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Abstract8

Deep and shallow embeddings are two popular techniques for embedding a language in a host9

language with complementary strengths and weaknesses. In a deep embedding, embedded constructs10

are defined as data in the host: this allows for syntax manipulation and facilitates metatheoretic11

reasoning, but is challenging to implement—especially in the case of dependently typed embedded12

languages. In a shallow embedding, by contrast, constructs are encoded using features of the host:13

this makes them quite straightforward to implement, but limits their use in practice.14

In this paper, we attempt to bridge the gap between the two, by presenting a general technique15

for extending a shallow embedding of a type theory with a deep embedding of its typing derivations.16

Such embeddings are almost as straightforward to implement as shallow ones, but come with17

capabilities traditionally associated with deep ones. We demonstrate these increased capabilities in18

a number of case studies; including a DSL that only holds affine terms, and a dependently typed19

core language with computational beta reduction that leverages function extensionality.20
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1 Introduction28

Hosting a programming language inside another one is one of our favorite pastimes as29

programming language researchers. Such embeddings have proven useful in a variety of30

domains, ranging from particular applications (such as the design of hardware [9] or the31

writing of random property-based generators [10]), all the way to the mechanization of the32

metatheory of such applications (such as Kami [8] or Luck [19] respectively).33

The complexity of such embeddings varies significantly depending on the features of both34

the object language and the host language involved. For example, embedding a simply-typed35

object language in a functional host language is a relatively straightforward task, yet one36

that has proved quite useful in practice, leading to a proliferation of libraries in mainstream37

ecosystems [26, 25, 17, 22]. On the other hand, embedding a dependently-typed language in38

another is a highly nontrivial task that gives rise to foundational challenges and that has39

received significant attention in recent years [1, 18].40

Starting with Boulton et al. [5], language embeddings have been broadly classified as41

either deep or shallow. An embedding is deep when the terms of the object language are42

represented as inductive data in the host language. In a deep embedding terms may be43

arbitrarily manipulated and inspected via the usual mechanism of pattern matching. Deep44
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19:2 Deeper Shallow Embeddings

data Type : Set where

_⇒_ : Type → Type → Type

base : Type

data Ctx : Set where

∅ : Ctx

_,_ : Ctx → Type → Ctx

data Var : (Γ : Ctx) → Type → Set where

same : ∀{Γ T} → Var (Γ , T) T

next : ∀{Γ T A} → Var Γ A → Var (Γ , T) A

data Exp : Ctx → Type → Set where

var : ∀{Γ T} → Var Γ T → Exp Γ T

lambda : ∀{Γ A B} → Exp (Γ , A) B

→ Exp Γ (A ⇒ B)

app : ∀{Γ A B} → Exp Γ (A ⇒ B)

→ Exp Γ A → Exp Γ B

tt : ∀{Γ} → Exp Γ base

Figure 1 A deep embedding of STLC in Agda

embeddings for simply-typed languages are reasonably straightforward to construct, e.g.45

using an intrinsically-typed representation of terms as an inductive family [3, §3].46

By contrast, shallow embeddings directly expand the constructs of the object language in47

terms of constructs of the host language. In the language of semantics, if a deep embedding48

can be thought of as defining the initial syntactic model of the object language, then a49

shallow embedding can be thought of as an arbitrary semantic model of the object language,50

but expressed and manipulated in the host language instead of mathematics [5, §5].51

Deep Embeddings52

For concreteness, consider the standard (intrinsic) deep embedding for the simply-typed53

lambda calculus (STLC) in Figure 1. We focus on the fragment consisting of a single base54

type, and functions. Contexts are lists of types. Variables are positions in that list, viz.55

de Bruijn indices. Terms are parameterized by a type and context. Every constructor of56

Term represents an STLC typing rule. For example, the app constructor takes a term of57

type A ⇒ B and a term of type A, and produces produce a term of type B—parametrically58

in any context Γ . Functions over the syntax of STLC terms can then be defined using59

pattern-matching/induction, allowing a plethora of operations (e.g. substitution, reductions,60

optimizations) and metatheoretic proofs (e.g. admissibility of substitution).61

In practice, Agda’s type inference system plays very nicely with intrinsically-typed DSLs.62

Because the type and context are parameters of Term, Agda can infer them in the same way63

that it would for Agda programs. For example, when given the definition64

lambda (var same) : Term (base → base)65

Agda is able to infer that it is well-typed without additional information. It is thus not66

necessary for the user to specify the type of any part of this expression (e.g. the variable),67

thereby greatly increasing the usability of the DSL.68

However, the same is not true for dependently-typed object languages: because of the

presence of the type conversion rule

Γ ⊢ M : A Γ ⊢ A = B type

Γ ⊢ M : B

there is considerable overhead in defining a deep embedding of the object language, as we69

often have to somehow transport terms across type equalities. In practice this overhead is70
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Ctx = Set

Type : Ctx → Set

Type Γ = Γ → Set

∅ : Ctx

∅ = ⊤

cons : (Γ : Ctx) → Type Γ → Ctx

cons Γ T = Σ Γ T

Var : (Γ : Ctx) → Type Γ → Set

Var Γ T = (γ : Γ) → T γ

same : ∀{Γ T} → Var (cons Γ T) (T ◦ proj1)

same = λ (γ , t) → t

next : ∀{Γ T A} → Var Γ A

→ Var (cons Γ T) (A ◦ proj1)

next x = λ (γ , t) → x γ

Term : (Γ : Ctx) → Type Γ → Set

Term Γ T = (γ : Γ) → T γ

Π : ∀{Γ}

→ (A : Type Γ) → Type (cons Γ A) → Type Γ

Π A B = λ γ → (a : A γ) → B (γ , a)

