

ith
AD

C
 In

pu
t C

ap
ac

ito
rs

60 0

Batch Normalized Activation
Function Switching Threshold (6b)

Batch Normalized Activation
Function Switching Threshold (6b)

Er
ro

r b
ar

s
sh

ow
 s

ig
m

a
ov

er
 5

12
 fi

lte
rs

.

Se
lf-

C
al

ib
ra

te
d

–3
 ×

 3
 ×

 5
12

3
×

3
×

5
0

H
L

Pr
ea

ct
iv

at
io

n
(P

A
x,

y,
n)

 V
al

ue

Br
oa

dc
as

t
In

pu
t

Ac
tiv

at
io

ns
IA

x,
y,

z

Q

FI
G

U
RE

 6
: T

he
 c

ap
ac

iti
ve

 IM
C

cir
cu

its
 a

nd
 o

pe
ra

tio
n.

 (a
) t

he
 IM

C
SR

AM
 b

itc
el

l d
es

ig
n,

 (b
) N

 b
itc

el
ls

 c
on

ne
ct

ed
 to

 th
e

sa
m

e
RB

L,
 a

nd
 (c

) t
he

 N
-in

pu
t M

AC
 c

om
pu

ta
tio

n.
 M

W
L

an
d

M
W

LB
 re

pr
es

en
t

di
ff

er
en

tia
l M

AC
 w

or
dl

in
es

. H
L:

 h
id

de
n

la
ye

r.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 18,2023 at 06:00:00 UTC from IEEE Xplore. Restrictions apply.

74	 SUMMER 202 2	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

of IMC SRAM are integrated on chip
[46], [47].

■■ By design, IMC-based accelerators
use a weight-stationary scheme,
and recent IMC accelerators made
efforts to support the program-
mability with a custom ISA so that
various AI models can be flexibly
mapped onto the same chip.
In [48], the energy efficiency,

throughput, and compute density of
digital accelerators and IMC designs
based on SRAM and embedded non-
volatile memory (eNVM) have been
benchmarked comprehensively, as
shown in Figure 8. SRAM-based IMCs
show much higher energy efficiency
over digital accelerators at the macro
level, but the energy efficiency gap
noticeably reduces at the processor/
system level. Digital accelerators can
achieve arbitrarily high throughput
via scale-up without compromising
on their accuracy. However, more
design efforts are required for IMC-
based accelerators to preserve accu-
racy during scale-up.

Addressing Challenges and New AI
Accelerator Design Directions
There are several notable challenges
of analog SRAM IMC. First, IMC
trades off the signal-to-noise ratio
(SNR) [53], which makes it more sus-
ceptible to process, voltage, and
temperature (PVT) variation as well
as the ADC offset. These could result
in a nonexact computation result
and network-level DNN accuracy
degradation, especially for complex
and larger data sets. Second, the IMC
peripheral circuitry requires the
ADC to digitize the analog computa-
tion. Despite many advances in ADC
designs, ADCs still consume a large
area and high energy, and the ADC
offset due to transistor mismatch
can cause errors. Third, since a cou-
ple of transistors or passive compo-
nents, such as capacitors, could be
added to each bitcell, the SRAM bit-
cell can be relatively large compared
to the off-the-shelf 6T counterparts,
and this brings density and leak-
age concerns. Fourth, the rigid
crossbar structure used in SRAM

Si
ng

le
 IM

C
 M

ac
ro

 D
es

ig
ns

IM
C

 S
ys

te
m

 D
es

ig
ns

IM
C

 M
ac

ro

M
IT

“C
O

N
V-

SR
AM

”

AS
U

/C
ol

um
bi

a
“X

N
O

R
-S

R
AM

”

AS
U

/C
ol

um
bi

a
“C

3S
R

AM
”

N
TH

U
“T

w
in

-8
T

SR
AM

”

25
6

×
64

25
6

×
64

25
6

×
64

64
 ×

 6
0

64
 ×

 6
4

IS
SC

C,
 2

01
8

JS
S

C
, 2

01
9

[3
7]

IS
SC

C,
 2

01
9

JS
S

C
, 2

02
0

[3
8]

IS
SC

C,
 2

02
0

JS
S

C
, 2

02
1

[3
9]

SV
LS

I,
20

18
JS

S
C

, 2
02

0
[4

2]

ES
SC

IR
C,

 2
01

9
JS

S
C

, 2
02

0
[4

3]

Si
ze

Pu
bl

ic
at

io
n

TS
M

C
• 7

-n
m

 IM
C

• S
pa

rs
ity

-A
w

ar
e

IM
C

• H
et

er
og

en
eo

us
 P

ro
ce

ss
or

• P
ro

gr
am

m
ab

le
 S

ca
la

bl
e

IM
C

 N
N

 a
cc

.

