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A B S T R A C T   

Gels are comprised of polymer networks swelled by some interstitial solvent. They are under wide 
investigation by material scientists and engineers for their broad applicability in fields ranging 
from adhesives to tissue engineering. Gels’ mechanical properties greatly influence their efficacy 
in such applications and are largely dictated by their underlying microstructures and constituent- 
scale properties. Yet predictively mapping the local-to-global property functions of gels remains 
difficult due - in part - to the complexity introduced by solute-solvent interactions. We here 
introduce a novel, discrete mesoscale modeling method that preserves local solute concentration- 
dependent gradients in osmotic pressure through the Flory-Huggins mixing parameter, χ. The 
iteration of the model used here replicates gels fabricated from telechelically crosslinked star- 
shaped polymers and intakes χ, macromer molecular weight (Mw), crosslink functionality (f), 
and as-prepared solute concentration (ϕ∗) as its inputs, all of which are analogues to the control 
parameters of experimentalists. Here we demonstrate how this method captures solvent- 
dependent homogenization (χ ≤ 0.5) or phase separation (χ > 0.5) of polymer suspensions in 
the absence of phenomenological pairwise potentials. We then demonstrate its accurate, ab initio 
prediction of gel topology, isotropic swelling mechanics, and uniaxial tensile stress for a 10k 
tetra-PEG gel. Finally, we use the model to predict trends in the mechanical response and failure 
of multi-functional PEG-based gels over a range of Mw and f , while investigating said trends’ 

micromechanical origins. The model predicts that increased crosslink functionality results in 
higher initial chain stretch (as measured at the equilibrated swollen state) for gels of the same 
underlying chain length, which improves modulus and failure stress but decreases failure strain 
and toughness.   

1. Introduction 

Gels generally consists of a skeletal network of high molecular weight polymer chains interpenetrated by low molecular weight 
solvent. This two-state composition imparts gels with complex mechanical response that depends on the topological evolution of the 
skeleton, transport properties of the solvent, and the interactions between them. The entropic stiffness of the polymer network and 
time-dependent transport of fluid impart gels with elastic and poroelastic responses, respectively, while non-affine network defor-
mation, entanglements, and the intrinsic viscosity of the solvent introduce various sources of viscous dissipation. Furthermore, in-
clusion of sacrificial bonds (Elbanna and Carlson, 2013; Fantner et al., 2005; Kothari et al., 2018; Lieou et al., 2013); bonds that break 
and reform without damage (Gianneli et al., 2007; Narita et al., 2013); or irreversible chain rupture (Sugimura et al., 2013) induce 
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topological evolution in gels that may improve toughness (Li et al., 2021, 2020), and introduce stress relaxation or self-healing (Long 
et al., 2014). These mechanical traits render gels especially suitable candidates in applications such as tissue engineering wherein they 
are often used as cell scaffolds (Richardson et al., 2019). In such applications, gels’ moduli and stress relaxation rates influence stem 
cell differentiation and in-growth of new tissue (Chaudhuri et al., 2016; Choi et al., 2016; Yang et al., 2016). Thus, this exemplifies a 
case in which understanding the mechanical properties of a gel as a function of its fabrication parameters would greatly aid re-
searchers. Indeed, modeling techniques that accurately predict the microstructural evolution and globally emergent mechanical 
properties of gels are highly sought after. However, the hierarchical structure of gels renders it difficult to formulate computationally 
tenable, non-phenomenological models that track topological changes in gels across length scales. 

Gels are inherently multiscale materials, whose pertinent constituents (i.e., solvent particles and mers) are on the atomistic scale, 
yet whose characteristic chain and pore sizes are on the scale of nanometers (Matsunaga et al., 2009a) (Fig. 1). Furthermore, defects on 
the order of 101–103 nm may exist in the network, which grow due to local stress concentrations. Understanding the emergence, 
evolution, and propagation of these defects, as well as their cause, is imperative to understanding the failure and strength of gels (Chen 
et al., 2017; Yang et al., 2019). These pore sizes and defects suffuse gels with intrinsic property gradients and heterogeneity at the 
network scale. The size of these features limits the resolution with which continuum approaches may be applied since such models 
typically invoke smoothing assumptions and require homogenous materials. However, the length scale of these features also ensures 
that within a representative element on the order of cubic micrometers, 109 − 1012 constituents would need to be modeled in 
fine-grained approaches, thus also limiting the efficacy of methods such as molecular dynamics (MD) (Lange et al., 2011). As such, 
many MD studies focus on the interaction of just one or a few macromers (Huissmann et al., 2009; Johner and Lee, 2018; Jusufi et al., 
1999). Even employing coarse-graining practices to MD, such as those of Wang and Escobedo (2017) (e.g., the use of Kuhn segments for 
bead-spring chains and smoothing of the solvent), such approaches require large computational time and resources. Therefore, a 
tertiary class of explicit, mesoscopic models are needed to bridge the microstructural-to-global mechanical property response of gels. 
Such approaches may capture the length scale of heterogeneities and local topological traits while leveraging statistical representa-
tions of features such as individual entropic chains or mixing effects. 

Towards this aim, researchers such as Sugimura et al. (2013) have used mesoscale models to study the mechanics of gels. Indeed, 
these researchers and much of the existing literature have focused on perhaps the most idealized polymeric networks observed in gels 
to date - those of tetra-polyethylene glycol (PEG) based gels. In fact, such gels are under strong consideration in bioengineering ap-
plications for their biocompatibility and the ease with which their mechanical properties may be tuned. These networks are formed 
through the gelation of star-shaped macromers with functional arms that bind to one another telechelically (i.e., at their terminal 
ends), and achieve high conversion rates (Lange et al., 2011), with relatively few defects (Akagi et al., 2010) and high homogeneity 
(Matsunaga et al., 2009b, 2009a). The relative homogeneity of these networks has allowed researchers such as Sugimura et al. (2013) 
to initiate modeled gels as ideal diamond lattices from which bonds are stochastically and retroactively removed, while still accurately 
predicting their mechanical response. However, this phenomenological gelation approach is empirically motivated, and the correct 
topologies are set according to experimental results rather than emerging because of the underlying physics. As such, these idealized 
approaches are ill-suited to capture the local microstructures of gels with transient bonds, dangling chains, or post-chain-rupture 

Fig. 1. Hierarchical length scales of gels. A gel at (A) the macroscale (>∼ 10−4 m) is depicted with schematic illustrations of its topological 
structure at (B–E) diminishing length scales. (A) At the macroscale, smoothing assumptions permit application of continuum approaches, but these 
methods prohibit detailed study of damage or the influence of defects. (B,C) The discrete methods introduced here represent gel structures at in-
termediate length scales or the “mesoscale” by coarse-graining polymer chains as nonlinear mechanical springs. In modeling individual polymer 
chains, mesoscale approaches are equipped to capture the mechanical effects of topological defects and damaged regions, with reduced compu-
tational expense. (D-E) The most detailed models track constituents (either atoms, molecules, or Kuhn segments) utilizing discrete MD approaches. 
However, capturing defects on the order of 101 nm to 10−1 μm, or conducting large ensembles of repeated in silico experiments becomes compu-
tationally untenable using these fine-grained approaches. The gel topology shown is meant to loosely represent a tetra-PEG hydrogel whose mesh 
size is on the order of 10−8 m and which has 4 functional arms per macromer. 
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landscapes. In reality, the local positions of dangling chains and the distribution of crosslinks in a gel are heavily dependent on local 
solute-solvent interactions and resulting osmotic pressure gradients (Daoud and Cotton, 1982; Flory and Rehner, 1943a, 1943b; 
Huissmann et al., 2009). Furthermore, existing mesoscopic approaches are limited in predicting the initial topologies of gels as a 
function of macromer functionality (governing the number of potential crosslinking interactions), as-prepared solution concentration 
(Akagi et al., 2010; Lange et al., 2011), molecular weight, or solvent quality. Yet these are the types of parameters which experi-
mentalists may control during gel fabrication. 

To address these limitations, we here adapt a recently developed mesoscale numerical framework (Wagner et al., 2021), to the case 
of PEG-based gels. The current work is novel two significant ways. Firstly, it considers the effects of osmotic pressure on global swelling 
of traction boundaries. While previous works enforced volumetric deformation through the empirically motivated displacement of 
network boundaries (Sugimura et al., 2013; Zhang et al., 2015), we here compute the degree of swelling based on the competition 
between global osmotic pressure (as predicted via Flory-Huggins theory) and the hydrostatic component of polymer network stress. 
Secondly, we introduce a scaling law to estimate the local polymer concentration as a function of the average mesh size, and spatial 
crosslink distribution. Previous works have employed more general methods of homogenization such as "explosion-contraction" Monte 
Carlo (MC) algorithms with Lennard-Jones potentials between nodes (Zhang et al., 2015). However, the distribution of polymer in a gel 
depends significantly on solute-solvent interactions (Daoud and Cotton, 1982; Huissmann et al., 2009; Johner and Lee, 2018; Jusufi 
et al., 1999; Lue and Kiselev, 2002). Therefore, we introduce a physically motivated method in which the spatial arrangement of 
macromers is governed by solute-concentration dependent gradients in osmotic pressure that introduce effective mixing forces. Thus, 
this model considers first-order physics that enable the ab initio simulation of gel networks, thereby requiring less a priori knowledge of 
gel microstructure over previous approaches and instead enabling predictive design of gels with certain topologies. To support ab initio 
predictive design, input parameters to this model correspond directly to typical control parameters during gel fabrication - namely, 
macromer molecular weight (Mw), solvent type (whose effects are coarsely captured through the Flory-Huggins mixing parameter, χ), 
normalized pre-gelation polymer concentration (ϕ∗), and macromer functionality (f) (Akagi et al., 2010; Lange et al., 2011; Matsunaga 
et al., 2009b, 2009a; Sukumar and Lopina, 2002). 

The remainder of this work is structured as follows. In Section 2, we briefly overview the continuum mechanics approach 
commonly used to model global swelling mechanics of gels. This introduces readers to the significant concepts of osmotic pressure 
(governed by the free energy of mixing between polymer and solvent) and network stress (governed by strain energy of the polymer 
network). We then examine these features’ counterparts at the network scale. In Section 3, we introduce the novel scaling law that 
relates local osmotic pressure gradients to microstructural crosslink distribution, and the single-chain force-extension relation that 
drives global network stress. We also describe the numerical implementation of not only these features, but also the macro-scale theory 
discussed in Section 2. In Section 4, we demonstrate that this model accurately predicts topological and mechanical characteristics of 
sol-gels (i.e., polymer suspensions turned to gels) during mixing, gelation, equilibrium swelling, and elastic deformations under plane 
stress boundary conditions. Finally, Section 5 concludes by exploring the effects of network topology on damage onset in permanent 
gels. 

2. Flory-Rehner theory for global equilibrium of gels 

Polymeric gels are comprised of networks of high molecular weight chains crosslinked to one another. When these networks are 

Fig. 2. Deformation of a gel: An arbitrary gel network is illustrated in its reference (left) and current (right) configurations after undergoing some 
compressible deformation F. Polymer chains are depicted as black curves, while solvent is represented by the blue background and blue circles. The 
position of an arbitrary crosslink is illustrated in its reference (X) and current (x) positions with respect to the orthonormal basis. 
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submersed into a low molecular weight solvent there is an entropic increase associated with the interstitial penetration of liquid into 
the polymeric network. Additionally, in cases where there is energetic favorability between solvent-polymer interactions (as opposed 
to interpolymer or solvent-solvent interactions), there is also an enthalpic contribution to mixing. Together, these contributions lead to 
some effective osmotic pressure that induces transport of solvent into the network, inducing swelling. In this work, we consider the 
effects of osmotic pressure on not only the global mechanics (i.e., equilibrium swelling and traction boundary positions), but also local 
topology (i.e., the spatial distribution of crosslinks). In this section, we briefly outline the Flory-Rehner continuum mechanics theory 
used to predict the global swelling mechanics of gels (Flory and Rehner, 1943b). 

The Flory-Rehner approach treats gels as a two-state solution in which the polymer network represents solute, while the interstitial 
fluid that causes swelling represents solvent (Fig. 2). Through this approach the Helmholtz free energy of the mixture is taken as the 
sum of the elastic strain energy (ψel) stored in the polymeric chains, and the free energy of mixing (ψmix) between solute and solvent as: 

ψ = ψel(F) + ψmix(ϕ) (1) 
Here, F = ∂x/∂X is the elastic deformation gradient (where X and x represent the reference and current crosslink positions of the 

network, respectively, as depicted in Fig. 2), and ϕ = Vp/V is the volume fraction of polymer (where Vp is the total volume of the 
polymer in the network and V is the total volume enveloped by the gel). 

