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Abstract. We investigate the regularity of the free boundaries in the three elastic membranes
problem.

We show that the two free boundaries corresponding to the coincidence regions between
consecutive membranes are CV'°8-hypersurfaces near a regular intersection point. We also
study two types of singular intersections. The first type of singular points are locally cov-
ered by a CV%-hypersurface. The second type of singular points stratify and each stratum is
locally covered by a C'-manifold.

Keywords. Free boundary regularity, stratification of singular set, system of obstacle prob-
lems.

1. INTRODUCTION

For an integer N = 2, the N-membrane problem describes the shapes of N elastic mem-
branes under the action of forces. Mathematically, given a domain Q c R¢ and bounded
functions {fi}x=1,2,.,n, we study the minimizer of the following functional

1
(1.1) (ulyuz,---,uN)'—’/Z(5|vuk|2+fkuk)
Q
over the class of functions with prescribed data on 92, and subject to the constraint
(1.2) Ur=up=...=2uyin Q.
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The function f; represents the force acting on the kth membrane, whose height is de-
scribed by the unknown u;. Since the membranes cannot penetrate each other, the func-
tions {u;} are well-ordered inside the domain. This leads to the constraint (1.2). On
the other hand, consecutive membranes can contact each other. Between the contact
region {uy = uy4+1} and the non-contact region {u; > uy.1}, we have the free boundary
O{ug > ugs1}.

Existence and uniqueness of the minimizer in the multiple membrane problem were
established by Chipot and Vergara-Caffarelli [CV]. They also proved that solutions are in
Cl%(Q) for all @ € (0,1). When the force terms {f;} are Holder continuous, the authors
recently obtained the optimal C''!-regularity of solutions in Savin-Yu [SY1].

The remaining questions that need to be addressed concern the regularity of the N —1
free boundaries 0{uy > ur.1} for k=1,2..., N — 1. To this end, it is natural to consider the
case of constant force terms that satisfy a non-degeneracy condition specific in obstacle-
type problems

hi>fe>-> [N

When N = 2, there is only one free boundary 6{u; > u}, and the problem is equivalent
to the classical obstacle problem for the difference u; —u. In the non-contact region {u; >
Uz}, A(uy — up) = fi — f> is constant. This implies that d{u; > u,} enjoys the same regularity
as the free boundary in the obstacle problem which was extensively studied, see [C1, C2,
W, M, CSV, ESe]. In particular 0{u; > u»} is a smooth hypersurface outside a singular set of
possible cusps. Similar results were proved for problems involving nonlinear operators by
Silvestre [Si], and even for problems involving operators of different orders in Caffarelli-De
Silva-Savin [CDS].

With one more membrane, the situation changes drastically.

When N = 3, we have a coupled system of obstacle problems with interacting free bound-
aries, 0{u; > u,} and 0{u, > us}, which can cross each other. It can be viwed as a natural
extension of the obstacle problem to the vector valued case.

To the knowledge of the authors, up to now very little is known about free boundary
problems with interacting free boundaries, although these problems arise naturally in var-
ious contexts, see for instance Aleksanyan [A], Andersson-Shahgholian-Weiss [ASW] and
Lee-Park-Shahgholian [LPS].

It is instructive to look at the Euler-Lagrange equations when f; =1, f, =0, and f3 = —1.
For the regularity of 0{u; > u»}, it is useful to write the equation for the difference u; — u5 :

3
A(ul - u2) = %{u1>u2>ug} + 5‘%:{1,{1>u2:u3}‘

In the non-contact region {u; > u,}, the right-hand side jumps between 1 and % This
occurs when the two free boundaries, 0{1; > u,} and 0{u» > us}, cross each other. When
this happens, most of the known methods from the obstacle problem fail to apply. As a
result, very little is understood about the free boundaries when N > 2, except that they are
porous and have zero Lebesgue measure, see [LR].
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In this work, we develop new techniques to deal with the system of interacting free
boundaries. They apply to general Hélder continuous forcing terms that satisfy the non-
degeneracy condition, however in order to focus on the main ideas, we assume throughout
that

f1:1,f2:0andf3:—1.
In this case, the average (u; + uy + u3)/3 is harmonic. Subtracting it from each u; does not
affect the problem or the free boundaries. Hence we can assume

U+ ux+uz=0.

In a neighborhood of a point on d{u; > u,} which does not intersect d{u, > u3}, the prob-
lem reduces back to the obstacle problem with constant right hand side for the difference
uy — up. Therefore in this neighborhood, 0{u; > u,} inherits the regularity properties of the
free boundary in the classical obstacle problem. Thus it suffices to study what happens
near points where the two free boundaries 0{u; > up} and 0{u, > us} intersect.

Suppose xg € 0{u; > up} N 0{uy > us}, and we define the rescaled solutions

1
((u1)r, (U2)r, (uz) ) (x) = ﬁ(ul; Uy, u3z) (xo + rx).

Up to a subsequence of r — 0, they converge to 2-homogeneous solutions, see [SY1].
It is illustrative to look at four such blow-up profiles. See Figure 1.

(1) The stable half-space solution:
1
U= Emax{xl,O}z, u =0,u3=—-uj.
(2) The unstable half-space solution:
| 2 1 2
u = Emln{xl,O} + Zmax{xl,O} ,
| 2 1 2
Uy = —Zmln{xl,O} + Zmax{xl,O} ,
L. 2 1 2
Us = _me{xl’O} — Emax{xl,O} .
(3) The hybrid solution:
! maxtx, 0% + 2x-B
u; = —max{xp, -x-Bx,
Ty ! 4
! maxtx, 0% + 2 x-B
Up = ——max{xy, -x-Bx,
T4 ! 4
us=——x-Bx,
where B is a symmetric matrix satisfying trace(B) =1 and 3x-Bx = xf; or

1 1 1
up = Ex-Bx, Uy = Zmax{xl,O}z—Zx-Bx, Uz = —ujp— Uy.
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(4) The parabola solution:
1 1
up = Ex-Ax, Uy = Ex-Bx, Uz =—uU;— Uy

where A, B are symmetric matrices with trace(A) = 1, trace(B) =0, A= B and
A+2B=0.

In [SY1] we showed that in the plane, up to arotation, these profiles are the only 2-homogeneous
solutions. A similar classification holds for general N.

(D (2)

FIGURE 1. Homogeneous solutions on R.

Given an intersection point xo € 0{u; > ux}No{uy > us}, we say that x is a regular point if
a subsequence of rescalings converge to a (rotated) stable half-space solution. We call x a
singular point of type 1 if a subsequence of rescalings converge to a (rotated) unstable half-
space solution. Also, we say xy is a singular point of type 2 if a subsequence of rescalings
converge to a parabola solution. The precise definitions are postponed to the next section.

Around a point xy € 0{u; > up}No{uy > us} where the rescalings converge to a hybrid so-
lution, the behavior of the free boundaries is qualitatively different, and will be addressed
in a future work.

For both types of half-space solutions, the contact sets are half spaces. It is intriguing
that the two free boundaries coincide in both cases. Heuristically, this says that the free
boundaries intersect tangentially at points where the contact sets have positive density.

To be precise, our result for regular intersection points is:

Theorem 1.1. Suppose that (uy, uy, us) is a solution to the 3-membrane problem in Q). Let
Reg denote the collection of regular points.
Then for xo € Regn Q, thereis r > 0 such that

0fuy > up} No{uy > us} N By (xp) = Regn B (xp),

and both 0{u, > u,} and 0{u, > ug} are C 1log -hypersurfaces in B (xy), intersecting tangen-
tially.

Remark 1.2. We remark that the CV\°8-regularity is optimal, and it occurs at regular inter-
section points under small generic perturbations, see Proposition 6.3. The generic condition,
that is used here and later in Remark 1.5, is inspired by the work of Colding-Minicozzi on
mean curvature flows [CM].

Remark 1.3. Although our approach follows in the spirit of the improvement-of-flatness
technique, we point out that a standard application of this technique does not work in our
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problem. Traditionally, this technique is only applicable to problems where the free bound-
ary is at least C*, which allows a linearization of the problem. In our problem, however,
the free boundary is only CY'°8, and a direct linearization is not possible.

Instead, we establish a dichotomy as in Proposition 4.3, which might be the most novel
contribution of this work. The iteration of such dichotomy naturally leads to C"\°%-regularity
when classical techniques do not apply. This same strategy has recently been applied to the
thin obstacle problem in Savin-Yu [SY4].

Our result for singular points of type 1 is:

Theorem 1.4. Suppose that (uy, uy, us) is a solution to the 3-membrane problem in Q. Let
Sing, denote the collection of singular points of type 1.
Then Sing, N Q is locally covered by a C1* -hypersurface.