IM
C

 S
ys

te
m

Ts
in

gh
ua

/N
TH

U
“T

hi
nk

er
-IM

”

Ts
in

gh
ua

/N
TH

U

Pr
in

ce
to

n

Pr
in

ce
to

n

“P
IM

C
A”

AS
U

/C
ol

um
bi

a

N
um

be
r o

f
M

ac
ro

s
(M

ac
ro

 S
iz

e)
To

ta
l I

M
C

SR
AM

 S
iz

e
Pu

bl
ic

at
io

n

16
 M

ac
ro

s
(6

4
×

64
)

4
M

ac
ro

s
(6

4
×

64
)

16
 M

ac
ro

s
(5

76
 ×

 6
4)

16
 M

ac
ro

s
(1

,1
52

 ×
 2

56
)

10
8

M
ac

ro
s

(2
56

 ×
 1

28
)

3.
4

M
b

4.
5

M
b

57
6

kb

16
 k

b

64
 k

b
SV

LS
I,

20
19

 [4
4]

SV
LS

I,
20

21
 [4

7]

IS
SC

C
,

20
20

 [4
5]

IS
SC

C
,

20
21

 [4
6]

H
ot

ch
ip

s,
20

20
 J

S
S

C
,

20
20

 [4
1]

FI
G

U
R
E

7
: T

he
 tr

en
d

of
 IM

C
m

ac
ro

 d
es

ig
ns

 to
w

ar
d

IM
C

sy
st

em
 d

es
ig

ns
. A

SU
: A

riz
on

a
St

at
e

Un
iv

er
si

ty
; I

SS
CC

: I
EE

E
So

lid
-S

ta
te

 C
irc

ui
ts

 C
on

fe
re

nc
e;

 J
SS

C:
 IE

EE
 J

ou
rn

al
 o

f S
ol

id
-S

ta
te

 C
irc

ui
ts

;
N

N
 a

cc
.:

ne
ur

al
 n

et
w

or
k

ac
ce

le
ra

to
r;

N
TH

U:
 N

at
io

na
l T

si
ng

 H
ua

 U
ni

ve
rs

ity
; P

IM
CA

: p
ro

gr
am

m
ab

le
 in

-m
em

or
y

co
m

pu
tin

g
ac

ce
le

ra
to

r;
SV

LS
I:

IE
EE

 S
ym

po
si

um
 o

n
VL

SI
 C

irc
ui

ts
.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 18,2023 at 06:00:00 UTC from IEEE Xplore. Restrictions apply.

	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 SUMMER 202 2	 75

IMC is not particularly amenable for
fine-grain weight pruning. Here, we
introduce specific approaches that
have been proposed to tackle each
of these challenges.

Addressing a Low SNR
Associated with a lower SNR, ana-
log IMC involves inherent intrachip
and interchip variability as well as
ADC quantization. As shown in a
number of IMC chips from the litera-
ture, variability can be observed in
the ADC outputs for the same ideal
MAC value, and accuracy degrada-
tion is often reported compared
to the digital baseline. To mitigate
this accuracy loss, some IMC SRAM
works attempted to improve the SNR
by limiting the number of activated
rows for IMC, e.g., 18 rows in [38],
but this reduces the computing par-
allelism and energy efficiency.

To improve the IMC hardware
accuracy, recent works, such as [54],
performed customized DNN training
with noise injection at the individual
weight level, where the injected noise
is drawn from Gaussian distributions
based on memory bitcell variations.
However, such individual weight-
level Gaussian noise injections could
be suboptimal for actual IMC chips
for two reasons: 1) individual weight-
level noise does not consider the IMC
crossbar structure and other hard-
ware noise, such as bitline or ADC
noise, and 2) Gaussian noise does not
necessarily represent the actual IMC
hardware noise well [55].

Considering these, IMC noise-
aware DNN training is performed
[55] by injecting the measured IMC
hardware noise into the forward pass
during DNN training. All MAC opera-
tions in DNNs are divided into mul-
tiple N-input MAC operations, where
N is the number of rows activated
together in the IMC macro. For each
N-input MAC operation, the noisy and
quantized partial sum results from
IMC chip measurements are used,
where the ADC outputs for given MAC
values are randomly sampled based
on the conditional probability of ADC
output measurements for each MAC

value. In [55], injecting actual IMC
hardware noise measured from two
different IMC chips of XNOR SRAM
[42] and C3SRAM [43] has been evalu-
ated. The reported results show that
the IMC noise-aware training scheme
shows higher inference accuracy for
the IMC hardware across multiple
DNN models, different precision, and
a different amount of noise, and the
improvement is especially higher for
higher-noise environments (e.g., a
low Vdd for C3SRAM [43]).

Addressing Area-/
Energy-Hungry ADCs
Why are relatively high-resolution
ADCs necessary for IMC? Each IMC
macro has a finite number of rows
(e.g., 256), which computes the par-
tial sums of a DNN layer. When divid-
ing a large dot product into a number
of smaller ones, each partial sum
should not be prematurely quantized
and should have relatively high pre-

cision. With regard to the ADC chal-
lenge, different methods have been
proposed for possibly removing the
ADCs (and DACs) for IMC designs.
We need ADCs and DACs because we
perform analog computation inside
the IMC macro while utilizing digital
activation storage and digital com-
munication between IMC macros.
Then, we can think again about 1) an
all-digital design but with IMC and 2)
an all-analog AI accelerator where all
operations are performed in the ana-
log domain.

Digital IMC
All-digital IMC designs were recently
presented in [56] and [58] [Figure 9(a)].
In analog IMC, the bitwise multipli-
cation results are accumulated in
an analog manner along the bitline,
which then necessitates an ADC at
the column end. On the other hand,
the digital IMC design proposes
performing the accumulation with

104

103

102

101

1-
b

TO
PS

/W

10–3 10–2 10–1 100 101 102 103 104

1-b TOPS

SRAM IMC Macro
SRAM IMC System
eNVM IMC
Digital

Energy Efficiency Versus Throughput for SRAM, eNVM, and Digital

FIGURE 8: The digital and analog accelerator literature. (Adapted from [48].)

