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Abstract. This work extends the applicability of our recent convexification-
based algorithm for constructing images of the dielectric constant of buried
or occluded target. We are orientated towards the detection of explosive-like
targets such as antipersonnel land mines and improvised explosive devices in
the non-invasive inspections of buildings. In our previous work, the method is
posed in the perspective that we use multiple source locations running along a
line of source to get a 2D image of the dielectric function. Mathematically, we
solve a 1D coefficient inverse problem for a hyperbolic equation for each source
location. Different from any conventional Born approximation-based technique
for synthetic-aperture radar, this method does not need any linearization. In
this paper, we attempt to verify the method using several 3D numerical tests
with simulated data. We revisit the global convergence of the gradient descent
method of our computational approach.

1. Introduction

Synthetic-aperture radar (SAR) imaging is a commonly used technique in re-
constructing images of surfaces of planets, and in detecting antipersonnel land
mines and improvised explosive devices; cf. e.g. [1, 2, 9, 10] for some essential
backgrounds concerning SAR imaging. In SAR imaging, the migration method
is applied quite often; cf. e.g. [6, 7]. However, this approach is a kind of small
perturbation methods that require an a priori knowledge of the distribution of the
dielectric constant of the target. Another conventional SAR imaging is based on
the linearization via the Born approximation [9]. Cf. [8,9,45], this approximation
with its variants is very popular since it provides accurate images of shapes and
locations of targets. With an indispensable assumption that the dielectric constant
of the target is close to the unity, this linearization process is, however, problematic
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if one wants to produce accurate values of the dielectric constant; see e.g. [12].
Since dielectric constants characterize constituent materials of targets, then it is
obviously important to accurately compute them.

To address this problem, a new convexification based nonlinear SAR imaging,
CONSAR, was proposed in [12] for the first time. Testing of CONSAR for both
computationally simulated and experimentally collected data has shown that di-
electric constants of targets are indeed accurately computed [12, 21]. However,
these publications are only about obtaining 2D SAR images on the so-called “slant
range” plane. In this case both the point source and the radiating antenna move
along an interval of a single straight line. Thus, unlike [12,21], the current paper
is about testing the CONSAR technique for 3D SAR images. By our experience,
collection of experimental SAR data along just one line is time consuming [21].
Therefore, we consider here the case when the source and the detector concurrently
move along only three (3) parallel lines. In principle, one should have many such
lines of course to get accurate solutions. Hence, because of an obvious lack of
the information content in the input data, it is unrealistic to expect that resulting
SAR images would be accurate in terms of shapes of targets. This is why sizes
of computed images of our targets are quite different from the true ones. Nev-
ertheless, we accurately image dielectric constants and locations of targets. Only
computationally simulated data are considered here.

In this paper, our target application is the non-invasive inspections of buried
targets when one tries to image the buried or occluded target using backscattering
data collected by e.g., flying devices or roving vehicles (cf. [1,11]). Together with
the identification of shape and location of the target (cf. e.g. [16,46–48]), having
knowledge of the dielectric constant of it plays a vital role in the development
of future classification algorithms that distinguish between explosives and clutter
in military applications. Thus, it is anticipated that the knowledge of dielectric
constants of targets should decrease the false alarm rate.

In fact, the conventional time dependent SAR data when the source and the
detector move concurrently along an interval of a straight line, depend on two
variables. On the other hand, we want to image 3D objects. Therefore, the data for
the corresponding Coefficient Inverse Problem (CIP) are underdetermined. This is
why we work here with the above mentioned more informative case of three parallel
lines. Although these data are also underdetermined, we still hope to reconstruct
some approximations of 3D images of targets. It is worth mentioning that solving
underdetermined or non overdetermined CIPs is omnipresent in applications that
we have mentioned above. This is one of the main challenges that researchers
encounter in practice is finding a good approximation of the target’s dielectric
constant. This is also a long standing research project that the corresponding
author and his research team have been working on for almost a decade, see, e.g.
[13–19] for mathematical models and numerical methods to identify the material
of the buried targets.

Solving for the target’s dielectric constant in this scenario is a CIP for a hy-
perbolic PDE. It is well-known that CIPs are both severely ill-posed and nonlinear
thus, requiring a careful designation of an appropriate numerical method. Very
recently, we have proposed in [12, 21] a new convexification-based algorithm to
construct a 2D image of the target’s dielectric constant using SAR data. In fact,
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the approach of [12,21] means a nonlinear SAR imaging, as opposed to the con-
ventional linear one. We point out that the computational approach of [12, 21]
to the SAR data is a heuristic one. Nevertheless, it was shown in [12] that this
approach works well numerically for computationally simulated data. It is more
encouraging that it was demonstrated in [12,21] that this approach works well for
experimentally collected data. The same approach to the SAR data is used in this
paper. Using multiple source locations running along an interval of a straight line,
our computational approach is to solve a number of 1D CIPs.

To solve numerically each of our CIPs, we transform first the hyperbolic equa-
tion into a nonlocal nonlinear boundary value problem (BVP), based upon the orig-
inal idea of [22]. An approximate solution of this BVP is then found by minimizing
a suitable weighted Tikhonov-like cost functional, which is proved to be globally
strictly convex. Its strict convexity is based on the presence of the Carleman Weight
Function (CWF) in it. The CWF is the function which is used as the weight func-
tion in the Carleman estimate for the principal part of the differential operator
involved in that BVP. Ultimately, the 2D image which we construct for the case of
each of our three lines can be understood as the collection of 1D cross-sections of
the so-called slant-range plane established by the “moving” source/antenna posi-
tions. To construct the 3D image, we combine those 2D ones, see sections 3 and 5
for details.

Conventional numerical methods for CIPs are based on minimizations of various
least squares cost functionals, including the Tikhonov regularization functional,
see, e.g. [3–5]. It is well known, however, that such a functional is typically non
convex and has, therefore, multiple local minima and ravines, which, in turn plague
the minimization procedure. The convexification method was initially proposed in
[23, 24] with the goal to avoid that phenomenon of multiple local minima and
ravines of conventional least squares cost functionals for CIPs. While publications
[23,24] are purely theoretical ones, the paper [25] has generated many follow up
numerical studies of the convexification of this research group, see, e.g. the above
cited publications of this research group and references cited therein. We also refer
to the recently published book [26].

The convexification uses a significantly modified idea of the Bukhgeim–Klibanov
method [27] of 1981. However, in [27] and many follow up publications, only proofs
of global uniqueness and stability theorems for CIPs were studied, see, e.g. [28–32]
and references cited therein. On the other hand, the convexification is going in the
numerical direction: it is designed for constructions of globally convergent numeri-
cal methods for CIPs. This is unlike the conventional locally convergent numerical
methods for CIPs, which are based on minimizations of those functionals.

As stated above, depending on the differential operator involved in the CIP, the
convexification method is based on an appropriate Carleman Weight Function to
construct a weighted Tikhonov-like cost functional. The Carleman Weight Function
plays two roles. First, it convexifies the conventional Tikhonov functional. Second,
it helps to control nonlinearities involved in the underlying CIP.

Definition 1. We call a numerical method for a CIP globally convergent if

there is a theorem which claims that this method reaches at least one point in a

sufficiently small neighborhood of the true solution of that CIP without any advanced

knowledge of a small neighborhood of this solution.
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The convexification is a globally convergent numerical method because one can
prove the convergence of the scheme towards the true solution starting from any
point located in a given bounded set of a suitable Hilbert space and the diameter
of this set can be arbitrary large.