U : ∀{Γ} → Type Γ

U γ = Set

var : ∀{Γ T} → (icx : Var Γ T) → Term Γ T

var x = x

lambda : ∀{Γ A B} → Term (cons Γ A) B

→ Term Γ (Π A B)

lambda e = λ γ a → e (γ , a)

app : ∀{Γ A B} → Term Γ (Π A B)

→ (a : Term Γ A)→ Term Γ (λ γ → B (γ , a γ))

app e1 e2 = λ γ → (e1 γ) (e2 γ)

Figure 2 Shallow embedding of dependent type theory

prohibitive, regardless of whether we are using the dependently-typed object language or71

proving things about it.72

A number of researchers have attempted such deep embeddings of dependently-typed73

languages with varying degrees of success and completeness; see for example [12, 7, 1].74

Each of these attempts represents a complex feat of proof engineering, often using various75

techniques (such as setoids), or assuming certain advanced features in the host language76

(such as quotient inductive types). In contrast to the simply-typed case, a simple, practical77

deep embedding of dependent type theory appears impossible with current technology. This78

invites a search for an easier alternative.79

Shallow Embeddings80

In contrast, shallow embeddings do not represent terms of the object language as inductive81

data, but rather directly interpret them as values in the host language.82

For example, consider the shallow embedding of dependent type theory shown in Figure 2.83

Like with the deep embedding, we have definitions of types, contexts, variables, and terms.84

However, unlike the deep embedding, these are not datatypes. Instead, Ctx is defined as85

Agda’s universe (called Set), and Type is the type of families of types over a given context.86

Finally, given a context Γ and type T, terms and variables are then defined as dependent87

functions (γ : Γ) → T γ over the family T. Moreover, for each term constructor that we88

had in the deep embedding, we have a corresponding definition in the shallow embedding89

of the corresponding type. For example, the lambda definition is defined using an Agda λ90

expression, and the app definition is defined using standard Agda function application.91

Thus, each artifact of the object language is interpreted by its counterpart in the host92

language. Owing to its similarity to the set-theoretic model [16, §3] this is sometimes referred93

to as the standard model [1, §4], or even the metacircular interpretation of type theory [18].94

This shallow embedding of dependent type theory obviates many of the difficulties one95
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19:4 Deeper Shallow Embeddings

encounters when trying to define a deep embedding. The reason is that types themselves are96

no longer mere pieces of syntax, but mathematical objects that are subject to the definitional97

rules of Agda. Thus, the type equalities we had to transport over vanish [21]. As the shallow98

embedding inherits the definitional behavior of the host language, we find ourselves in a99

situation that enables quick and easy prototyping. Unfortunately, there is no free lunch: the100

fact that our terms are now semantic objects too means that we may no longer pattern-match101

on them.102

A Middle Ground?103

Given the complementary strengths and weaknesses of deep and shallow embeddings, it is104

natural to ask whether there is something in the middle: is there a form of embedding which105

is almost as easy to implement as a shallow embedding, but provides some of the extended,106

syntactic capabilities of a deep embedding?107

In this paper we propose an answer to this question, which we call deeper shallow108

embeddings. To build a deeper shallow embedding we need a pre-existing shallow embedding109

of the object language. Then, the contexts and terms of the deeper shallow embedding are110

defined by ‘wrapping’ the contexts and terms of the shallow embedding in an inductive data111

type. Following the technique of McBride [21], the types remain shallowly embedded, so that112

the host language takes care of type conversion for us.113

We claim that deeper shallow embeddings preserve the mathematical simplicity of shallow114

embeddings, yet add extra capabilities which are useful for writing DSLs. This claim is115

substantiated by demonstrating these capabilities in practice. For example, we use them116

to (1) restrict the terms allowed in the DSL, (2) add metadata to terms (and perform117

computations dependent on this metadata), and (3) do a limited form of pattern-matching118

(which becomes more powerful in the presence of function extensionality).119

Concretely, we make the following contributions:120

We present a way of deepening any shallow embedding, preserving its mathematical121

simplicity while also gaining additional capabilities that one might expect would require122

a deep embedding (Section 2). We show it by example on three shallow embeddings: the123

standard model (Section 2), a standard model for affine terms (Section 3), and a shallow124

embedding built from an inductive-recursive universe construction (Section 5).125

We demonstrate the usefulness of deeper shallow embeddings through a series of case stud-126

ies showcasing different features that they exhibit over standard ones: adding metadata,127

restricting terms, and performing induction over terms (Section 3).128

We consider syntactic transformations such as substitution (Section 4), and show how129

to further increase the expressive power of a deeper shallow embedding by assuming130

function extensionality. This gives us the power to define—and compute — β-reduction131

(Section 5).132

All of these results are formalized in Agda, available at https://github.com/jeprinz/Deeper-133

Shallow-Embeddings). Finally, we discuss related work in Section 6 and conclude by discussing134

limitations and future directions in Section 7.135

2 Deeper Shallow Embeddings136

As discussed before, a shallow embedding consists of a set of definitions in the host language.137

The valid object language programs in this embedding are exactly the well-typed terms built138

by combining these definitions. Thus, given a term t in the host language (here, Agda), the139

statement “t is a term of the shallow embedding” cannot be easily expressed in the host140
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data Context : S.Ctx → Set where