We need ADCs and DACs because we perform
analog computation inside the IMC macro while
utilizing digital activation storage and digital
communication between IMC macros.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 18,2023 at 06:00:00 UTC from IEEE Xplore. Restrictions apply.

76	 SUMMER 202 2	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

digital logic gates while adding such
digital accumulation circuitry inside
the IMC SRAM macro for every group
of columns. Such digital IMC designs
eliminate ADCs, since all computa-
tions are in the digital domain, and

are also advantageous for CMOS
scaling and lower Vdd operation.
However, the digital implementation
of the wide adder tree can consume
a large area; thus, a compact imple-
mentation becomes important.

All-Analog AI Accelerator
On the other hand, an all-analog DNN
accelerator “ARCHON” in 28 nm was
presented in [57] [Figure (9b)], which
comprises both analog computation
and capacitor-based analog memory
(AMEM). ARCHON features an analog
neuronal computation unit (ANU)
based on voltage-to-time converters
and weighted current summation as
well as an AMEM based on a 6T1C
bitcell that can store ~5-b precision
across PVT variations. The ANU and
AMEM can perform the computa-
tions needed for CNNs in the analog
domain across layers without data
conversions. ARCHON achieves an
energy efficiency of 332.7 TOPS/W (the
analog datapath) and 19.9 TOPS/W
(the processor level).

Addressing Density
To support IMC, the SRAM bitcell
and macro areas are both becoming
relatively large. To alleviate the den-
sity concerns, IMC designs based on
eNVM, such as RRAM (with a single-
level cell [59] and multilevel cell
[60]), PCM [61], MRAM [62], and Flash
[63], have been presented. Such
eNVMs are denser than SRAM and

Elementwise
Pruning

Small Group
Pruning

Medium Group
Pruning

Large Group
Pruning

Ac
t.

4
Ac

t.
2

Ac
t.

1
AG

 3

Ac
t.

G
ro

up
 2

Ac
t.

G
ro

up
 1

Ac
t.

G
ro

up

IMC Parallelism ↑, Latency ↓, and Energy Efficiency ↑

Sparsity ↑, and IMC Hardware Accuracy ↑

FIGURE 10: The tradeoffs of pruning for IMC designs [65].

Digital IMC Analog Memory Array and Write Feedback

(a) (b)

AMEM MatrixW

W

W

W

IN1

IN2

IN3

IN4

Digital
Accumulation

Shift/
Add

Digital Multiply

Vin,0

Vmem0 Vmem1Vwfd0 Vwfd1

Vin,1
WR0

WR1

RD0,0

RD1,0

RD1,1

RD1,2

RD0,1

RD0,2

WR0

WR1

RD0,0

RD1,0

RD1,1

RD1,2

RD0,1

RD0,2

V
ou

t 0,
0

V
ou

t 0,
1

V
ou

t 0,
2

V
ou

t 1,
0

V
ou

t 1,
1

V
ou

t 2,
2

–
+

–
+WFB Amps

Digital Partial
Sum

FIGURE 9: Addressing ADC challenges by (a) digital IMC [56] and (b) analog memory-based all-analog design [57]. WFB: write-with-feedback.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 18,2023 at 06:00:00 UTC from IEEE Xplore. Restrictions apply.

	 	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 SUMMER 202 2	 77

consume low leakage. Also, with the
resistive device, it can naturally sup-
port matrix–vector multiplication.
On the other hand, the nonidealities
of eNVM devices include endurance,
variation, drift, and so on. In several
recent works, the larger-scale inte-
gration of eNVM-based IMC systems
has been demonstrated. In [63], an
embedded Flash-based IMC system
with 79 million 8-b weights was pre-
sented, and [64] presented a 2.25-MB
RRAM-based IMC system with an
embedded ARM processor.

Addressing Pruning for IMC Designs
Applying random sparsity patterns
resulted from fine-grain nonstruc-
tured pruning to a fixed SRAM IMC
array structure can become ineffi-
cient [65]. If the IMC operation hap-
pens on a column basis, it will be
much more efficient to prune out
the entire/partial column in a struc-
tured manner. However, as shown
in Figure 10, smaller group sizes
achieve higher sparsity compared
to the large-sized groups. On the
other hand, a small-sized group will
restrict the number of rows that can
be activated simultaneously, which
requires a higher number of cycles to
go through the same crossbar array.
Other approaches include sparsity-
aware activation/weight process-
ing for IMC macro design [16] and
sparsity-optimized IMC bitcell design
[66]. Overall, this challenge needs a
carefully structured pruning algo-
rithm and supporting IMC hardware
co-design.

Conclusion
In this article, we presented how
both digital and analog AI accelera-
tors have largely advanced in recent
years. The trends of all-digital accel-
erators include a reconfigurable MAC
array, high utilization across various
AI models, flexible precision sup-
port, and weight/activation sparsity-
aware design. Regarding the trends
on analog/mixed-signal accelerators,
single IMC macro designs are scaled
up with a higher level of integration
for a many-macro IMC system design.

Flexible precision and program-
mability have been supported in
larger-scale IMC systems. The chal-
lenges for these designs are being
addressed in different ways. For ana-
log IMC designs, improving the DNN
accuracy, ADC overhead, density, and
sparsity are important. By address-
ing such challenges, new all-analog,
digital IMC- and NVM-based AI accel-
erators are being further presented
in the literature.

Acknowledgments
This work was, in part, supported
by National Science Foundation grant
1652866 and the Center for Brain-
Inspired Computing, one of six
centers in the Joint University Micro-
electronics Program, a Semiconductor
Research Corporation program spon-
sored by DARPA.