Remark 1.5. Singular points of type 1 are not stable. Under generic local perturbations,
they are removed from 0{u; > uy} N 0{up > us}, see Remark 7.3.

For parabola solutions, the contact sets {u; = up} and {u, = us} are of lower dimensions.
This tangential contact implies that the solution, before blowing up, is C? at a singular
point of type 2. The situation is reminiscent to that of a singular point in the obstacle
problem.

To be precise, our result for singular points of type 2 is the following:

Theorem 1.6. Suppose that (u,, uy, us) is a solution to the 3-membrane problem in Q. Let
Sing, denote the collection of singular points of type 2. Then

Sing, NQ = Uk, a-12F,

where X° consists of isolated points, and =¥ is locally covered by a C' -manifold of dimension
k foreachk=1,...,d—-1.

Recall that d in the theorem above is the dimension of the ambient space.

It is interesting to note that Theorem 1.6 holds for a general number of membranes
N. The counterparts of Theorem 1.1 and Theorem 1.4 when N = 4, however, seem to be
out of reach at the moment. The main difficulty is that around points in Reg and Sing,,
the behavior of the solutions are not described by the corresponding blow-up limits. For
instance, at a regular point, all blow-up solutions are rotations of the first profile in Figure
1. On the other hand, for a typical solution (before blowing up), the two free boundaries
separate and the solutions fail to be one-dimensional. This break of symmetry lies behind
several important open problems in free boundary problems as well as geometric analysis
[DSV]. When N = 3, we overcome this challenge with a hidden comparison principle in
the system. See Proposition 3.6.

This paper is organized as follows. In the next section, we gather several definitions
and previous results from Savin-Yu [SY1]. In Section 3, we reformulate the 3-membrane
problem as a coupled system of obstacle problems. In Sections 4 and 5, we work with this
reformulation and give two improvement of flatness results. These are the heart of the
paper. In Sections 6 and 7, we prove Theorem 1.1 and Theorem 1.4, respectively. In these
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two sections, we also point out the optimality of the results as well as what happens under
generic perturbations. In Section 8, we give the proof of Theorem 1.6.

Acknowledgement: O. S. is supported by NSF grant DMS-1500438. H. Y. is supported
by NSF grant DMS-1954363.

2. PRELIMINARIES

In this section we collect some preliminary materials. Most of the results here can be
found in Savin-Yu [SY1].
We begin with the definition of a solution to the 3-membrane problem:

Definition 2.1. Let Q be a domain in R%.
A triplet of continuous functions on Q, (uy, us, usz), is called a solution to the 3-membrane
problem in Q if
1) y1y+us+uzs=0andu; = u = us inQ, and
(2) the following equations are satisfied

Auy = %u1>u2}+%%u1:ug>u3}y
Aup = 3 u=w>us) — 3 X lur>up=us)»
Auz= —Xu,>uz) — %%{upuz:ug}-
This is the system of Euler-Lagrange equations for a minimizer of (1.1) under the con-

straintin (1.2), when N=3and fi =1, =0, f3 =—1.
To simplify notations, we denote the two free boundaries by

I'n =0{u; > upx}nQand I'; = o0{uy > us} N Q.

The main question we study in this paper is the regularity of I'y and I',.

Around points on I'; N {up > us} and I'; N Int{uy = us}, the problem reduces to the 2-
membrane problem for (u;, uy), for which the regularity has been fully addressed. The
same happens for points on I'; N {u; > up} and I'> N Int{u; = uy}. As a result, it suffices to
study the regularity of 'y (k = 1,2) near free boundary points with the highest multiplicity,
namely, points on I'y N T'.

Around the free boundaries, we have the following:

Proposition 2.2. Let (uy, uy, us) be a solution to the 3-membrane problem in B; with0 e TI';.
Then there is a dimensional constant 0 < C < oo such that

1
—r’< sup(u) — up) < Cr? forre(0,1).
4d B,

Similar estimates hold for (uy — us) if0 € I'y.

Recall that d is the dimension of the ambient space.
As a consequence, we have the optimal regularity of solutions:

Theorem 2.3. Let (u;, uy, u3) be a solution to the 3-membrane problem in By with0€I'1 N
Is.
ThenY | D?uy|l < C in B, for a dimensional constant C.
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This gives compactness of the family of rescaled solutions. To be precise, for xo e 'y NIy,
we define

1
(Uk)xo,r = — Uk(xo +7x) for k=1,2,3.
r

As r — 0, these functions are locally uniformly bounded in C!. Consequently, there are

functions (ux) x, € Cll(;lc(le) such that, up to a subsequence,

(Ui xo,r — (Ug) x, locally uniformly.

The triplet ((#x) x,) k=1,2,3 is called a blow-up profile at xy.

This is a slight abuse of notation. At this stage, we do not have uniqueness of blow-
ups. This blow-up profile not only depends on the point xp, but could also depend on
the particular subsequence of r — 0. An important result of this paper is that for the three
types of free boundary points in Definition 2.10, blow-ups are indeed unique.

The blow-up profile ((u)y,) solves the 3-membrane problem in R%. The origin is a free
boundary point with the highest multiplicity, that is,

0 € 0{(u1)x0 > (uZ)xO} ma{(l’tZ)X() > (u3)x0}-

To study these blow-up profiles, we use a monotonicity formula inspired by the Weiss
energy [W]. This monotonicity formula holds for general N = 2. In this paper, we only
need the special case when N = 3.

For a point xyp € I'; NI, and small r > 0, the functional is defined as

W (i), X0 7) =— / . Y Vi +
Ur), X0, ') =—— - U Uy —us
rd+2 By (xp) 2

u.
D ug
rd+3 0B, (x0)

Theorem 2.4. Let (u;, uy, u3) be a solution to the 3-membrane problem in By with0eI'1 N
I'y. Then W ((ug),0, 1) is a non-decreasing function in r.
Moreover, if W ((uy),0, ) is constant in r, then (uy, uz, us) is 2-homogeneous in B .

(2.1)

This is monotone:

This gives strong restrictions on blow-up profiles:

Corollary 2.5. Let (uy, uz, us) be a solution to the 3-membrane problem in Q with xo € T'1 N
I'2. Suppose ((u1) x,, (U2) xy, (U3) x,) is a blow-up profile at xy.

Then for k =1,2,3, (ux)x, is a 2-homogeneous function in R4,

In two dimensions, homogeneous solutions have been completely classified, even for
general N [SY1].

In what follows, we use the following standard notation:

Notation 2.1. We denote by S%~! the set of unit vectors in R%.

.....

rection of e* is denoted by xy.

With these notations, we extend the homogeneous solutions from 2D to general dimen-
sions. Under the assumption ) uy = 0, it suffices to define u; and us.
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Definition 2.6. For e € S%1, the stable half-space solution in direction e is

1
u)® = ~max{x- e, 0%, uy® = —ud*.
2

The class of stable half-space solutions is denoted by & /€, that is,

FIC={(u)) e ST

Definition 2.7. For e € S%!, the unstable half-space solution in direction e is
1 1
uyt = Emin{x -e,0}* + Zmax{x -e,0)?,

l,e

I . 2 1 2
3 :—Zmln{x-e,O} —Emax{x~e,0}-

The class of unstable half-space solutions is denoted by % A, that is,
UI={(u.®): e ST

Definition 2.8. For a symmetric matrix B and a unit vector e € S~ satisfying
trace(B)=1and3B—-e®e =0,
the hybrid solution with direction e and coefficient matrix B is

e __1

1 1
©B = ~max{x-e,0/* +-x-Bx, u —5X%-Bx.
4 4 2

Uy
Symmetrically, the hybrid solution with coefficient matrix B and direction e is

(e.B) _

(B,e)
U 3

1 1 5 1
=—x-Bx, u ——max{x-e,0}“— —x-Bx.
2 4 4

Definition 2.9. For symmetric matrices A and B with trace(A) =1, trace(B) = -1, and
2A+ B=02= A+2B, the parabola solution with coefficient matrices (A, B) is

up _1

1
(A,B) _
= 3 Ex -Bx.