As to the moving sources, we remark that in the publication [18] a version
of the convexification method was developed for the first time both analytically
and numerically for a 3D inverse medium problem for the Helmholtz equation with
the backscattering data generated by point sources running along a straight line
and at a fixed frequency. Then this result was confirmed on experimental data
in [19,20]. In [18–20], we were working with the data in the frequency domain,
whereas the SAR data are the time-dependent ones. In addition, in the case of the
SAR data, both source and detector move concurrently along a straight line. On
the other hand, in [18–20] the source moves along a part of a straight line, whereas
the detector moves independently along a part of a plane. We also refer to works
of Novikov and his group [33,34] for a different approach to tackle CIPs with the
moving source. For some other works related to inverse problems with a moving
point source, we refer to [49] for reconstructing the trajectory of the moving point
source with an application to gesture recognition.

We also add that our recent publications [12,21] about CONSAR were focusing
only on the 2-D reconstructions. Therefore, the main difference between these
papers and the current one is that here we obtain a 3-D image of the target dielectric
constant, assuming that the data are collected from multiple lines of sources.

Our paper is organized as follows. In sections 2, 3 and 4, we revisit our setting
for the CIP imaging and our convexification-based method proposed in [21]. In
section 5, we verify the 3-D numerical performance of our method using computa-
tionally simulated data. Finally, we present concluding remarks in section 6.

2. Statement of the forward problem

Prior to the statement of the forward problem, we discuss the setting of SAR
imaging. We focus only on the stripmap SAR processing; see e.g. [35] for details of
this setup. With the non-invasive inspection of buildings and land mines detection
being in mind, we prepare to have a radiating antenna and a receiver in the SAR
device. As the antenna radiates pulses of the time-resolved component of the electric
wave field, the receiver collects the backscattering signal. Our SAR device moves
along a straight line. In this work, we assume that it moves it along multiple parallel
lines, which, we hope, may create a 3-D image of the target. It is worth mentioning
that in our inverse setting in section 3 below, we assume that the antenna and the
receiver coincide, and form a point, which moves along certain parallel lines. This
assumption is a typical one in SAR imaging; cf. [9]. Indeed, in practice the antenna
and the receiver are rather close to each other, and the distance between them is
much less than the distance between the line over which they concurrently move and
the targets of interest. However, when generating the SAR data in computational
simulations, we solve a forward problem, in which we assume that the antenna is a
disk.

We denote below x = (x, y, z) ∈ R
3. For z0 > 0, we consider the source location

x0 = (x0, y0j , z
0) ∈ Lsrc

j for j = 1, j0, j0 ∈ N
∗. By choosing a certain value of j0 and

varying x0 in the interval (−L,L) for L > 0, we define a finite set of lines Lsrc
j of
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sources/receivers as follows:

(2.1) Lsrc
j :=

{
x0 =

(
x0, y0j , z

0
)
∈ R

3 : x0 ∈ (−L,L) , j = 1, j0
}
.

Therefore, each line of sources Lsrc
j is parallel to the x−axis. The antenna and

the receiver coincide and are located at the point x0 =
(
x0, y0j , z

0
)
∈ Lsrc

j . The

number y0j is the same for all points of Lsrc
j and this number is changing as lines

Lsrc
j changes. The number z0 is the same for all lines (2.1). Assuming that the

parameter x0 ∈ (−L,L) in (2.1), we actually assume that the antenna/receiver
point characterized by x0 moves along each line Lsrc

j , j = 1, j0.
Let the number R > 0. Our domain of interest is

Ω = (−R,R)3 ⊂ R
3.

This domain consists of two parts. The lower part Ω∩{z < 0} mimics the sandbox
containing the unknown buried object. Meanwhile, the upper part Ω ∩ {z > 0} is
assumed to be the air part, where we move our SAR device. For simplicity, we
assume that the interface between the air and sand parts is located at {z = 0}. Let
εr(x) ∈ C1

(
R

3
)
be a function that represents the spatially distributed dielectric

constant. We assume that

(2.2)

{
εr (x) ≥ 4, for {z < 0} ∩ Ω,
εr (x) = 1, for {z > 0} ∩ Ω.

Physically, assumption (2.2) is reasonable. Cf. e.g. [19], we know that the
dielectric constant of the air/vacuum is identically one. Meanwhile, for the other
materials (for example, the dry sand which follows the non-invasive inspections of
our interest), the dielectric constant is larger than the unity. As mentioned particu-
larly in [19,20] for identifying experimental fake landmines, the dielectric constant
of the dry sand is 4, and the materials of landmines are commonly possessing very
large dielectric constants. At least, εr = 6 is taken into account when a wood-
based landmine is used to pose difficulties for detection services. Henceforth, our
assumption on εr inside of the sandbox is reasonable.

Let T > 0 be the observation time. Practically, T is found by doubling the
distance from the line of sources to the furthest point of the sandbox. For every
source location x0 ∈ Lsrc

j (see (2.1)), we consider the following forward problem:
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ν−2 (x)utt = Δu+ F
(
x,x0, t

)
,

u
(
x,x0, 0

)
= ut

(
x,x0, 0

)
,[

∂nu
(
x,x0, t

)
+ ν−1 (x)u

(
x,x0, t

)]∣∣
∂Ω

= 0,

x0 ∈ Lsrc
j ,x ∈ Ω, t ∈ (0, T ) , j = 1, j0,

(2.3)

where n = n (x) ,x ∈ ∂Ω is the unit outward looking normal vector on ∂Ω. In (2.3),
u(x,x0, t) is the amplitude of a time-resolved component of the electric wave field.

The function ν(x) = c0/
√
εr(x) represents the speed of light in the medium with

c0 is the speed of light in the vacuum. Here, the source function F is defined as
(2.4)

F
(
x,x0, t

)
=

{
Re

(
χD

(
x,x0

)
e−iω0te−iα0(t−τ0/2)

2

)
if t ∈ (0, τ0] ,x

0 ∈ Lsrc
j ,

0 if t > τ0,

where i =
√
−1. This source function models well the linear modulated pulse,

where ω0 is the carrier frequency, α0 is the chirp rate [9], and τ0 is its duration.
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Figure 1. A schematic diagram of our SAR imaging setting. A
flying device moves along multiple parallel straight lines in x-
direction to collect the backscattering data. On this device, we
assume that the transmitter and the detector have the same posi-
tion. The transmitter is a disk-shaped antenna with an elevation
angle of π/4 (yellow part). For our purpose of mimicking the land-
mine detection, we assume the unknown object is buried in a dry
sand region. The notion of our convexification-based method is
solving 1D CIPs for every source location. Under a certain ele-
vation angle (red part), solutions of these 1-D CIPs allow us to
approximately reconstruct a 3-D image.

The function χD in (2.4) represents the disk-shaped antenna of our interest with

its radius D > 0, thickness D̃ > 0 and centered at a point x ∈ Lsrc
j . We rotate the

disk via a coordinate transformation x �→ x′ = (x′, y′, z′) defined by

(2.5)

x′ = x− x0,
y′ = cos(θ)(y − y0j )− sin(θ)(z − z0),
z′ = sin(θ)(y − y0j ) + cos(θ)(z − z0),

where θ is the elevation angle. Hereby, the function χD is given by

(2.6) χD(x,x0) =

{
1 if

√
x′2 + y′2 < D and |z′| ≤ D̃,

0 otherwise.

