Pruning has a disparate impact on model accuracy
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Abstract

Network pruning is a widely-used compression technique that is able to significantly
scale down overparameterized models with minimal loss of accuracy. This paper
shows that pruning may create or exacerbate disparate impacts. The paper sheds
light on the factors to cause such disparities, suggesting differences in gradient
norms and distance to decision boundary across groups to be responsible for this
critical issue. It analyzes these factors in detail, providing both theoretical and
empirical support, and proposes a simple, yet effective, solution that mitigates the
disparate impacts caused by pruning.

1 Introduction

As deep learning models evolve and become more powerful, they also become larger and more
costly to store and execute. The trend hinders their deployment in resource-constrained platforms,
such as embedded systems or edge devices, which require efficient models in time and space.
To address this challenge, studies have developed a variety of techniques to prune the relatively
insignificant or insensitive parameters from a neural network while ensuring competitive accuracy
[1,5, 7,30, 31, 32, 40]. When a model needs to be developed to fit given and certain requirements in
size and resource consumption, a pruned model which is derived from a large, rigorously-trained,
and (often) over-parameterized model, is regarded as a de-facto standard. That is because it performs
incomparably better than a same-size dense model which is trained from scratch, when the same
amount of effort and resources are invested.

In spite of its strengths, pruning has been showed to induce or exacerbate disparate effects in the
accuracy of the resulting reduced models [20, 19]. Intuitively, the removal of model weights affects
the process in which the network separates different classes, which can have contrasting consequences
for different groups of individuals. This paper further shows that the accuracy of the pruned models
tends to increase (decrease) more in classes that had already high (low) accuracy in the original model,
leading to a “the rich get richer” and “the poor get poorer” effect. This Matthew effect is illustrated in
Figure 1. The figure shows the accuracy of a facial recognition task on different demographic groups
for several pruning rates (indicating the percentage of parameters removed from the original models).
Notice how the accuracy of the majority group (White) tends to increase while that of the minority
groups tends to decrease as the pruning ratio increases.

Following these observations, we shed light on the factors to cause such disparities. The theoretical
findings suggest the presence of two key factors responsible for why accuracy disparities arise in

*This work was also conducted when Jung-Eun Kim was an assistant professor at Syracuse University.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



No Pruning Pruning 30 % Pruning 50 % Pruning 70 % Pruning 90 %

9
<03

0.0
White Black Asian IndiarOthers White Black Asian IndianOthers White Black Asian IndiarOthers White Black Asian IndianOthers White Black Asian IndiarOthers
Groups Groups Groups Groups Groups

Figure 1: Accuracy of each demographic group in the UTK-Face dataset using Resnet18 [18], at the
increasing of the pruning rate.

pruned models: (1) disparity in gradient norms across groups, and (2) disparity in Hessian matrices
associated with the loss function computed using a group’s data. Informally, the former carries
information about the groups’ local optimality, while the latter relates to model separability. We
analyze these factors in detail, providing both theoretical and empirical support on a variety of
settings, networks, and datasets. By recognizing these factors, we also develop a simple yet effective
training technique that largely mitigates the disparate impacts caused by pruning. The method is
based on an alteration of the loss function to include components that penalize disparity of the average
gradient norms and distance to decision boundary across groups.

These findings are significant: Pruning is a key enabler for neural network models in embedded
systems with deployments in security cameras and sensors for autonomous devices for applications
where fairness is an essential need. Without careful consideration of the fairness impact of these
techniques, the resulting models can have profound effects on our society and economy.

Related work

Fairness and network pruning have been long studied in isolation. The reader is referred to the related
papers and surveys on fairness [4, 8, 11, 17, 24] and pruning [1, 5, 7, 30, 31, 32, 33, 40] for a review
on these areas.