References
[1]	 L. Deng, G. Li, S. Han, L. Shi, and Y. Xie,

“Model compression and hardware ac-
celeration for neural networks: A com-
prehensive survey,” Proc. IEEE, vol. 108,
no. 4, pp. 485–532, 2020, doi: 10.1109/
JPROC.2020.2976475.

[2]	 G. W. Burr, S. Lim, B. Murmann, R. Ven-
katesan, and M. Verhelst, “Fair and com-
prehensive benchmarking of machine
learning processing chips,” IEEE Des.
Test, vol. 39, no. 3, pp. 18–27, 2022, doi:
10.1109/MDAT.2021.3063366.

[3]	 J. Choi, S. Venkataramani, V. V. Srinivasan,
K. Gopalakrishnan, Z. Wang, and P. Chuang,
“Accurate and efficient 2-bit quantized neu-
ral networks,” in Proc. Conf. Mach. Learn.
Syst. (MLSys), 2019, pp. 348–359.

[4]	 S. Han, H. Mao, and W. J. Dally, “Deep
compression: Compressing deep neural
networks with pruning, trained quanti-
zation and Huffman coding,” in Proc. Int.
Conf. Learn. Representations (ICLR), 2016,
pp. 1–14.

[5]	 H. Cai, T. Chen, W. Zhang, Y. Yu, and J.
Wang, “Efficient architecture search by
network transformation,” in Proc. AAAI
Conf. Artif. Intell., 2018, pp. 2787–2794,
doi: 10.5555/3504035.3504375.

[6]	 A. Novikov, D. Podoprikhin, A. Osokin,
and D. P. Vetrov, “Tensorizing Neural Net-
works,” in Proc. Adv. Neural Inf. Process.
Syst. (NeurIPS), 2015, vol. 28, pp. 442–450,
doi: 10.5555/2969239.2969289.

[7]	 D. Shin, J. Lee, J. Lee, and H.-J. Yoo, “DNPU:
An 8.1TOPS/W reconfigurable CNN-RNN
processor for general-purpose deep neu-
ral networks,” in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC), 2017, pp. 240–241,
doi: 10.1109/ISSCC.2017.7870350.

[8]	 K. Wang, Z. Liu, Y. Lin, J. Lin, and S.
Han, “HAQ: Hardware-aware automated
quantization with mixed precision,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2019, pp. 8612–8620.

[9]	 I. Hubara, M. Courbariaux, D. Soudry, R.
El-Yaniv, and Y. Bengio, “Quantized neural
networks: Training neural networks with
low precision weights and activations,” J.

Mach. Learn. Res., vol. 18, no. 1, pp. 6869–
6898, 2018.

[10]	M. Rastegari, V. Ordonez, J. Redmon, and
A. Farhadi, “XNOR-Net: ImageNet clas-
sification using binary convolutional
neural networks,” in Proc. Eur. Conf. Com-
put. Vis. (ECCV), 2016, pp. 525–542, doi:
10.1007/978-3-319-46493-0_32.

[11]	A. Mishra, E. Nurvitadhi, J. J. Cook, and
D. Marra, “WRPN: Wide reduced-precision
networks,” in Proc. Int. Conf. Learn. Repre-
sentations (ICLR), 2018, pp. 1–11.

[12]	S. K. Esser, J. L. McKinstry, D. Bablani, R.
Appuswamy, and D. S. Modha, “Learned
step size quantization,” in Proc. Int. Conf.
Learning Representations (ICLR), 2020, pp.
1–12.

[13]	E. Park and S. Yoo, “PROFIT: A novel
training method for sub-4-bit MobileNet
models,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2020, pp. 430–446, doi:
10.1007/978-3-030-58539-6_26.

[14]	S. Park, J. Lee, S. Mo, and J. Shin, “Looka-
head: A far-sighted alternative of magni-
tude-based pruning,” in Proc. Int. Conf.
Learn. Representations (ICLR), 2020, pp.
1–20.

[15]	W. Wen, C. Wu, Y. Wang, Y. Chen, and H.
Li, “Learning structured sparsity in deep
neural networks,” in Proc. Adv. Neural Inf.
Process. Syst. (NeurIPS), 2016, pp. 2074–
2082, doi: 10.5555/3157096.3157329.

[16]	J. Yue et al., “A 65nm computing-in-
memory-based CNN processor with
2.9-to-35.8TOPS/W system energy ef-
ficiency using dynamic-sparsity perfor-
mance-scaling architecture and energy-
efficient inter/intra-macro data reuse,”
in Proc. IEEE Int. Solid- State Circuits Conf.
(ISSCC), 2020, pp. 234–236, doi: 10.1109/
ISSCC19947.2020.9062958.

[17]	D. Kadetotad, S. Yin, V. Berisha, C.
Chakrabarti, and J. Seo, “An 8.93 TOPS/W
LSTM recurrent neural network accelera-
tor featuring hierarchical coarse-grain
sparsity for on-device speech recogni-
tion,” IEEE J. Solid-State Circuits, vol. 55,
no. 7, pp. 1877–1887, 2020, doi: 10.1109/
JSSC.2020.2992900.

[18]	L. Yang, Z. He, and D. Fan, “Harmonious
coexistence of structured weight pruning
and ternarization for deep neural net-
works,” in Proc. AAAI Conf. Artif. Intell.,
vol. 34, no. 4, pp. 6623–6630, 2020, doi:
10.1609/aaai.v34i04.6138.