At mechanical equilibrium in the absence of body forces, the Cauchy stress state (σ) of the gel must obey the differential equation: 
∇⋅σ = 0 (2)  

where ∇ is the differential operator in the current configuration, and σ = σel + σmix may be decomposed into its elastic network (σel) 
and mixing (σmix) components. It can be shown that the forms of these stresses arise from the minimization of the free energy and may 
therefore be directly derived from Eq. (1). The Cauchy stress is thus expressed as: 

σel = 2J−1B ⋅
∂ψel

∂B
(3)  

where B = FFT is the left Cauchy-Green or finger deformation tensor, and J = det(F) denotes the relative change of volume of the gel 
(i.e., J = V/V0 given a reference volume of V0). The mixing stress emerges as an isotropic pressure (i.e., osmotic pressure) of the form: 

σmix = πI (4) 
To compute π we consider that the solute consists of long chains of N bonded mers or Kuhn segments. The mixing entropy of a Kuhn 

segment may be written as N−1ϕlnϕ and ψmix is given by (Doi, 2013): 

ψmix =
kbT

v

[

ϕ

N
lnϕ+(1−ϕ)ln(1−ϕ)+ χϕ(1−ϕ)

]

(5)  

where kb is the Boltzmann constant, T is the ambient temperature, v is the volume of a Kuhn segment, and χ is the Flory-Huggins 
solubility parameter (χ = 0.5 for theta solvent in which polymers behave ideally as freely jointed chains, and χ ≤ 0.5 indicates that 
mixing will occur). Through Eq. (5), we may compute the amount of mixing work needed to expand or contract the gel by some 
incremental amount dV as: 

πdV = −d(Vψmix) (6)  

where osmotic pressure, π, constitutes the pressure needed to maintain a given volume. Differentiating the right-hand side of Eq. (6) 
with respect to V gives π as: 

π = kbT

v

[

ϕ

N
− ln(1−ϕ)−ϕ− χϕ2

]

(7) 

For detailed derivations of Eqs. (5)–(7), readers are encouraged to read Soft Matter Physics by Doi (2013). From Eq. (7), we see that 
osmotic pressure is zero when ϕ = 0, and pressure increases monotonically with respect to ϕ for good solvent in which mixing is 
favored (χ ≤ 0.5). This drives solvent from regions of lower-to-higher solute concentration. 

Eq. (7) will prove useful in tracking the local osmotic pressure of the network model as described in Section 3.1. However, to 
consider the effects of osmotic pressure on global swelling, let us instead express Eq. (7) in terms of the volumetric change, J, of the 
overall gel as measured with respect to its dry state. Assuming the amount of polymer in the gel is conserved and that all volumetric 
change is driven by flux of solvent, then J = ϕ0/ϕ where ϕ0 is the polymer volume fraction of the dry network. Substituting this into 
Eq. (7) gives: 

π = kbT

v

[

1

JN
− ln

(

1− 1

J

)

− 1

J
− χ

J2

]

(8) 

Note that the first term in Eq. (8) drops out with the assumption that N → ∞, as appropriate for the case of gels containing large 
polymer networks. Eqs. (2), (3), and (8) collectively define the global equilibrium condition of a gel. While Flory-Rehner theory 
provides the governing equilibrium equations for a gel at the macro-scale, it neglects any local evolutions of spatial crosslink distri-
bution. In the following sections we demonstrate how the concepts of local osmotic pressure gradients and single-chain elastic strain 
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energy may be leveraged to update topology in the discrete network model. 

3. The network model 

The numerical framework adopted here was introduced by Wagner et al. (2021). The chronological stages modeled by this 
framework are meant to mimic the ab initio processes of gel fabrication and mechanical experimentation as illustrated in Fig. 3. First, 
representative volume elements (RVEs) are initiated as square domains with periodic boundary conditions, centered at the Cartesian 
origin. The sizes of RVEs were set based on the convergence of stress response for increasingly large domains (see Appendix A). 
Star-shaped macromers or “nodes” are then seeded at coordinates xα using a Poisson’s point process where the index α denotes the node 
number (α ∈ [1,N ]) (Fig. 3A). Once initially seeded, the positions of nodes are equilibrated as governed by osmotic mixing forces 
(Fig. 3B). Nodes may remain unattached to model polymer suspensions, or their chains may be telechelically bonded to one another to 
mimic gelation (Fig. 3C). The RVEs are then prescribed some combination of traction and displacement boundaries to mimic exper-
imental conditions such as equilibrium swelling (Fig. 3D) and applied deformations (Fig. 3E). In this section, we detail the effective 
mixing forces that act on macromers in star-shaped polymer suspensions or crosslinks in gel networks. We then review the chain 
attachment algorithm used to mimic gelation and describe the entropic chain forces that act on nodes in the crosslinked networks. 
Next, we describe how nodes’ positions are iteratively equilibrated and network stress is computed at each discrete deformation or 
network reconfiguration step. Finally, we overview the various boundary conditions used over the course of this work and list the input 
parameters associated with the network model. 

3.1. Local effects of osmotic pressure 

We begin by examining the local effective mixing forces, as these are relevant for both the initial polymer suspensions and post- 
gelation networks. In this subsection we introduce the novel scaling law used to estimate spatial solute concentration gradients, 
which in turn govern effective pressure-gradient mixing forces. We then detail the numerical methods used to compute said forces. 

3.1.1. Local scaling of solute concentration and effective mixing forces 
In many polymeric materials such as dry elastomers (Bergström and Boyce, 2001; Flory, 1985) volume exclusion (i.e., repulsive 

contact potentials) will dominate the effective macromer or crosslink distributions. However, in this work and in the broader context of 
gels, polymer packing fractions are generally on the order of 0.01–0.1, such that the separation distances between macromers or 
crosslinks are significantly larger than the size of a mer (∼ b) or length scale of volume exclusion interactions. As such, network to-
pology of gels or radial distribution of polymer in suspensions (Huissmann et al., 2009; Krakoviack et al., 2003) is instead governed by 
the effective mixing forces (f π) introduced by gradients in osmotic pressure (Horkay and Lin, 2009). Osmotic pressure, as described by 
Eq. (7), depends on both the local solute concentration (through ϕ) and favorability of solute-solvent interactions (characterized by χ). 
At the mesoscale, ϕ evolves locally as a function of the positions, xα, of macromers or crosslinks (i.e., “nodes”). While scaling laws such 

Fig. 3. Chronological steps of numerical model: (A) An RVE is seeded with macromers (or “nodes”) whose centers are depicted as circles. (B) The 
macromers are positionally equilibrated by effective osmotic mixing forces. (C) The macromers are bonded to form a gelated network. (D) The 
network expands, decreasing the osmotic pressure, until the condition of Eq. (2) is met. (E) Deformation is applied to the boundaries of the RVE. The 
heat map represents normalized, local osmotic pressure. Dangling chains are not explicitly modeled and are therefore not shown in figures 
throughout this work. 
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as that introduced by Daoud and Cotton (1982) or Birshtein and Zhulina (1990, 1984) have been developed to predict the concen-
tration gradient surrounding star-shaped polymers in solvent of varying quality, discrete numerical investigation of these relationships 
has called their ability to predict local swelling into question (Hsu et al., 2004). A great deal of research has been conducted through 
Monte Carlo and molecular dynamics simulations on the effective interactions between star shaped polymers, as well (Hsu et al., 2004; 
Huissmann et al., 2009; Johner and Lee, 2018; Jusufi et al., 1999; Krakoviack et al., 2003; Lue and Kiselev, 2002). These include the 
study of both dilute and concentrated systems. Nevertheless, few (if any) such studies have been conducted in the context of percolated 
gels comprised of star-shaped polymers, despite the fact that tetra-PEG macromers in solution have verifiably different concentration 
gradients than those in a percolated network (Matsunaga et al., 2009b, 2009a). Indeed most of the literature on the structure of such 
gels is empirically-gotten (Akagi et al., 2010; Matsunaga et al., 2009b; Schwenke et al., 2011; Shibayama et al., 2019; Sukumar and 
Lopina, 2002), and appropriate scaling laws for solute concentration gradients are, to our knowledge, not available in existing works. 
Therefore, for our purposes, we begin by introducing a simple scaling law for solute concentration, specific to the case of star-shaped 
crosslinkers in the low functionality regime (here, f ∈ [3,10]). 

Consider an arbitrary, 2D network such as that depicted in Fig. 4A, which has an average nearest crosslink-to-crosslink separation 
or “mesh size” ξ, and in which each crosslink has a functionality of f ; each arm has N Kuhn segments; and each Kuhn segment has a 
length of b and width of w. Let us first examine the solute concentration function due to a single node at position, xα, as we move 
radially outwards from its center to some position r. Here we temporarily treat xα as our reference position and we denote the solute 
concentration function due to this isolated node as φα(r). To estimate φα(r), we envision an infinitesimal ring of width δr, at distance r 
= |r| from xα, as illustrated in Fig. 4B,C. In 2D, the local polymer packing fraction within this ring is defined as the area of polymer 
residing within it (δA) divided by the total ring area (2πrδr): 

φα(r) = δA

2π|r|δr
(9) 

The area of polymer inside the ring may be written as: 
δA = (fbw)δN (10)  

where bw represents the area of a single mer and δN represents the number of mers inside the ring belonging to a single chain (so that 
fδN represents the contribution from all chains). For simplicity, we posit that a polymer chain remains evenly coiled and distributed in 
the space between the crosslinks it spans (Fig. 4B). We also coarsely impose that it is equiprobable to find polymer at any azimuthal 
position around the crosslink (i.e., radial symmetry). Under these conditions, δN scales proportionately with the number of Kuhn 
segments per chain (N), and the ring thickness (δr), and is inversely related to the average mesh size (ξ): 

δN ∼ Nξ
−1

δr (11) 
This notion assumes that at low functionality, steric interactions between adjacent chains are minimal so that the chains may coil 

freely. Combining Eqs. (9)–(11) gives the estimated solute area at distance r in 2D as: 
δA ∼ fNbwξ

−1
δr (12) 

Substituting Eq. (12) into Eq. (9) provides that the local solute fraction scales with |r| according to: 

φα(r) ∼ {
1, |r| < fNbw

2π
ξ
−1

fNbw

2π|r|ξ
−1
,

fNbw

2π
ξ
−1

< |r|
(13) 

Fig. 4. Solute concentration scaling in a gel: (A) An RVE containing an arbitrary network is displayed. (B) A close-up schematic of an arbitrary 
crosslink from (A) is shown. A differential ring of width δr is enclosed by dashed lines. A dangling chain is depicted and posited to have an 
approximate end-to-end length of ξd ≈

̅̅̅̅N√ b. An attached chain is also depicted and posited to have an approximate end-to-end length, ξa, that is the 
same as the network’s average attached chain length. (C) A differential ring at radial distance |r| with respect to the local reference frame (i.e., 
crosslink position) is displayed. (D) The same differential ring from (C) is displayed, with the material point x = xα + r denoted in the global 
reference frame. (B–D) The segments of polymer chain residing within the differential ring are shaded cyan. 
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with the added condition that φα(r) cannot exceed unity. To compute ξ, we consider that many of the chains are fully attached to the 
network so that their end-to-end separation is governed by the average mesh size of the system. Meanwhile, the average length of 
dangling chains depends instead on their tethered diffusion in the solvent. Taking c and 1 − c as the relative fractions of attached and 
dangling chains, respectively, then we may estimate the mean mesh size as the sum of weighted contributions from each population: 

ξ ≈ cξa + (1− c)ξd (14)  

where ξa and ξd are the average measured end-to-end distance of an attached and dangling chain, respectively (Fig. 4B). While the 
average end-to-end length of attached chains, ξa, may be measured explicitly, we impose that dangling chains behave ideally (since we 
are primarily concerned with gels in good solvent) and therefore have a mean end-to-end length of ξd =

̅̅̅̅N√ b. 
Eq. (13) provides φα(r) as a function of radial distance with respect to the reference position xα (Fig. 4C). However, with respect to 

the global reference frame, we instead write: 

φα(x) ∼ {
1, |x − xα| < fNbw

2π
ξ
−1

fNbw

2π|x − xα|ξ
−1
,

fNbw

2π
ξ
−1

< |x − xα|
(15)  

where x = xα + r (Fig. 4D). In a system of N macromers, the overall solute concentration function may then be taken as the sum of 
φα(x) for α ∈ [1,N ] as: 

ϕ(x) = Φ−1
∑

N

α=1

φα(x) (16)  

where Φ =
∫

V
ϕ(x)dV/(VJϕ0) is a normalization scalar that enforces conservation of mass (i.e., that the average value of ϕ(x) equals the 

globally computed solute fraction, Jϕ0). 
Given ϕ(x) the spatial osmotic pressure function, π(x), may be computed directly using Eq. (7). To compute the effective force, 

f π(x), imposed by local gradients in π(x), we invoke that the amount of work, f ⋅ dx, needed to move a solute particle by a displacement 
of dx must be equal and opposite to the consequential change in the local free energy of mixing, −Vdπ (Doi, 2013; Salari et al., 2013). 
Thus, we may write the pressure gradient force relation as: 

f π ⋅ dx = −Vdπ (17)  

where V is the approximate volume of solvent displaced by the movement of a macromer (V ≈ fNbw2). Solving Eq. (16) for f π gives the 
local driving force of solute due to mixing as: 

f π(x) = −N

2
fbw2

∇π(x) (18)  

where ∇π denotes dπ/dx, or the spatial pressure gradient in the current configuration. Although the scaling relation of Eq. (15) is 
presented for 2D networks, an analogous relation may be derived to apply this method to 3D networks. Eqs. (16) and (18) remain 
applicable, regardless of dimensionality (i.e., whether spatial vectors are one, two, or three dimensional). 