The recent interest in assessing societal values of machine learning models has seen an increase of
studies at the intersection of different properties of a learning model and their effects on fairness. For
example, Xu et al. [39] studies the setting of adversarial robustness and show that adversarial training
introduces unfair outcomes in term of accuracy parity [42]. Zhu et al. [44] show that semisupervised
settings can introduce unfair outcomes in the resulting accuracy of the learned models. Finally,
several authors have also shown that private training can have unintended disparate impacts to the
resulting models’ outputs [3, 13, 34, 36, 43] and downstream decisions [29, 35].

Network compression has also been shown to have a profound impact towards the model fairness.
For example, several works observed empirically that network compression may amplify unfairness
in different learning tasks [27, 19, 20, 22]. Most of the focus has been on vision tasks and in
identifying the set of Pruning Identified Exemplars (PIEs), the samples that are impacted most under
the compression scheme and conclude that PIEs belongs to low frequency groups (those observed at
the tail of the data distribution). Blakeney et al. [6] further investigate how bias could be evaluated
and mitigated in pruned neural networks using knowledge distillation while Hosseini et al. [21]
observed empirically that knowledge distillation processes may produce unfair student models. The
impact of network compression towards fairness has also been assessed in natural language tasks.
For example, Du et al. [10] and Xu et al. [37] empirically measure the robustness of compressed
large language models, while Ahia et al. [2] look into how compression schemes affects data-limited
regimes. Finally, Xu and Hu [38] investigate ways to improve fairness in generative language models
by compressing them. We also note that, concurrently to this work, Good et al. [14] studied the
relative distortion in recall for various classes. They show that pruning has a Matthews effect on the
recall for various classes and propose an algorithm to attenuate such an effect.

This paper builds on this body of work and their important empirical observations and provides a
step towards a deeper theoretical understanding of the fairness issues arising as a result of pruning.
It derives conditions and studies the causes of unfairness in the context of pruning as well as it
introduces mitigating guidelines.



2 Problem settings and goals

The paper considers datasets D consisting of n datapoints (x;, a;, y;), with i € [n], drawn i.i.d. from
an unknown distribution IT. Therein, @; € X is a feature vector, a; € A with A = [m] (for some finite
m) is a demographic group attribute, and y; € Y is a class label. For example, consider the case of a
face recognition task. The training example feature x; may describe a headshot of an individual, the
protected attribute a; may describe the individual’s gender or ethnicity, and y; represents the identity
of the individual. The goal is to learn a predictor fg : X — Y, where 0 is a k-dimensional real-valued
vector of parameters that minimizes the empirical risk function:

. 1 v
6= argmin J(0; D) = — Z (fo(xi),yi), (1)
p n

i=1

where € : Y x Y — R, is a non-negative loss function that measures the model quality.

We focus on analyzing properties arising when extracting a small model f; with 8 C @ of size
18] = k < k. Model f; is constructed by pruning the least important values or filters from vector 0
(i.e., those with smaller values in magnitude) according to a prescribed criterion, such as an £, norm
[25, 31]. The paper focuses on understanding the fairness impacts (as defined next) arising when
pruning general classifiers, such as neural networks.

Fairness The fairness analysis focuses on the notion of excessive loss, defined as the difference
between the original and the pruned risk functions over some group a € A:

R(a) = J(8; D) — J(; Dy), 2)

where D, denotes the subset of the dataset D containing samples (x;, a;, y;) whose group membership
a; = a. Intuitively, the excessive loss represents the change in loss (and thus, in accuracy) that a given
group experiences as a result of pruning. Fairness is measured in terms of the maximal excessive loss
difference, also referred to as fairness violation:

£(D) = max [R(@) ~ R(@), 3

defining the largest excessive loss difference across all protected groups. (Pure) fairness is achieved
when &(D) = 0, and thus a fair pruning method aims at minimizing the excessive loss difference.

The goal of this paper is to shed light on why fairness issues arise (i.e., R(a) > 0) as a result of
pruning, why some groups suffer more than others (i.e., R(a) > R(a’)), and what mitigation measures
could be taken to minimize unfairness due to pruning.

We use the following notation: variables are denoted by calligraph symbols, vectors or matrices by
bold symbols, and sets by uppercase symbols. Finally, || - || denotes the Euclidean norm and we use
fo(x) to refer to the model’ soft outputs. All proofs are reported in Appendix A.