[19]	N. P. Jouppi et al., “In-datacenter perfor-
mance analysis of a tensor processing
unit,” in Proc. ACM/IEEE 44th Annu. Int.
Symp. Comput. Architecture (ISCA), 2017,
pp. 1–12, doi: 10.1145/3079856.3080246.

[20]	J.-S. Park et al., “A 6K-MAC feature-map-
sparsity-aware neural processing unit
in 5nm flagship mobile SoC,” in Proc. IEEE
Int. Solid-State Circuits Conf., 2021, vol. 64,
pp. 152–154, doi: 10.1109/ISSCC42613.2021.
9365928.

[21]	B. Moons, R. Uytterhoeven, W. Dehaene,
and M. Verhelst, “ENVISION: A 0.26-to-10
TOPS/W subword-parallel dynamic-volt-
age-accuracy-frequency-scalable convolu-
tional neural network processor in 28nm
FDSOI,” in Proc. IEEE Int. Solid-State Cir-
cuits Conf. (ISSCC), 2017, pp. 246–247, doi:
10.1109/ISSCC.2017.7870353.

[22]	J. Lee, C. Kim, S. Kang, D. Shin, S. Kim,
and H.-J. Yoo, “UNPU: An energy-effi-
cient deep neural network accelerator
with fully variable weight bit precision,”
IEEE J. Solid-State Circuits, vol. 54, no.
1, pp. 173–185, 2019, doi: 10.1109/JSSC.
2018.2865489.

[23]	P. C. Knag et al., “A 617-TOPS/W all-digital
binary neural network accelerator in 10-
nm FinFET CMOS,” IEEE J. Solid-State

Authorized licensed use limited to: Cornell University Library. Downloaded on April 18,2023 at 06:00:00 UTC from IEEE Xplore. Restrictions apply.

78	 SUMMER 202 2	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

Circuits, vol. 56, no. 4, pp. 1082–1092,
2021, doi: 10.1109/JSSC.2020.3038616.

[24]	A. Agrawal et al., “A 7nm 4-core AI chip
with 25.6TFLOPS hybrid FP8 training,
102.4TOPS INT4 inference and work-
load-aware throttling,” in Proc. IEEE
Int. Solid- State Circuits Conf. (ISSCC),
2021, vol. 64, pp. 144–146, doi: 10.1109/
ISSCC42613.2021.9365791.

[25]	J. Yue et al., “STICKER-T: An energy-
efficient neural network processor us-
ing block-circulant algorithm and uni-
fied frequency-domain acceleration,”
IEEE J. Solid-State Circuits, vol. 56, no.
6, pp. 1936–1948, 2021, doi: 10.1109/
JSSC.2020.3030264.

[26]	Y.-H. Chen, T. Krishna, J. S. Emer, and V.
Sze, “Eyeriss: An energy-efficient recon-
figurable accelerator for deep convolu-
tional neural networks,” IEEE J. Solid-State
Circuits, vol. 52, no. 1, pp. 127–138, 2017,
doi: 10.1109/JSSC.2016.2616357.

[27]	J. Sim, S. Lee, and L.-S. Kim, “An energy-ef-
ficient deep convolutional neural network
inference processor with enhanced out-
put stationary dataflow in 65-nm CMOS,”
IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 28, no. 1, pp. 87–100, 2020, doi:
10.1109/TVLSI.2019.2935251.

[28]	B. Zimmer et al., “A 0.32–128 TOPS, scal-
able multi-chip-module-based deep neu-
ral network inference accelerator with
ground-referenced signaling in 16 nm,”
IEEE J. Solid-State Circuits, vol. 55, no. 4, pp.
920–932, 2020, doi: 10.1109/JSSC.2019.
2960488.

[29]	E . H. Lee and S. S. Wong, “A 2.5GHz
7.7TOPS/W switched-capacitor matrix mul-
tiplier with co-designed local memory in
40nm,” in Proc. IEEE Int. Solid-State Cir-
cuits Conf. (ISSCC), 2016, pp. 418–419, doi:
10.1109/ISSCC.2016.7418085.

[30]	D. Bankman, L. Yang, B. Moons, M. Ver-
helst, and B. Murmann, “An always-On 3.8
μJ/86% CIFAR-10 mixed-signal binary CNN
processor with all memory on chip in 28-
nm CMOS,” IEEE J. Solid-State Circuits, vol.
54, no. 1, pp. 158–172, 2019, doi: 10.1109/
JSSC.2018.2869150.

[31]	M. Kang, M.-S. Keel, N. R. Shanbhag,
S. Eilert, and K. Curewitz, “An energy-
efficient VLSI architecture for pattern
recognition via deep embedding of com-
putation in SRAM,” in Proc. IEEE Int. Conf.
Acoust, Speech Signal Process. (ICASSP),
2014, pp. 8326–8330, doi: 10.1109/
ICASSP.2014.6855225.

[32]	J. Zhang, Z. Wang, and N. Verma, “In-
memory computat ion of a machine-
learning classifier in a standard 6T SRAM
array,” IEEE J. Solid-State Circuits, vol. 52,
no. 4, pp. 915–924, 2017, doi: 10.1109/JSSC.
2016.2642198.

[33]	M. Kang, S. K. Gonugondla, A. Patil, and N.
R. Shanbhag, “A multi-functional in-mem-
ory inference processor using a standard
6T SRAM array,” IEEE J. Solid-State Circuits,
vol. 53, no. 2, pp. 642–655, 2018, doi:
10.1109/JSSC.2017.2782087.