∅ : Context S.∅

_,_ : Context sΓ → (T : S.Type sΓ) → Context (S.cons sΓ T)

data Var : {sΓ : S.Ctx} → (Γ : Context sΓ) → (T : S.Type sΓ)→ (S.Term sΓ T) → Set where

same : Var (Γ , T) (T ◦ proj1) S.same

next : Var {sΓ} Γ A s → Var (Γ , T) (T ◦ proj1) (S.next s)

data Term : {sΓ : S.Ctx} → (Γ : Context sΓ) → (T : S.Type sΓ)→ S.Term sΓ T → Set where

lambda : Term (Γ , A) B s → Term Γ (S.Π A B) (S.lambda s)

var : Var Γ T s → Term Γ T s

app : Term Γ (S.Π A B) s1 → (x : Term Γ A s2)→ Term Γ (λ γ → B (γ , s2 γ)) (S.app s1 s2)

Π : (A : Term Γ S.U s1) → (B : Term (Γ , s1) S.U s2)→ Term Γ S.U (S.Π0 s1 s2)

U : Term Γ S.U S.U

Figure 3 Deepening the shallow embedding of dependent type theory. Each constructor is a

wrapper around a shallow constructor (prefixed by S).

language—even if t is of a type that is evidently in the image of the shallow embedding. In141

fact, the ability to do this amounts to solving the definability problem in semantics.142

By contrast, deeper shallow embeddings internalize this statement. By defining an143

inductive family of contexts and terms, we effectively tag the definable elements of the144

shallow embedding in a way that records their construction. This leaves us with something145

in between a deep and shallow embedding. On the one hand, our contexts, types, and terms146

carry elements of a shallow embedding. On the other hand, our typing derivations are deeply147

embedded in a datatype, so we may pattern-match on them.148

To make the idea more concrete, let us revisit the shallow embedding of Figure 2. We149

will henceforth refer to this shallow embedding as S. By definition, to have a term of this150

shallow embedding means to have a shallow context Γ : Ctx, a shallow type T : Type Γ , and a151

dependent function (γ : Γ) → T γ. To deepen this embedding we must define a new datatype152

Term that is indexed by these three values. The constructors of the datatype encode the153

typing rules of the theory which it represents. The full definition may be found in Figure 3.154

All references to definitions in the shallow embedding start with the prefix S.155

To understand this deepened term type better, we may for instance consider its lambda156

constructor. The λ constructor of the shallow embedding is referred to as S.lambda. If s157

is a term of the shallow embedding of the appropriate type and context, then S.lambda158

s represents the λ-abstraction of that term in the shallow embedding. Then, the lambda159

constructor of the deepened embedding inputs a term of a type parameterized by the shallow160

term s, and outputs an expression of type parameterized by the term S.lambda s. For clarity161

we write each deep constructor so that it refers to the corresponding shallow definition, but162

note that the code repetition could be eliminated by unfolding the definitions of the shallow163

embedding directly into the constructors of the datatype.164

We can of course extend this idea to the construction of contexts and variables as well.165

The deepened context datatype Context : S.Ctx → Set is a family over the contexts S.Ctx of166

the shallow embedding. When we have an inhabitant of Context sΓ we know that (1) sΓ is a167

well-formed context in the shallow embedding, and (2) that sΓ is definable by starting from168

the empty context, and extending it by shallow types. Similarly, Var sΓ sT s is inhabited169

when s is a well-formed variable in the shallow embedding.170

For a quick example of the deepened embedding, here is a definition of the identity171
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19:6 Deeper Shallow Embeddings

function on the universe:172

idU : Term ∅ (S.Π S.U S.U) _173

idU = lambda (var same)174

Notice that Agda is able to infer the corresponding shallow term, which has been elided175

and replaced by “_”. We are always able to extract the shallow term from a deepened176

embedding:177

extract : ∀{sΓ Γ T t} → Term {sΓ} Γ T t → S.Term sΓ T178

extract {sΓ} {Γ} {T} {t} e = t179

Hence, anything that can be proven about shallow embeddings can also be proven about180

deeper ones. For example, we can prove consistency (relative to the ambient type theory);181

that is, we can show that if we have an inhabitant of the shallow empty type, then we have182

an inhabitant of the empty type in the host language:183

consistency : ∀{t} → Term {S.∅} ∅ (λ _ → ⊥) t → ⊥184

consistency e = (extract e) tt185

Syntax and Universe Level Simplifications186

To facilitate readability, we have omitted certian details present in the formalization when187

presenting Agda code. In particular, we mostly leave out universally quantified parameters188

when they can easily be inferred. More importantly, we have also omitted all traces of189

universe levels. For example, in the formalization, the U constructor of Term looks like:190

U0 : ∀{sΓ Γ} → Term {sΓ} Γ S.U1 S.U0191

Each universe level included in the deeper embedding needs it’s own constructor, so for192

example U1 is a separate constructor. Additionally, Term (and its shallow counterpart) needs193

some constructors to deal with universe level cumulativity. The full definition has three194

additional constructors: Lift, which raises a type to the next level; lift, which raises a term to195

a lifted type; and lower, which lowers a term from a lifted type. The corresponding shallow196

embedding definitions are implemented with the Agda terms of the same name.197

3 Advantages of Deeper Shallow Embeddings, by Example198

In this section we show that deeper shallow embeddings have usability advantages vis-a-vis199

both shallow and deep embeddings. We do so by example: we present deeper shallow200

embeddings which enable features that are not supported otherwise. Our discussion is201

focused around three examples: metadata on terms, pattern matching, and term restriction.202