3 Fairness analysis in pruning: Roadmap

To gain insights on how pruning may introduce unfairness, we start with providing a useful upper
bound for a group’s excessive loss. Its goal is to isolate key aspects of model pruning that are
responsible for the observed unfairness. The following discussion assumes the loss function £(-) to be
at least twice differentiable, which is the case for common ML loss functions, such as mean squared
error or cross entropy loss.

Theorem 1. The excessive loss of a group a € A is upper bounded by*:

Ria) < ot} x 6~ 6] + 34 (FEZ) x - &

"+o(6- b

). )

where gt = VoJ (é; D,) is the vector of gradients associated with the loss function € evaluated at 0
and computed using group data D,, H. = Vé] (8; D,) is the Hessian matrix of the loss function €, at

the optimal parameters vector @, computed using the group data D, (henceforth simply referred to as
group hessian), and A(X) is the maximum eigenvalue of a matrix X.

2_With a slight abuse of notation, the results refer to 6 as the homonymous vector which is extended with
k — k zeros.



The bound above follows from a second order Taylor expansion of the loss function, Cauchy-Schwarz
inequality, and properties of the Rayleigh quotient.

Notice that, in addition to the difference in the original and pruned parameters vectors, two key
terms appear in Equation (9): (1) The norms of the gradients g/ and (2) the maximum eigenvalue
of the Hessian matrix H for a group a. Informally, the former is associated with the groups’ local
optimality while the latter relates to the ability of the model to separate the groups data. As we will
show next these components represent the main sources of unfairness due to model pruning.

The following is an important corollary of Theorem 1. It shows that the larger the pruning, the larger
will be the excessive loss for a given group.

Corollary 1. Let k and k' be the size of parameter vectors 0 and @', respectively, resulting from
pruning model fy, where k <k (i.e., the former model prunes more weight than the latter one). Then,
for any group a € A,

R(a,0) > R(a,6'), ()

where R(a, w) is the excessive loss upper bound computed using pruned model parameters w (Eq. (9)).

The corollary above indicates that the excess risk for a group increases as the pruning regime increase.
Building on this result, the paper illustrates next why unfairness can become more significant as the
pruning regime increases.

The next sections analyze the effect of gradient norms and the Hessian to unfairness in the pruned
models. The theoretical claims are supported and complemented by analytical results. These results
use the UTKFace dataset [41] for a vision task whose goal is to classify ethnicity. The experiments
use a ResNet-18 architecture and the pruning counterparts remove the P% parameters with the
smallest absolute values for various P. All reported metrics are normalized and an average of 10
repetitions. While the theoretical analysis focuses on the notion of disparate impacts under the lens
of excessive loss, the empirical results report differences in accuracy of the resulting models. The
empirical results thus reflect the setting commonly adopted when measuring accuracy parity [42].

We report a glimpse of the empirical results, with the purpose of supporting the theoretical claims,
and extended experiments, as well as additional descriptions of the datasets and settings, are reported
in Appendix C.

4 Why disparity in groups’ gradients causes unfairness?

This section analyzes the effect of gradients norms on the unfairness observed in the pruned models.
In more detail, it shows that unbalanced datasets result in a model with large differences in gradient
norms between groups (Proposition 1), it connects gradients norms for a group with the resulting
model errors in such a group (Proposition 2), and connects these concepts with the excessive loss
(Theorem 1) to show that unfairness in model pruning is largely controlled by the difference in
gradient norms among groups.

Gradient norms and group sizes. The section first shows EEE Group size
that imbalanced datasets lead a model to have imbalanced lgill
gradient norms across groups. The following result assumes 0.3
that the training converges to a local minima.