[34]	J. Kim et al., “Area-efficient and variation-
tolerant in-memory BNN computing us-
ing 6T SRAM array,” in Proc. IEEE Symp.
VLSI Circuits, 2019, pp. C118–C119, doi:
10.23919/VLSIC.2019.8778160.

[35]	J.-W. Su et al., “A 28nm 64Kb inference-
training two-way transpose multibit 6T
SRAM compute-in-memory macro for AI
edge chips,” in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC), 2020, pp. 240–242,
doi: 10.1109/ISSCC19947.2020.9062949.

[36]	X. Si et al., “A 28nm 64Kb 6T SRAM com-
puting-in-memory macro with 8b MAC
operation for AI edge chips,” in Proc. IEEE
Int. Solid-State Circuits Conf. (ISSCC), 2020,

pp. 246–248, doi: 10.1109/ISSCC19947.
2020.9062995.

[37]	A. Biswas and A. P. Chandrakasan, “CONV-
SRAM: An energy-efficient SRAM with
in-memory dot-product computation
for low-power convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 54,
no. 1, pp. 217–230, 2019, doi: 10.1109/
JSSC.2018.2880918.

[38]	X. Si et al., “A twin-8T SRAM computation-
in-memory unit-macro for multibit CNN-
based AI edge processors,” IEEE J. Solid-
State Circuits, vol. 55, no. 1, pp. 189–202,
2020, doi: 10.1109/JSSC.2019.2952773.

[39]	Q. Dong et al., “A 351TOPS/W and
372.4GOPS compute-in-memory SRAM
macro in 7nm FinFET CMOS for machine-
learning applications,” in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC), 2020, pp.
242–244, doi: 10.1109/ISSCC19947.2020.9
062985.

[40]	H. Valavi, P. J. Ramadge, E. Nestler, and N.
Verma, “A 64-tile 2.4-Mb in-memory-com-
puting CNN accelerator employing charge-
domain compute,” IEEE J. Solid-State Cir-
cuits, vol. 54, no. 6, pp. 1789–1799, 2019,
doi: 10.1109/JSSC.2019.2899730.

[41]	H. Jia, H. Valavi, Y. Tang, J. Zhang, and N.
Verma, “A programmable heterogeneous
microprocessor based on bit-scalable in-
memory computing,” IEEE J. Solid-State
Circuits, vol. 55, no. 9, pp. 2609–2621,
2020, doi: 10.1109/JSSC.2020.2987714.

[42]	S. Yin, Z. Jiang, J. Seo, and M. Seok,
“XNOR-SRAM: In-memory computing
SRAM macro for binary/ternary deep neu-
ral networks,” IEEE J. Solid-State Circuits,
vol. 55, no. 6, pp. 1733–1743, 2020, doi:
10.1109/JSSC.2019.2963616.

[43]	Z. Jiang, S. Yin, J. Seo, and M. Seok,
“C3SRAM: An in-memory-computing SRAM
macro based on robust capacitive cou-
pling computing mechanism,” IEEE J. Solid-
State Circuits, vol. 55, no. 7, pp. 1888–1897,
2020, doi: 10.1109/JSSC.2020.2992886.

[44]	R. Guo et al., “A 5.1pJ/neuron 127.3us/
inference RNN-based speech recognition
processor using 16 computing-in-mem-
ory SRAM macros in 65nm CMOS,” in
Proc. IEEE Symp. VLSI Circuits, 2019, pp.
C120–C121, doi: 10.23919/VLSIC.2019.
8778028.

[45]	J. Yue et al., “A 2.75-to-75.9TOPS/W com-
puting-in-memory NN processor sup-
porting set-associate block-wise zero
skipping and ping-pong CIM with simul-
taneous computation and weight updat-
ing,” in Proc. IEEE Int. Solid-State Circuits
Conf. (ISSCC), 2021, vol. 64, pp. 238–240,
doi: 10.1109/ISSCC42613.2021.​9365958.

[46]	H. Jia et al., “A programmable neural-
network inference accelerator based on
scalable in-memory computing,” in Proc.
IEEE Int. Solid- State Circuits Conf. (ISSCC),
2021, vol. 64, pp. 236–238, doi: 10.1109/
ISSCC42613.2021.9365788.

[47]	S. Yin et al., “PIMCA: A 3.4-Mb programma-
ble in-memory computing accelerator in
28nm for on-chip DNN inference,” in Proc.
IEEE Symp. VLSI Technol., 2021, pp. 1–2.

[48]	N. R. Shanbhag and S. K. Roy, “Compre-
hending in-memory computing trends via
proper benchmarking,” in Proc. IEEE Custom
Integr. Circuits Conf. (CICC), 2022, pp. 1–7,
doi: 10.1109/CICC53496.2022.9772817.

[49]	I. A. Papistas et al., “A 22 nm, 1540 TOP/
s/W, 12.1 TOP/s/mm2 in-memory analog
matrix-vector-multiplier for DNN acceler-
ation,” in Proc. IEEE Custom Integr. Circuits
Conf. (CICC), 2021, pp. 1–2, doi: 10.1109/
CICC51472.2021.9431575.

[50]	J. Lee, H. Valavi, Y. Tang, and N. Verma,
“Fully row/column-parallel in-memory
computing SRAM macro employing ca-

pacitor-based mixed-signal computation
with 5-b inputs,” in Proc. IEEE Symp. VLSI
Circuits, 2021, pp. 1–2, doi: 10.23919/
VLSICircuits52068.2021.9492444.