Fig. 5. Numerical implementation of effective mixing forces in 1D: (A) A two-node (α ∈ [1,2]) system is displayed in 1D along spatial dimension 
x. The nodes are depicted as blue circles with blue chains connecting them, and the underlying Eulerian grid is depicted as red exes. (B) The local 
solute concentration function due each node, φ(xqα), is estimated using Eq. (15) and illustrated at the positions of the Eulerian query points, xq. (C) 
The combined local solute concentration function, ϕ(xq) =∑2

α=1φ(xαq) is computed and then used to calculate π(xq) through Eq. (7), which is 
displayed at the positions xq. (D) The effective mixing forces, f π(xq), are computed through Eqs. (17) and (18) and then interpolated at the positions 
of the nodes to get f π(xα), which is illustrated as black vectors at positions xα. The sizes of the arrows indicate the relative magnitudes of effective 
forces. (B,C) The functions φ(xqα) and π(xq) are smoothly interpolated between query points for illustrative purposes, although actual interpolation 
takes place between (C) and (D). 
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3.1.2. . Numerical implementation of mixing force 
As discussed in the previous section, osmotic mixing forces depend on local gradients in osmotic pressure, which in turn depend on 

the local solute concentration, ϕ(x). To approximate a differentiable landscape of osmotic pressure within the numerical framework, 
ϕ(x) is computed on a discretized, Eulerian grid, whose node positions are defined by the vector set xq. This Eulerian grid and the 
numerical methods described in this subsection are illustrated schematically through Fig. 5 for a simple 1D, two-node system. The 
solute packing fraction at each qth query point on the Eulerian grid as a function of its distance from each ath node in the domain, 
φ(xqα), is calculated using Eq. (15) (Fig. 5A,B). Note that here, xαq = |xq −xα| is the distance between node α and query point q , and is 
synonymous with |x−xα| in continuous space from Eq. (15). The solute concentration functions due to each crosslink, φ(xαq), are then 
summed over all nodes per Eq. (16) to get the overall solute concentration function on the Eulerian grid, ϕ(xq) = Φ−1∑N

α=1φ(xαq). To 
compute Φ in the numerical framework, the overall solute concentration is taken as ϕ0J = Ap/ARVE, where Ap = N fNbw is the total 
solute area in the RVE and ARVE is the total RVE area. The solute concentration function, ϕ(xq), is then used to compute the osmotic 
pressure function π(xq) on the Eulerian grid through Eq. (7) (Fig. 5C). Given π(xq), the spatial gradient in pressure is linearly inter-
polated at position xq using a central difference approximation: 

∇π(xq) ≈ π(xq+1) − π(xq−1)
2Δx

(19)  

where Δx ∼ ξ × 10−1 is the grid spacing, which is set less than an order of magnitude smaller than the network’s mesh size to 
approximate smooth crosslink motion. Finally, ∇π(xq) is substituted into Eq. (18) to compute the effective mixing force function, 
f π(xq), which is then linearly interpolated at the positions of the crosslinks in the network (Fig. 5E). 

Fig. 6 illustrates the outcome of this numerical implementation via snapshots of the network model. Fig. 6A, C and D are 2D 
analogues to the 1D schematics of Fig. 5A, C and D, respectively. Again, while the framework adapted here is 2D, this method could 
also be incorporated into 3D frameworks. Fig. 6D displays a close-up view of the effective mixing forces at the crosslink positions, 
f π(xα), around a higher density cluster, thus demonstrating how this method drives crosslinks away from regions of higher solute 
concentration for good solvent (here χ = 0.5), thus fulfilling the role of an effective pairwise repulsion between neighboring crosslinks. 
Significantly, f π(x) induces homogenization of simulated macromers in good solvent (χ ≤ 0.5) prior to gelation. In homogenizing the 
solution before nodes are attached to one another, mixing forces mitigate any boundary effects introduced by the way in which nodes 
are seeded into the periodic RVE. In effect, through f π(xα), the model mimics the mixed conditions of solutions prior to crosslinker 
polymerization 

Fig. 6. Outcomes of numerical implementation in 2D: (A) An equilibrated numerical gel network is displayed. (B) The estimated polymer 
packing fraction function (ϕ(xq)) is displayed at the query points (xq) of the Eulerian grid. (C) The corresponding local osmotic pressure function 
(π(xq)) is displayed. (D) The pressure gradient force (f π(xα)) is computed and interpolated at the positions of crosslinks (black arrows). The heat map 
of π(xq) from (C) remains faintly displayed in (D) to visually illustrate how forces follow the local osmotic pressure gradient. A close-up of osmotic 
pressure forces around a cluster of nodes is also depicted for clarity. (B–D) The heat maps of ϕ(xq) and π(xq) are interpolated between query po-
sitions for illustrative purposes. 
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3.2. . Gelation and entropic chain forces 

Once macromers are seeded and initial homogenization due to effective mixing forces is completed, the system may be gelated 
without biased formation of defects near the RVE’s boundaries. This is achieved using the Rouse diffusion-based chain attachment 
introduced by Wagner et al. (2021). Within a given timestep, the probability of attachment between two chains belonging to 
neighboring nodes is defined according to the Poisson’s process: 

dPa = kae−ka tdt (20)  

where ka is the rate of attachment. Given that the chains are tethered to their permanent crosslinks, we define ka according to a scaling 
law based on Rouse diffusion to define ka as (Wagner et al., 2021): 

ka = 1

τ0

(

b

d

)4

(21)  

where d is the distance between neighboring nodes and τ0 is the time it takes a chain’s tip to diffuse the length of one of a Kuhn 
segment, b. For simplicity, nodes are not allowed to attach to themselves. However, nodes may attach to each other more than once to 
capture the double, triple and quadruple-link defects observed by Lange et al. (2011) and Schwenke et al. (2011) and discussed in 
Section 4.2. Attachment events are checked iteratively until the network achieves greater than 95% connectivity. 

Note that the introduction of bonded chains mandates computation of single-chain forces derived from the entropic penalty of 
polymer extension. The strain energy function of entropic chains is suitably modeled using the Padé approximation (Cohen, 1991) of 
Langevin chains given by (Wagner et al., 2021): 

ψc = kbT

[

λ2

2
−Nlog

(

N − λ2
)

]

(22)  

where λ is the chain stretch given by λ = r/ ̅̅̅̅N√ b and r is the chain’s end-to-end length. This yields a force-stretch relation of the form: 

f = 3kbT
̅̅̅̅

N
√

b
λ

(

λ2 − 3N

λ2 − N

)

(23) 

As in the case of polymers (Kienberger et al., 2000) the force in this model diverges for chains extended near their full contour 
lengths (or λ →

̅̅̅̅N√ ), thus also capturing the enthalpic effects of bond stretching (Oesterhelt et al., 1999).* Chain forces always act in 
tension and remain aligned with their chains’ end-to-end vectors, r. 

3.3. . Force equilibration and stress formulation 

Since macromers or crosslinks are seeded stochastically, they do not begin at equilibrium. Additionally, processes such as bond 
attachments, equilibrium swelling, applied deformation, and bond rupture also drive the crosslinks out of equilibrium. However, 
equilibrium is assumed throughout this work based on the assumptions that solvent may move freely into or out of the networks as 
needed to maintain thermodynamic equilibrium, and any loading rates are applied significantly slower than the rate of solvent 
transport. Therefore, nodes are iteratively equilibrated to their lowest energy state at every network reconfiguration or deformation 
step (i.e., “timestep”). This is done using the overdamped method detailed in Wagner et al. (2021), which updates the positions of the 
nodes from iteration k to k + 1 according to: 

xα
k+1 = xα

k + ν−1f α
k (24) 

Here, ν is a numerical overdamping coefficient and f α is the net force acting on node α given by: 
f α =

∑

β

f αβ + f π (25)  

where ∑βf αβ is the sum of node α’s pairwise interaction forces with its neighboring nodes, β, and f π is the osmotic pressure-dependent 
force of mixing detailed in Section 3.1. Since osmotic pressure-dependent forces, f π, depend on the local solute concentration, ϕ(xα)
and osmotic pressure, π(xα) these scalar fields are also iteratively updated throughout equilibration. Pairwise interaction forces, f αβ, 
consists of the tensile forces carried by attached polymer chains described in Section 3.2. For simplicity, monomer interactions be-
tween crossing chains (e.g., volume exclusion, entanglement, etc.) are here omitted and do not affect the forces of Eq. (25). Again, this 
is because effective osmotic pressure forces (as opposed to short-range monomer interactions) are taken as the first-order phenomenon 
affecting polymer distribution in gels (Daoud and Cotton, 1982). This treatment is justified by the relatively ideal network structure 
and minimized entanglement in low polydispersity (i.e., low molecular weight variance) PEG-based gels (Matsunaga et al., 2009b; 

* Where indicated, Gaussian (i.e., ideal or linear) chains are used in lieu of Langevin chains. The force-extension of a Gaussian chain is given by f 
= 3kbTλ/(

̅̅̅̅N√ b) and does not diverge in the limit λ →
̅̅̅̅N√ . 
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Sugimura et al., 2013); the dilution of swollen gels in good solvent (which reduces the frequency of short-range monomer interactions); 
and the finding that the effects of intra-chain monomer volume exclusion diminish for longer polymer chains (Flory and Fisk, 1966). 

Eqs. (24) and (25) are iterated until the mean and maximum unbalanced forces on the nodes move below 0.05 pN and 0.1 pN, 
respectively. These residual thresholds constitute roughly 0.2 and 0.4% of the force carried by a linear chain stretched to its full 
contour length, and thus sufficiently approximate the minimum energy state for the purposes of this work. Once equilibration is 
completed after each timestep, the entropic chain forces, f αβ, may be used to compute the instantaneous network stress through the 
virial formulation according to: 

σp = 1

2V

∑

N

α

∑

β

rαβ ⊗ f αβ (26)  

where V is the RVE volume†, and rαβ = xα − xβ is the end-to-end vector between node α and its bonded neighbor, β (Wagner et al., 
2021). Note that σp through Eq. (26) gives only the polymer network stress, which is counteracted by osmotic pressure π such that the 
overall material stress σ in the equilibrated swollen state is given by σp + πI = 0 when F = I. 

3.4. . Equilibrium swelling and applied deformations 

Once the networks are fully gelated, deformation is typically applied in two stages. First the gel network is permitted to swell 
isotropically and unconstrainedly from its initial arbitrary size to its equilibrated state (Fig. 7A). At this stage all four of the RVE’s 
periodic edges are traction boundaries. In the second stage we apply mixed boundary conditions to the RVE to enforce a prescribed 
uniaxial tensile deformation of the gel (Fig. 7B). In both stages, stepping of the traction-free boundaries is conducted to satisfy the 
Flory-Rehner, global equilibrium condition from Eq. (2). While only the central RVE is depicted in images throughout this work, all 
RVEs are 2D periodic. Both displacement and traction boundaries are updated by stepping the position of the RVE edges, however the 
former are stepped to enforce some prescribed strain, while the latter are stepped to achieve some prescribed stress on the boundary. 