0.2
Proposition 1. Consider a dataset with two groups, a and b
with |Dy| > Dyl Then ||g¢]|| < ||g¢]]- 01
That is, groups with more data samples will result in smaller 0-9"\White Black Asian Indian Others

gradients norms than groups with fewer data samples and Groups

vice-versa. Figure 2 illustrates Proposition 1. The plot shows Figure 2: Group size vs. gradient norms.
the relation between groups sizes |D,| and their associated gradient norms ||g%|| on the UTK dataset
and settings described above. Notice the strong trend between decreasing group sizes and increasing
gradient norms for such groups. These theoretical considerations can be used to explain why
underrepresented groups are often subject to larger performance impacts after network pruning [20].
These groups tend to exhibit large gradient norms at convergence, relative to other groups, thus, by
Theorem 1, they are also subject to larger excessive losses due to pruning.



Gradient norms and accuracy. Next, the section shows a strong connection between the gradient
norms of a group and its associated accuracy. The following assumes the models adopt a cross
entropy loss (or mean squared error for regression tasks, as shown Appendix A).

Proposition 2. For a given group a € A, gradient norms can be upper bounded as:

lgfi e of D7 lifs@) - yix Ve sz@) |-
— e

)eD,
(@.)€Da Error

The above relates gradient norms with an error measure of the classifier to a target label multiplied
by the gradient of the predictions. For example, in a classification task with cross entropy loss,
{(fo(x),y) = — Y.y fo(®)Y*, where fg(x) represents the z-th element of the output associated with
the soft-max layer of model fp, and y 1s a one-hot encoding of the true label y, with y° representing
its z-th element, then,

gall = IV J(8; Dyl = ||'/ipl Z Vit(fo(x),y) X Vo fo(x)
(x,y)eD,
= [wa D (fo@) — ) x Vo fo(@) 08
(z.,y)ED, 0.6
Accuracy
<ot Y lfo@) =yl x Ve fo@)ll. 0.4{ mem Jigt
(a,y)eD,
0.2
A similar observation holds for mean square error loss, as

illustrated in Appendix A. The observation above sheds light O white  Black GArZiS” Indian Others
on the correlation between the prediction error of a group and ps .

its model gradients. This relation is emphasized in Figure 3, Flgure 3: Accuracy vs. gradient norms.
which illustrates that the gradient norm for a given group increases as its prediction accuracy decreases.

Proposition 2 allows us to link the gradient norms with the group accuracy of the resulting model,
which, together with the result above will be useful to reason about the impact of gradient norms on
the disparities in the group excessive losses.

The role of gradient norms in pruning. Having highlighted the connection between gradients
norms of a group with the accuracy of the pruned model on such a group, this section provides
theoretical intuitions on the role of gradient norms in the disparate group losses during pruning.

From Theorem 1, notice that the excessive loss is controlled by term ||g£|| x ||0- é ||. As already

noted in Corollary 1, the term ||0— 0| regulates the impact of pruning on the excessive loss, as the
difference between the pruned and non-pruned parameters vectors directly depends on the pruning
rate. For a fixed pruning rate, however, notice that groups with different gradient norms will have a
disparate effect on the resulting term. In particular, groups with very small gradients norms (those
generally associated with highly accurate predictions) will be less sensitive to the effects of the
pruning rate. Conversely, groups with large gradient norms will be affected by the pruning rate to a
greater extent, with larger pruning rates, typically reflecting in larger excessive losses.

These observations of the factors of disparity, accuracy, and group size, can also be appreciated
empirically in Figures 4a and 4b. The plots report accuracy (a) and gradient norms (b) on the
UTKFace datasets for a variety of pruning rates. Consider group White (containing 42% of the total
samples) and Others (containing 7% of the total samples). The unpruned model has high accuracy
on the former group and small gradient norms. The accuracy of this group is insensitive to various
pruning rates and even increases at large pruning regimes. In contrast, group Others has much
lower accuracy and larger gradient norms in the unpruned model. As the pruning rate increase, their
accuracies drastically drop. As a result, in high pruning regimes, this minority group exhibits poor
accuracy and very high gradient norms.

Notice that the empirical results apply to much more complex settings than those which can be
analyzed formally, thus they complement the theoretical observations.
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5 Why disparity in groups’ Hessians causes unfairness?