We consider the so-called absorbing boundary conditions in (2.3). Mathemati-
cally, the solution to the acoustic wave equation is sought on the whole space. As
introduced above, the computational domain Ω is, however, finite and the boundary
condition should be equipped with the underlying PDE. Moreover, at this point,
numerical simulations show the non-physical back reflections of the waves incident
at the boundaries. Therefore, the absorbing boundary conditions are used to min-
imize these spurious reflections; cf. e.g. [36] and references cited therein.
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3. Statement of the inverse problem

Our application being in mind is to identify the material of the buried object.
Therefore, our inverse problem aims to compute the spatial distribution of the
dielectric constant εr(x) involved in the coefficient ν(x) in the PDE of (2.3).

3.1. Statement of the problem. SAR Inverse Problem. Suppose that

functions Gj(x
0, t) = u(x0,x0, t) for t ∈ (0, T ) , x0 ∈ Lscr

j and j = 1, j0 are given

as our SAR data. Find a function εr(x) ∈ C1
(
R

3
)
satisfying conditions in (2.2).

Cf. [12, 21], our strategy is to image the unknown function on the so-called
slant-range plane, denoted by P . We define this plane in the following manner.
For each antenna/source location x0,m

j =
(
x0
m, y0j , z

0
)
∈ Lscr

j , we define the central

line of the antenna CRL(x0,m
j ) that passes through the point x0,m

j , m = 1, . . . , N,
where N is the total number of locations of the source on the line Lscr

j . Each line

CRL(x0,m
j ) is orthogonal to the x-axis and has a certain angle with the plane{

y = y0j
}
. Recall that the line Lscr

j is parallel to the x−axis, see (2.1). Denoted by
θ, that angle is called the elevation angle presumably determined by the propagating
direction of the radiated energy of the antenna, see (2.4)-(2.6). Henceforth, for each
line Lscr

j , the slant-range plane Pj is defined as the plane passing through the central
lines of antennas and the line of sources moving along Lscr

j . Hence, multiple lines of
sources give multiple slant-range planes. As a by-product, the solution obtained on
this plane is called the slant-range image ε̃r,j(x) of the unknown dielectric constant
εr(x) on the slant-range plane Pj . To obtain an approximate image of the function
εr(x), we then combine slant-range images εr,j(x) on planes Pj , j = 1, j0. For
clarity, we depict an illustration of our SAR imaging setting in Figure 1.

To obtain the image in the slant range plane Pj , we solve many 1-D Coefficient

Inverse Problems (CIPs) along lines of antennas CRL(x0,m
j ),m = 1, . . . , N. Let

ε̃r,j,m(x) be the solution of this CIP along the line CRL(x0,m
j ). Then the resulting

2-D function ε̃r,j(x) is obtained by averaging of these functions over m = 1, . . . , N,
see details in section 5.

3.2. 1D Coefficient Inverse Problems. We now present our computational
approach to calculate the slant-range dielectric constant ε̃r,j(x) on each slant range

plane Pj . For every j = 1, j0, we consider the m−th source location x0,m
j for

m = 1, N . Observe that when introducing a pseudo variable x ∈ R and considering
a smooth function c(x) for our unknown function ε̃r(x) along each central line

CRL(x0,m
j ) of the antenna passing through the source x0,m

j , we can scale to x ∈
(0, 1) based upon the length of that central line. This way, we treat c(x) as the

solution of a 1-D CIP solved along each central line of the source x0,m
j .

By (2.2), for a number c ≥ 4 we consider the function c (x) ∈ C3 (R) such that

(3.1) c (x) =

{
∈ [4, c] for x ∈ (0, 1) ,

1 for x ≤ 0 and x ≥ 1.

Hereby, we consider the following forward problem:

(3.2)

{
c(x)
c2
0

utt = uxx for x ∈ R, t ∈ (0, T ) ,

u (x, 0) = 0, ut (x, 0) = δ (x) for x ∈ R.
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In (3.2), the variable t is considered in nanosecond (ns), whilst the unit for x is meter
(m). Physically, the speed of light in the vacuum c0 = 0.3 (m/ns). Considering
dimensionless variables X and τ,

(3.3) X = x/(0.3m) and τ = t/ns,

we arrive at

(3.4) uXX = (0.3m)2uxx, uττ = (1ns)2utt.

Thus, we obtain the dimensionless regime of the forward problem (3.2) becomes:

(3.5)

{
c̃(X)uττ = uXX , c̃(X) = c(0.3X),

u (X, 0) = 0, uτ (X, 0) = δ (X) .

The change of variables (3.3) means that X = 1 implies x = 0.3 (m) in the reality,
and τ = 1 indicates t = 1 (ns). We now state our coefficient inverse problem.

1-D Coefficient Inverse Problem (1-D CIP). Assume that the following

functions g0 (τ ) and g1 (τ ) are given:

(3.6) u (0, τ ) = g0 (τ ) , uX (0, τ ) = g1 (τ ) , τ ∈ (0, T ) .

Determine the function c̃ (X) in (3.5) such that the corresponding function c (x) ∈
C3 (R) satisfies conditions (3.1).

To solve this 1D CIP numerically, we employ a version of [12,21] of the con-
vexification method. First, we change variables as:

(3.7) Y = Y (X) =

∫ X

0

√
c̃(s)ds.

Observe that dY/dX =
√
c̃(X) ≥ 1. Consider the following functions:

w (Y, τ ) = u (X (Y ) , τ ) c̃1/4 (X (Y )) , Q (Y ) = c̃−1/4 (X (Y )) ,

p (Y ) =
Q′′ (Y )

Q (Y )
− 2

[
Q′ (Y )

Q (Y )

]2
.(3.8)

The function p(Y ) is smooth and p(Y ) = 0 for Y < 0 and Y >
√
c. Moreover, the

following PDE holds with initial and boundary conditions holds:

wττ = wY Y + p (Y )w for Y ∈ R, τ ∈
(
0, T̃

)
,(3.9)

w (Y, 0) = 0, wτ (Y, 0) = δ (Y ) for Y ∈ R,(3.10)

w (0, τ ) = g0 (τ ) , wY (0, τ ) = g1 (τ ) for τ ∈
(
0, T̃

)
,(3.11)

where the number T̃ ≥ 2
√
c depends on T .

Remark 3.1. Cf. [12,21] in this SAR inception, the smoothness of the un-
known dielectric constant c(x) should be C3(R). This assumption is used when we
revisit our theorems below. In this regard, the function p(Y ) belongs to C1(R), see

(3.8). The number T̃ ≥ 2
√
c is conditioned because it guarantees the uniqueness of

the CIP (3.9)–(3.11), see [37, Theorem 2.6 of Chapter 2]. As soon as the function
p(Y ) is reconstructed, the original function c(x) is reconstructed using (3.7)and
(3.8) via the procedure described in [22, section 7.2].
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From now onward, we follow a novel transformation commenced in [22] to
obtain a nonlocal nonlinear PDE for (3.9)–(3.11). When doing so, we take an

arbitrary b ≥
√
c and then take μ ∈ (0, 2αb) for α ∈ (0, 1/2). We introduce the

following 2D regions:

K :=
{
(Y, τ ) ∈ R

2 : Y ∈ (0, b) , τ ∈
(
0, T̃

)}
,(3.12)

Kα,μ,b :=
{
(Y, τ ) ∈ R

2 : Y + ατ < 2αb− μ for Y, τ > 0
}
.(3.13)

Henceforth, we consider a new function v(Y, τ ),

(3.14) v(Y, τ ) = w(Y, τ + Y ) ∈ C3(Y ≥ 0, τ ≥ 0).