During initial swelling, the dimensions of the RVE boundaries are updated iteratively according to: 
l

k+1
1 = l

k
1 + ν−1

[

l
k
2

(

π − σh
)] (27)  

Fig. 7. Applied boundary conditions. (A,B) Stage I: A sample numerical gel network, which begins at (A) time t0 with the dry, square dimensions 
l

0
1 = l

0
2, is depicted undergoing initial, unconstrained equilibrium swelling. (B,C) Stage II: From the (B) swollen state at time t1, the network is then 

(C) stretched in the vertical direction at a constant strain rate of L22. During this applied deformation, the RVE width is governed by the balance 
between σ11 and π. (D) A sample loading history (λ with respect to time) is depicted with t0, t1 and t2 corresponding to the times of (A), (B), and (C), 
respectively. Dotted lines denote periodic boundaries. 

† Since the RVE is 2D, its volume is taken as V = ℓ1ℓ2ξ where ζ represents the thickness of the domain. Thickness is treated as a fitting parameter 
when comparing σ between 3D experimental results and the 2D model predictions. 
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l
k+1
2 = l

k
2 + ν−1

[

l
k
1

(

π − σh
)] (28)  

where l k
1 and l k

2 represent the length of the horizontal and vertical traction boundaries at iteration k, respectively, and ν is again some 
numerical overdamping coefficient. Eqs. (27) and (28) ensure that if the osmotic pressure exceeds the hydrostatic network stress (π 

> σh), then the domain increases in size and swelling continues. These equations are iterated until the residual difference between π 

and σh is below 0.004 kPa, which constitutes less than 1% of the overall hydrostatic network stress typically observed and provides 
ample convergence in the swollen equilibrium state. 

Both Eqs. (27) and (28) are carried out during stage one of deformation (i.e., isotropic swelling). However, during the second stage 
of deformation, displacement of the vertical boundary is governed by the condition that: 

l 2(t) = l
sw
2 exp(L22t) (29)  

where l sw
2 is the height of the RVE after isotropic equilibrium swelling is completed, L22 is the constant applied strain rate and t denotes 

time. During this stage, the Flory-Rehner condition (i.e., a traction-free condition) is maintained for the horizontal boundaries through 
the traction-free equilibrium condition that σ11 + π = 0. Therefore, the horizontal boundary is iteratively stepped via a displacement 
condition that is analogous to Eq. (28), given by: 

l
k+1
1 = l

k
1 + ν−1

[

l
k
2(π − σ11)

] (30) 
Again, the physicality of this boundary condition is contingent on the unhindered influx of solvent into the gel, as needed, and is 

therefore based on the assumption that the loading rate, L22, is significantly smaller than the rate of solvent diffusion. After every step 
of boundary deformation during either stage, the network’s crosslink positions are iteratively equilibrated using Eqs. (24) and (25). 

3.5. Free parameters 

Despite gels’ complexity, this model requires the input of just four free parameters, as listed in Table 1. These parameters are the 
functionality (f), macromer molecular weight (Mw), solute-solvent interaction parameter (χ), and as-prepared solute concentration 
(ϕ∗). Solute concentration is taken as the solute volume fraction (ϕ) normalized by the overlap volume fraction (ϕol) at which the star- 
shaped macromers’ radii of gyration inter-penetrate one another. Note that the number of nodes is held constant across simulations 
such that ϕ∗ is mediated by the initial size of the RVE during gelation. Both Mw and f are coupled with the chain length (L) of a single 
arm. Therefore, f and Mw are often paired, as indicated throughout the text, to fix L as f is swept. 

For details on domain length scale and concentration calibration, see Appendix B. There are no relevant timescales included in this 
work since deformations are presumed to occur at a rate much slower than the diffusion rate of solvent and no rate-dependent bond 
detachments are included. However these timescales can and will be included in future works through the swelling kinetics theory of 
Tanaka and Fillmore (1979), force-dependent bond detachment rates (Bell, 1978; Eyring, 1935), and/or diffusion-dependent re-at-
tachment rates (Stukalin et al., 2013; Wagner et al., 2021). Nonetheless, without any pertinent timescale, the deformation rate, L22, is 
arbitrary and the more important consideration is how many steps in which the deformation is carried out. To achieve adequate 
sampling frequency, and properly isolate the effects of discrete bond rupture events, the deformation was applied in approximately 550 
steps per simulation. 

4. Gel topology and elastic response 

The networks examined in this work are modeled after PEG-based gels for which there exists an abundance of experimental data, 
and which display exceptional spatial homogenization and high yield (> 90% chain connectivity) (Shibayama et al., 2019). Macromer 
functionality is specified throughout this section, but is most commonly set to f = 4 due to the large number of experimental studies on 
tetra-PEG‡ gels (Akagi et al., 2010; Horkay et al., 2017; Matsunaga et al., 2009b; Shibayama et al., 2019; Wang et al., 2018). Unless 
specified otherwise, gels undergoing deformations are treated as if suspended in a solvent bath at thermodynamic equilibrium with the 
ambient environment. Additionally, all applied deformation rates are considered slower than the rate of solvent diffusion through the 
network such that rate-dependent solvent transport effects may be ignored. Together, these assumptions allow us to invoke that solvent 

Table 1 
Primary model parameters.  

Parameter Value, Range Units 
Functionality, f [3,10] NA 

Molecular Weight, Mw [10,200] kDa 
Mixing Parameter, χ 0.5 NA 
As-prepared Solute Fraction, ϕ∗ ∼ 2 NA  

‡ Gels constituting a specific molecular weight and functionality are referenced using the convention “<Mw> k <Greek numerical prefix>-PEG”. 
For example, a gel comprised of 4-arm macromers with Mw = 10 kDa is referred to as a 10k tetra-PEG gel throughout the text. 
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moves into and out of the gel as needed to maintain equilibrium. 

4.1. Homogenization and phase separation of polymer suspensions 

Here we demonstrate the model’s ability to predict homogenization or phase separation of polymer suspensions without the 
explicit inclusion of any repulsive or attractive pairwise potentials between nodes. A novelty of this approach is that it does not take 
homogenization of macromer’s for granted before or after gelation, as in the case of other comparable approaches. Instead, the dis-
tribution of macromers is governed by the physics of solute-solvent interactions characterized by χ. Fig. 8A,B displays suspensions in 
which the centers of tetra-functional macromers are depicted. Two suspensions (for χ = 0.5 and χ = 2, respectively) are displayed as 
initiated (Fig. 8A,B, left) and after they have achieved the prescribed equilibrium criteria (Fig. 8A,B, right). To demonstrate that the 
local osmotic pressure, and not the initial macromer distribution is what causes phase separation, all networks are initiated with 
relatively high homogeneity using a pairwise Poisson’s point process. Again, neither attractive nor repulsive pairwise potentials are 
included. 

To characterize macromer distribution, we investigate the radial distribution function (RDF), g(r), which quantifies the probability 
of finding two macromers at a given end-to-end distance. Peaks in g(r) indicate correlation length scales (i.e., that there is a higher 
probability of finding two particles at a given pairwise separation distance). In contrast, values of g(r) near or below unity indicates 
that particles are less correlated with one another and more correlated with empty space at a given length scale. When χ = 0.5 (Fig. 8A) 
mixing and homogenization occur whereby the macromers evenly distribute and g(r) appears periodic (Fig. 8C), indicating a degree of 
long-range order like that observed in concentrated colloidal and star-polymer suspensions (Mohanty et al., 2014; Padding and Briels, 
2014) . Despite only accounting for solute-solvent interactions (as opposed to volume exclusion effects), such homogenization is 
consistent with the statistical mechanics predictions of Watzlawek et al. (1998), the MC studies of Hebbeker et al. (2018), or the higher 
fidelity MD results of Lee and Larson (2009) and Khoiroh et al. (2020) for suspensions in good solvent. However, when χ = 2.0 this 
method predicts unstable phase separation that cannot be modeled using only volume exclusion interactions (Fig. 8B). Indeed, setting χ 

> 0.5 effectively introduces depletion forces between solute particles. While it is tempting to phenomenologically introduce such 
forces via attractive regimes in effective pairwise potentials, it is well demonstrated that such forces vary locally with solute con-
centration (Bolhuis et al., 2001; Egorov, 2004; Jusufi et al., 1999; Krakoviack et al., 2003) and should therefore not be treated 
monolithically across a spatial domain. This method avoids such treatment and constitutes a more physically motivated method in 
which any effective depletion forces automatically evolve with local topological gradients. 

While we have neglected the effects of volume exclusion interactions, Brownian diffusion, or entanglements between inter-
penetrating macromers, in the future these features could be easily combined with the methods introduced here. This would enable 
detailed studies of polymer suspensions in applications such as colloidal photonic crystals (Hosein et al., 2010; Riley and Watson, 
2014). However, in the remainder of this work - unless specified otherwise - we focus on sol-gels in theta solvent (χ ≈ 0.5) based on 
experimental evidence that for tetra-PEG gels in the molecular weight range Mw ∈ [5,40] kDa, the effective mixing parameter is within 
the tight range of χ ∈ [0.46,0.49] (Matsunaga et al., 2009a). For such sol-gels, homogenization prior to gelation is reasonably assumed. 

Fig. 8. Phase separation of polymer suspensions. (A,B) The evolution of macromer suspensions (10k tetra-PEG macromer) is displayed. The 
initial solutions (left) were forced into a relatively homogenous state using a Poisson’s point process such that the more equilibrated systems (right) 
could evolve as governed solely by the local gradient in osmotic pressure. Evolutions are depicted for solvent qualities of (A) χ = 0.5 (theta solvent), 
and (B) χ = 2, resulting in full homogenization and phase separation, respectively. (C) The corresponding RDFs are displayed for both solvent 
qualities with χ as indicated in the legend. 
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4.2. Gelation and as-prepared network topology 

Here we demonstrate the model’s ab initio reproduction of 10k tetra-PEG gel topologies based on as-prepared conditions. Initial 
gelation was carried out via the implementation outlined in Section 3.2 for networks swept across a range of as-prepared polymer 
concentrations (Fig. 9A,C), here characterized by ϕ∗ = ϕ/ϕol, where ϕol is the 2D overlap concentration of macromers estimated by ϕol 
= fNbw/(2πR2g ), and Rg ∼ Nf1/2b2 is a star-shaped macromer’s radius of gyration (see Appendix B for details). Bond attachment events 
were allowed to take place until the fraction of attached chains reached 0.95, tantamount to a high conversion during gelation as seen 
in experimental studies on tetra-PEG networks (Shibayama et al., 2019). Fig. 9B,C depicts the fraction of chains comprising single links 
and double links with respect to concentration. Here a “single link” is defined as a connection between crosslinks that share only one 
chain, while a “double link” or “triple link” (fraction not shown in Fig. 9C) indicates that the pair shares two or three chains, 
respectively. Such defects are critical in the accurate prediction of network mechanics and failure (Chung et al., 1996). Therefore, 
accurate replication of initial experimental gel topologies is crucial. 