3.1 Metadata: Named Variables203

Most embeddings of dependently-typed languages in proof assistants such as Agda or Coq204

rely on de Bruijn indices for representing and accessing variables: see e.g. [21, 18]. Evidently,205

this state of affairs is undesirable from a usability perspective.206

We show that a deeper shallow embedding can be used to define a DSL with named207

variables. This is achieved without changing the standard shallow embedding of dependent208

types. Instead, the deepened embedding carries metadata about terms like a deep embedding209
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could, in particular the names of variables. This way a user of the DSL is able to write210

lambda "x" (var "x") for the identity function, instead of the usual expression lambda (var211

same) .212

To achieve this, we add a string along with each type in the deepened context:213

data Context : S.Ctx → Set j where214

∅ : Context S.∅215

_,_::_ : Context sΓ → String → (T : S.Type sΓ) → Context (S.cons sΓ T)216

This allows us to write a function:217

findVar : (Γ : Context sΓ) → String →
∑

T,t

Var Γ T t218

which searches for a variable name in the context. If the variables exists, it returns the219

shallow type and term of the variable as the Var value corresponding to it.220

Unlike de Bruijn indices, this does not preclude the user from attempting to write a221

nonsensical term like lambda "x" (var "y") in an empty context. To deal with that eventuality222

we introduce an error type and term223

data Error : Set where224

error : Error225

We can now implement functions which, given a variable name, search the context for226

the corresponding type and term. If the variable is not found, the Error type is used.227

resultType : (Γ : Context sΓ) → String → S.Type sΓ228

resultType Γ name with findVar Γ name229

... | nothing = λ _ → Error230

... | just ((T , t) , x) = T231

232
resultTerm : (Γ : Context sΓ)233

→ (name : String) → S.Term sΓ (resultType Γ name)234

resultTerm Γ name with findVar Γ name235

... | nothing = λ _ → error236

... | just ((T , t) , x) = t237

We can now implement Term. The var constructor takes a string as an argument, and uses238

the aforementioned functions to compute its own type:239

var : (name : String) → Term Γ (resultType Γ name) (resultTerm Γ name)240

Finally, we let the lambda constructor take a string argument as well:241

lambda : (name : String) → Term (Γ , name :: A) B s → Term Γ (S.Π A B) (S.lambda s)242

Putting all of this together, we can now write terms with named variables! For example,243

the identity function can be written as:244

id : Term ∅ (λ _ → (X : Set) → X → X) _245

id = lambda "X" (lambda "x" (var "x"))246

So, what if we try to use an unbound variable? Suppose we enter the definition247

id : Term ∅ (λ _ → (X : Set) → X → X) _248

id = lambda "X" (lambda "x" (var "y"))249
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19:8 Deeper Shallow Embeddings

This definition will not typecheck in Agda! By writing this definition we have communi-250

cated to Agda our expected type; we have also fixed the context to be empty. In the process251

of type-checking, Agda introduces the two variables "X" and "x" in the context, and then252

looks for "y". It fails to find it, so var constructs an element of type Term Γ ( λ _ → Error )253

( λ _ → error ) which does not match the stated type, causing a type error.254

It is important to note that this technique is possible exactly because (a) λ _ → Error is255

a perfectly acceptable type of the shallow embedding, yet (b) none of our Term constructors256

create elements of Term Γ ( λ _ → Error ) ( λ _ → error ) .257

3.2 Pattern Matching and Induction: Compilation258

Another drawback of shallow embeddings is that they do not provide the ability to induct259

on their terms. Given an arbitrary element t : S.Term nil T, there is not much we can really260

do: T is an arbitrary family over the empty context, so essentially an arbitrary Agda type.261

Hence, there is very little we can do, either with the term t or the type T.262

In contrast, terms in the deeper shallow embedding are given by an inductive data type.263

It is therefore possible to write functions that pattern-match on them. For example, the264

following function compiles a dependently-typed term to JavaScript.265

compileToJs : Term Γ T s → String266

compileToJs {Γ} (lambda e) =267

"function(x" ++ (show (len Γ)) ++ ")"++ "{" ++ compileToJs e ++ "}"268

compileToJs {Γ} (var x) =269

"x" ++ (show ((len Γ) - (index x)))270

compileToJs (app e1 e2) =271

"(" ++ (compileToJs e1) ++ "" ++ (compileToJs e2) ++ ")"272

273

The compilation proceeds in a fairly obvious way: a lambda is compiled to an anonymous274

function; and variable names are determined by their position in the context, using len and275

index to compute the relevant indices. Because of the lack of an induction principle, writing276

this simple function over a shallow embedding is impossible.277

3.3 Syntactic Restrictions: Affine Terms278

A final advantage of deeper shallow embeddings is that they provide the ability to restrict279

the terms that appear in the DSL. This has two advantages: (1) on an engineering level, it280

limits the interface exposed to the DSL programmer to a safer fragment; and (2) on a design281

level, it enables us to ‘carve out’ a subset of interest of a shallow embedding.282

When embedding a DSL in a shallow manner, the intention is that the user will build283

terms by composing the given definitions. However, shallow embeddings cannot stop a user284

from writing any term of the base language with a fortuitous type. For example, if one wants285

an element of S.Term S.∅ (S.Π S.U S.U) then instead of writing S.lambda (S.var S.same) , one286

could simply write λ y x → x , circumventing the intent of the DSL designer. This example287

is fairly innocuous, but it is not difficult to imagine that this might become problematic in288

more complicated languages.289

Kaposi, Kovács, and Kraus [18] propose a solution to this that uses Agda records for290

data hiding. The idea is that we wrap the contraptions of the shallow embedding in unary291

record types whose fields are private, and import only the wrapped model. That way the user292

cannot ‘access’ the underlying representation. However, because of Agda’s η-rule for record293

types, the wrapped model retains the definitional properties of the shallow embedding.294
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While this approach works, it relies heavily on features specific to Agda. If we use295

deeper shallow embeddings instead, only constructors of Term can be used to obtain terms.296