Using multi-variable chain rules, we obtain the following PDE for v(Y, τ ) from (3.9):

(3.15) vY Y − 2vY τ + p (Y ) v = 0 for (Y, τ ) ∈ K.

Furthermore, by (3.11), it yields v (Y, 0) = 1/2 for Y ∈ (0, b), which then results in
the fact that

(3.16) p(Y ) = 4vY τ (Y, 0), Y ∈ (0, b).

Differentiating both sides of (3.15) with respect to τ and setting

(3.17) V (Y, τ ) = vτ (Y, τ ) ∈ C2(K),

we obtain the following overdetermined boundary value problem for a nonlinear
hyperbolic equation:

VY Y − 2VY τ + 4VY (Y, 0)V = 0 for (Y, τ ) ∈ K,(3.18)

V (0, τ ) = q0 (τ ) := g′0 (τ ) for τ ∈
(
0, T̃

)
,(3.19)

VY (0, τ ) = q1 (τ ) := g′′0 (τ ) + g′1 (τ ) for τ ∈
(
0, T̃

)
,(3.20)

VY (b, τ ) = 0 for τ ∈
(
0, T̃

)
.(3.21)

Boundary condition (3.21) follows from the absorbing boundary condition, which
was proven in [38] for our 1-D case.

Remark 3.2. Essentially, our heuristic computational approach allows us to
solve the non-overdetermined 3D CIP via the solutions of many overdetermined
boundary value problems. The transformations we have presented are necessary
because we want to use a suitable Carleman estimate. This estimate is applied
to deal with nonlinearities involved in the PDE operator. Frequently, the non-
linearity is terms are not avoidable when working on underdetermined. and non-
overdetermined CIPs (cf. e.g. [13,17,18]).

In our SAR perspective, we observe that after computing V (Y, τ ) for (Y, τ ) ∈ K
from (3.18)–(3.21), we then obtain

(3.22) p(Y ) = 4VY (Y, 0), Y ∈ (0, b),

by (3.16). Hence, the target unknown coefficient c(x) of the original 1D CIP is
sought after getting Q(Y ) in (3.8).
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4. A version of the convexification method: theorems revisited

Consider the subspace Hk
0 (K) ⊂ Hk(K) for k ∈ N

∗. In this work, we introduce

H2
0 (K) :=

{
u ∈ H2 (K) : u (0, τ ) = uY (0, τ ) , uY (b, τ ) = 0

}
,

H4
0 (K) := H4 (K) ∩H2

0 (K) .

As mentioned above, several transformations lead us to an overdetermined BVP.
Since this problem is nonlinear, then any conventional optimization-based approach,
including the Tikhonov regularization and the least-square method may suffer from
the phenomenon of local minima and ravines. This is the main reason which has
originally prompted the corresponding author to develop the convexification ap-
proach [23, 24]. The main ingredient of the method and its variants is using an
appropriate Carleman Weight Function to “convexify” the cost functional. The
associated high-order regularization terms usually play the role in controlling non-
linear terms involved in the PDE operator. Thereby, one obtains a unique minimizer
and then, the global convergence of the gradient-like minimization procedure is at-
tained. Depending on the principal parts of differential operators, one can choose
different Carleman Weight Functions, see, e.g. [26] for a variety of Carleman es-
timates for partial differential operators. In this work, we consider the following
Carleman Weight Function for the linear operator ∂2

Y − 2∂Y ∂τ (see (3.18)):

ψλ(Y, τ ) = e−2λ(Y+ατ), λ ≥ 1, α ∈ (0, 1/2).

Denoting

(4.1) S(V ) = VY Y − 2VY τ + 4VY (Y, 0)V, (Y, τ ) ∈ K,

we come up with the following weighted Tikhonov-like functional Jλ,γ : H4(K) →
R+:

(4.2) Jλ,γ (V ) =

∫

K

[S (V )]
2
ψλdY dτ + γ ‖V ‖2H4(K) , γ ∈ (0, 1).

We choose the high-order regularization term in H4(K) because of the embed-
ding H4(K) ⊂ C2(K). This C2 regularity is helpful in controlling our nonlinear
term in (3.18); see [22, Theorem 2]. Following our convexification framework in,
e.g., [17,18,22], we introduce the set B (r, q0, q1) ,

B (r, q0, q1)

(4.3)

=
{
u ∈ H4 (K) : u (0, τ ) = q0 (τ ) , uY (0, τ ) = q1 (τ ) , uY (b, τ ) = 0, ‖u‖H4(K) < r

}
.

in which r > 0 is an arbitrary number. However, in our computational practice we
use the H2 (K)−norm, see section 5.1.

Minimization Problem. Minimize the cost functional Jλ,γ (V ) defined in

(4.2) on the set B (r, q0, q1).
We are now in the position to go over our analysis in [22,38] of the convexifica-

tion-based method for the nonlinear boundary value problem (3.18)–(3.21).

Theorem 4.1 (Carleman estimate [38]). There exist constants C = C(α,K) >
0 and λ0 = λ0(α,K) ≥ 1 such that for all functions u ∈ H2

0 (K) and all λ ≥ λ0 the
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following Carleman estimate holds true:
∫

K

(uY Y − 2uY τ )
2
ψλdY dτ ≥ C

∫

K

(
λ
(
u2
Y + u2

τ

)
+ λ3u2

)
ψλdY dτ

+ C

b∫

0

(
λu2

Y + λ3u2
)
(Y, 0) e−2λY dY − Ce−2λT̃

b∫

0

(
λu2

Y + λ3u2
) (

Y, T̃
)
dY.

Theorem 4.2 (Global strict convexity [22]). For any λ, γ > 0 and functions

V ∈ B (r, q0, q1), the cost functional Jλ,γ defined in (4.2) has the Fréchet derivative

J ′
λ,γ (V ) ∈ H4

0 (K) . Let λ0 = λ0(α,K) ≥ 1 be the constant of Theorem 4.1 and let

T̃ ≥ 2b. Then there exists a sufficiently large number λ1 = λ1 (K, r, α) ≥ λ0 such

that for all λ ≥ λ1 and all γ ∈ [2e−λαT̃ , 1), the cost functional (4.2) is strictly

convex on the set B (r, q0, q1). Moreover, for all V1, V2 ∈ B (r, q0, q1) the following

estimate holds true:

Jλ,γ (V2)− Jλ,γ (V1)− J ′
λ,γ (V1) (V2 − V1) ≥ Ce−2λ(2αb−μ) ‖V2 − V1‖2H1(Kα,µ,b)

(4.4)

+ Ce−2λ(2αb−μ) ‖V2 (y, 0)− V1 (y, 0)‖2H1(0,2αb−μ) +
γ

2
‖V2 − V1‖2H4(K) ,

where the constant C = C (α, μ, b, r) > 0 depends only on listed parameters. Fur-

thermore, the functional Jλ,γ (V ) has unique minimizer Vmin on the set B (r, q0, q1)
and

J ′
λ,γ (Vmin) (V − Vmin) ≥ 0, ∀V ∈ B (r, q0, q1).