Having examined the properties of the groups gradients and their relation to unfairness in pruning,
this section turns on analyzing how the Hessian associated with the loss function for a group is linked
to the unfairness observed during pruning. In more detail, it connects the groups’ Hessian to the
distance to the decision boundary for the samples in that group and their resulting model errors
(Theorem 2), it illustrates a strong positive correlation between groups’ Hessian and gradient norms,
and links these concepts with the excessive loss (Theorem 1) to show that unfairness in model pruning
is controlled by the difference in maximum eigenvalues of the Hessians among groups.

Group Hessians and accuracy. The section first shows that groups presenting large Hessian values
may suffer larger disparate impacts due to pruning, when compared with groups that have smaller
Hessians. It does so by connecting the maximum eigenvalues of the groups Hessians with their
distance to decision boundary and the group accuracy. The following result sheds light on these
observations. It restricts its attention to models trained under binary cross entropy losses, for clarity
of explanation, although an extension to a multi-class case is directly attainable.

Theorem 2. Let fy be a binary classifier trained using a binary cross entropy loss. For any group
a € A, the maximum eigenvalue of the group Hessian A(H') can be upper bounded by:

1
ACHY) <
1Dy

> (@) (1- @) x|Vesz@) +

(@.y)eDy

fy@) =y xA (Vg fs@).  (6)
N ——

Closeness to decision boundary Error

The proof relies on derivations of the Hessian associated with model loss function and Weyl inequality.
In other words, Theorem 2 highlights a direct connection between the maximum eigenvalue of the
group Hessian and (1) the closeness to the decision boundary of the group samples, and (2) the
accuracy of the group. The distance to the decision boundary is derived from [9]. Intuitively this
term is maximized when the classifier is highly uncertain about the prediction: fx(x) — 0.5, and
minimized when it is highly certain fg(x) — 0 or 1, as showed in the following proposition.

Proposition 3. Consider a binary classifier fg(x). For a given sample x € D, the term fg(x)(1 —
J§(x)) is maximized when fg(x) = 0.5 and minimized when fg(x) € {0, 1}.

Observe that a group consisting of samples that are far from
the decision boundary will have smaller Hessians and, thus, be
less subject to a drop in accuracy due to model pruning. These
results can be appreciated in Figure 5. Notice the inverse
relationship between maximum eigenvalues of the groups’
Hessians and their average distance to the decision boundary.
The same relation also holds for accuracy: the higher the ol B _ . 0.0

. . . . White Black Asian Indian Others
.He':ss@n's maximum elgenyalues, the smaller the accuracy. This Figure 5: Group Hessians, distance to
is intuitive as samples which are close to the decision boundary  jacision boundary, and accuracy.
will be more prone to errors due to small changes in the model
due to pruning, when compared with samples lying far from the decision boundary.
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Correlation between group Hessians and gradient norms. This section observes a positive
correlation between maximum eigenvalues of the Hessian of a group and their gradient norms. This
relation can be appreciated in Figure 6. While mainly empirical, this observation is important as it
illustrates that both the Hessian A(H?) and the gradient ||g’|| terms appearing in the upper bound of
the excessive loss R(a) reported in Theorem 1 are in agreement. This relation was observed in all
our experiments and settings. Such observation allows us to infer that it is the combined effect of
gradient norms and group Hessians that is responsible for the excessive loss of a group and, in turn,
for the exacerbation of unfairness in the pruned models.