Therefore, the terms of the DSL can be restricted without making use of any data-hiding297

mechanism.298

As an example, we can define a DSL which holds only affine terms, i.e. a DSL whose299

terms can use a variable in the context at most once. First, we need to augment contexts300

with some usage annotation. We define a family VarData : ContextsΓ → Set over deepened301

contexts, which stores a boolean flag for each type in the context. The flag records whether302

that variable has been used. Next, we inductively define a ternary relation303

Check : VarData Γ → VarData Γ → VarData Γ → Set j304

between flagged contexts, which holds if the first two contexts do not use the same variable,305

while the third context uses all variables used by either of the first two. This is reminiscent306

of ternary ‘context split’ relations often used with linear types, e.g. session types [24, §3].307

data VarData : Context sΓ → Set where308

∅ : VarData ∅309

_,_ : VarData Γ → Bool → VarData (Γ , T)310

311

312

data Check : VarData Γ → VarData Γ → VarData Γ→ Set j where313

∅ : Check ∅ ∅ ∅314

consLeft : (T : S.Type sΓ) → Check Γ1 Γ2 Γ3 → Check (Γ1 , true) (Γ2 , false) (Γ3 , true)315

consRight : (T : S.Type sΓ) → Check Γ1 Γ2 Γ3 → Check (Γ1 , false) (Γ2 , true) (Γ3 , true)316

consNeither : (T : S.Type sΓ) → Check Γ1 Γ2 Γ3 → Check (Γ1 , false) (Γ2 , false) (Γ3 , false)317

Next, we define AffineTerm, which is a deepened type of terms that only holds affine terms.318

It is defined in much the same way as the standard deepened term type, but it incorporates319

elements of Check and VarData as evidence that the embedded terms are affine. Specifically,320

this evidence is used in the app constructor to ensure that the two subterms do not both use321

the same variable.322

data AffineTerm : (Γ : Context sΓ) → VarData Γ → (T : S.Type sΓ) → S.Term sΓ T → Set j where323

app : AffineTerm Γ Γ1 (S.Π A B) s1 → (x : AffineTerm Γ Γ2 A s2) → Check Γ1 Γ2 Γ3324

→ AffineTerm Γ Γ3 (λ γ → B (γ , s2 γ)) (S.app s1 s2)325

Π : AffineTerm Γ Γ1 S.U s1 → AffineTerm (Γ , s1) (Γ2 , b) S.U s2 → Check Γ1 Γ2 Γ3326

→ AffineTerm Γ Γ3 S.U (S.Π s1 s2)327

– ...328

Finally, we are at a point where one may clearly witness the power of deeper shallow329

embeddings and the ability to pattern-match on them. We are able to define a function:330

checkAffine : Term Γ T t → Maybe (Σ (VarData Γ) (λ vd → AffineTerm Γ vd T t))331

which checks whether a given Term is affine, and—if so—reconstructs it as an AffineTerm.332

To achieve that we will need some helper functions, whose definitions we omit. Amongst333

these the most important one is check, which inputs two elements of VarData, and—if they334

do not conflict with each other—returns their combination alongside an element of Check.335

The ‘affinization’ function itself recursively calculates the variables used by each expression.336

Whenever an app case is encountered, it checks that no variable is used twice.337
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4 Renamings and Substitutions338

Having showcased some advantages of deeper shallow embeddings with small examples, we339

now turn to the more complicated operations of renaming and substitution that are central340

to dependent type theory.341

As shallow embeddings are essentially semantic interpretations, substitutions are defin-342

able operations. In our running example of the ‘standard’ interpretation, the type of all343

substitutions is the type of all functions between contexts; the action of a substitution on344

types and terms is then determined by function application:345

Sub : Ctx → Ctx → Set346

Sub Γ2 Γ1 = Γ2 → Γ1347

348

349

extend : Sub Γ2 Γ1 → Term Γ1 T → Sub Γ2 (cons Γ1 T)350

extend sub e γ2 = sub γ2 , e (sub γ2)351

352

353

subType : Sub Γ2 Γ1 → Type Γ1 → Type Γ2354

subType sub T = λ γ2 → T (sub γ2)355

356

357

lift : (sub : Sub Γ2 Γ1) → (T : Type Γ1) → Sub (cons Γ2 (subType sub T)) (cons Γ1 T)358

lift sub T (γ , t) = sub γ , t359

360

361

subTerm : (sub : Sub Γ2 Γ1) → Term Γ1 T → Term Γ2 (subType sub T)362

subTerm sub e = λ γ2 → e (sub γ2)363

There is no evident non-inductive way to isolate the renamings amongst these.364

In contrast, in deep embeddings substitutions are usually given in an algebraic style, and365

defined inductively from the empty substitution, the identity, composition, weakening, and366

extension [12, §3.5] [7, §2] [1, §3]. Renamings may also be defined by induction-recursion—at367

the same time as a recursive function that interprets them as full substitutions [2, §5].368

How is one to bridge this gap for deeper shallow embeddings? As before, the answer lies369

exactly in the middle: we are able to define a data type Ren of renamings, which is indexed370

in shallowly-embedded substitutions. Like with shallow embeddings but unlike with deep371

embeddings, renamings here have inherent computational content: they are actual functions372

mapping variables to variables.373

374

Ren : S.Sub sΓ2 sΓ1 → Context sΓ2 → Context sΓ1 → Set375

Ren sub Γ2 Γ1 = Var Γ1 T t → Var Γ2 (S.subType sub T) (S.subTerm sub t)376

377

378

lift : Ren sub Γ2 Γ1 → Ren (S.lift sub T) (Γ2 , S.subType sub T) (Γ1 , T)379

380

381

renTerm : Ren sub Γ2 Γ1 → Term Γ1 T t → Term Γ2 (S.subType sub T) (S.subTerm sub t)382

renTerm ren (lambda e) = lambda (renTerm (lift ren) e)383

renTerm ren (var x) = var (ren x)384

renTerm ren (app e1 e2) = app (renTerm ren e1) (renTerm ren e2)385

renTerm ren (Π A B) = Π (renTerm ren A) (renTerm (lift ren) B)386

renTerm ren U = U387

388

In many ways, our definition resembles the traditional definition of renaming in simply-389

typed λ-calculus [14, §II.1.1], i.e. a map from variables to variables that respects types.390