By the conventional regularization theory (cf. [39]), the existence of the ideal
noiseless data g∗0 (τ ) , g

∗
1 (τ ) is assumed a priori. The existence of the corresponding

exact coefficient p∗ (Y ) and the exact function w∗ (Y, τ ) in (3.9)–(3.11) is assumed
as well. Moreover, this function p∗ (Y ) should also satisfy conditions p∗(Y ) = 0 for

Y < 0 and Y >
√
c as ones for p(Y ). Having the function w∗ (Y, τ ), we apply the

above transformations (3.14), (3.17)to obtain the corresponding function V ∗ (Y, τ ).
Henceforth, it is natural to assume that functions q∗0 and q∗1 are the noiseless data q0
and q1 respectively; see (3.19) and (3.20). Thus, we assume below that the function
V ∗ ∈ B(r, q∗0 , q

∗
1). Hence, it follows from (3.18)–(3.21) and (4.1) that

S(V ∗) = 0, (Y, τ ) ∈ K, and p∗(Y ) = 4v∗Y (Y, 0), Y ∈ (0, b).

Consider a sufficiently small number σ ∈ (0, 1) that characterizes the noise
level between the data q0, q1 and q∗0 , q

∗
1 . To obtain the zero boundary conditions

at {x = 0} in (3.19) and (3.20), consider two functions F ∈ B(r, q0, q1) and F ∗ ∈
B(r, q∗0 , q

∗
1). We assume that

(4.5) ‖F − F ∗‖H4(K) < σ.

Consider functions W,W ∗,

W ∗ = V ∗ − F ∗,W = V − V ∈ B0(2r) :=
{
u ∈ H4

0 (K) : ‖u‖H4(K) < 2r
}
.

Besides, the function W + F ∈ B(3r, q0, q1), ∀W ∈ B0(2r). We modify the cost
functional Jλ,γ (V ) as

J̃λ,γ(W ) = Jλ,γ(W + F ), ∀W ∈ B0(2r).
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It follows from Theorem 2 that the functional J̃λ,γ is also globally strict convex

on the ball B0(2r) for λ ≥ λ2 = λ1 (K, 3r, α) ≥ λ1 (K, r, α) . Also, by Theorem

2, for each value of the parameter λ ≥ λ2, the functional J̃λ,γ (W ) has a unique

minimizer Wmin,λ,γ on the set B0(2r) and

(4.6) J̃ ′
λ,γ(Wmin,λ,γ) (W −Wmin,λ,γ) ≥ 0, ∀W ∈ B0(2r).

It follows from the proof of Theorem 5 of [22] that inequality (4.6) plays an impor-
tant role in the proof of Theorem 3.

Theorem 4.3 (Accuracy estimate of the minimizer [22]). Assume that (4.5)

holds true and let T̃ ≥ 4b. We choose

β =
α
(
T̃ − 4b

)
+ μ

2 (2αb− μ)
, ρ =

1

2
min {β, 1} .

Let λ1=λ1 (K, r, α) by the number of obtained Theorem 4.2 and let λ2=λ1 (K, 3r, α)
≥ λ1 (K, r, α). Let σ0 ∈ (0, 1) be a sufficiently small number such that

lnσ
−1/(2(2αb−μ))
0 ≥ λ2. For any σ ∈ (0, σ0), we choose

λ = λ (σ) = lnσ−1/(2(2αb−μ)) > λ2,(4.7)

γ = γ (σ) = 2e−λαT̃ = 2σ(αT̃)/(2(2αb−μ)).(4.8)

and let the regularization parameter γ ∈ [2e−λαT̃ , 1). Let Vmin,λ,γ (Y, τ ) be the

unique minimizer of the functional Jλ,γ (V ) on the set B (r, q0, q1). Let the function

pmin,λ,γ (Y ) be defined as: pmin,λ,γ (Y ) = 4∂Y Vmin,λ,γ (Y, 0), see (3.22). Then there

exists a constant C = C(K, α, μ, b, r) > 0 depending only on listed parameters such

that

‖Vmin,λ,γ − V ∗‖H1(Kα,µ,b)
≤ Cσρ,(4.9)

‖pmin,λ,γ − p∗‖L2(0,2αb−μ) ≤ Cσρ.(4.10)

Now, we state a theorem about the global convergence of the gradient descent
method of the minimization of the functional Jλ,γ (V ). Let ω ∈ (0, 1) be the step size
of this method. Fix an arbitrary number ϑ ∈ (0, 1/3). We restrict the starting point,
denoted by V (0), to be an arbitrary point in the set B (ϑr, q0, q1) ⊂ B(r, q0, q1).
Then the gradient descent method reads as:

(4.11) V (n) = V (n−1) − ωJ ′
λ,γ

(
V (n−1)

)
, n = 1, 2, . . . ,

where V (n) approaches the minimizer Vmin,λ,γ as n is large. This scheme is well-

defined because J ′
λ,γ

(
V (n−1)

)
∈ H4

0 (K); see Theorem 4.2. Hence, functions V (n)

satisfy the same boundary conditions as in (4.3) for all n.
Below, we assume that our minimizer Vmin,λ,γ belongs to the set B (ϑr, q0, q1),

which is an interior point of the set B (r, q0, q1). This enabled us in [21] to prove
the global convergence of the gradient descent scheme (4.11). This assumption
is plausible because by (4.9)the distance between the ideal solution V ∗ and the
minimizer Vmin,λ,γ is small with respect to the noise level σ ∈ (0, 1), although only
in the H1 (Kα,μ,b)−norm rather than in the stronger norm H4 (K), see (4.3).

Theorem 4.4 (Global convergence of the gradient descent method [21]). Sup-

pose that the parameters λ and γ are taken as in Theorem 4.2. Then there exists
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a sufficiently small constant w0 ∈ (0, 1) such that the sequence of the gradient de-

scent method
{
V (n)

}∞

n=0
⊂ B (r, q0, q1) for every ω ∈ (0, ω0). Moreover, for every

ω ∈ (0, ω0) there exists a number θ = θ(ω) ∈ (0, 1) such that
∥∥∥Vmin,λ,γ − V (n)

∥∥∥
H4(K)

≤ θn
∥∥∥Vmin,λ,γ − V (0)

∥∥∥
H4(K)

, n = 1, 2, . . .

Combining Theorems 4.3 and 4.4, we can prove that the functions V (n) converge
to the ideal solution V ∗ as long as the noise level σ in the data tends to zero.
In addition, we obtain the convergence of the corresponding sequence

{
p(n)

}∞

n=0

towards the ideal function p∗. It works via the expression p(n)(Y ) = 4∂Y V
(n)
Y (Y, 0)

in (3.22).

Theorem 4.5 ([21]). Suppose all conditions of Theorems 4.3 and 4.4 hold.

Then the following convergence estimate is valid:
∥∥∥V ∗ − V (n)

∥∥∥
H1(Kα,µ,b)

+
∥∥∥p∗ − p(n)

∥∥∥
L2(0,2αb−μ)

≤ Cσρ + Cθn
∥∥∥Vmin,λ,γ − V (0)

∥∥∥
H4(K)

, n = 1, 2, . . . ,

where the constant C = C(K, α, μ, b, r) > 0 depends only on listed parameters.