The trends in defect prevalence with respect to as-prepared concentrations strongly agree between the model and experiments. 
Higher as-prepared concentrations consistently result in networks with higher fractions of single links and fewer defects (e.g., double 
or triple links). While at a given as-prepared concentration the predicted fraction of single links is slightly higher (and the fraction of 
attached double links is lower) for the in silico experiments (Fig. 9C) than for experimental results (Fig. 9B) (Asai et al., 2013; Lange 
et al., 2011), this mismatch occurs primarily at higher concentrations and may be decreased by adjusting the timescale of Kuhn 
segment diffusion, τ0 through Eq. (21). Additionally, the 2D overlap concentration estimated for simulations, is not synonymous with 
the rheologically extrapolated 3D overlap concentration cited by Lange et al. (2011), thereby rendering direct quantitative comparison 
between the horizontal axes of Fig. 9B,C uncertain. Ultimately, for the eventual purposes of predictive design, it is the relative trends in 
emergent topologies and mechanical properties that will guide fabrication parameters. Notably, at low concentrations a crossover 
region occurs for both simulations and experiments in which the fraction of double links becomes statistically consistent with that of 
single links, each representing between 40 and 50% of the overall population. However, for simulated gels prepared at ϕ∗ ≤ 0.5, no 
networks formed (i.e., gelation was not observed), which is not consistent with the observations of Lange et al. (2011). As such, this 
iteration of the framework is limited to the study of sol-gels prepared at relatively high initial concentrations (ϕ∗ > 0.5). In future work 
this limitation may be overcome by introducing Brownian diffusion of entire macromers to emulate intervention mixing, however here 

Fig. 9. Validation of the model’s predicted ab initio topologies. (A) Sample networks gelated from low (left) to high (right) as-prepared con-
centration are depicted. The rightmost sample represents the network topology used for in silico experimentation throughout this work. All scale 
bars represent the contour length of a single chain (44 nm). The color bar indicates the local osmotic pressure, π ∈ [0, 10] kPa. (B) The experi-
mentally measured fractions of single links (black squares), double links (red circles), and triple links (blue triangles) are plotted with respect to the 
normalized as-prepared concentration depicted for a 10k tetra-PEG gel. Adapted with permission from Lange et al. (2011). Copyright 2011 
American Chemical Society. (C) The fraction of single links (black squares) and double links (red circles) is plotted with respect to the normalized 
as-prepared concentration for the ensemble average of ten simulated 10k tetra-PEG gel samples. The normalization concentration, ϕol was taken as 
the 2D overlap concentration based on the estimated radius of gyration in theta solvent. Error bars represent standard error (S.E.) of the mean. The 
inset in (C) graphically depicts the definition of single (top), double (center), and triple (bottom) links between two crosslinks. (D) The probability 
distribution function (PDF) of attached chains’ end-to-end lengths is shown for ϕ∗ = 0.48 (red), ϕ∗ = 0.79 (blue), and ϕ∗ = 1.58 (black) corre-
sponding to the snapshots depicted in (A) from left to right, respectively. The mean lengths 〈r〉 are denoted by the vertical dotted lines of the same 
respective colors. (E) The RDFs of crosslink positions, g(r), from the model are shown for ϕ∗ = 0.48 (red), ϕ∗ = 0.79 (blue), and ϕ∗ = 1.58 (black). 
(F) Mean clustering coefficient, 〈C〉, is plotted with respect to ϕ∗. 
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we focus on the case of gels fabricated at ϕ∗ ∼ 1.5 (as depicted in the rightmost schematic from Fig. 9A). 
For simulated gels prepared at ϕ∗ ∼ 1.5 the mean end-to-end length of an attached chain is 〈r〉 = 12.1 ± 0.1 nm, or 28% of the 

overall contour length (Fig. 9D). Of note is that 〈r〉 changes little at lower concentrations (〈r〉 = 13.6 ± 0.1 nm for ϕ∗ ∼ 0.8 and 〈r〉 =
12.9 ± 0.1 nm for ϕ∗ ∼ 0.5) (Fig. 9D) despite an obvious increase in effective mesh size as visually seen in Fig. 9A. This suggests that at 
lower concentrations, chains still relax to approximately the same lengths, but that crosslinks are generally more clustered (as indi-
cated by the higher degree of double link defects from Fig. 9B,C), which is what enables a larger pore structure. Unlike the distributions 
of attached chain length, the RDF of crosslinks, g(r), elucidates information about clustering (Fig. 9E). As expected, the RDFs uni-
versally indicate that the gels are amorphous, with high structural noise and no long-range order (Fig. 9E). However, at all three 
concentrations observed, there exists a length scale (∼ 10 nm for ϕ∗ ∼ 1.5, ∼ 15 nm for ϕ∗ ∼ 0.8, and ∼ 20 − 25 nm for ϕ∗ ∼ 0.5) 
below which the positions of crosslinks are highly correlated. This is consistent with the findings of Matsunaga et al. (2009b) and 
indicates the presence of clusters whose characteristic sizes are on the same order as these correlation lengths, suggesting that lower 
as-prepared concentrations beget larger clusters. Clustering is further characterized with respect to ϕ∗ by the average clustering co-
efficient, 〈C〉 = N

−1∑
α

Cα where Cα = 2Tα/[kα(kα − 1)], kα is the number of uniquely attached neighbors to crosslink α, Tα is the 
number of shared chains between said neighbors, and kα(kα −1)/2 constitutes the number of possible shared connections between said 
neighbors (Soffer and Vázquez, 2005). 〈C〉 characterizes the extent to which attached neighbors of crosslinks are attached to one 
another thereby quantifying the degree of clustering. Fig. 9F demonstrates that 〈C〉 decreases as the as-prepared network concentration 
increases, supporting the interpretation that lower density networks exhibit greater clustering. Clusters are visible in Fig. 9A as the 
high osmotic pressure regions for ϕ∗ ∼ 1.5 or the regions of high crosslink density for ϕ∗ ∼ 0.8 and ϕ∗ ∼ 0.5. 

As an aside, below the length scale of 1.3 nm (for ϕ∗ ∼ 1.5), g(r) diverges suggesting that overlap of crosslinks occurs at the length 
scale of a Kuhn segment, which is a consequence of omitting any hard bodied repulsive potentials between nodes. While effective soft 
repulsion is introduced through the gradient in osmotic pressure, these forces are evidently overcome by the entropic tension of chains 
in some instances. Regardless, omitting hard body exclusion improves the numerical stability of the framework and only influences the 
displacement of crosslinks for gels by on the order of 1% of the contour length of a chain. Therefore, it has negligible effect on emergent 
network mechanics as revealed in the following sections. 

4.3. Equilibrium swelling mechanics of gels 

Having ensured that the initial topological features for the case of 10k tetra-PEG gels match available experimental data, we next 
examine the equilibrium swelling of percolated gels to ensure that their initial swelling behavior matches that predicted by the Flory- 
Rehner theory discussed in Section 2. For the purposes of this section, we use Gaussian (i.e., linear) chains and omit deterministic 
fracture of bonds. This allows us to use the relatively simple elastic strain energy density function of a compressible Neo-Hookean 
material given by: 

ψel =
μ

2
(I1 − 2) + κ

2
(J − 1)2 (31)  

where μ is the shear modulus, κ is the bulk modulus, J is the Jacobian (J = detF = λ1λ2), and I1 = (λ2
1 +λ2

2)/λ1λ2 is the first invariant of 
the isochoric component of the left stretch tensor (I1 = tr B = tr [J−1FFT ] for symmetric deformation gradients). The maximum 
number of attachments per crosslink is relatively low (f = 4), so we set μ = (1−2 /f)ckbT in accordance with phantom chain theory for 
networks with low connectivity (Picu, 2011; Wagner et al., 2021). Here c is the network’s attached chain concentration (Vernerey 
et al., 2017; Wagner et al., 2021), which evolves from the dry chain concentration (c0) as the network undergoes volumetric defor-
mation according to c = J−1c0. For reasons examined in Appendix C, we also posit that the bulk modulus, κ, evolves as κ = 3μ /2 in 2D. 
To be consistent with the analysis of osmotic pressure, the reference state for J is taken as that of the dry polymer network. 

Invoking the definition of Cauchy stress through Eq. (3), simplifying, and writing stress in terms of the principal stretch components 
gives: 

σ = 2

J

{[

λ1/λ2 0

0 λ2/λ1

]

− λ2
1 + λ2

2

2λ1λ2

[I]
}

+ κ0

J
(λ1λ2 − 1)[I] (32)  

where κ0 = 3
2 (1−2 /f)c0kbT is the dry state bulk modulus. For the case of unconstrained (and therefore isotropic) swelling (λ1 = λ2 =

λ), Eq. (32) reduces simply to σ = σhI where: 

σh = κ0

J
(J − 1) (33)  

which represents the hydrostatic component of network stress, σh = tr(σ)/3, and is plotted in Fig. 10A (black curve). Examining 
Fig. 10A, we see that σh increases monotonically with respect to J, and approaches a value of κ0 in the limit J → ∞. Notably, the form of 
σh presented through Eq. (32) is synonymous with that of the phenomenological, modified Ogden free energy functional introduced for 
rubberlike solids (Moerman et al., 2020; Ogden and Hill, 1972). This free energy formulation gives the hydrostatic stress as: 

σh = κ

Jβ

(

1− J−β
) (34) 
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where κ is considered an invariant bulk modulus (i.e., is not a function of material density) and β is a material parameter governing the 
linearity of the system. Eqs. (33) and (34) are identical when β = − 1. The invariance between σh and J for each of these formulations 
at high volumetric strains is perhaps intuitive if stress is contextualized as the free energy density of the elastic network. The free 
energy stored in the system increases proportionately to the stretch of the chains in each dimension (∝λ1λ2 = J), however the material 
density also decreases proportionately to volume (∝J−1), such that these two effects cancel one another. Indeed, the analytical virial 
formulation of network stress predicts complete invariance of σh with respect to J such that: 

σh
vir = κ0 (35)  

for networks whose only pairwise interactions are linear and tensile, even at low volumetric strains (Appendix C). Therefore, as 
illustrated in Fig. 10A, there is a notable discrepancy between σh

vir and σh at low values of J (e.g., approximately 40% difference when 
J ≈ 3). Despite this, we find that numerically predicted values of σh are in good agreement with Eq. (35) for all values of J. This is likely 
due to the omission of volume exclusion interactions in the numerical model. At low volumetric strains, the hydrostatic stress response 
of a true material most likely increases more rapidly with respect to J due to the alleviation of repulsive forces between neighboring 
constituents as the material density declines. A reduction in repulsive forces corresponds to a reduction of pressure (not to be confused 
with “osmotic pressure”) at the continuum scale. In turn, this drop in pressure amounts to an increase in hydrostatic stress as entropic 
chain forces become the dominant phenomenon. Thus, the modified Ogden model likely remains an accurate phenomenological 
predictor of materials’ true stress responses and mismatch here derives from our deliberate choice to neglect volume exclusion in-
teractions for simplification. Volume exclusion interactions may be easily included in future iterations of this model concerned with 
materials at higher densities. 

To assess the effect of osmotic pressure on gel swelling, the mixing parameter was numerically swept over the arbitrary set, χ ∈ {−
8,− 4,− 2,− 1,− 0.5,0,0.5}, where χ < 0 indicates that there is an effective repulsive potential between solute particles when placed 
in solvent (Doi, 2013). Fig. 10B depicts the swelling ratios J with respect to the mixing parameter χ, as predicted by Flory-Rehner 
theory (using the modified Ogden strain energy) and the discrete model (red scatterplot). The continuous curve in Fig. 10B may be 
graphically interpreted as the horizontal coordinates at which the χ-dependent osmotic pressure curves intersect the hydrostatic stress 
curve in Fig. 10A. Regardless of whether the virial formulation or modified Ogden model is used to predict σh, the numerical model 
predicts equilibrium swelling characteristics in good agreement with Flory-Rehner theory, even at low volumetric strains. This is 
because relatively large discrepancies in the equilibrium stress value (i.e., vertical axis intersection of curves in Fig. 10A) amount to 
relatively small changes in J at low strains Given the accurate prediction of swelling mechanics demonstrated here, in future studies, 
this model feature may be utilized in conjunction with force-sensitive bond dissociation to predict and avoid fabrication parameters 
that result in reverse gelation. 

4.4. . Elastic response of a gel undergoing external load 

While this model predicts swelling ratios in agreement with the predictions of Flory-Rehnner theory for networks of ideal chains, it 

Fig. 10. Validation of the model’s predicted swelling mechanics. (A) Osmotic pressure, π, is plotted as colored curves with respect to J for χ 

= 0.5 (red), χ = −2 (grey), and χ = −8 (cyan). The hydrostatic component of network stress, σh, is also depicted for the modified Ogden model 
(black curve) in which κ∝J−1 (Moerman et al., 2020) and based on the virial formulation (dotted black curve). Where the colored curves and black 
curve intersect represents the equilibrium swell state per Flory-Rehner theory. (B) The continuous set of equilibrium swelling ratios from (A) are 
plotted with respect to χ ∈ [− 8,0.5]. Discrete equilibrium swelling ratios (averaged over ten networks of linear springs with a functionality of f = 8) 
are plotted as red exes for the set χ ∈ {− 8, − 4, − 2, − 1, − 0.5,0,0.5}. S.E. of the mean constitutes less than 0.5% (or less than the marker size). 
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is also important to validate its prediction of mechanical response against nonlinear experimental results. We here demonstrate that 
the model’s prediction of stress-stretch response (σ − λ) is in agreement with the experimental results presented by Sakai et al. (2010) 
for 20k tetra-PEG gels undergoing uniaxial extension (Fig. 11). 20k tetra-functional networks comprised of Langevin chains were 
generated per the methods of Section 3, however equilibrium swelling was not conducted. Instead, after percolation (i.e., continuous 
network formation), the initial RVE domain size was adjusted until the initial mean attached chain length 〈r〉 was within 5% of the 
initial chain length (r0 = 7.1 nm) reported experimentally, thereby ensuring that λ is reported with respect to the same reference state 
for both numerical and experimental results. To match experimental loading conditions, incompressible uniaxial tension was applied 
through the deformation gradient F = diag(λ−1, λ). To fit the model’s 2D predicted stress-stretch behavior against 3D experimental 
results, we invoke plane stress boundary conditions (i.e., stress-free boundaries on the faces whose norms are out-of-plane), for which a 
tertiary dimension (i.e., the RVE thickness, ζ) is needed to meaningfully compute the virial stress. 