However, making that definition dependent involves quite a bit of tricky indexing [11, §5].391

Fortunately, we have no need for that: our deepened renamings are also ‘tracked’ by a392

corresponding substitution of the shallow embedding, so we can use that instead.393
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Substitutions work similarly: a deepened substitution Sub is parameterized by a shallow394

substitution, i.e. an element of S.Sub. Interestingly, renaming is used to define substitution.395

Sub : S.Sub sΓ2 sΓ1 → Context sΓ2 → Context sΓ1 → Set1396

Sub sub Γ2 Γ1 = Var Γ1 T t → Term Γ2 (S.subType sub T) (S.subTerm sub t)397

398
liftSub : Sub sub Γ2 Γ1 → Sub (S.lift sub) (Γ2 , S.subType sub T) (Γ1 , T)399

liftSub sub same = var same400

liftSub sub (next x) = renTerm next (sub x)401

402
extend : Sub sub Γ2 Γ1 → Term Γ1 T t → Sub (S.extend sub t) Γ2 (Γ1 , T)403

extend sub e same = subTerm sub e404

extend sub e (next x) = sub x405

406
subTerm : Sub sub Γ2 Γ1 → Term Γ1 T t → Term Γ2 (S.subType sub T) (S.subTerm sub t)407

subTerm sub (lambda e) = lambda (subTerm (liftSub sub) e)408

subTerm sub (var x) = sub x409

subTerm sub (app e1 e2) = app (subTerm sub e1) (subTerm sub e2)410

subTerm sub (Π A B) = Π (subTerm sub A) (subTerm (liftSub sub) B)411

subTerm sub U = U412

To sum up, with deeper shallow embeddings we can perform complicated syntactic413

operations on embedded terms, such as substitution and renaming. Naturally, one wonders:414

how far can we take this? For example, could we encode a β-reduction step? We answer415

that in the next section.416

5 β-reduction and Injectivity of Products417

With induction under our belts, it might seem that we have all of the components needed to418

define one-step β-reduction. After all, we can certainly inductively traverse a term looking419

for a λ-abstraction to the left of an application, and—if we find one—apply substitution as420

described in the previous section. Here is a first attempt:421

βreduce : Term Γ T t → Term Γ T t422

βreduce (lambda e) = lambda (βreduce e)423

βreduce (var x) = var x424

βreduce (Π A B) = Π (βreduce A) (βreduce B)425

βreduce U = U426

βreduce (app e1 e2) = ?427

In fact, the completed clauses of this definition are not one-step β-reduction. It will428

perform more reductions than necessary, as e.g. we recurse on both the left and right subtree429

of Π. We could rework this definition into a correct one, but this simpler variant suffices to430

illustrate the point.431

Given our syntax, the only computationally non-trivial case is that of app. To complete432

it we would ideally like to check whether the expression is a redex, i.e. whether e1 is of the433

appropriate form lambda e. If not we can mindlessly recurse like in all other cases; but if we434

find a λ-abstraction, we would like to perform the substitution. Unfortunately, we are not435

able to pattern-match on e1. The reason is that its type is Term Γ (S.Π A B) s1. As Term is436

an inductive family indexed in shallow types, induction is only allowed when we have a term437

of general type Term Γ T s1 with all of Gamma, T and s1 free.438

Being more precise about the problem we are trying to solve, we would like a function439
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castLam : Term Γ (S.Π A B) t → Maybe (Term (Γ , A) B (λ (γ , a) → t γ a))440

that checks if its argument is a λ-abstraction, and if so returns its body. We can make441

some progress towards defining such a function by generalizing the Π type to an arbitrary442

type T. We may then induct on it; if it happens to be a λ-abstraction, we return a term of443

type Term (Γ , A’) B’ t’ where A ′, B ′, and t ′ have no particular relation to the input.444

In fact, we can do better than that. We can define a fairly simple function castLamImpl445

which checks whether its argument is a λ-abstraction. If it is, it returns446

- types A’ and B’, the latter depending on the former,447

- the body t ′ of the λ-abstraction,448

- a proof that T ≡ S.Π A’ B’, and449

- a proof that t is equal to the shallow-λ-abstraction of t ′.450

All of this is encoded in an ugly nested Σ type, so here we abbreviate the syntax to convey451

the meaning:452

castLamImpl : Term Γ T t → Maybe
∑

A,B,t ′

λγ → ( T γ , t γ) ≡ λγ →453

( ( S.Π A B ) γ , λ a → t’ (γ, a) ) × Term (Γ , A) B t’454

castLamImpl (lambda e) = just (_ , _ , _ , refl , e)455

castLamImpl _ = nothing456

One might expect that it would be easy to define castLam using the proofs of equality457

provided by castLamImpl. But that is not so! If we apply castLamImpl to something of type458

Term Γ (S.Π A B) t we would obtain, amongst other things, types A’ and B’ along with a459

proof of S.Π A B ≡ S.Π A’ B’. Hence, at the very least, we would have to show that p : A ≡ A’460

and B ≡p B’, where the ≡p means that the two types are equal ‘over’ the equality p of the461

types on which they depend. In more detail, the exact statement we need is462

Π-injective :463

(λ γ → ((ST .Π A B) γ , λ a → t (γ , a))) ≡ (λ γ → ((ST .Π A’ B’) γ , λ a → t’ (γ , a)))464