It is now worth mentioning that in our convergence results above, r is arbi-
trary and the starting point V (0) is arbitrary in B(ϑr, q0, q1) with ϑ being fixed
in (0, 1/3). Therefore, our numerical method for solving the underlying nonlinear
inverse problem does not require any advanced knowledge of a small neighborhood
of the true solution. In this sense, the method is globally convergent, see Definition
1 in Introduction.

Remark 4.6. Even though the values of λ in our CWF should be large in our
theory, our rich computational experience working with the convexification tells us
that we can choose λ between 1 and 3. For this We refer the reader to our previous
publications on the convexification; see [17–22,40,41] some other references cited
therein. In the present work, we choose λ = 1.05, and it works well.

5. Numerical studies

To generate the data for the inverse problem, we have solved the forward prob-
lem (2.3)-(2.6) by the standard implicit scheme. Therefore, we describe in this
section our numerical solution of only the inverse problem.

It is worth noting that we suppose to have a buried object in the sand region
{z < 0} ∩ Ω of our computational domain Ω, see (2.2). The dielectric constant of
this object is assumed to be different from that of the dry sand. Hence, the sand
region is actually heterogeneous. The solution of problem (2.3) includes the signal
from the sand, which causes a significant challenge when working on the inversion.
In this paper, we follow the heuristic approach commenced in works of this research
group with experimentally collected data [17,19] to get rid from the sand signals.
To do so, for each source location, we consider uref(x, t) as the reference data. The
reference data are generated for the case when an inclusion is not present in the
simulated sandbox. This means that we take εr(x) = 4 for z ≤ 0 and εr(x) = 1 for
z > 0. Indeed, the dielectric constant of the dry sand equals 4 (cf. [19,20]). We
remark that we only need to generate these reference data once for any numerical
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examples. Let u∗(x, t) be the simulated data in the case when an inclusion is
present in the sandbox. Then, our target data after filtering out the sand signals
are defined by

usc(x, t) = u∗(x, t)− uref(x, t).

And this is the function we work with to solve our inverse problem.

5.1. Parameters. In this part, we show numerically how our proposed
method works to create 3-D images from SAR data taken on three lines Lscr

j , j =
1, 2, 3. Experimentally, the data collection is very expensive. Therefore, it is perti-
nent to use only three lines in these numerical studies. This prepares a playground
to work with experimental SAR data in the next publication. Different from [12] in
which the Lippmann–Schwinger equation was used to generate the data, our SAR
data are computed by the finite difference solver of section 5.1. Cf. [12,21], we
use the standard finite difference approximation to compute the minimizer of Jλ,γ
defined in (4.2). In this regard, the discrete operators are formulated to approx-
imate the operator S. Since the integration in Jλ,γ is over the two-dimensional
rectangle K, we introduce its equidistant step size as (ΔY ,Δτ ) for the grid points
(Y, τ ) in that domain. Then the discrete solution is sought by the minimization of
the corresponding discrete cost functional with respect to the values of the func-
tion V at grid points. As in [12], we only consider the regularization term in the
H2(K)−norm for the numerical inversion; compared with the H4(K)−norm in the
theory. This reduces the complexity of computations and thus, saves the elapsed
time.

Remark 5.1. Below we work only with dimensionless variables, also, see (3.3).
In this context, 1 in the dimensionless spatial variable is 0.3 (meter) in reality, and
1 in the dimensionless time variable is 1 (nanosecond).

As to our forward problem (2.3)-(2.6), we consider Ω = (−2, 2)3. Essentially,
our domain of interest is (−0.6 m, 0.6 m)3 that corresponds to a scanning ground

region of |0.6− (−0.6)|3 /2 = 0.864 (m3). For Lsrc
j , we take j ∈ 1, j0 with j0 = 3

lines of sources with the increment 0.05 (1.5 cm), which is the distance between 3
lines of source. The central source position of our entire configuration is located
at x0 = 0, y02 = −1.7, z0 = 0.8. With the increment 0.05, our source y-locations
are y01 = −1.75, y02 = −1.7, y03 = −1.65, respectively. The length of each of these
lines equals to 1.4 (0.42 m), i.e. L = 0.7, and every source line has 28 source
positions, i.e. M = 28. Our circular disk antenna is taken with the diameter
D = 0.1 (3 cm) and its associated parameters are chosen by τ0 = 1 (ns), ω0 =

6π × 108 (Hz), α0 = 8π × 106/τ0 and D̃ = hx = |Ω| /(Nx − 1) with Nx = 81.

As a result, the carrier wavelength is λ̃0 = 2πc0/ω0 = 1 (m), and the Fresnel

number Fr ≈ D2/(λ̃0

∣∣z0
∣∣) = 1.25× 10−3 
 1 guarantees well the far field zone; see

Fraunhofer condition in [44, section 7.1.3]. The refinement Nx is chosen because
hx = 0.05 is compatible with an increment of 1.5 (cm).

For our numerical results, the parameters were chosen as

λ = 1.05, α = 0.49, γ = 10−10

and the discretization (ΔY ,Δτ ) = (8 × 10−3, 8 × 10−3). As mentioned above,
even though our theory is valid for large λ, we have observed numerically in all
our previous publications on the convexification that λ ∈ [1, 3] works well; see our
previous numerical results in, e.g., [17–22] and [40, 41]. The elevation angle is
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(a) (b)

(c) (d)

Figure 2. A typical sample of the time-dependent computation-
ally simulated data for our Model 1. This is dimensionless time
τ = t/ns, where t is time in nanoseconds (ns), see (3.3). (a) The
simulated data at the central source position x0 = 0, y02 = −1.7
before truncation with T = 10. (b) The corresponding simulated
data with all source positions and 1000 time samples for the time
domain. (c) The simulated data after truncation. (d) The corre-
sponding truncated data with all source positions and 1000 time
samples.

taken by θ = π/4. Similar to our first work on SAR [12], we multiply the simulated
delay-and-sum data by a calibration factor CF . Here, we choose CF = 1.75×1015.
Since our method relies on solving 1D problems, which is an approximate model,
we then have no choice but to use that calibration factor.

5.2. Reconstruction results. We consider two models for our numerical
testing. In both cases the objects are centered at the point (0, 0,−0.14).

• Model 1: An ellipsoid with principal semi-major axis and two semi-minor
axes, respectively, being 0.2 (6 cm), 0.12 (3.6 cm) and 0.04 (1.2 cm) in
x, y and z directions respectively. This ellipsoid has the dielectric constant
εtrue (ellip) = 15.
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• Model 2: A rectangular prism with dimensions 0.18 × 0.08 × 0.08
(L×W×H) corresponding to 5.4 × 2.4 × 2.4 in cm3. It has the dielec-
tric constant εtrue (prism) = 23.8.

Remark 5.2. We recall in the context of (3.4) that 1 in the dimensionless
spatial variable is 0.3 (m) in reality. Therefore, the top point of the surface of our
simulated objects is close to the air/ground interface {z = 0} within |−0.14 + 0.04|×
30 = 3 (cm) of the burial depth, which is typical in de-mining operations; cf. e.g.
[42].