As illustrated in Fig. 11A, the results of our model agree reasonably well with the experimental results when said thickness is set to ζ 

= 7.4 nm, which approximately coincides with the initial mean chain end-to-end length of 〈r〉 ≈ 7.5 nm, suggesting that the numerical 
RVE represents one layer of crosslinks. To emphasize the importance of finite chain extensibility, Fig. 11 includes predicted results 
using both linear (Gaussian) and nonlinear (Langevin) chains. We see that for linear networks the model quickly deviates from the 
experimental stress-stretch behavior reported, whereas low error (RMSE < 1.5 kPa) is achieved when Langevin chains are used in the 
regime λ ≤ 5 (Fig. 11B). Error reaches up to RMSE≈ 6 kPa or ∼6–10% of the overall network stress for λ > 5. However, this is 
attributed to earlier divergence of the force-extension relation (occurring when r → L) reported by Sakai et al. (2010), than that used in 
the model. The single chain force-extension relations of both works are displayed in the inset of Fig. 11A. Note that for the number of 
macromers modeled (N = 625) the domain width became smaller than that of a single chain’s contour length above λ = 7, hence the 
upper limit of stretch reported. 

5. Damage and the role of heterogeneities 

Given the accurate predictions of network topology, swelling mechanics, and stress response for 10k and 20k tetra-PEG gels thus 
far, the remainder of this work is devoted to using the model to extrapolate predicted mechanical properties of gels across a range of 
functionalities and molecular weights (or chain contour lengths). It is well documented that the damage of polymeric materials, 
including gels is sensitive to defects and thus topology (Jangizehi et al., 2020; Kothari et al., 2018; Sanoja et al., 2021; Vernerey et al., 
2018). Therefore, in Section 5.1, we examine the predicted mechanical properties and failure mechanics of four network types 
(representing two functionalities and two chain lengths). We then quantify topological properties and visually inspect the network 
configurations to explain the observed trends. In Section 5.2, we conduct a larger parameter sweep and introduce a set of 
structure-property function plots that aid in understanding the role of topology on mechanical failure. 

Fig. 11. Validation of the model’s predicted stress response. (A) The principal component of nominal network stress in the direction of uniaxial 
extension is plotted with respect to stretch for 20k tetra-PEG gels. The experimental results (red dashes) of Sakai, et al. (2010), are plotted against 
model predictions for networks of Gaussian (dotted black) and Langevin (solid black) chains. The shaded regions for numerical results denote S.E. of 
the mean. The inset displays the force (pN) versus extension (nm) relationships for the Gaussian and Langevin chains (L = 88 nm) of the model, as 
well as the inversely derived experimental force-extension reported by Sakai, et al. (2010) (L = 76 nm). (B) Root mean square error (RMSE) is 
plotted with respect to stretch. (A-B) Share a horizontal axis. (C) Snapshots of a numerical network at stretches of λ = 1 and λ = 1.45 are depicted 
for reference. 
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5.1. Mechanical and topological properties of ab initio tetra-PEG gels 

Fig. 12 presents the predicted stress-stretch response and mechanical properties of tetra-PEG gels with the combinations of Mw (or 
L) and f indicated in Table 2. Damage was introduced using the deterministic failure criteria used by Sugimura et al. (2013), whereby 
scission occurs for chains whose end-to-end lengths reach 95% of their contour lengths. Although enthalpic bond stretching becomes a 

Fig. 12. Mechanical predictions of gels with different functionalities and chain lengths. (A) The ensemble averaged principal component of 
Cauchy network stress in the direction of uniaxial extension from ten simulations (n = 10) is plotted with respect to stretch measured from the 
equilibrated swollen state. This relation is shown for four types of tetra-PEG gels with varying chain contour lengths L and functionalities f as 
indicated by the legend. The inset snapshots depict sample networks for each combination of L and f , all at the same length scale to emphasize the 
different degrees of initial chain stretch, which results from different dry macromer densities (based on functionality) and initial swelling ratios. The 
average (B) tangent modulus 〈E〉, (C) equilibrium swell ratio 〈Jeq〉, (D) strain at peak force 〈εy〉, (E) failure strain 〈εt〉, and (F) toughness 〈Ut〉 are 
displayed for each chain contour length and functionality. Colors correspond to the legend from (A). (G–J) Close-up views of the snapshots from (A) 
are depicted for the networks with (G) L = 44 nm and f = 4; (H) L = 44 nm and f = 8; (I) L = 177 nm and f = 4; and (J) L = 177 nm and f = 8. All 
shaded regions or error bars represent S.E. of the mean. All scale bars represent 50 nm. Heat maps represent osmotic pressure. 

Table 2 
Macromer inputs for the networks of Fig. 12.  

Network No. Molecular Weight, Mw (kDa) Chain Contour Length, L (nm) Functionality, f 
1 (Blue) 10 44 4 
2 (Teal) 20 44 8 
3 (Maroon) 40 177 4 
4 (Red) 80 177 8  
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significant effect influencing the failure of polymer chains at high strains (Lamont et al., 2021), it demonstrably increases the stiffness 
of PEG chains in water by multiple orders of magnitude (Ahlawat et al., 2021; Oesterhelt et al., 1999). As such, the exact stretch at 
which carbon-carbon binding energy is exceeded (i.e., rupture occurs) will reside near λ →

̅̅̅̅N√ , hence the use of this coarse failure 
criteria for our purposes. As one would expect, from Fig. 12A we see that increasing the contour lengths of chains resulted in softer 
networks (i.e., lower Young’s moduli, E, Fig. 12B) that therefore reach larger equilibrium swelling ratios (Jeq, Fig. 12C) and higher 
deformations prior to yield (Fig. 12D) and failure (Fig. 12E). Perhaps unexpectedly, these networks absorbed less energy prior to fully 
fracturing (i.e., exhibited lower toughness, Ut, taken as Ut =

∫

σ(ε)dε in the limits εeq to εt) (Fig. 12F). However, this is partially realized 
by the fact that longer chains store less mechanical energy at a given stretch, thus reducing the strain energy density of the overall 
network. Furthermore, here ε was measured from the swollen equilibrium state, as opposed to the dry state or ideal chain end-to-end 
length (〈r〉 = b ̅̅̅̅N√ ). Since the networks made from longer chains begin at a higher swelling ratios, their chains begin at higher effective 
stretches. Visually, this is illustrated by both the inset depictions of the initial networks in Fig. 12A, which are all depicted at the same 
length scale, as well as the close-up snapshots of these same networks from Fig. 12G–J, whose scale bars all represent 50 nm. Despite 
significant differences in initial chains stretch in the equilibrated swollen states, the lower limit used to compute Ut was always taken as 
εeq =

̅̅̅̅̅̅̅Jsw
√

− 1. This lower limit choice also explains why the networks with chains that are roughly four times longer (177 versus 44 
nm) are not four times as extensible (Fig. 12E). 

Also as expected, increasing the functionality of networks with the same length chains stiffened them (i.e., increased E), thereby 
decreasing Jeq and increasing peak stresses (σy) (Fig. 12A). This is because introducing a higher crosslink density to the network 
ensures that more chains may effectively carry load in parallel. However, less intuitively, as seen from Fig. 12D–F, increasing func-
tionality also resulted in a decrease of the strain at peak force (εy, taken as the average strain at which stress peaks), fracture strain (εt), 
and therefore toughness (Ut) of the networks, indicating more brittle behavior. To explain this behavior from a micromechanical 
perspective, we must understand how the chains in these respective networks are oriented and stretched prior to and during 
deformation. 

Fig. 13A and C depict the joint probability distribution functions of the normalized chain end-to-end lengths r∗ = r /L for 10k tetra- 
and octa-PEG gels, respectively. Examining Fig. 13A–E, it is immediately apparent that a greater fraction of the chains in the octa-PEG 
network exists at higher values of r∗, even prior to deformation. Plotting the average value of r∗ in the principal direction of extension, 
〈r∗2〉, against λ for each network (Fig. 13F) confirms that the mean end-to-end length of chains in the octa-PEG gel is almost universally 
higher in the stretch regime 1 < λ < 1.8 than those in the tetra-PEG gel. Indeed, 〈r∗2〉 is only lower for the octa-PEG network in this 
range of λ after the gel fully fractures (λ > 1.83). Visually investigating the networks at their initial state immediately elucidates an 

Fig. 13. Chain distribution functions of gels with L = 44 nm and different functionalities. (A) The joint PDF of r∗ is shown for the ensemble of 
ten (n = 10) 10k tetra-PEG gels at λ = 1 (left), the measured yield stretch λ = 2.00 (center), and the measured failure stretch λ = 2.16 (right). (B) 
Snapshots of a sample 10k tetra-PEG network at the stretches from (A) are depicted. The network depicted did not reach absolute failure by the 
average failure stretch of λ = 2.16. (C) The joint PDF of r∗ is shown for the ensemble of ten 20k octa-PEG gels at λ = 1 (left), the measured yield 
stretch λ = 1.75 (center), and the measured failure stretch λ = 1.83 (right). (D) Snapshots of a sample 20k octa-PEG network at the stretches from 
(C) are depicted. The network depicted did not reach absolute failure by the average failure stretch of λ = 1.83. (A–D) The extensile direction, e2 is 
oriented horizontally. Scale bars in (B) and (D) represent L = 44 nm. Dashed black circles in (A) and (C) indicate the chain contour length, while 
dashed red circles represent the deterministic scission length for chains. (E) The radial PDFs of r∗ are shown for the 10k tetra- and 20k octa-PEG gels 
as grey and red histograms, respectively. For direct comparison, these histograms are depicted at λ = 0 (left), λ = 1.5 (center), and λ = 2.0. Note that 
the chains in these two networks have the same contour length. (F) The average component of normalized chain end-to-end length in the principal 
direction of extension is plotted with respect to stretch. End-to-end lengths are normalized as r∗ = r/L such that r∗ ≥ 0.95 prompts chain scission. 
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obvious cause of this. Fig. 14A and B, illustrates samples of simulated 10k tetra-PEG and 20k octa-PEG gels, respectively, at various 
uniaxial stretches up to full fracture. Each network was generated from the same number of macromers (N = 400), and we know from 
Fig. 12C that the 10k tetra-PEG network has swelled more from its initial dry state to the references state shown. Despite this, the scale 
bar (which represents L) is 38% larger for the 10k tetra-PEG gel (Fig. 14A) than it is for the 20k octa-PEG gel (Fig. 14B). This is because 
the 20k octa-PEG gel occupies more space per macromer in its dry state than the 10k tetra-PEG gel, simply because it has a greater 
number of chains, a notion made visually apparent by the macromer illustrations in Fig. 14. Were the topological features of these 
networks (such as coordination number and variance of the end-to-end length) equal, then this difference in swelled dimensions would 
immediately imply that the chains in the 20k octa-PEG gel begin at a 38% greater stretch prior to deformation, closely reflecting the 
average 39.8% greater extensibility of the 10k tetra-PEG gels. 

However, the topological properties in these two gels are not the same, with the 20k octa-PEG gel appearing more homogenized 
(Fig. 15A,B). This is reflected in the radial distribution functions (RDFs) at λ = 1 displayed in Fig. 15C, which reveal that the 10k tetra- 
PEG gel displays just one correlation length scale around d∗ = 0.15 followed by an inversely correlated region from d∗ ≈ 0.3 to d∗ ≈ 1 
(i.e., g(0.3 ≤ d∗ ≤ 1) < 1). The single correlation peak indicates that crosslinks in the lower functionality network are relatively 
clustered in regions wherein the most common pairwise separation is approximately 15% of L. The inversely correlated regime in-
dicates that clusters are separated by vacant regions with a characteristic size on the order of L. This is visually supported by the 
network depicted in Fig. 15A. In contrast, the RDF of the 20k octa-PEG gel displays two correlation length scales (i.e., peaks) around d∗

= 0.29 and 0.65, indicative of more ordered crosslink distribution below d∗ = 1 and greater homogeneity of the higher functionality 

Fig. 14. Fracture of gels with L = 44 nm and different functionalities. (A) A schematic of a tetra-functional macromer is depicted, alongside 
snapshots of a simulated 10k tetra-PEG gel as it undergoes uniaxial extension. (B) A schematic of an octa-functional macromer is depicted, alongside 
snapshots of a simulated 20k octa-PEG gel as it undergoes uniaxial extension. The macromer schematics are depicted at the same scale, whereas the 
sizes of the gel snapshots are indicated by their respective scale bars, each representing L. Red crosses in the gel snapshots demark which chains 
rupture before the next displayed snapshot. The rightmost snapshots depict the osmotic pressure landscapes of the domains at initial fracture. 