The role of the group Hessian in pruning. Having highlighted

the connection between Hessian for a group with the resulting 04
accuracy of the model on such a group, this section provides
theoretical intuitions on the role of the Hessians in the disparate
group losses during pruning. 0.2

mm A(HY)
lgsll
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In Theorem 1, notice that the excessive loss is controlled by term ;
||| % |6— 6 |12. As also noted in the previous section, the term

16— 6 | regulates the impact of pruning on the excessive 1oss %% white Biack Asian Indian Others
as the difference between the pruned and non-pruned parameter Groups

vectors directly depends on the pruning rate. Similar to the obser- F1gure 6: Group Hessians and gra-
vation for gradient norms, with a fixed pruning rate, groups with dient norms.

different Hessians will have a disparate effect on the resulting term. In particular, groups with small
Hessians eigenvalues (those generally distant from the decision boundary and highly accurate) will
be less sensitive to the effects of the pruning rate. Conversely, groups with large Hessians eigenvalues
will be affected by the pruning rate to a greater extent, frypically resulting in larger excessive losses.
These observations can further be appreciated empirically in Figures 4a (for accuracy) and 4c¢ (for
maximum group Hessian eigenvalues) on the UTKFace datasets for a variety of pruning rates.

6 Mitigation solution and evaluation

The previous sections highlighted the presence of two key factors playing a role in the observed
model accuracy disparities due to pruning: the difference in gradient norms, and the difference in
Hessians losses across groups. This section first shows how to leverage these findings to provide a
simple, yet effective solution to reduce the disparate impacts of pruning. Then, the section illustrates
the benefits of this mitigating solution on a variety of tasks, datasets, and network architectures.

6.1 Mitigation solution

To achieve fairness, the aforementioned findings suggest to equalize the disparity associated with
gradient norms ||g%|| and Hessians A(H!) across different groups a € A. For this goal, we adopt a
constrained empirical risk minimization approach:

minignize J(0;:D) such that: ||g’|| = llg°ll. A(H.) = A(H") Yae A, (7

where g = VgJ(0; D) and H' = V,J(8; D) refer to the gradients and Hessian associated with loss
function ¢, respectively, and are computed using the whole dataset D. The approach (7) is a common
strategy adopted in fair learning tasks, and the paper uses the Lagrangian Dual method of Fioretto
et al. [12] which exploits Lagrangian duality to extend the loss function with trainable and weighted
regularization terms that encapsulate constraints violations (see Appendix C for additional details).

A shortcoming of this approach is, however, that requires computing the gradient norms and Hessian
matrices of the group losses in each and every training iteration, rendering the process computationally
unviable, especially for deep, overparametrized networks.

To overcome this computational burden, we will use two observations made earlier in the paper. First,
recall the strong relation between gradient norms for a group and their associated losses. This aspect
was noted in Proposition 2. That is, when the losses across the groups are similar, the gradient norms
across such groups will also tend to be similar. Next, Theorem 2 noted a positive correlation between
model errors (and thus loss values) for a group and its associated Hessian eigenvalues. Thus, when
the losses across the groups are similar, the group Hessians will also tend to be similar. This intuition
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Figure 8: Accuracy and Fairness violations attained by all models on ResNet50, UTK-Face dataset
with ethnicity (5 classes) as group attribute (and labels) [left] and age (9 classes) [right].

is also complemented by the strong correlation between group Hessians and gradient norms reported
in Section 5. Based on the above observations, we propose a simpler version of the constrained
minimizer (7) defined as

minignize J(0;D) suchthat: J(8;D,) = J(0;D) Ya € A, (8)

that substitutes the gradient norms and max eigenvalues of group Hessians equality constraints with
proxy terms capturing the group J(€; D,) and population J(8; D) losses.

The impact of such proxy terms in the fairness- ,,—"“** 50 Ll oprDecon ey
constrained problem above can be appreciated, , a0 s

empirically, in Figure 7. The plots, that use the % W

UTK-Face dataset, with Ethnicity as protected ** 2

group, show an original unfair model (top) and °* it o

a fair counterpart obtained through problem (8) o oo LI LR
(bottom). Both top and bottom sub-figures use | Accurac s ligsl 0.8 —22clsion boundary
an unpruned model. The top sub-figure shows w0 o

the performance of an original unpruned model »

trained by minimizing the empirical risk func- °* " o

tion while the bottom one shows the effect of o2 1 02

solving Problem (8), i.e., it constrains the empir- ool | Lo B i s ] oL s e s e

ical risk function with the various group loss
terms. Notice how enforcing balance in the
group losses also helps reducing and balancing
the gradient norms and group’s average distance
to the decision boundary. As a consequence, the
resulting model fairness is dramatically enhanced (bottom-left subplot).