These two examples model well the so-called “appearing” dielectric constant of
metallic objects we experimented with in [43]. It was established numerically in [43]
that the range of the appearing dielectric constant of metals is [10, 30]. Moreover,
this range includes the dielectric constant 23.8 of the experimental watered glass
bottle in [21]. Both metallic and glass bodied land mines are frequently used in
the battlefields.

Suppose that our SAR data are G(x0,m
j , t) for each j = 1, j0 and m = 1, N .

Recall that x0,m
j =

(
x0
m, y0j , z

0
)
∈ Lscr

j is the source location number m on the

line of sources Lscr
j number j. Prior of getting the data g0 and g1 in (3.6), we

perform a data preprocessing procedure to filter out unwanted artifacts observed
in the time-resolved signals. First, we eliminate small “peaks” of the signals by
setting:
(5.1)

G̃
(
x0,m
j , t

)
=

⎧
⎨
⎩
0 if

∣∣∣G
(
x0,m
j , t

)∣∣∣<0.1max[0,T ]×[1,M ]

∣∣∣G
(
x0,m
j , t

)∣∣∣ ,
G
(
x0,m
j , t

)
otherwise.

Second, we use the built-in function findpeaks in MATLAB to count the number of
the peaks. Then, we deliberately keep only two first peaks of the signals because we
believe that those are the most important ones for the object. The resulting signals

are denoted by Ĝ(x0,m
j , t). We continue our preprocessing procedure by applying

the delay-and-sum technique to Ĝ(x0,m
j , t) as in [12]. For brevity, we do not detail

internal steps of this data preprocessing procedure, but refer to [12, section III-A].
Now we focus on the preprocessing on the delay-and-sum data. In this context,

for each line Lscr
j , j = 1, 2, 3 of source, the data are along the slant range planes

which we reconstruct. Let Pj be the slant range plane which corresponds to the
line of sources Lscr

j , j = 1, 2, 3. In this plane Pj , we, slightly abusing the same
notations, consider xs as the source number and ys as the variable for the axis
orthogonal to the line of source Lscr

j . Those ys are actually the transformation of t
using time of arrival. Thereby, we denote the delay-and-sum data by SADj(xs, ys).
We now introduce a truncation to control the size of the computed object. The
“heuristically” truncated delay-and-sum data are given by
(5.2)

SADtr
j (xs, ys) =

{
SADj(xs, ys), if SADj(xs, ys) ≥ 0.95maxxs,ys

|SADj(xs, ys)| ,
0, otherwise.

This way, we use only the absolute values as the data g0 for each 1D inverse problem
along the central line of the antenna. We also remark that the argument of [21,
Remark 4] implies that the Neumann data g1 equals to the derivative of g0, i.e.
g1 = g′0. Our data preprocessing is exemplified in Figures 2a–2d.
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To illustrate how our forward model works, consider Model 1 as an example.
This object is centered at (0, 0,−0.14). The central point of the source line y02 =
−1.7 is located at (0,−1.7, 0.8). Therefore, the distance between these two points

is
√

(−1.7)2 + (0.8 + 0.14)2 ≈ 1.94. Hence, the backscattering time-resolved signal
should bump at the point 1.94×2 = 3.88 of the time domain. This is approximately
the point we observe in Figure 2a. More precisely, our approximate signal bumps at
the point τ = 4.13, which is 10% difference with τ = 3.88. But given that we have
the whole ellipsoid rather than just its central point, this difference is acceptable
for our simulations. This confirms how reliable our forward solver is. We can
stop looking for the wave after the object’s bumps, which is after around the point
τ = 5; see again Figure 2a. However, we enlarge the time domain up to the point
τ = T = 10 to avoid any possible boundary reflections of the wave propagation.
Moreover, we take into account 1000 time samples in Figure 2b to identify well the
location of every wave with respect to t.

For each line Lscr
j , j = 1, 2, 3 of sources, we use the truncation (5.2) to form

a rectangular area (xs, ys) ∈ [sj1, s
j
2] × [lj1, l

j
2] ⊂ Pj . As mentioned above when

considering variables xs, ys, this rectangle is used in the slant range plane involving
the transformation of τ in y using times of arrival.

Remark 5.3. The selection of this rectangular region explains the reason why
our computed objects in Figures 3b, 3c and Figures 4b, 4c have the rectangle-like
shape. We are not focusing our work on the shape of the object since it is very
challenging. Rather, we are interested in the accuracy of the computed dielectric
constant ε̃r of our two models. We are also interested in the dimensions of the
computed object, and the presence of the above-mentioned rectangular region is
helpful in controlling those dimensions.

Given a slant range plane Pj , we solve N 1-D CIPs for N sources x0,m
j =(

x0
m, y0j , z

0
)
∈ Lscr

j ,m = 1, . . . , N. Let the corresponding discrete solutions be dis-

crete functions defined in Pj , ε̃1,j(x
0
m, ys). Note again that slightly abusing notation,

the variable ys here is the grid point in Pj . To reduce the artifacts, we average all

the 1D solutions in our rectangular area [sj1, s
j
2]× [lj1, l

j
2] ⊂ Pj . To do so, for each j,

we define first the semi-discrete function ε̃2,j(x
0
m, y) for x0

m ∈ [sj1, s
j
2], y ∈ [lj1, l

j
2] as

(5.3)

ε̃2,j
(
x0
m, y

)
=

{
30, if maxys∈[lj

1
,lj
2
]

(∣∣ε̃1
(
x0
m, ys

)∣∣) > 500,

maxys∈[lj
1
,lj
2
]

(∣∣ε̃1
(
x0
m, ys

)∣∣) , otherwise,

since our domain of interest of the dielectric constant is [10,30]. Thus, for each
source line of sources Lscr

j , our computed slant-range solution in Pj , denoted by

ε̃r,j(x
0
m, ys), is computed by

(5.4) ε̃r,j
(
x0
m, ys

)
=

{
|s2 − s1|−1∑

x0
m∈[sj1,s

j
2]
ε̃2,j

(
x0
m, y

)
in

[
sj1, s

j
2

]
×
[
lj1, l

j
2

]
,

1 elsewhere.

We define our computed slant-range solution in each slant range plane Pj by (5.4)
because from the above preprocessing data, we expect our inclusion in only the
rectangle area. Therefore, it is relevant that the dielectric constant outside of
that area should be unity. Finally, having all computed slant-range solutions
ε̃r,1, ε̃r,2, ε̃r,3, we assign one value of the final dielectric constant ε̃r of our object
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by averaging the maximum values of those solutions. In particular, let ε̃max,j =
max(x0

m,ys)∈Pj
ε̃r,j(x

0
m, ys) and let SL ⊂ R

3 be the prism formed by 3 slant-range
planes Pj . We then compute

(5.5) ε̃r (x, y, z) =

{
1
3 (ε̃max,1 + ε̃max,2 + ε̃max,3) in Ω ∩ SL,

1 elsewhere.
.

In addition, we do the linear interpolation with respect to j to help improve the
resolution of images.

5.3. Computational results. We now first bring in our results for the case
of noiseless data and then for the case of noisy data.

5.3.1. Noiseless data. In the case of Model 1, our computed dielectric constant
for the ellipsoid ε̃r(ellip) = 15.06, compared with the true value εtrue(ellip) =
15. For Model 2, the computed dielectric constant for the rectangular prism is
ε̃r(prism) = 22.97, compared with the true value εtrue(prism) = 23.8. Therefore,
our approximations of the dielectric constants are quite accurate.