Uy Ex CAx, u
The class of parabola solutions is denoted by 22, that is,
P = {(ugcA’B)) :trace(A) =1,trace(B)=-1,2A+B>=0= A+2Bj}.
One consequence of Theorem 2.4 is that there is a well-defined function for xo € I'y NI’y
by
2.2) W ((ug), xo) := ;13% W ((ug), x0, 1) = W((1g) x,,0, 1),

where (1) x, is a blow-up profile at xo.
For the four types of solutions above, we have

(23)  W(),0) = Wo, W((1.),0) = Wi, W((i*),0) = W, and W ((u)P) = Ws,

where each Wj is a positive dimensional constant. They satisfy

3 7
W1 = EWO, W2 = L—}Wo and W3 = 2W0.
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Heuristically, this implies that among the four types of solutions, the stable half-space
solution is the most stable, and the parabola solution is the least stable.
This motivates the following definition:

Definition 2.10. Suppose xo € I'y nT'». We define the following four classes of free boundary
points with the highest multiplicity:

(1) We call xo a regular point if there is a blow-up profile in & 7.
The collection of regular points is denoted by Reg.
(2) We call xo a singular point of type 1 if there is a blow-up profile in %% 7.
The collection of singular points of type 1 is denoted by Sing; .
(3) We call xy a hybrid point if there is a blow-up profile given by a hybrid solution as in
Definition 2.8.
(4) We call xo a singular point of type 2 if there is a blow-up profile in 2.
The collection of singular points of type 2 is denoted by Sing,.

Thanks to the classification of homogeneous solutions in 2D, these four classes form a
partition of I'y NI'». For general dimensions, the comparison of Wy, Wy, W, and W3 implies
that the four classes are mutually disjoint. However, it is not clear whether they exhaust
the entire I'y N Ty,

As mentioned in Introduction, we focus on regular points and two types of singular
points in the remaining part of this paper. Free boundary regularity around hybrid points
will be addressed in a future work.

3. A SYSTEM OF OBSTACLE PROBLEMS

In this section, we reformulate the 3-membrane problem as a coupled system of two
obstacle problems. This system enjoys a more transparent comparison principle.

Suppose that (u;, uy, us) is a solution to the 3-membrane problem in Q. The first condi-
tion in Definition 2.1 leads to

u = —% us in Q.
The second condition gives
Au; <1inQ,
and
Au; =1in {u; > —%ug,}.

That is, u; solves the obstacle problem with the unknown obstacle —% us. A similar argu-
ment applies to —ug, which solves the obstacle problem with %ul as the obstacle.

With this observation, we recast the 3-membrane problem as a coupled system of two
obstacle problems:

Definition 3.1. Let Q be a domain in R%. Suppose (1, w) is a pair of continuous functions
on Q satisfying

1 1
u=0 w=0, u?iwandwaiu.
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We say that the pair (u, w) is a subsolution in Q (to the system of obstacle problems), and

write
(u, w) € A (Q),
if
) in Q.
We say that the pair (u, w) is a super solution in Q), and write

(u, w) € (),

Auz%{u%w} and Aw = Z,

1
w>§u

if
Au<slandAw<1inQ.
The pair (u, w) is called a solution in Q if (u, w) € & (Q) N o4 (Q). In this case, we write

(u, w) € A(Q).

Remark 3.2. This problem is equivalent to the 3-membrane problem, in the sense that
(u, w) € o/ (Q) if and only if the triplet (u, —u + w, —w) solves the 3-membrane problem as
in Definition 2.1. In particular, there are two free boundaries in the reformulated problem,
namely,

1 1
Fuzza{u>5w}m9, ande::G{w>zu}mQ.

With this equivalence, we have the following two results in the spirit of Proposition 2.2
and Theorem 2.3:

Proposition 3.3. Suppose (u, w) € &/ (B;) with0€T'y,. Then there is a dimensional constant
0 < C < oo such that

1
—r?<sup(u- Ew) <Cr?forre(0,1).

4d B,
Similar estimates hold for (w — %u) if0ely,.

Theorem 3.4. Suppose (u, w) € o (By) with0eI';,NnT,.
Then | D?ull + | D?w| < C in By» for a dimensional constant C.

As a direct consequence of Proposition 3.3, solutions enjoy the following non-degeneracy
properties:

Lemma 3.5. Suppose (u, w) € &/ (B,).

Ifu— 3w < 77r* along 0B, then u(0) = 5 w(0).

Ifu< ﬁrz along 0B, then u(0) = 0.

Ifw-u<r? alongdB,, then w(0) = 5u(0).

Ifw < 25r* along 4B, then w(0) = 0.

We need to compare pairs of functions. To simplify notations, we write
(3.1) (u, w) = (', w"

ifuzwand w=w'.
We have the comparison principle between a subsolution and a super solution:
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Proposition 3.6. Ler Q) be bounded.
Suppose (u, w) € <4 (Q) and (u', w') € o ().
If (u, w) < (W, w') along 0Q), then (u, w) < (v, w') in Q.
Proof. Define fy = inf{t € R: (u/ + t, w' + t) = (u, w) in Q}. It suffices to show that #; < 0.
Suppose, on the contrary, that #, > 0.
By the definition of £, there is a point x, € Q such that

either u(xy) = u'(xg) + fp or w(xy) = w'(xp) + .

We only deal with the first case. The argument for the other is similar.
With (i, w) < (v, w') along 0Q and £, > 0, this point xo is in the interior of Q.
With 1, > 0, we have

1 1 1
u(xp) = u'(x0) + to > Ew'(xo) + Eto > Ew(xo).

By continuity, the comparison u > %w holds in an entire neighborhood of xo, say, 4.
Inside A4, we have
Au=1=AW +ty).
Also u < u' + tg and u(xg) = u'(xg) + fp. The strong comparison principle implies
u=u'+ fyinside .
Consequently, we can replace xy by any point y, € .4/, and use the same argument to get
u=u'+ ty in a neighborhood of yj.
This implies u = u’ + £y in the entire Q. Continuity forces u = u’ + ty along 0L, contra-
dicting the comparison along 0Q2 since fy > 0. 0

A more useful version is as follows:
Lemma 3.7. Suppose (1, w) € o (B,) and (1, w') € of (Bo) with u' <1 along dBs,.
If, for some e € (0, ﬁ), we have

W, w)=(u+10deX,

/s L
{u>4d}

—&,w+10d e,

{w'>

Ly~ €) along 0B,,
then (u',w') = (u, w) in B;.
Recall that d is the dimension of the ambient space.
Proof. For each xj € By, define
o(x) = (1—4de) ' (x) + 2¢e|x — xo|?

and
w(x) = (1-4de)w'(x) +2&|x — x|
Then ¢ and v are both non-negative and satisfy
2¢ = (1 -4de)2u' (x) + 4€|x — xo|* = (1 — 4de)w' (x) + 4e|x — xo|* = .

Similarly, we have 2y = ¢.
Moreover, with Au’ < 1, we have

Ap=(1-4de)Au' +4de <1.
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Similarly, we have Ay < 1.
Therefore, (¢, ) € Q(Bz).
We now compare (¢, ) with (u, v) along 0B,. Note that here |x — xo| = 1.
Along 0B, n{u’' < ﬁ}, we have u' = u — €. Consequently,

p=u —4deu' +2e=>u' —e+2e=u.
Along 0B, n{u' > ﬁ},we havel = u' = u+10de — €. As aresult,
p=u—4de+2e>u+10de —e—4de +2¢ = u.

To conclude, ¢ = u along 0B,. A similar argument gives ¥ = w along 0B,.
Now Proposition 3.6 gives (¢, ¥) = (u, w) in By. At the point x( € By, this implies (¢/, w') (xg) =
(u, w)(xo). O

We also have the symmetric comparison, which follows from similar arguments:

Lemma 3.8. Suppose (1, w) € o (B,) and (1, w') € of (Bo) with u <1 alongdB..
If, for some € € (0, é), we have

W', w) < (- 10d€3{{u’>$} +e,w— 10d£9§{ +¢) along 0By,

I~ L
w>8d}

then (u',w') < (u, w) in B;.

4. IMPROVEMENT OF FLATNESS: CASE 1

In this section and the next, we prove two improvement-of-flatness type results for the
system of obstacle problems. We give these results in two cases that are relevant to the free
boundary regularity as in Theorem 1.1 and Theorem 1.4.

In this section, we study the case related to regular points in the 3-membrane problem.
By Definition 2.10, around such points the solution is approximated by stable half-space
solutions. For our argument, we need to include rotations and translations of such pro-
files, that is, functions of the form

4.1) P(a;a) = %max{x -a—a,0* and Q(B; b) = %max{x -B—b,0}%,

where a,f € sS4 land a,beR.

We often write P(a) and Q(f) or even just P and Q instead of P(a;a) and Q(B;b) for
these profiles.

In terms of the system of obstacle problems as in Definition 3.1, we work with the fol-
lowing class of solutions:

Definition 4.1. Fora,f € $41 a,beRande >0, we say that
(u, w) € Z(a, B; a, b;€) in B,

if
(u, w) € & (B;) with0eT,,

and
lu—P(a;a)| <er? and |w — QB b)| < er? in B;.
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We often write
(u, w) € Z(a, B;€) in By
when there is no need to emphasize a and b.
Up to a rotation, it suffices to study the case when a and S satisfy

4.2) a;=p1>0,a,=—P2=0and ay = B =0for k =3.