→ (A , B , t) ≡ (A’ , B’ , t’)465

If we had a proof of this, it would be possible to derive castLam from castLamImpl:466

castLam : Term Γ (S.Π A B) t → Maybe (Term (Γ , A) B (λ (γ , a) → t γ a))467

castLam e with castLamImpl e468

... | nothing = nothing469

... | just (A , B , t’ , p , e’) with (Π-injective p)470

... | refl = just e’471

472

473

Using that we could complete the final case of our β-reduction function:474

βreduce (app e1 e2) with castLam e1475

... | nothing = app (βreduce e1) (βreduce e2)476

... | just e = subTerm (extend idSub e2) e477

Unfortunately, Π-injective is a very long way from being true. This is a well-known issue478

in the metatheory of dependent types, known as the injectivity of type constructors. To479

begin, notice that given any Agda types A,B,C,D, the following statement is not true:480

(A → B) ≡ (C → D) → A ≡ C × B ≡ D481
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Taking A and C to be empty types, B to be empty, and D to be the unit type of one element,482

we see that in homotopy type theory [23] the antecedent is true by univalence, yet the483

consequent proves that the empty and the unit types are equal. Thus, neither this, nor the484

corresponding more general statement about dependent function types in Agda, can be true.485

But since S.Π was defined in terms of Agda function types, neither will Π-injective!486

Additionally, our shallow types are functions from a context to an Agda type. In order to487

prove equality of shallow types, we will therefore also require function extensionality.488

5.1 Type codes: an Inductive-Recursive Universe489

The problem we faced above boils down to two facts: (1) the types of the shallow embedding490

S were elements of the Agda universe of types Set, and (2) Set itself is far too open. This491

means that we are not in general able to induct on elements of Set (i.e. Agda types) so as to492

prove the requisite injectivity lemma. This restriction is only natural: as Agda supports new493

data type definitions, which would change the induction principle of Set.494

The solution is to change the shallow embedding S, so that its types come from a closed495

universe. This can be achieved using a classic construction by Martin-Löf [20], which is496

sometimes known as the inductive-recursive universe [13, §1]. The idea is simple: instead497

of having a universe of types, we construct a universe of type codes, i.e. an inductive data498

type whose elements represent types. At the same time we define a family over this universe,499

which interprets these codes as types of the host language.500

The technique itself is best illustrated by example. In fact, as our object language contains501

a universe itself, we will generate an infinite hierarchy of universes by simply adjoining an502

additional N parameter. This family TypeCode : N → Set of inductive-recursive universes is503

defined as follows. Technically, as written here this definition is not strictly positive. However,504

the full definition in our formalization includes the standard trick of performing induction on505

the N parameter so that it is admissible in Agda.506

data TypeCode : N → Set where507

‘U : TypeCode (suc n)508

‘Π : (A : TypeCode n) → (J A K → TypeCode n) → TypeCode n509

‘lift : TypeCode n → TypeCode (suc n)510

511

512

J_K : TypeCode n → Set513

J ‘U K = TypeCode n514

J ‘Π A B K = (a : J A K) → J B a K515

J ‘lift T K = J T K516

Notice the distinctive use of induction-recursion in the constructor ‘Π, which takes a type517

code and a family over the interpretation of that type code.518

We can then build a new shallow embedding whose types are, in fact, type codes. The519

construction amounts to sprinkling the decoding function wherever it should be to turn type520

codes into bona-fide types:521

Ctx = Set

Type : N → Ctx → Set

Type n Γ = Γ → TypeCode n

Term : ∀{n} → (Γ : Ctx) → Type n Γ → Set

Term Γ T = (γ : Γ) → J T γ K

U : ∀{n} → Type (suc n) Γ

U = λ _ → ‘U

Π : (A : Type (suc n) Γ)

→ Type (suc n) (cons Γ A) → Type (suc n) Γ

Π A B = λ γ → ‘Π (A γ) ((λ a → B (γ , a)))

522
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The implementation of Type is now a function from a context to TypeCode, while the523

implementation of Term uses the decoding function. Moreover, notice that types and terms524

are now indexed by N, so they live at various levels of the inductive-recursive universe525

hierarchy.526

Finally, we can deepen this new shallow embedding, not forgetting to thread the new527

universe levels around in the process. The new definition of Context, Var, and Term looks528

nearly identical to our original one from Figure 3, except that the prefix S now refers to our529

new shallow embedding with type codes.530

5.2 Completing the Definition531

The benefit of inductive-recursive universes is that, as they are inductively defined, their532

constructors are injective. As a consequence we are now able to prove the injectivity of ‘Π:533

Π-injective-typecode : ((‘Π A B) , t) ≡ ((‘Π A’ B’) , t’) → (A , B , t) ≡ (A’ , B’ , t’)534

Π-injective-typecode refl = refl535

536

537

This is almost a proof of Π-injective, with the difference that we must somehow extract proofs538

S.Π A B ≡ S.Π A’ B’ and t ≡ t’ from its premise. Looking at the premise more carefully, it539

roughly gives us what we want, but as an equality of functions:540

(λ γ → ((S.Π A B) γ , λ a → t (γ , a))) ≡ (λ γ → ((S.Π A’ B’) γ , λ a → t’ (γ , a)))541