We now comment on dimensions of computed images. Recall that by Remark
5.3 our images have only rectangular shapes. One can see in Figures 3a and 3b that
the dimensions of the computed ellipsoid of Model 1 are about 0.55 × 0.04 × 0.08
(L×W×H). On the other hand, dimensions of the true ellipsoid are 0.4×0.24×0.08
(L×W×H). This means that the computed object is longer in length, but smaller
in width and is the same in height. Similarly, for Model 2, one can see in Figures 4a
and 4b that the dimensions of the computed prism are 0.5×0.03×0.03 (L×W×H),
while dimensions of the true prism are 0.36× 0.16× 0.16 (L×W×H). Hence, the
computed prism is longer in length but smaller in width and height than the true
prism.

We remark that the isovalue for the presentation of the dielectric constants
(as well as sizes of imaged targets) in Figures 3b and 4b equals to εtrue − 1 because
we want to see how close our approximate dielectric constant to the true one is.

Consider now Figures 3c and 4c in which we have the 2D cross-sections of the
computed images by the plane {y = 0}, the location is not so accurate as we have
10% difference in location from our forward solver. We hope to improve these in
our future work.

5.3.2. Noisy data. While the above results are for the case of the noiseless
data, we now introduce a noise in the data. We add a random additive noise to the

truncated simulated data G̃
(
x0,m
j , t

)
(see (5.1)). In this regard, for j = 1, 2, 3 and

m = 1, . . . , N , we introduce

(5.6) G̃noise

(
x0,m
j , t

)
= G̃

(
x0,m
j , t

)
+ σrand

(
x0,m
j , t

)
max
x
0,m
j

,t

∣∣∣G̃
(
x0,m
j , t

)∣∣∣ .

Here, σ ∈ (0, 1) represents the noise level and “rand” is a random number uniformly
distributed in the interval (−1, 1). We use now the noisy data (5.6) for both Models
1 and 2 with σ = 0.05, which is 5% of noise.

The resulting computed dielectric constant for the ellipsoid is ε̃r(ellip) = 13.52,
compared with the true value εtrue(ellip) = 15. For Model 2, our computed dielec-
tric constant for the rectangular prism is ε̃r(prism) = 22.08, compared with the
true value εtrue(prism) = 23.8. In both models images for noisy data are about the
same as the ones on Figures 3 and 4 for noiseless data.
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(a) True (b) Computed

(c) Reconstructed slant-range image

Figure 3. Our 3-D reconstruction of the ellipsoid of Model 1 with
the true dielectric constant εtrue(ellip) = 15. This is the case of
noiseless data. The ellipsoid is buried in a sandbox with the dielec-
tric constant ε(sand) = 4. The data are taken in the air with the
dielectric constant ε(air) = 1. (a) True 3D image with dimensions
0.4×0.08×0.12 (L×W×H). (b) Reconstructed image of the prism
with ε̃comp(ellip) = 15.06. The isovalue 14 is used. Sizes of the
computed ellipsoid are 0.55 × 0.04 × 0.08 (L×W×H). Hence, the
computed object is longer in length, but smaller in width and is
the same in height, as compared with the true ellipsoid. (c) The
cross-section of the 3-D image by the plane {y = 0} of the object
superimposed with the true one (solid curve). The image with
5% noise in the data (see (5.6)) is about the same. The computed
dielectric constant in the case of noisy data is ε̃comp (ellip) = 13.52.

6. Concluding remarks

In summary, we have numerically tested the convexification-based nonlinear
SAR (CONSAR) imaging on identifying images of the dielectric constant of buried
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(a) True (b) Computed

(c) Reconstructed slant-range image

Figure 4. Our 3-D reconstruction of the rectangular prism of
Model 2 with the true dielectric constant εtrue(prism) = 23.8. This
is the case of noiseless data. The prism is buried in a sandbox with
the dielectric constant ε(sand) = 4. The data are taken in the air
with the dielectric constant ε(air) = 1. (a) True 3D image with
dimensions 0.18×0.08×0.08 (L×W×H). (b) Reconstructed image
of the prism with ε̃comp(prism) = 22.97. The isovalue 22.5 is
used. Sizes of the computed prism are 0.5×0.03×0.03 (L×W×H).
Hence, the computed prism is longer in length but smaller in width
and height than the true prism. (c) The cross-section of the 3-D
image by the plane {y = 0} of the object superimposed with the
true one (solid curve). The image with 5% noise in the data (see
(5.6)) is about the same. The computed dielectric constant in the
case of noisy data is ε̃comp (prism) = 22.08.

objects in a three-dimensional setting. We have numerically observed provides
accurate values of dielectric constants of targets. However, the computed locations
and sizes of tested targets are not as accurate as the convexification usually provides
for conventional CIPs, see, e.g. the works of this research group for applications
oof the convexification to experimental data [19, 20]. We hope to address these
questions in follow up publications.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

3D NONLINEAR SAR IMAGING VIA CONVEXIFICATION 165

Acknowledgment

Vo Anh Khoa acknowledges Professor Taufiquar Khan (University of North
Carolina at Charlotte) for the moral support of his research career.

References

[1] M. Amin, Through-the-wall Radar Imaging, CRC Press, Boca Raton, FL, 2011.
[2] S. A. Carn, Application of synthetic aperture radar (SAR ) imagery to volcano mapping in

the humid tropics: a case study in East J ava, Indonesia, Bulletin of Volcanology 61 (1-2)
(1999) 92–105. doi:10.1007/s004450050265.

[3] G. Chavent, Nonlinear least squares for inverse problems, Scientific Computation, Springer,
New York, 2009. Theoretical foundations and step-by-step guide for applications. MR2554448

[4] Alexander V. Goncharsky and Sergey Y. Romanov, Iterative methods for solving coefficient
inverse problems of wave tomography in models with attenuation, Inverse Problems 33 (2017),
no. 2, 025003, 24, DOI 10.1088/1361-6420/33/2/025003. MR3626795

[5] Alexander V. Goncharsky and Sergey Y. Romanov, A method of solving the coefficient in-
verse problems of wave tomography, Comput. Math. Appl. 77 (2019), no. 4, 967–980, DOI
10.1016/j.camwa.2018.10.033. MR3913643

[6] F. Soldovieri, R. Solimene, Through-wall imaging via a linear inverse scattering al-
gorithm, IEEE Geoscience and Remote Sensing Letters 4 (4) (2007) 513–517. doi:
10.1109/LGRS.2007.900735.

[7] F. H. C. Tivive, A. Bouzerdoum, M. G. Amin, An SVD-based approach for mitigating wall
reflections in through-the-wall radar imaging, in Proceedings of the IEEE National Radar
Conference, May 2011, pp. 519–524. doi:10.1109/RADAR.2011.5960591.

[8] Mikhail Gilman and Semyon Tsynkov, A mathematical model for SAR imaging beyond
the first Born approximation, SIAM J. Imaging Sci. 8 (2015), no. 1, 186–225, DOI
10.1137/140973025. MR3302589

[9] Mikhail Gilman, Erick Smith, and Semyon Tsynkov, Transionospheric synthetic aperture
imaging, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Cham, 2017, DOI
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