Lemma 3.5 leads to bounds on the parameters:

Lemma 4.2. Suppose (u, w) € Z(a, B; a, b; €) in By with a small .
Then
lal,|bl,la - Bl < Ce'?

for a dimensional constant C.

Proof. Step 1: Localizing a and b.
Suppose a >0, then B, c {x- @ — a < 0}. As a result, we have

u<ein B,.

If a > vAde, then Lemma 3.5 implies u# = 0 in a neighborhood of 0, contradicting 0 € T',,.
Therefore, a < v4de. Similarly, b < vV4de.
On the other hand, with u(0) = % w(0), we have

3 1 , 1 , 3
—58 < zmax{—a, 0} — —max{—b,0} < —¢.
This implies that a, b = —Ce'2 for a dimensional C.
Step 2: Localizing (a — f3).
The condition u = %w at —e? implies
1 5 1 , 1
Emax{—az -a,0}"+e= Zmax{az — b0} — —=¢.
With @ = 0 and |al, |b| < Ce'’? from Step 1, this implies a, < Ce'/?. O
The main result in this section is the following:

Proposition 4.3 (Improvement of flatness: Case 1). There are small positive constantsé, €4
and py (k =0,1,2), and large constants M and C, depending only on the dimension, such
that the following holds:

Suppose

(u, w) € Z(a, B; a, b;¢) in By
with
la — Bl < 26¢'?

for some € < €,4. Then we have two alternatives:

D Ifla- Dbl > pola— Pl +Mpoe®'*, thenT,,nT N By, = @, and T, is a C*Y -hypersurface
in By, with C"Y -norm bounded by Ce;

2) Otherwise, therearea’, p' € S9! with |a' — al + |8’ — Bl < Ce such that

(u,w)e (', f’;€/2) inBp,.
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Moreover, if |a — B| > 8&'/2, then there are o, B € S~ with |a" — a| +|B" - Bl < Ce such
that .
(u, w) e (", B"; 3—28) in By,

and
la" - B" < |a— Bl -e.

Let ¢, and ¢, denote the hyperplanes {x-a = a} and {x- f = b}, respectively. When the
angle between ¢; and ¢, is small, this proposition deals with the case when u and w are
approximated by half-space profiles with ¢, and ¢, as free boundaries.

In the first alternative, ¢; and ¢, are well-separated in B,,,. In this case, the two free
boundaries I', and I', decouple. The regularity of I';, follows from the theory of the obsta-
cle problem.

In the second alternative, we improve the approximation of («, w) in By,. An iteration
of this improvement leads to regularity of I';,. To iterate, however, the angle between hy-
perplanes needs to stay small.

This issue becomes urgent once |a — | reaches the critical level § €12, In this case, in-
stead of p;, we go to a much smaller scale p,. At this scale, the angle decreases by a definite
amount ¢. After k iterations, the angle is less than (26€1/2 — ke). Consequently, within at
most £~ /2 steps, the angle becomes subcritical.

We give our proof of Proposition 4.3 in the following subsections.

4.1. Approximate solutions. In this subsection, we build approximate solutions based on
half-space profiles. They play a crucial role in our analysis and are used in estimating the
behavior of the solutions near the free boundaries. We first give some heuristics by looking
at the problem in one dimension.

Example 4.1. Suppose on R, we are given two half-space profiles
1 1
pP= > max{x — a, 0} and Q= > max{x — b, 0}>

with small a < b. Our goal is to find an actual solution, say, (D,V), that best approximates
(P Q).

It is natural to take ® = P.

ButV¥ = %CD forces ¥ = }l(x— a)? for x = a. Meanwhile, Q = 0 on (a,b). To minimize the
error, we take ® = ;ll(x — a)z on some interval, say (a, t).

We need to determine the point t, after which ¥ > %qb. To minimize the error between
YV and Q, we need to match the derivatives of ¥ and Q at t. This leads to the condition
%(t— a) = (t—b), which gives t =2b— a.

Forx>t, V> %@, thus W" = 1. To ensure CV! -regularity of ¥, we define ¥ = %(x —-b)2+
F(b-a).

This gives the approximate solution onR. See Figure 2.

In general dimensions, the starting point is two half-space profiles P(a; a) and Q(S; b)
as in (4.1). With (4.2), it suffices to work in the (x1, x»)-plane.
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a b 2b —a

FIGURE 2. Approximate solution on R.

The idea is to follow Example 4.1 for each fixed x,. Such a line intersects {x- a = a} at
X] = %lm and intersects {x- 8 = b} at x; = b=p2X2 The smaller value between the two
takes the place of a as in Example 4.1, while the larger one takes the role of b. Then the
free boundary point 2b—a lies either on the line {2a—f)-x = 2a—b} or {(2—a)-x = 2b—aj}.
See Figure 3.

Definition 4.4. Correspondingto (P,Q)(a, B; a, b) as in (4.1), the approximate solution (®, V)
is defined as follows:

(1) Inside{a2x2>%b}:{x-a—azx-ﬁ—b},
1 2
@:Emax{x-a:—a,O} ,
and
_|imax{x-a-a,0} for2B-a)-x<2b-a,
- %(x-ﬁ—b)2+%(2a2xg—a+b)2 for2B—-a)-x=2b-a.
(2) Inside{azx, < %2} ={x-a—a<x-f-Db},
©— 1max{x-f— b,0} for 2a—pB)-x<2a-Db,
%(X'a—d)2+%(2a2x2—d+b)2 forQa—-p)-x=2a->b,
and

1
Y= Emax{x-ﬁ—b,O}z.

The contact situation of the approximate solution is depicted Figure 4.
These are approximate solutions in the sense described by the following lemma.

Lemma 4.5. Let (D,V) be the approximate solution defined above.
Then ® and ¥ are C'! functions.
Moreover, there is a dimensional constant C such that

I(®,¥) - (BQ)| <C(a-pI*+|a—b*) inBy,

and
(@,¥) € 4R and (1 - Cla - BI>)(®,¥) € o R).
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{z-p=10}
/ {@28-a) z=2b—a}

{(2a - B) -z = 2a—b}

FIGURE 3. Approximate solution in R?.

{z-a=a} /

{28-a)-z2=2b—a}

0<%<I><\If<2<1>

\ {2a—B) -z =2a—0b}

{z-5="b}

FIGURE 4. Contacting situation of (¥, V).

The classes </ and f are defined in Definition 3.1.

Proof. By definition, we have ® and ¥ are C"!. Moreover, A® <1 +4a3. Thus (1-Cla -
BIHAD < 1.
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On the other hand, in {® > %\I’}, we either have
(4.3) ®=P or ®:P+%((a—,6)-x—(a—b))2.
In both cases, we have A® > 1. Similar arguments apply to ¥, and we have
(@,¥) € (R and (1 - Cla - fI?) (@, ¥) € o (RY).
Now we estimate |® — P|. In the set
E:={2a-p)-x<2a-b}n{x-B> b},
we have )
o<s(x-a—-a)t sa(x-ﬁ—b) <x-(f-a)—(b-a),
thus )
0= Pl=15Q-PI<Cla—pI"+Ib-al’).

In the complement E€, (4.3) holds, and the inequality above remains valid in the whole B;.
A similar estimate holds for |¥ — Q]. ]

These approximate solutions lead to fine estimate of solutions:

Lemma 4.6. Suppose (u, w) € Z(«, B; a, b;€) in B;.
Let (D, V) denote the approximate solution corresponding to (P,Q)(a, B; a,b) as in (4.1).
Then there are dimensional constants A and €, such that

(D,¥)(-— Aea) < (u,w) < (D,V)(-+ Aea) in By

ife<egy.

Recall the notation for comparison between pairs of functions as in (3.1).
We can replace a by f and get the same comparisons.

Proof. We prove the upper bound. The lower bound follows from a similar argument. The
strategy is to apply Lemma 3.7 to translations of the approximate solution.
By Lemma 4.2, we have |al, |b|, |a — B| < Cel’2. Thus Lemma 4.5 implies that

(1—Ce) (D, V) € o (RY)
and
[(®,¥) - (PQ)| <Cein B;.