Fig. 15. RDFs of gel’s crosslinks with L = 44 nm and different functionalities. (A,B) Samples of a (A) 10k tetra-PEG and (B) 20k octa-PEG 
networks are shown at λ = 1 for visual reference. Scale bars represent L = 44 nm. (C) The RDFs of ensembles of ten (n = 10) 10k tetra-PEG 
(black) and ten 20k octa-PEG (red) gels’ crosslinks are displayed. The distance between crosslinks is normalized as d∗ = d/L. Dotted lines 
denote correlation length scales or peaks in g(r). 
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gel. One clear, inversely correlated region exists for the 10k tetra-PEG gel in the approximate range 0.4 < d∗ < 0.6, indicating a smaller 
characteristic size of vacant regions, which is visually illustrated by Fig. 15B. While one might assume that this results in greater 
resistance to damage, it merely promotes the nucleation of more numerous, but smaller voids as bond scissions begin. This is somewhat 
reflected by the red crosses in the network snapshots Fig. 14, which demark the bonds that rupture in each subsequent frame. We see 
that the first discrete rupture events occur in wholly separate regions of the 20k octa-PEG gel (see λ = 1.62 or 1.67), whereas the first 
rupture events of the 10k tetra-PEG gel (see λ = 1.88) are localized to one region that already exhibited low chain density. 

To gain a quantitative understanding of damage onset, we utilize image analysis to measure and plot the RDF of void centroids, as 
well as the average number of voids and void area with respect to stretch for the gels with L = 44 nm (Fig. 16). To remove noise and 
filter out pores occurring in highly clustered regions, we define “voids” simply as pores in the network whose areal size is greater than 
Av = 0.25πρ2 where ρ = 0.15 is the shortest correlation peak length scale measured from Fig. 15C. The RDFs of Fig. 16A reveal that 
void positions are not correlated in either network above a lengths scale of d∗ ∼ 0.5. However, the voids in the tetra-functional network 
are demonstrably more clustered with some small correlation existing around d∗ ∼ 0.3 and a non-negligible population of voids within 
less than d∗ ∼ 0.2 of one another. This supports the greater homogeneity of the octa-functional gels and is made visually clear by the 
black and white network depictions in Fig. 16B both without (left) and with (right) filtration of small pores. Examining the statistics of 
voids during deformation, Fig. 16C and D indicate that the average number of voids per crosslink 〈N∗v〉 and average void area 〈A∗v〉
(normalized as A∗v = Av/0.25πL2, where 0.25πL2 is the maximum envelope of a single macromer) are both consistently higher for the 
tetra-PEG gel than the octa-PEG gel, which is perhaps trivial. Of note though is that the first observed instances of rupture events 
(denoted by the vertical dotted lines in Fig. 16C,D) are closely followed by steep declines and spikes in 〈N∗v〉 and 〈A∗v〉, respectively, 

Fig. 16. Void characteristics of gels with L = 44 nm and different functionalities. (A) The RDFs of ensembles of ten (n = 10) 10k tetra-PEG 
(black) and ten 20k octa-PEG (red) gels’ void centroids are displayed at λ = 1. The distance between void centroids is normalized as d∗v = dv /L. (B) 
Black-white snapshots of sample networks are displayed. The left column displays the black-white network configurations of a 10k tetra-PEG gel 
(top) and 20k octa-PEG gel (bottom) prior to deformation. The right column displays the same respective networks with pores below the prescribed 
threshold filtered out (to reduce noise). (C) The average number of voids per macromer is plotted with respect to stretch. (D) The average void area 
(normalized as A∗v = Av/πL2) is plotted with respect to stretch. (C,D) Shaded regions represent S.E. of the mean. The vertical dotted lines denote the 
approximate stretches at which bond rupture events were first detected through Fig. 14 (λ ≈ 1.85 - black, λ ≈ 1.6 - red). 
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quantifying the rapid void coalescence illustrated through Fig. 14. Note that subsequent drops in 〈A∗v〉 are due to elastic energy in the 
network causing local retraction around highly damaged regions, thus restoring a smaller average pore size. However, it must be noted 
that without inclusion of a fluid transport timescale, the rate of this elastic retraction is likely misrepresented by this iteration of the 
model, as reflected by the high disparity in osmotic pore pressure between the fractured and intact network domains (see the rightmost 
panels of Fig. 14). Poroelastically slowed retraction around damage zones may mitigate the onset of stress risers that result from 
heightened strain of one or a few intact chains, thus perhaps also delaying the rate of crack propagation in true gels. In future iterations 
of this approach, we will incorporate poroelasticity via a fluid transport timescale and investigate this likelihood. Nonetheless, this 
iteration of the model is still revealing regarding damage initiation as it relates to the ab initio inputs. 

No statistically significant difference was measured between the average rate at which voids initiate (∂〈N∗v〉/∂λ), nor the rate at 
which their average area increases (∂〈A∗v〉/∂λ) prior to damage onset (λ < 1.5). Nevertheless, it is clear from this analysis that the higher 
functionality leads to a more homogenous domain with fewer and smaller voids. Thus, while the lower failure strains of higher 
functionality networks are attributed primarily to the higher initial stretch of the chains therein, it is also likely that brittle behavior is 
exacerbated by a higher degree of load sharing and homogeneity between chains as they approach their failure criteria (here, 
r∗ → 0.95, but governed by bond dissociation energy in true polymer chains (Eyring, 1935)) This culminates in greater homogeneity of 
the subsequent failure domains and rapid void coalescence. This analysis holds true in comparing the 40k tetra-PEG gels to 80k 
octa-PEG gels (both of which have L = 177 nm), as well (see Appendix D for extended data). 

5.2. Predictive mapping as functions of Mw and f 

Having postulated micromechanical causes of observed trends in emergent properties, we here conduct a broader parameter sweep 
to predict high order mechanical trends in PEG-based gels. Fig. 17 plots mean values of Young’s modulus (E), peak stress (σy), swell 
ratio at initial equilibrium (J), strain at peak stress (εy), failure strain (εt), and toughness (Ut) with respect to f ∈ [3, 10], for five 
different molecular weights (Mw ∈ {10,20,30,40,50} kDa). While PEG-based copolymers with f ∈ {2,4,8} are perhaps most typical, 
we include uncommon functionalities to highlight the mechanical trends and with the recognition that intermediate effective func-
tionalities are attainable contingent on network composition (Schultz et al., 2009). We exclude systems in which f = 2 as these are 
below the percolation threshold. Note that we no longer set Mw to fix the chain length based on functionality, as we are now interested 
in examining the effects of typical control parameters used by experimentalists. 

Fig. 17. Mechanical predictions for extended parameter sweep. Mean (A) Young’s modulus, (B) peak stress, (C) equilibrium swell ratio, (D) 
strain at peak stress, (E) failure strain, and (F) toughness are plotted with respect to functionality for Mw = 10 kDa (blue circles), Mw = 20 kDa (teal 
triangles), Mw = 30 kDa (grey squares), Mw = 40 kDa (sideways maroon triangles), and Mw = 50 kDa (red diamonds). Ten (n = 10) samples of each 
network type were modeled. Error bars represent S.E. of the mean. The inset of (C) displays the anomalous topology of a gel with Mw = 10 kDa and f 
= 10, as discussed in the main body text. 
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The mechanical trends are in general agreement with existing literature (Matsunaga et al., 2009a; Sun et al., 2008; Temenoff et al., 
2002). Greater Mw typically decreases the elastic modulus (Fig. 17A) and yield stress (Fig. 17B) of the networks due to the increased 
length and decreased stiffness of the chains (thereby increasing the equilibrium swelling ratio - Fig. 17C). In contrast, greater Mw 
increases the yield (Fig. 17D) and failure strains (Fig. 17E) of networks due to the increased extensibility of the underlying chains. It 
appears that the decreases in moduli robustly outpace the increases in extensibilities and result in an overall decrease in dissipated 
energy upon failure (i.e., toughness) with respect to Mw (Fig. 17F). Regarding network connectivity, greater f generally increases 
modulus (Fig. 17A) and yield stress (Fig. 17B) thereby decreasing equilibrium swelling ratio (Fig. 17C), due to the increased stiffness 
associated with higher chain concentrations. Given increased network homogeneity and initial chain stretch (as discussed in Section 
5.1), greater f also generally decreases the strains at peak stresss and failure (Fig. 17C,D). Interestingly, the toughness (Fig. 17F) 
appears to either decrease or increase with respect to f depending on Mw. Specifically, the toughness of networks generated using Mw 
= 10 kDa increases as f decreases, whereas toughness appears positively correlated with f for all other values of Mw investigated. 
Notably, the toughness of gels with intermediate functionalities (5 ≤ f ≤ 8) and low molecular weights (Mw ≤ 30 kDa) does not vary 
significantly with respect to f given the number of samples (n = 10) observed. Despite the significance of functionality’s impact on 
mechanics, existing experimental literature examining its specific effects on star-polymer-initiated networks’ mechanical properties 
was not identified in the context of PEG gels (unless significant compositional changes were involved as in the studies of (Schultz et al., 
2009)). Nevertheless, further investigation is justified, and functionality will be central to the scope of forthcoming studies in which we 
probe the mechanical properties of both tetra and octa-functional macromers comprising a covalently adaptable gel (Richardson et al., 
2019). 

While the overall trends observed here are largely in agreement with those observed by experimentalists, the limitations of 
extrapolated predictions are perhaps highlighted by the outlier case in which Mw = 10 kDa and f = 10. A precipitous drop in modulus, 
yield stress, and therefore toughness is observed for networks with these inputs. We see from Eq. (15) that the solute concentration 
(with respect to radial distance from a crosslink) scales proportionately to the functionality and inversely with the mesh size in the 
model (ϕ(r) ∼ f/ξ). As such, through Eq. (18), high effective osmotic repulsive forces occur between macromers with these properties 
despite their short chain lengths (of 35 nm). Hence, during gelation, a high fraction of defects emerges as - at the as-prepared con-
centration - each macromer is more likely to double or triple link to a few nearest neighbors rather than bond equi-azimuthally with its 
surroundings. This yields gel topologies with high defect fractions as depicted in the inset of Fig. 17C. These defects soften the net-
works’ mechanical responses (Lange et al., 2011). In truth, adequate mixing during gelation is generally facilitated in experiments by 
Brownian diffusion and stirring intervention (Shibayama et al., 2019), neither of which were modeled here. Therefore, future 
application of this method for the predictive design of experimental systems should commence with multiple model calibration ex-
periments, preferably at the extreme ends of the relevant parameter space. 

6. Concluding remarks 

In this work we have introduced a theoretical and computational framework for modeling the spatial distribution of macromers in 
sol-gels, based on the nm-scale solute-concentration landscape and its effect on the local osmotic pressure gradient as dictated by Flory- 
Huggins mixing theory. The method constitutes a more physically motivated approach than the phenomenological, effective pairwise 
potentials often employed at the network scale to capture inter-polymer repulsion and depletion interactions. While the methods 
introduced here may be incorporated into 3D models, for simplicity, we initially incorporated them into a 2D, discrete numerical 
framework adopted from our previous work (Wagner et al., 2021). Indeed, both topological and mechanical properties may be affected 
by network dimensionality. For example, both network connectivity and degree of non-affine deformation tend to be larger in 3D 
networks (Picu, 2011), and so in future efforts we will apply these methods to 3D domains. Nevertheless, we here demonstrated this 
initial framework’s prediction of mixing and phase separation as a function of the Flory mixing parameter, χ, thereby exhibiting its 
potential for use modeling polymer suspensions. As the primary focus of this work, we then demonstrated this framework’s accurate ab 
initio prediction of the topological and mechanical properties of tetra-PEG gels as functions of their as-prepared polymer concentration, 
molecular weight, and functionality. Finally, we utilized the framework to extrapolate predicted mechanical properties of gels, further 
exploring the effects of molecular weight and functionality. 