Figure 7: Effects of fairness constraints in balanc-
ing not only group accuracy (left) but also gradient
norms (middle) and group average distance to the
decision boundary (right).

6.2 Assessment of the mitigation solution

Datasets, models, and settings. This section analyzes the results obtained using the proposed
mitigation solution with ResNet50 and VGG19 on the UTKFace dataset [41], CIFAR-10 [23], and
SVHN [26] for various protected attributes. The experiments compare the following four models:

e No Mitigation: it refers to the standard pruning approach which uses no fairness mitigation strategy.
e Fair Bf Pruning: it applies the fairness mitigation process (Problem (8)) exclusively to the original
large network, thus before pruning.

e Fair Aft Pruning: it applies the mitigation exclusively to the pruned network, thus affer pruning.
e Fair Both: it applies the mitigation both to the original large network and to the pruned network.

The experiments report the overall accuracy of resulting models as well as their fairness violations,
defined here as the difference between the maximal and minimal group accuracy. The reported metrics
are the average of 10 repetitions. Additional details on datasets, architectures, and hyper-parameters
adopted, as well as additional and extended results are reported in Appendix C.

Effects on accuracy. The section first focuses on analyzing the effects of accuracy drop due to
applying the proposed mitigation solution for fair pruning. Figure 8 compares the four models on the
UTK-Face dataset using a ResNet50 architecture. The left subplots use ethnicity as protected group
and class label, with |Y| = 5, while the right subplots use age as protected group and class label,
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Dataset version Class-wise accuracy Overall accuracy
UTK-age bins full 0.856, 0.128, 0.145, 0.319, 0.331, 0.342, 0.181, 0.334, 0.512 0.395
2 relaxed 0.810, 0.096, 0.141, 0.284, 0.385, 0.324, 0.227, 0.257, 0.533 0.390
full 0.830, 0.876 0.857
UTK-gender ,1aved  0.868. 0.845 0.852
SVHN full 0.864,0.911, 0.869, 0.819, 0.887, 0.784, 0.840, 0.877, 0.805, 0.856  0.857
relaxed 0.824,0.910, 0.775, 0.726, 0.827, 0.752, 0.747, 0.789, 0.713, 0.755  0.795
MNIST full  0.998, 0.996, 0.993, 0.998, 0.994, 0.991, 0.991, 0.993, 0.992, 0.985  0.993

relaxed 0.994, 0.988, 0.989, 0.986, 0.987, 0.979, 0.981, 0.988, 0.969, 0.994  0.986
Table 1: Full (Equation 7) vs relaxed (Equation 8) versions of the proposed mitigation solutions.

with |[Y| = 9. Notice that, as expected, all compared models present some accuracy deterioration
as the pruning rate increases. However, notably, the deterioration of the models that apply the fair
mitigation steps are comparable to (or even improved) those of the "No mitigation" model, which
applies standard pruning.

A similar trend can be seen in Figure 9 that reports results on CIFAR (left) and SVHN (right). Both
use the ten class labels as protected attributes. These results clearly illustrate the ability of the
mitigating solution to preserve highly accurate models.

A comparison of the “full” (Equation 7) and “relaxed” (Equation 8) versions of the proposed
mitigation solutions is provided in Table 1. We note that while the "full" version leads to fairer results,
the reduction in the various groups accuracy is often insubstantial. We also note that the running time
of the "full" version is largely (over an order magnitude) longer than the relaxed counterpart. This is
due to the calculation of gradient norms and the Hessian terms associated with each group.

Effects on fairness. The section next illustrates the ability of the proposed solution to achieve
fair pruned models. Table 2 illustrates the results for the UTKFaces dataset with ethnicity as class
labels and age as protected attributes for a CNN with two convolutional layers and three linear layers
and prune amounts: 30%, 50%, 70%, and 90%. Notice how Fair Aft pruning and Fair both achieve
relatively lesser fairness violations compared to the No mitigation and the Fair bf Pruning methods in
most cases.