Define
(FEG)=1-Ce)(D,VP)(- + Aca),

where Ais a largg constant to be chosen.
Then (F,G) € </ (B;).
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For € small, both ¥ and ® are non-decreasing in the direction along a@. Thus we have
the following comparison

(FG)=(1-C¢g)(D,Y¥)

= (1-Ce)((BQ)-Ce)

=(BQ)-Ce

= (u,w) - Ce
inside Bs3,4. Note that

{F > é}c{fb(-+A£a) > é}c{x-a—a>c}
for a small dimensional constant ¢ > 0. On the last set, we have
O(x+ Aca) —P(x) = Ae(x-a—a) = cAe.
Thus on {F > ﬁ} N B3;4 we have
F=1-Ce)P(x+ Aea) =2P(x)+cAe - Ce=u+cAe—Ce.

By choosing A large, depending only on the dimension, we have
1
F>u+10de in {F > E}ntM'

Similar comparison holds between G and w on {G > ﬁ} N B3/y.
Combining all these, we can apply Lemma 3.7 to get (u, w) < (F,G) on By,». This gives
the desired upper bound. 0

It is convenient to use the orthonormal basis for R? containing @. To simplify our nota-
tions, we introduce the following:

Notation 4.1. Let{a,&?,&3,...&9 be the orthonormal basis for R® with
E=—ael +aé?

and & = e* fork = 3.
Let x;c denote the coordinate in the & direction.

4.2. Free boundary regularity when {x - a = a} and {x - § = b} are well-separated. In this
subsection we prove the C1'*-regularity of T',, when the two hyperplanes are well-separated
in By, This is alternative (1) in Proposition 4.3.

When the two hyperplanes are well-separated, the free boundaries I', and I';, are at a
definite distance to each other. Effectively, we are dealing with a single obstacle problem.
Thus we can apply the result from Appendix A.

Note that py will be chosen in the next subsection, depending only on the dimension d.
It suffices to prove the result at unit scale.

Depending on the relative position of the hyperplanes, there are two cases to consider.

We first deal with the case when b < a. See Figure 5.

Lemma 4.7. Suppose (u, w) € Z(a, B; a, b; €) in B, for somee < gg.
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Ifa—b—4a, > Me>'*, then
1 1
Tun By < {w > Zu}, and Ty N Bsjp < {1 = S wh.

Moreover, both free boundaries T, and T, are CV®-hypersurfaces in By with C"*-norm
bounded by Ce.
Heree,, M, and C are dimensional constants.

The assumption (4.2) is still in effect.

{z-B="b} {z-a=a}

—

FIGURE 5. Well-separated free boundaries.

Proof. Let (®,¥) be the approximate solution corresponding to (P, Q)(«, §; a, b).

Step 1: Separation of free boundaries.

Note that a — b —4a, > Me%'* implies a»x, < %b inside B,. Thus we are always in the
second alternative in Definition 4.4.

In particular, ¥ = ® in R¥,

Using Lemma 4.6, inside Bs,», we have

2w(x) —u(x) =22V (x— Aef) — P(x + Aep)
=2V (x— Aef) — ¥V (x + Aep).
This implies
(4.4) 2w >uin BgjpN{x-f—b>3Ae}.
On the other hand, inside {(2a — ) - x < 2a — b}, by Definition 4.4,
20(x— Aea) =¥ (x — Aca).
Thusin By/sn{x-a <2a—-b-2a,x,}, Lemma 4.6 gives
2u(x) — w(x) < 20(x + Aea) — W (x — Aea) < 2®(x + Aea) — 20 (x — Aea) < Ce*'2.
Lemma 3.5 implies

(4.5) 2u=win By, n{2a—p)-x<2a-b-Ce'.
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3/4

Under our assumption a— b —4a, > Me”'*, we have

(4.6) {x-B-b<3Aelc{x-a< d}C{(Za—ﬁ)-xSZa—b—C53/4} inside Bs/
if M is large. Thus (4.4) and (4.5) imply
1 1
[yNBsjp ciw > Eu}, andT'y,NBsppc{u= EW}'

Step 2: Regularity of T,.
With (4.4) and (4.5), we have

1 1
{u> Ew}mBg/ZC{w> EU}HBg/g.

As aresult,
AQu—w) = Xpy-ws>o; in Bz/2.
1 2
Moreover, if we define o' = 21392 thep
|aret+3aze?|

1
|Qu—w) - Emax{x- a'—2a+ b,0}°| < Ce in By)».
An application of Theorem A.1 gives the desired regularity of I';,.
Step 3: Regularity of T'y,.
Since 2u = w in B3jo N{(2a - B)- <2a—b— Ce3'*} > B3;» N {x- a < a}, the following is still
a solution to the system of obstacle problems in Bs:
o (u, w) in{x-a<al,
(@ w) =4 .
Gw,w) in{x-a>aj.
Note that (4.4) and (4.6) imply I',, N B3/» < {x-a < a}. Inside this set, (i, W) = (1, w). Thus
'y N Bsj2 =T N Bsje. Consequently, it suffices to prove the desired regularity for I';, N B;.
To this end, note that i = 2ii inside Bs;», we have
Aw = %{g»o} in Bg/g
with
I'pyNBgp = o{w>0ln Bs)s.
Therefore, Theorem A.1 implies 'y N By isa C 1""-hypersurface with CV*-norm bounded
by Ce. 0J

The second case is when a < b. To get the following, we just need to switch the roles of
u and w and apply the previous lemma.

Lemma 4.8. Suppose (u, w) € Z(a, ; a, b;€) in B, for somee < 4.
Ifb—a—4a, > Me®4, then

1
FynBspciw= Eu}’

andT, is a CV"*-hypersurface in By with CV"%-norm bounded by Ck.
Hereey, M, and C are dimensional constants.

4.3. Improvement of approximation and angle when {x-a = a} and {x- § = b} are close.
In this subsection, we prove the second alternative in Proposition 4.3. For this alternative,
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we have
@.7) la—b| < pola— Bl +Mpoe®'*,

where M is the constant from the previous subsection, and py is a dimensional constant
to be chosen.

Assumption (4.2) is still in effect.

There are two results to prove. Firstly, we show an improvement of approximation at a
small scale if |@ — f] is less than 26¢€1/2, Secondly, we show that once |a — 3| reaches the
critical value 5¢'/2, we can improve the angle by a definite amount at a smaller scale.

Lemma 4.9. Suppose for parameters satisfying |a — B| < 26€'? and (4.7), we have (u, w) €
Z(a, B; a,b;¢) in B for somee < 4.
Then

1
(u,w) e Z(a', B; 7€) in By,

with |a’' — a|+ |’ — Bl < Ce.
Hereeg, 0, p1 and C are dimensional constants.

Proof. Let (®,¥) denote the approximate solution corresponding to (B, Q)(a, §; a, b) as in
(4.1).
Under the assumptions, we have

la—b| < 26 + 34,
In particular, Lemma 4.5 implies
(4.8) (@, ¥) — (PQ)| < Ce(6%+€"?) in B.
Note that 2u — w = 2P — Q — 3¢ implies

L. / 12
u>§w1nBln{x1>a+Ce b

where x| is the coordinate function introduced in Notation 4.1. Consequently, if we define
L1
u=-(u-"r),
€

then
Afl=0in By n{x| = a+ Ce'?.

1/2}
’

Meanwhile, on Bz;4 N {x] < a+Ce Lemma 4.6 gives

u(x) — ®(x) < ®(x + Aca) — d(x) < Ce%'?,
and
u(x) —d(x) = —Ce3?.
Combining these with (4.8), we have

o] < C(6%+€Y?)in By N {x]<a+ ce'’?y.
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Let h denote the solution to the following problem

Ah=0 inBssn{x;>a+Ce'?,

h=1i  alongdBssn{x;>a+Ce
h=0 1z,

1/2}
along B3;sn{x; =a+Ce

Then
lit— h| < C(5% + ') in B3j4n{x] > a+ Ce''?).
Boundary regularity of & gives
lh—y1(x; —a-Ce"®) = (x] —a-Ce"® Y yrxil<Cr¥in B, n{x] >a+Ce'?
k=2

for some bounded constants y; and r < 1/2.

If we define .

o = EFEXk=2YkS
@+ e X k2 Y iéH]

and a’' = a+ €y, then |a — a'| + |a’ — a| < Ce, and the previous estimate leads to

1
u=2 (-’ - a)’ < Ce(r®+ 5%+

inside B, N {x] > a+ Cel’2) for r < %
Here & is the basis element in Notation 4.1.
Note that u < ®(- + Aea) < Ce3’2in B34 N {xi < a+ Ce'’?}, we have

lu—P(a)| < Ce(r® + 6 + €%
inB,ifr< % Here we are using the notation in (4.1).
From here, we choose p; small such that Cp? < %pf, then 6 and €; small such that
C(6%+ syz) < %pf, then .
lu—P(a)| < gap% in B,.
A symmetric argument gives a similar estimate on w.
Thus (u, w) € Z(a’, f'; 3€) in Bp,. O

Now we give the improvement of the angle |@ — f|, once it reaches the critical level:

Lemma 4.10. Suppose for parameters satisfying 6> < |a — B| < 26¢'/? and (4.7), we have
(u,w) e Z(a, B; a, b;€) in B, for somee < eg.
Then

(u,w) e Z(a', B; %e) in By,
with|a'— a|+|p' — Bl < Ce, and
la' - | <|la-pl-¢.
Hereeg, 0, p2, C and py (from (4.7)) are dimensional.