[51]	Z. Chen et al., “CAP-RAM: A charge-do-
main in-memory computing 6T-SRAM for
accurate and precision-programmable
CNN inference,” IEEE J. Solid-State Circuits,
vol. 56, no. 6, pp. 1924–1935, 2021, doi:
10.1109/JSSC.2021.3056447.

[52]	C. Yu, K. T. C. Chai, T. T.-H. Kim, and B.
Kim, “A zero-skipping reconfigurable
SRAM in-memory computing macro with
binary-searching ADC,” in Proc. IEEE 51st
Eur. Solid-State Device Res. Conf. (ESS-
DERC), 2021, pp. 131–134, doi: 10.1109/
ESSDERC53440.2021.9631785.

[53]	N. Verma et al., “In-memory computing:
Advances and prospects,” IEEE Solid State
Circuits Mag., vol. 11, no. 3, pp. 43–55,
2019, doi: 10.1109/MSSC.2019.2922889.

[54]	V. Joshi et al., “Accurate deep neural
network inference using computational
phase-change memory,” Nature Com-
mun., vol. 11, no. 1, pp. 1–13, 2020, doi:
10.1038/s41467-020-16108-9.

[55]	S. K. Cherupally et al., “Improving
DNN hardware accuracy by in-memory
computing noise injection,” IEEE Des.
Test, early access, 2021, doi: 10.1109/
MDAT.2021.3139047.

[56]	Y.-D. Chih et al., “An 89TOPS/W and
16.3TOPS/mm2 all-digital SRAM-based
full-precision compute-in memory macro
in 22nm for Machine-learning edge appli-
cations,” in Proc. IEEE Int. Solid-State Cir-
cuits Conf. (ISSCC), 2021, pp. 252–254, doi:
10.1109/ISSCC42613.2021.9365766.

[57]	J.-O. Seo, M. Seok, and S. Cho, “ARCHON: A
332.7TOPS/W 5b variation-tolerant analog
CNN processor featuring analog neuronal
computation unit and analog memory,”
in Proc. IEEE Int. Solid- State Circuits Conf.
(ISSCC), 2022, pp. 258–260, doi: 10.1109/
ISSCC42614.2022.9731654.

[58]	D. Wang, C.-T. Lin, G. K. Chen, P. Knag, R.
K. Krishnamurthy, and M. Seok, “DIMC:
2219TOPS/W 2569F2/b digital in-mem-
ory computing macro in 28nm based on
approximate arithmetic hardware,” in
Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC), 2022, pp. 266–268, doi: 10.1109/
ISSCC42614.2022.9731659.

[59]	J.-M. Hung et al., “An 8-Mb DC-current-free
binary-to-8b precision ReRAM nonvolatile
computing-in-memory macro using time-
space-readout with 1286.4-21.6TOPS/W for
edge-AI devices,” in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC), 2022, vol. 65, pp. 1–3,
doi: 10.1109/ISSCC42614.2022.9731715.

[60]	W. He et al., “2-bit-per-cell RRAM-based
in-memory computing for area-/energy-
efficient deep learning,” IEEE Solid-State
Circuits Lett., vol. 3, pp. 194–197, Jul.
2020, doi: 10.1109/LSSC.2020.3010795.

[61]	P. Narayanan et al., “Fully on-chip MAC
at 14nm enabled by accurate row-wise
programming of PCM-based weights and
parallel vector-transport in duration-
format,” in Proc. IEEE Symp. VLSI Technol.,
2021, pp. 1–2.

[62]	S. Jung et al., “A crossbar array of magne-
toresistive memory devices for in-memo-
ry computing,” Nature, vol. 601, no. 7892,
pp. 211–216, 2022, doi: 10.1038/s41586-021
-04196-6.

[63]	L. Fick, S. Skrzyniarz, M. Parikh, M. B.
Henry, and D. Fick, “Analog matrix pro-
cessor for edge AI real-time video analyt-
ics,” in Proc. IEEE Int. Solid-State Circuits
Conf. (ISSCC), 2022, pp. 260–262, doi:
10.1109/ISSCC42614.2022.9731773.

[64]	M. Chang et al., “A 40nm 60.64TOPS/W
ECC-capable compute-in-memory/digital

Authorized licensed use limited to: Cornell University Library. Downloaded on April 18,2023 at 06:00:00 UTC from IEEE Xplore. Restrictions apply.

	 	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 SUMMER 202 2	 79

2.25MB/768KB RRAM/SRAM system with
embedded cortex M3 microprocessor
for edge recommendation systems,” in
Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC), 2022, pp. 1–3, doi: 10.1109/ISS-
CC42614.2022.9731679.

[65]	J. Meng, L. Yang, X. Peng, S. Yu, D. Fan,
and J. Seo, “Structured pruning of RRAM
crossbars for efficient in-memory com-
puting acceleration of deep neural net-
works,” IEEE Trans. Circuits Syst., II, Exp.
Briefs, vol. 68, no. 5, pp. 1576–1580, 2021,
doi: 10.1109/TCSII.2021.3069011.

[66]	B. Zhang et al., “A 177 TOPS/W, capaci-
tor-based in-memory computing SRAM
macro with stepwise-charging/discharg-
ing DACs and sparsity-optimized bit-
cells for 4-bit deep convolutional neural
networks,” in Proc. IEEE Custom Integr.
Circuits Conf. (CICC), 2022, pp. 1–2, doi:
10.1109/CICC53496.2022.9772781.