Next, the second and fourth subplots presented in Figures 8 and 9 illustrate the fairness violations
obtained by the four models analyzed on different datasets and settings. We make the following
observations: First, all the plots exhibit a consistent trend in that the mitigation solution produces
models which improve the fairness of the baseline, "No mitigation" model. Observe that, as already
illustrated in Figure 7, the fair models tend to equalize the gradient norms and group Hessians
components (and thus the distance to the decision boundary across groups). Thus, the resulting
pruned models also attain better fairness, when compared to their standard counterparts.

Next, notice that "Fair Aft Pruning" often achieves better fairness violations than "Fair Bf Pruning",
especially at high pruning regimes. This is because the former has the advantage to apply the
mitigation solution directly to the pruned model to ensure that the resulting model has low differences
in gradient norms and group Hessians. The presentation also illustrates the application of the
mitigation strategies both before and after pruning (Fair Both) which shows once again the significance
of applying the mitigation solution over the pruned network.
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Overall accuracy
30% 50% 70% 90 %

Fairness violations
30% 50% 70% 90%

No mitigation
Fair bf Pruning
Fair Aft Pruning
Fair both

0.546 0.545 0.529 0.559
0.539 0.557 0.529 0.540
0.538 0.532 0.497 0.472
0.525 0.541 0.508 0.484

0.179 0.186 0.152 0.134
0.189 0.190 0.174 0.238
0.172 0.161 0.163 0.05
0.170 0.144 0.156 0.073

Table 2: Accuracy and fairness violations for the UTKFaces dataset with ethnicity as class labels and
age as protected attributes and prune amounts of 30%, 50%, 70%, and 90%.

Finally, it is notable that "Fair Aft Pruning" achieves good reductions in fairness violation. Indeed,
pre-trained large (non-pruned) fair models may not be available and the ability to retrain these large
models prior to pruning may be hindered by their size and complexity.

7 Discussion and limitations

This section discusses three key messages found in this study. First, we notice that pruning affecting
model separability and distance to the decision boundary is related to concepts also explored in robust
machine learning [15, 28]. Not surprisingly, some recent literature in network pruning has empirically
observed that pruning may have a negative impact on adversarial robustness [16]. These observations
raise questions about the connection between pruning, robustness, and fairness, which we believe is
an important direction to further investigate.

Next, although the solution proposed in Problem (8) allows it to be adopted in large models, the size
of modern ML models (together with the amount of hyperparameters searches) may hinder retraining
such original massive models from incorporating fairness constraints. Notably, however, the proposed
mitigation solution can be used as a post-processing step to be applied during the pruning operation
directly. The previous section shows that the proposed method delivers desirable performance in
terms of both accuracy and fairness.

Finally, we notice that the results analyzed in this paper pertain to losses that are twice differentiable.
Lifting such an assumption will be an interesting and challenging future research avenue.

Ethical considerations. The analyses and solutions reported in this paper should not be intended
as an endorsement for using the developed techniques to aid facial recognition systems. We hope this
work creates further awareness of the unfairness caused by pruning mechanisms in ML systems in
the context of models that could be deployed in energy-efficient devices, such as smart cameras or
access control systems, etc.

8 Conclusion

This work observed that pruning, while effective in compressing large models with minimal loss of
accuracy, can result in substantial disparate accuracy impacts. The paper examined the factors causing
such disparities both theoretically and empirically showing that: (1) disparity in gradient norms
across groups and (2) disparity in Hessian matrices associated with the loss functions computed using
a groups’ data are two key factors responsible for such disparities to arise. By recognizing these
factors, the paper also developed a simple yet effective retraining technique that largely mitigates the
disparate impacts caused by pruning.

As reduced versions of large, overparameterized models become increasingly adopted in embedded
systems to facilitate autonomous decisions, we believe that this work makes an important step toward
understanding and mitigating the sources of disparate impacts observed in compressed learning
models and hope it will spark awareness in this important area.
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