Proof. Let (®,¥) denote the approximate solution corresponding to (P, Q)(a, B; a, b) as in
(4.1).
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Under the assumptions, we have
1
€ (5681/2,681/2).

We give the proof in two steps. The first step covers the special case when a = b = 0. The
second step deals with general a and b under assumption (4.7).

Step 1: The special case when a= b = 0.

Define o= 1(u—P).

As in the previous proof, we have

Ai=0in By n{x} = Ce'’?}.

Along Bs4 N {x} = Ce'/?}, we have |u— ®| < Ce? by Lemma 4.6.
By definition of @,
® — P = 2(22X2)* Xix,<0; along Bsjq N x| = Ce''?}.
Consequently, if we define
n:= 2(ar)’le € (%52,262),

then

1/2

|1 —nx%%xZ<o}| < Ce"'“along B34 N {xi =Cel?},

With the coordinate system introduced in Notation 4.1, we define / to be the solution
to the following problem
Ah=0 in Bz/s N {x] > Cel’?y,
(4.9) h=10 in 0B34 N {x} > Ce'’?},
h= ﬂ(xé)zgg{xém} in B34 N{x) = Ce'/?}.
With |x; — x}| < Ce'’? along {x] = Ce'’?}, the previous estimate gives
(4.10) lit— hl < Ce'’? in By n {x} > Ce'?}.
Let H be the solution to
AH=0 inR? N {x] > Ce'’?},
lim|y— 400 H=0,
H=(x)*%1cxj<qp RN {x] = Ce'2.
Then (h—nH) is a bounded harmonic function in Bs/4 N {x] > Ce!/?} that vanishes along

{x] = Ce'’?}. Consequently, there are bounded constants y; such that for r < 1/2,

I(h—nH) - (x; - Ce"®) (y1 + Y yrx)l < Cr¥in B, n{x] > Ce'’?}.
k=2

Comparing with the auxiliary function H from Proposition B.1, we see that H can be ob-
tained from H by a translation in x| -direction and a reflection in the x;-direction. There-
fore, Proposition B.1 gives

|H— Ay (x} - Ce'?) - Ay (x] - Ce'?)xhlogr| < Cr? in B, N {x] > Ce''3),
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for two dimensional constants A;, A, > 0.

Note that we flipped the sign in front of A, as the consequence of the reflection in the
x,-direction.

Combining this with the previous estimate and (4.10),

1
lu— E(xll)z —e(xX)(y1+ Y. yix) +nAsxylogr)| < Ce(82r? + 13 +€'?)
k=2

inside B, n {x] > Cel’?y,

If we define
o= +EX ko2 YkEF +EnAslogré?
|@+ €Y js2 Y€+ €nAslogré?|

and a’' = —¢y,, then

lu—P(a;a)| < Ce(6%r® + 13 +¢'/?

where P(a';d’) is defined in (4.1).
To see the improvement of angle, we estimate |a’ — ell:

) inside B;,

la'—e'l<la+e ) ye&k +enAslogre? — el + Ce?
k=2
<|a+enAzlogré® —e'| +¢| Z Ykékl +Ce?
k=2
=|(a; —1—azenAzlogr,as + ajenAzlogr)|
+el Y yecl+ Ce?,
k=2
where we have used the definition of &? as in Notation 4.1.
With |a — e'| < €!/2, this gives
o' —e'| <|(a1—1,az +enAzlogr)|+el Y. ye&k +Ce¥2,
k=2
Since 1 € (362,26%) while | s, 7x¢¥| is bounded by a dimensional constant, we can
ne Y y
find p, small, depending only on the dimension, such that
nAxlogps < -1 vk - L.
k=2
Then

(a1 —1,a2+€enAzlogpr)| <|a— el +2enAzlogps + Cced'?

<-e—el Y yickl+Ced?,
k=2
Combining all these, we have
la’' —el|<|a—e'|—¢
if 4 is chosen small.
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If we fix § small such that Cn < C6% < 5L, then choose p, small such that Cpg < ip%,

24"
and finally choose €4 small such that C E;’ 2< ipg, then

P I 3 2 B
lu—Pa;a)l < 22EP2 0 Bp,.
Similarly, we can find ' and b’ such that |w — Q(f; b)| < s €p3 in B,, and
1B —e'I<Ip—e'|-¢.
Combining these, we have
1
(u, w) € Z(a', B'; 55) in By,
with
la - fl<la-e'|+|f—e|-2e<|a-Bl-2e+Ce* <|a—Pl—¢
if €4 is small.
This completes the proof for the case when a = b =0.
Step 2: General a and b satisfying (4.7).

Under assumption (4.7), we have I%fl <po+M p081/ 4/6. Consequently, if € is small,

then
X:= e + e” € Byp,,.
2&1 2052

Note that X- @ = a and x - § = b, by our assumptions on (u, w), we have

1 1
|u— Emax{(x— %) -a,0| <eand |w— Emax{(x—)‘c)-ﬁ,O}Zl <¢ein By.
Therefore, we can apply the result in the previous step to (u, w)(- — X). This gives
1
(u, w) e (', B; 3—25) in By, (X)

with |’ — f'| < |a — B| - 2¢.
To conclude, simply note that if we choose py < L—llpz, By, (%)  Bp, (0).

O

This completes our proof for Proposition 4.3. In Section 6, it is used to prove the regu-

larity of free boundaries near regular points as in Theorem 1.1.

5. IMPROVEMENT OF FLATNESS: CASE 2

In this section, we work with the system of obstacle problems introduced in Section
3. We give an improvement of flatness result relevant to singular points of type 1 in the

3-membrane problem.

According to Definition 2.10, around these points, the solution is approximated by un-
stable half-space solutions. We need to include translations and rotations of such profiles,

that is, functions of the form
{P(a,ﬁ; a,b)= imin{x-a-a,0}*+1max{x-f-b,0}

Q(a,f;a,b) = 1min{x-a-a,0}*+ 3 max{x- - b,0}>

(5.1)

fora,f e s%land a,beR.
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We often write P(a, ) and Q(a, B) or even just P and Q for these profiles.
In terms of the system of obstacle problems, we work with the following class of solu-
tions:

Definition 5.1. Fora,f € sS4l abeRande >0, we say that
(w,w) € L(a, B; a, b;€) in B,
if
(u,w) € 4 (B;) with0eI',nTy,

and
|u—P(a, B;a,b)| <er? and|w - Q(a, B; a, b)| <er?® in B;.

Recall that the class «f is defined in Definition 3.1.

We simply write .#(a, §; €) instead of .#(«, B; a, b; ¢) if there is no need to emphasize a
and b.

Throughout this section, we still assume the symmetry assumption (4.2).

Similar to Lemma 4.2, the parameters are bounded:

Lemma 5.2. Suppose (u, w) € & (a, B; a, b;€) in B;.
Then
lal,|bl,la— Bl < Ce'"?

for a dimensional constant C.
The main result in this section is:

Proposition 5.3 (Improvement of flatness: Case 2). There are small positive constantsd, €
and py (k =1,2), and a large constant C, depending only on the dimension, such that the
following holds:

Suppose

(u,w) € L(a, B;¢€) in By
with
la — Bl < 26¢€'/?

forsomee < g,.

Then there are ', B’ € S with |a' — a| +|B' - Bl < Ce such that

(u,w)e L(a',f;€/2) inB,,.

Moreover, if |a — B| > 8&'/2, then there are o, B € S~ with |a" — a| +|B" - B| < Ce such
that
(u,w)e L (a",B";€12) in B,
and
la" — B’ > |a— B| +20¢.

The most intriguing feature is that the angle between the hyperplanes increases defi-
nitely once it reaches the critical level §¢'/2. This is a consequence of the instability of the
unstable half-space solutions. Later, we need this instability to show that the angle never
reaches the critical level at a singular point of type 1.
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We give the proof of Proposition 5.3 in the following subsections. We omit proofs that
are similar to the ones in Section 4.

5.1. Approximate solutions. In this subsection, we build approximate solutions. We be-
gin with the problem in one dimension.

Example 5.1. Suppose on R, we are given two profiles
1 1
P= > min{x — a,0}* + 1 max{x — b, 0}

and
I . 2, 1 2
Q= L—}mm{x— a0} + Emax{x— b,0}-.
Our goal is to construct an actual solution, (D,V), that best approximates (P, Q).