We found that increasing molecular weight generally decreased the moduli, yield stresses and toughness of gels. In contrast, it 
reliably increased their equilibrium swelling ratio, and their extensibility with respect to the swollen reference state. As expected, 
increasing the functionality of crosslinks also increased stiffness of the emergent gels; however, less intuitively increased functionality 
(given the same chain length and as-prepared concentration) decreased mechanical toughness and failure strains (as measured from 
the swollen state). We found that this was due primarily to higher initial stretch of the polymer chains for gels with higher chain 
concentration, emphasizing that the effects of initial swelling must be accounted for when designing the mechanical properties of gels. 
This greater initial swelling imposes residual stresses that result directly from increased functionality. This finding is consistent with 
that of Kothari et al. (2018) who reported that increasing crosslink density in mesoscopically modeled polymer networks reduced 
overall network extensibility due to higher pre-stressing of the chains. However, the approach introduced here is novel in its ability to 
explain such phenomena as governed by the ab initio sample preparation conditions that experimentalist can control. Nonetheless, 
there are two major advantages introduced through mesoscopic frameworks such as these. Firstly, they allow for the direct, detailed 
observation of local topological traits in a way that is unattainable through existing experimental characterization techniques or 
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continuum models. Secondly, they do so while mitigating much of the computational cost associated with modeling every polymer 
chain explicitly. Therefore, these methods are inherently more scalable than conventional coarse-grained MD models. Moving forward, 
the ab initio approach of this model may be used both to inversely investigate the micromechanical origins of globally emergent 
mechanical properties (as was done here) or supplement experimental studies by facilitating predictive design of gels with desired 
mechanical traits, based on controllable inputs. Nonetheless, this iteration of the model may be improved upon in several ways. 

Features such as polydispersity, variability in the local mixing parameter, rate-dependent effects of solvent transport, and inclusion 
of reversible bonds are all compatible with this model and may be incorporated in future iterations. For example, the current model 
assumes a constant Flory parameter despite the demonstrable effects of both temperature and solute concentration on this statistical 
value (Bolhuis et al., 2001; Egorov, 2004; Huissmann et al., 2009; Jusufi et al., 1999; Krakoviack et al., 2003; Likos, 2001; Majka and 
Góra, 2014). While treating χ as a constant did not affect agreement between the model’s predicted mechanical properties and those of 
experimental results for gels in theta solvent, solute-solvent interactions may play a more potent effect on the damage mechanics of 
gels in poor solvent or containing local pockets of effectively poor solvent quality. In such systems, we hypothesize that clustering of 
polymer chains may reduce their conformational degrees of freedom, thereby increasing their stored free energy and reducing the 
effective crosslink separation or network stretch at which chains begin to rupture. In gels with dynamic bonds, poor solvent may also 
increase the effective bond dissociation rate per (Eyring, 1935). In future work, we may incorporate these physics via another layer of 
the Eulerian mesh that tracks χ as a function of solute concentration. However, this addition is contingent on a priori knowledge of the χ 

−ϕ relationship, which likely requires further molecular-scale investigation. 
Another pertinent effect to consider is dissipation due to entanglement. Entanglements are ubiquitously hypothesized to play a part 

in the viscoelastic response of gels, particularly gels with high polydispersity (e.g., poly(acrylamide)) or chain length (Kavanagh and 
Ross-Murphy, 1998). Researchers such as Masubuchi et al. (2001) have previously introduced coarse-grained models in which en-
tanglements are captured as slip links through which the passage of polymer depends on the entropic tension and density gradients of 
the chains on either side. Notably, this introduces sliding friction and dissipation that likely depend on the modes of entanglement. Yet, 
it remains unclear how to quantify the types and relative fractions of said modes experimentally. Therefore - inspired by Masubuchi 
et al. (2001) - in future work we will incorporate slip links into an iteration of this framework to instead model slide-ring gels whose 
crosslink characteristics (e.g., density and distribution) may be tuned and characterized empirically (Dikshit and Bruns, 2021), or 
inferred via continuum approaches (Vernerey and Lamont, 2021). More immediately, this iteration of the model will be improved by 
accounting for rate-dependent poroelastic effects and dynamic bonds. The former will be introduced and mediated by 
mesh-size-dependent transport of solvent through Darcy’s law and incorporation of viscous drag (Hong et al., 2009, 2008; Mattern 
et al., 2008). This will allow for investigation of dynamic loading rates and time-dependent swelling inhomogeneity. Rate-dependence 
is also highly influenced by inclusion of reversible bonds, which imbue networks with viscous response and the ability to relax. In 
forthcoming work we incorporate reversible, telechelic bonds to investigate and predictively tune the properties of covalently 
adaptable networks that have potential applications as extracellular scaffolds in osteochondral tissue engineering (Akalp et al., 2016; 
Richardson et al., 2019; Vernerey, 2016). For gels containing such reversible bonds, any a priori knowledge about initial topology 
quickly loses significance as the networks reconfigure, particularly during applied loading. Therefore, methods that relate local 
crosslink distribution to underlying first-order physics are of great importance (Dhote and Vernerey, 2014; Sridhar et al., 2017). 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgments 

F.J.V. gratefully acknowledges the support of the National Science Foundation (NSF) under award no. 2029699. This content is 
solely the responsibility of the authors and does not necessarily represent the official views of NSF. 

Appendix A. Domain size convergence study 

To determine an appropriate RVE size, 10 kDa tetra-functional networks of N ∈ {100,225,400,625,900} nodes were generated, 
swelled, and uniaxially extended in direction e2 through the chronological processes described in Section 3. These networks corre-
spond to approximately 10, 15, 20, 35, and 30 nodes per RVE edge, respectively. Strain was introduced at a constant strain rate (with 
traction free side boundaries) to a maximum stretch of λ = 4. Ten in silico experiments were conducted for each domain size and the 
ensemble averaged stress-stretch relations are depicted in Fig. A.1. It is clear from Fig. A.1 that, while networks containing N ∈
100,225 nodes behaved more softly, no significant difference in mechanical response occurs between RVEs containing N ∈ {400,625,
900}. Therefore, all studies in this work are carried out with N = 400 nodes. In addition, we ensure that the domain size always 
exceeds L by a factor greater than two so that single chains cannot span opposing periodic boundaries of the RVE. 
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Appendix B. Length scale and as-prepared concentration calibration 

Given the nearly monodisperse nature of star-shaped PEG macromers (Sakai, 2014; Sakai et al., 2008) one may compute the 
effective molar mass per arm as Mw/f . Given ethylene oxide’s molar mass (Meg = 44.05 kg mol−1), then the number of mers in an arm 
is Narm = Megf/Mw. We take the length of a single PEG mer as 3.9 Å and treat each Kuhn segment as two mers (Liese et al., 2017) so that 
N = Narm/2 and b = 7.8 Å. In the numerical framework, we set the normalized length scale as L = Nb = 1. As such, conversion be-
tween SI units and the numerical frameworks length scale is given by the conversion: 

1 = Meg

Mw

fb (B.1) 

The as-prepared polymer fraction is computed as the total polymer volume (or area in 2D), Astar, divided by the RVE size, ARVE: 

ϕ = Astar

ARVE

(B.2) 

This as-prepared concentration is normalized by the overlap volume fraction, which is taken as: 

ϕol =
Astar

πR2
g

(B.3)  

where Rg is the radius of gyration for a single star-shaped macromer and is estimated using (Lue and Kiselev, 2002): 
R2

g ∼ Nf 1/2b2 (B.4)  

for low functionality star-polymers in theta solvent. Combining ((B.2)–(B.4)), one may write the normalized, as-prepared solute 
volume fraction as: 

ϕ∗ = πNf 1/2b2

ARVE

(B.5) 

Ergo, ϕ∗ is controlled in the framework by tuning ARVE. 

Appendix C. The extensile bulk modulus of a gel’s polymer network 

A critical consideration in fitting the analytical model to our numerical results is what form the bulk modulus of the polymer network, 
κ, takes and whether it evolves with the swelling ratio, J. Note that this is here defined as the extensile bulk modulus of solely the polymer 
network and does not constitute the overall bulk modulus of the gel, thus κ in this section is decoupled from the osmotic pressure of 
mixing. Furthermore, volume exclusion effects on κ are not considered, as these primarily matter for gels at high polymer concentrations 
or those undergoing compressive loading (Drozdov and Christiansen, 2020). Fundamentally, the bulk modulus of a freely swelling gel’s 
polymer network may be defined as its resistance to volumetric change through κ = ∂σh/∂V. Since PEG-based gels (with Mw > 10 kDa) in 
theta solvent generally have polymer volume fractions on the order of ϕ ∼ 0.01 − 0.1 (Akagi et al., 2010; Lange et al., 2011; Matsunaga 

Fig. A.1. Domain size convergence of stress-stretch. The stress responses of RVEs containing N ∈ {100, 225,400,625,900} nodes are displayed 
for networks stretched to λ = 4. The inset displays the stress-stretch response of the region outlined by the dashed box (λ ∈ [3.8, 4] and σ ∈ [75,
100] kPa) to emphasize overlap for the cases of N ∈ {400, 625,900}. 
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et al., 2009b), and entanglements have been shown to play little part in the swelling dynamics of these relatively homogenous gels 
(Matsunaga et al., 2009b; Sugimura et al., 2013), we may neglect the effects of steric interactions between chains and crosslinks during 
swelling. Furthermore, assuming steady state swelling and that the gel is submersed in a sufficiently large solvent bath at thermodynamic 
equilibrium with its surroundings, then mixing (and therefore swelling) is not limited by solvent availability or transport and is therefore 
only resisted by the elastic tension of the polymer chains. As such, κ during swelling may be interpreted as entirely dependent on the 
elastic network properties. 

The first component of the virial stress is synonymous with Cauchy stress for non-inertial networks and given by Eq. (26). For linear 
springs, f = Kr, and K is the stiffness of a single chain, K = 3kbT/r20, V is the material volume (V = V0J), and V0 = N /c0 where N is the 
number of chains that exists in the domain (∈ Ω), c0 is the dry concentration of chains, and r0 =

̅̅̅̅N√ b is initial mean end-to-end 
separation for ideal chains (i.e., in theta solvent). As such, Eq. (26) may be rewritten as: 

σv =
c0

2N J

(

3kbT

Nb2

)

∑

Ω

r ⊗ r (C.1) 

Substituting the definition of r to rewrite (C.1) as a function of chain stretch, λ (r = r0λ = λ
̅̅̅̅N√ b), gives: 

σv =
3kbTc0

2N J

∑

Ω

λ ⊗ λ (C.2) 

From (C.2), the hydrostatic component of stress may be written in 2D as: 

σh = 3kbTc0

4N J
tr

(

∑

Ω

λ ⊗ λ

)

(C.3)  

where for the case of isotropic swelling under the affine assumption: 

tr

(

∑

N

λ ⊗ λ

)

= N (λ1λ1 + λ2λ2) = 2N λ2 = 2N J (C.4) 

Substituting this definition into (C.3), gives: 

σh = 3

2
kbTc0 (C.5) 

Thus, κ = ∂σh/∂J = 0, at least at high volumetric strains for which the invoked assumptions apply (i.e., no polymer-polymer 
volume exclusion interactions). 

Appendix D. Extended 40k tetra- and 80k octa-PEG gel data 

To demonstrate that the trends discussed in Section 5.1 (with regards to short-armed tetra- and octa-functional networks) also 
apply the networks with longer chain lengths, we provide analogous figures to Figs. 13, 14 and 16. 

Figs. (D1–D3). 

Fig. D.1. Chain distribution functions of gels with L= 177 nm and different functionalities. (A) The joint PDF of r∗ is shown for the ensemble 
of ten 40k tetra-PEG gels at λ = 1 (left), the measured yield stretch λ = 2.80 (center), and the measured failure stretch λ = 3.25 (right). (B) The joint 
PDF of r∗ is shown for the ensemble of ten 80k octa-PEG gels at λ = 1 (left), the measured yield stretch λ = 2.36 (center), and the measured failure 
stretch λ = 2.52 (right). (A,B) The extensile direction, e2, is oriented horizontally. Dashed black circles indicate the chain contour length, while 
dashed red circles represent the deterministic scission length for chains. (C) The radial PDFs of r∗ are shown for the 10k tetra- and 20k octa-PEG gels 
as black and red histograms, respectively. For direct comparison, these histograms are depicted at λ = 0 (left), λ = 1.5 (center), and λ = 2.0. Again, 
the chains in these two networks have the same contour length. (D) The average component of normalized chain end-to-end length in the principal 
direction of extension is plotted with respect to stretch. End-to-end lengths are normalized as r∗ = r/L such that r∗ ≥ 0.95 is not permitted. 
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