About the Authors
Jae-sun Seo (jaesun.seo@asu.edu)
received his Ph.D. degree from the
University of Michigan in 2010. He is
an associate professor in the School
of Electrical, Computer, and Energy
Engineering at Arizona State Univer-
sity (ASU), Tempe, Arizona, 85281,
USA. He worked at IBM Research from
2010 to 2013 before joining ASU. His
research interests include the efficient
hardware design of machine learn-
ing algorithms and neuromorphic
computing. He was a recipient of the
IBM Outstanding Technical Achieve-
ment Award in 2012, National Science
Foundation CAREER Award in 2017,
Intel Outstanding Researcher Award
in 2021, and IEEE Transactions on VLSI
Systems Best Paper Award in 2022.

Jyotishman Saikia (jsaikia@asu.
edu) received his B.Tech. degree in
electronics and telecommunication
engineering from Kalinga Institute
of Industrial Technology University,
Bhubaneswar, India, in 2016 and his
M.S. degree in computer engineering
from Arizona State University (ASU) in
2019. He is currently pursuing a doc-
toral degree in electrical engineering
at ASU, Tempe, Arizona, 85281, USA.
His research interests include the
design of memory systems, low-power
design, and the in-memory computa-
tion-based implementation of deep
neural network algorithms.

Jian Meng (jmeng15@asu.edu)
received his B.S. degree from Port-
land State University, Portland, USA,
in 2019. He is currently pursuing
the Ph.D. degree with the School of

Electrical, Computer, and Energy En
gineering, Arizona State University,
Tempe, Arizona, 85281, USA. His
research interests include deep neural
network compression optimization,
hardware–software co-design with
neuromorphic hardware acceleration,
and neuromorphic algorithm design
for event-based vision.

Wangxin He (wangxinh@asu.edu)
received his B.E. in microelectronics
at Xiamen University, Xiamen, China,
in 2017 and his M.S. degree in elec-
trical engineering from the Univer-
sity of Illinois at Chicago, Chicago,
Illinois, USA, in 2019. He is currently
pursuing a Ph.D. degree in electrical
engineering at Arizona State Univer-
sity, Tempe, Arizona, 85281, USA.
His research interests include NVM
mixed-signal system design and test-
ing for energy-efficient artificial intel-
ligence hardware and neuromorphic
computing acceleration, with a focus
on RRAM-related research.

Han-sok Suh (hsuh6@asu.edu)
graduated from Inha University
summa cum laude, and he received
his master’s degree from the Uni-
versity of Southern California
Viterbi School of Engineering in
computer engineering. At Arizona
State University, Tempe, Arizona,
85281, USA, he is pursuing a Ph.D.
degree and working on computer
architecture design on FPGAs. His
research interests include software–
hardware co-design and energy-
efficient computing for machine
learning applications.

Anupreetham (anolas11@asu.edu)
received his B.Tech. degree in electron-
ics and communication engineering
from the National Institute of Tech-
nology Karnataka, India, and his M.S.
degree in computer engineering from
Arizona State University. He is a Ph.D.
candidate at the School of Electrical,
Computer, and Energy Engineering at
Arizona State University (ASU), Tempe,
Arizona, 85281, USA, supervised by
Prof. Jae-sun Seo. He currently works
as a graduate research associate at
the Seo Lab at ASU. His research inter-
ests include FPGA design for real-time
machine learning applications and

spiking neural network hardware
implementation.

Yuan Liao (yliao59@asu.edu)
received his B.S. and M.S. degrees,
both in electrical engineering, from
the University of Washington, Seattle,
in 2019 and 2021, respectively. He
joined the Seo Lab in August 2021
and currently is a Ph.D. student in
electrical, computer, and energy
engineering at Arizona State Univer-
sity, Tempe, Arizona, 85281, USA. His
research interests include efficient
hardware design for machine learn-
ing algorithms.

Ahmed Hasssan (ahasssan@asu.
edu) received his B.S. degree in elec-
trical engineering from COMSATS
University Islamabad, Pakistan, in
2015 and his M.S. degree in electri-
cal engineering from Government
College University Lahore, Pakistan,
in 2019. He served as lecturer in the
Department of Electrical Engineer-
ing, Sharif College of Engineering
and Technology, Lahore, from 2017
to 2020. He is currently enrolled in
the Ph.D. degree program at the Ira
Fulton School of Engineering, Ari-
zona State University, Tempe, Ari-
zona, 85281, USA. He has published
papers in peer-reviewed journals and
conferences. His research interests
include neuromorphic computing-
based hardware design. In particu-
lar, he is working on low-precision
sparse neural networks for dynamic
vision sensors. He is a Member of
IEEE Young Professionals.

Injune Yeo (iyeo3@asu.edu)
received his B.S. degree in semicon-
ductor science from Dongguk Uni-
versity, Seoul, South Korea, in 2011
as well as his master’s degree in
mechatronics engineering and Ph.D.
degree in electrical engineering from
Gwangju Institute of Science and
Technology, Gwangju, South Korea,
in 2014 and 2020, respectively. He
is now a postdoctoral scholar in the
School of Electrical, Computer, and
Energy Engineering at Arizona State
University, Tempe, Arizona, 85281,
USA. His research interests include
ADCs and in-memory computing
with NVM.�

Authorized licensed use limited to: Cornell University Library. Downloaded on April 18,2023 at 06:00:00 UTC from IEEE Xplore. Restrictions apply.