Ifa< b, then (P, Q) already solves the system of obstacle problem. In this case it suffices to
take (D,¥) = (P,Q).

If a > b, it is natural to take ® = P and V¥ = %(D for x << b. We need to determine the
point t such that ® = 2¥ (thus ®" = 1) for x < t, and ® = %‘I’ (thus @®" = % ) forx>t. To
approximate P, we need ®'(t) = P'(t). This condition implies (t — a) = %(t —b). We choose
t =2a-b. Similar argument applies to V.

This gives the approximate solution (®, V) onR:

o) = x—a)?+(a-b? ifx<2a-b,
B }l(x—b)2+%(a—b)2 ifx=2a->b,
and
1 1 :
W) §(x—a)z+§(a—bz)2 zfx<2b—a,
3(x—b)*+(a—Db) ifx=2b-a.
This completes the construction in one dimension. See Figure 6.

For higher dimensions, we follow the same strategy along each hyperplane with fixed
x,. See the strategy after Example 4.1.
Under our assumption (4.2), this gives the following. See Figure 7.

Definition 5.4. Corresponding to (P,Q)(a, B; a, b) as in (5.1), the approximate solution
(@,¥) = (®,¥)(a, B;a,b)
is defined as follows:

(1) Inside{asx» = %b},
®=PandV¥ = Q;
(2) Inside {azx, < %23,

_[3xra-a)?+Qazxo—a+b)?  forQa-p)-x<2a-b,
i B-bP+iRazx—a+b)?  for@Ra-p)-x=2a-b,
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Y

FIGURE 6. Approximate solution on R.

and
_ i(x‘a—a)2+%(2a2x2—a+b)2 for2B—a)-x<2b-a,
%(x-ﬁ—b)2+(2a2x2—a+b)2 for2-a)-x>2b-a.
(z-a=a} {z-B=b} {“‘:\“} {zj—b}
\ / \

\1:
%:P/

¢ ah

X <I>:P+%(2a212—a+b)2

\\\\LX >

1 /
<I'=§(x-a—a)2

+ (20229 —a +b)? - 5(1‘\ B —b)
/ \ {2a—p) -z =2a-1b} {26-a) -z +(2a2x2—a+b)2
=2b—a} \

FIGURE 7. Approximate solution in R?.

The contact situation of (®, V) is depicted in Figure 8.
Similar to Lemma 4.5, we have

Lemma 5.5. Let (D,V) be the approximate solution defined above.
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0<%<I><\Il<2<b

/N

/ \ {@2a—pB) -z =2a—b}

{(26-a)-z=2b—a}

FIGURE 8. Contacting situation of (¥, V).

Then there is a dimensional constant C such that
[(®,¥)-(PQ)<C(a —ﬁl2 +la-bl?) in By,

and
(@,¥) € 4 RY) and (1 - Cla - B> (@, ¥) € o RY).

Similar to Lemma 4.6, using the notation as in Definition 5.4, we have

Lemma 5.6. Suppose (u, w) € & (a, B; a, b;€) in B;.
Then there are dimensional constants A and €4 such that
{ ®(a,B;a— Ag, b+ Ae) < u< ®(a, B;a+ Ag, b — Ae)

inBy
Y(a,B;a— Ae,b+ Ae) < w < V¥(a, B; a+ Ae, b — Ag)

ife<eg.
When there is no ambiguity, we simplify our notations by writing

{ (@, ¥7) = (@,¥)(a, B;a— Ag, b+ Ae),

(5.2)
(@, ¥*) = (D,¥)(a, B; a+ Ae, b — Ag).

5.2. Improvement of approximation and angle. This subsection contains the proof of
Proposition 5.3. We divide the proposition into two statements. The first is an improve-
ment of approximation result, assuming the angle |a — | is small. The second is to show
that this angle increases by a definite amount once it reaches the critical level.

We first give a finer bound on a and b. This refinement is a consequence of our assump-
tionthat0eI', nT',,. See Definition 5.1.

Lemma 5.7. Suppose (u, w) € &(a, B; a, b;€) in B;.
Then
la| +|b| < Ce

for a dimensional constant C.
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Proof. We use the notation in (5.2).

Suppose (a — Ag) — (b + Ag) > 0, then either @~ (0) = %(—a + Ae)2 + (—a+ b+ 2A€)? or
®(0) = 1(-b— Ae) + 3 (—a+ b +2A¢e)%.

In both cases, 0 = u(0) = @~ (0) gives the desired estimate.

Consequently, it suffices to consider the case when a — b < 2 Ae.

In this case, the comparison 0 = u(0) = ®~(0) implies

(5.3) a< Acand b = — Ae.

Suppose, on the contrary, that a < —Me for a large M.
The previous estimate on b implies a — b+ 2 A¢e < —%Ms if M > A. Thus

1
Bng c{drxy = E(a— b+ 2Ag)}.

Thus for both ®* and ¥, only alternative (1) in Definition 5.4 is relevant in B 1 et
As aresult, we have

1
2u—w<20" - ¥~ <-MAe*in By,
4 3

With Lemma 3.5, this implies u = %w in a neighborhood of 0 if M is large, contradicting
0el’y,.

Consequently, a = —Ce. Similar arguments give b = —Ce.

Combined with (5.3), we have the desired estimate. O

We now prove the improvement of approximation in Proposition 5.3.

Lemma 5.8. Suppose (u, w) € & (a, B;¢) in By with |a — | < 2612 forsomee < g,.
Then for some &', f' € S satisfying
la’' —al+|6' - Bl < Ce
we have
(u, w) e L, p; %8) in Bp,.
Here d,¢e4,p1 and C are dimensional constants.
The proof is similar to the proof of Lemma 4.9. We omit some details.

Proof. Let (®*, ¥*) be the barriers as in (5.2), corresponding to (P, Q)(«, §; a, b) as in (5.1).
Using |u— P| < ¢,|w— Q| < € and Lemma 3.5, we have

1 1 ' 1/2
(5.4) u>§w andw—§u1n37/8n{x1<—(3£ 1,
where x'1 is the coordinate function in Notation 4.1.
Define it = %(u — P), then

Ail=0in Bygnix} < -Ce'’?}.

Meanwhile, Lemma 5.6 gives

4] < C(6% + €% along B7;3N {x'1 = —Ce"?.
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Let h be the solution to
Ah=0 inBygn{x)<-Ce'’?},
h=0  indBygn{x|<—Ce'’?},
h=0 inBygnix]=-Ce'?.
Then we can use boundary regularity of  to get

1
lu— E(xi —a)? —e(x]—a)y1+ Y yex)| < Ce(r® + 8% +€'?)

k=2

in B, N {x’1 < —Cel2} for r < 1/2. Here x;c is the coordinate function in Notation 4.1.

If we define .
) AFEX k=2 VkS

a = o’
|+ €Y k=2 YkC"
where ¢¥ is defined as in Notation 4.1, and @’ = a+ €Y1, then |a' — a| < Ce and

1
lu— E(x-a'—a’)zl < Ce(rP+6%+£Y?

in B, n{x} < —Cel’2y forr < 1/2.
Now with (5.4), we have

1
w=2(x-a'—a) < Ce(r+ 6% +&'1%)

in B, n{x; < —Ce'?} forr <1/2.
Similarly, we can find g’ and b’ with |8’ — B| < Ce such that

1
lu— Z(x'ﬁ'— b2 < Ce(r® + 8% + €',

and .
|w=Zx f'= DY < Ce(r® +6% + 1'%

in B, n{x; > Ce'"?} forr < 1/2.
Combining these, we have
lu—P@, )+ w—-Qa, B < Ce(r® + 8% +£'/?)

in B, for r < 1/2. Recall that P(a’, f’) and Q(a/, B') are defined in (5.1).
To conclude, we choose p; small such that C pi’ < épf, & small such that C5? < épf, then

eq small such that Ce}/? < p;. Then the estimate above implies

1
(u,w)e L, p; 58) in By, .
The next result is on the increase of angle:
Lemma 5.9. Suppose (u, w) € ¥ (a, B;€) in B) for somee < £ with |a — p| € (5e'/2,26¢?).
Then therearea', ' € sS4t with |a' — al + |8’ — Bl < Ce such that

(u,w)e (', B;€/2) in B,
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and
la’ - B'| > |a— Bl +20¢.
Hereey, 6, p2 and C are dimensional.

The strategy is similar to the one in the proof of Lemma 4.10. We omit certain details.
The key observation is that the difference (®, ¥) — (P, Q) is a reflection of what it was in
the proof of Lemma 4.10. This drives the increase of the angle.