By post-composing these two functions with the first projection, we can obtain an equality542

of the form543

(λ γ → (S.Π A B) γ a) ≡ (λ γ → (S.Π A’ B’) γ)544

To turn that into the desired equality, we must also use the function extensionality axiom:545

funExt : ((x : A) → f x ≡ g x) → f ≡ g546

which is not natively available in Agda. However, it is well-known to be consistent with547

intentional Martin-Löf type theory [23, §2].548

To make the behavior of funExt somewhat more computational, we add the following549

rewrite rule to Agda:550

postulate551

funExtElim : funExt (λ x → refl) ≡ refl552

553

{-# REWRITE funExtElim #-}554

This definitional equality is known to hold in e.g. the set-theoretic model. With this555

machinery in place, we are able to complete the definition of β−reduction.556

6 Related Work557

Our approach to deepening shallow embeddings is closely related to McBride’s ‘Outrageous558

but Meaningful Coincidences’ [21]. In that work, McBride introduces a deeper shallow559

embedding for dependent type theory by wrapping it in a datatype. The embedding differs560

from ours in that instead of indexing deepened terms by their shallow counterparts, McBride561

writes an evaluator that targets the shallow embedding using induction-recursion. While the562
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aesthetics of each approach are debatable, it is a fact that the inductive-recursive interpreter563

makes it difficult to define syntactic operations like renaming and substitution. This is564

because any operations on the terms must include a proof that they commute with the565

evaluation function. Our purely inductive definition makes such syntactic transformations566

much simpler to define. Our work focuses on the engineering aspects of this technique, and567

its various practical uses and advantages over traditional shallow embeddings.568

Kaposi et al. [18] propose that shallow embeddings are a ‘morally correct’ alternative to569

deep embeddings. They consider how one can be sure that a shallow embedding corresponds570

to the desired type theory; how does one know that no extra equalities or terms have been571

introduced? They prove several such correctness results externally to Agda. By contrast, our572

deeper shallow embeddings can be seen as bringing some of this work back inside of Agda.573

Kaposi et. al. also present a technique for term restriction in shallow embeddings, which we574

describe and compare to our techniques in (Section 3.3)575

Of course, one way to build a maximally-expressive embedding of type theory in type576

theory is to actually use a deep embedding. Perhaps the most technically accomplished work577

in that direction is by Altenkirch and Kaposi [1], who use quotient inductive-inductive types578

(QIITs) to present a deep embedding of type theory (with explicit substitutions) that is579

already quotiented under its own definitional equality. The power of this technique has been580

shown by proving normalization results [2].581

Previous work by Danielsson [12] and Chapman [7] encodes type theory (with explicit582

substitutions) in type theory itself. Because it lacks the technology of QIITs, this approach583

has to explicitly transport the representations of terms along type equalities using the type584

conversion rule.585

The functional programming community has also explored various forms of embedding.586

Gibbons and Wu [15] present a unified approach through polymorphism and folding. Carette587

et al. [6] design a system using Haskell typeclasses to build shallow embeddings which588

simultaneously allow users to add new terms at any time but also to define new interpreters.589

Another instance of an ‘intermediate’ embedding that is between deep and shallow can be590

found in the work of Augustsson [4], where the author hints at the possibility of so-called591

neritic embeddings.592

7 Conclusion593

In this paper we presented a technique for deepening a shallow embedding by storing it in594

a data type. This allows us to inspect, analyze, and manipulate terms in a way that is595

usually associated with deep embeddings, while retaining the automation afforded by the596

shallow embedding. We demonstrated the practical uses of this technique in a series of small597

case studies, and showed how—assuming function extensionality—we can recover syntactic598

transformations, such as β-reduction.599

One application of domain-specific languages is metaprogramming. In Lisp-like languages,600

code can be manipulated as data, quoted, and unquoted. Building a typed DSL can be601

seen as implementing a typed version of the sort of metaprogramming that Lisp can do.602

For example, quoting can be seen as simply writing an element of the DSL, and unquoting603

as corresponding to our extract functions. One could even imagine that the syntax of the604

DSL could look like the syntax of the host language, and therefore the host language would605

interpret code as either host code or DSL code depending on the type. Our hope is that606

ultimately dependently-typed embedding techniques will yield a typed (and therefore less607

error-prone) version of the sort of metaprogramming that one can do in Lisp.608
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Moreover, we explored the idea that there is more than just deep embeddings (initial609

models) and shallow embeddings (arbitrary models) in the design space. Unexplored con-610

structions of shallow models harbor additional power, which might be of significant interest611

for particular applications. In the future, we are hoping to further explore this spectrum of612

‘hybrid’ embeddings, with the ultimate goal of a practical approach for encoding a dependent613

type theory inside a dependent type theory.614

Of course, the technique of deepening a shallow embedding has limitations. For example,615

deeper shallow embeddings allow induction over terms, but not over types. Various steps can616

be taken to improve that; for example, switching to an inductive-recursive universe allowed617

us to prove that Π is injective. However, the same trick does not allow us to prove e.g. that618

U and Π are unequal.1619

Finally, it is often the case that we would like to compute syntactic transformations on620

the terms of an embedded language—like the β-reduction function given in §5—as they might621

prove useful in compilation, optimizations, etc. Thus, the question of expressivity arises:622

which syntactic transformations can be expressed over deeper shallow embeddings? We623

believe that most transformations that can be performed on a shallow embedding can be lifted624

to its deepened version: as shallow embeddings often ‘quotient away’ numerous differences625

between terms, any transformation on that level is likely easy to extend to deepened terms,626

but may require some effort. For example, when we defined renaming and substitution627

in Section 4, we had to define substitution on the shallow embedding first; when defining628

β-reduction in Section 5, we had to find a shallow embedding which satisfied certain equalities629

first, which required some ingenuity. In short, the transformations that can be expressed are630

not quite as expressive as those over deep embeddings, and may also require additional work.631

Because of these restrictions, we view the main benefits of a deeper shallow embedding632

to be for metaprogramming, rather than for studying the metatheory of type theory.633
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