Proof. Let (P, Q)(a, B;a, b) be as in (5.1). Let (®, V) be the approximate solution in Defini-
tion 5.4. Let (®*, ¥*) be as in (5.2).

We again use the coordinate system introduced in Notation 4.1.

Define @t = 1(u— P), then

Al =0in By;gn {x] < —Ce''?).

With Lemma 5.6, we have
= %(cp — P)+ O('?) along B;jg n {x} = —Cel'?}.
Now with |al, |b| < Ce from Lemma 5.7, we have
(@ — P) = 4a5%5 Xx,<0) + O(e%'?) along Byjg N {x] = —Ce''?}.
Let h be the solution to
Ah=0 in B4 N {x] < —Cel’?},
h=1a in 0B3/4 N {x] < —Cel'?y,
h= 4%%(xé)2%xé<0} in B4 N {x] = —Cel/?}.

Then
12y,

lit— h| < Ce'’? in B3y n{x} < —Ce
Note that & is the reflection along {xi = 0} of the harmonic function in (4.9), we can use
the same argument to get
1,5 / , 4a5 2.2, .3
lu— E(xl) —e(x)(y1+ ) Yix— —=Axxylogr)| < Ce(6°r° + 1’ +¢
k=2 €

1/2
)

inside B, N {xi < —Cel?} for r < 1/2, where A, is the positive dimensional constant in
Proposition B.1.
Note that the sign in front of A, is flipped due to the reflection.
If we define
, a+EX ks Vi€’ —4ad Arlogré?
|+ e X ko2 Yiék —4a3 Az logré?|
and a’ = a+ €y, then this implies

1
Iu—g(x-a’—a')zl <Ce@*r’+r3+¢'?

inside B, N {x] < —Cel'?y,
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Similar strategy applied to the region {x; > Ce'’?} gives
1
lu— Z(x-ﬁ’ —b?|<Ce@®r?+r3+€'?)
inside B, N {x- B > Ce'’?}, where f' is of the form
_ B+EY kso y’k{k +4a5Aylogré?
IB+€X k27 EF +4a5Arlogre?|
Using similar estimates as in the proof of Lemma 4.9, we have

o' - B = 2az-8asAzlogr)e* +e( Y. (yr +7y,)ed) + 0.
k=3
By choosing p, small, depending only on the dimensional constant §, we can ensure

62 Azlogpr < —( Y (yr+y})ek| +20).
k=3

As aresult,
la' — B'| = 12ay + 2¢| = |a — B| + 20¢
if € is small.
This is the desired increase in angle.
To get (u, w) € F(a', f'; %8) in B,,, we proceed exactly like in the proof of Lemma 4.10.
O

This completes the proof of Proposition 5.3. In Section 7, this proposition is used to
prove the regularity of Sing, as in Theorem 1.4.

6. FREE BOUNDARY REGULARITY NEAR Reg

Starting from this section, we return to the 3-membrane problem in Definition 2.1, and
give our proofs for the three theorems in Introduction.

Theorem 1.1 is a direct consequence of the following point-wise localization of the free
boundary:

Lemma 6.1. Suppose that (uy, uy, u3) is a solution to the 3-membrane problem in By with
0el;.
If we have, for some e € S9! gande < €4,

1 1
Iul—imax{x-e—a,O}zl sgand|u3+§max{x-e—a,0}2| <einB;,

then, up to a rotation,
1 NB,cix|<Cr(-logr) !}
forallr <1/2.
Here e, and C are dimensional constants.

Proof. Define u = u; and w = —us.
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Due to the equivalence of the 3-membrane problem and the system of obstacle prob-
lems, as in Remark 3.2, it suffices to prove that, up to a rotation,

(6.1) I'uNB,c{lx1|<Cr(-logr)™}

forall r <1/2.
We prove this with an iterative scheme.
Step 1: Description of the iteration scheme.
As the starting point, we define

Ug= U, Wy =W,
apo=Po=eao=by=a,
go=¢cand ry=1.
Then we have
(1o, wo) € (o, Po; ao, bo; €) in By.

The class £ is defined in Definition 4.1.
Suppose that we have completed the kth step in this iteration, that is, we have found

(U, Wi) € R(a, Pi; ak, bi; €x) in By

for some € < €4 and |a — Bil < 26£1k/2, where €, and ¢ are the constants in Proposition

4.3, then we proceed to the (k + 1)th step as follows.

We consider three cases.

The first case is when |ag — by| > polay — Bl + M ,Oob‘:;’c/ 4 that is, when the parameters fall
into alternative 1 as in Proposition 4.3. In this case, we terminate the iteration scheme.

The second case is when |ag — bo| < polai — Bil + Mpoey* and |ar — il < 8;/%. In this
case, we apply Lemma 4.9 to get

1
(ur, wp) € (', B;d,b'; Egk) in By,
for some |a’ — ay|+ B — Bil +|a' — ax| + |b' — by| < Cey.
Define . .
U1 (%) = — ur(p1X), Wi (%) = ?wk(plx),
1 1
Al+1 = al;ﬁk+1 = ﬁ',ak+1 = a,;bk+1 =V,
1
Ek+1 = S Ek and rgy1 = P17
Then

(Uks1, Wir1) € B(Aks1, Prr1; Ak+1, Dir1;€k4+1) N By.
Note that in this case, we have

|ak+1 = Pr+1l < lag — Prl + Ceg

<de}/* + Cey.

< \/§5£}ch + CEfy1.

1/2

This implies |ak+1 — Pr+1] <20€..5

if €4 is small.
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This completes the (k + 1)th step in the second case.

The third caseis when |ay— byl < polar— Pl +Mp0£*;’c/4 and |ay— Bil = 6{:‘%/2. In this case,
define
|k — Bl )2

€ 26

(
Then

(6.2)

=]

Consequently, we have

(U, wi) € Z(ay, Pr; ak, b;4€) in By.

)1/2

By definition of &, we have |a — Br| = 6(4€)"'%, thus Lemma 4.10 gives

1
(Ur, Wi) € %(a’,ﬁ';a',b';gé) in By,
for some |a’ — ai| +|f' — Bi| +|a’ — ax| + |b' — by| < C€ and
la'— B'| < |k — Bil — 4E.
Define

la’ - p']

2
25 )%

Ek+1 = (
then
lak — Brl —4¢
26
For the last comparison, we used (6.2).
A similar comparison, using |a@’ — a| + |8’ — Br| < CE, implies

(6.3) pr1 = e — Ceyl.

2
2 _ x1/2 2 3/2
Er+1 < ( )= (€ ——68) <éep—Cel”.

In particular, €541 = %E if €4 is small. Thus
(ur, wi) € (', f;a',b';€441) in Bp,.

The (k + 1)th step is completed in this case by defining

1 1
Up+1(X) = —5 U (P2X), Wir1(X) = — Wi (p2x),
2 P>
i1 =@, Brs1 =0, axs1 = @', bryy = b and ry4q = pary.
Note that in this case,

(6.4) |@s1 = Braal = 20,7

Consequently, either the scheme terminates in the next step, or we again fall into the third
case.

This completes the description of the iteration scheme.

If we always end up in the second or the third case, then this scheme continues indefi-
nitely. If at some step, the parameters fall into the first case, the scheme terminates within
finite steps.

Step 2: Proof of (6.1) when the scheme continues indefinitely.



36 O. Savin & H. Yu

In this case, we have €41 <€ — Cei/ 2 for all k, which implies

1
(6.5) E < CF
Together with |a ] — ai| < Ceg, we have ay — a for some a € $9-1 with
(6.6) lay—al<Clk.

For each positive r € (0,1/2), find the integer k such that
k1 ST <Tkg.

From our construction, this implies

1
(6.7) r.<s—randkz= logpl r.
P2

From (u, w) € Z(ax, Br; €x) in By, we have

TN B < {lx-axl < Ce}/*rih.

Combining this with (6.5), (6.6) and (6.7), we have
I'ynB,ci{lx-al < Cr(—logr)_l}.

Step 3: Proof of (6.1) when the scheme terminates within finite steps.
Suppose the iteration scheme terminates at step k, then the first alternative in Proposi-
tion 4.3 implies that, up to a rotation,

N1+
[y, N By, c{lx1] < Celx'|7%,

where x’ denotes the coordinates in the directions perpendicular to e!. Consequently,
€k
TN Bpyr, < {lx11 < Cr—alx'IH“}.
k
For r < pory, we have k < Clogp2 r, this implies

I',NB,c{x|<Cr(-logr) 3.

For r € [por, 1/2), we can apply the same argument as in Step 2 to get the desired esti-
mate. U

Remark 6.2. In general, CV\°8-regularity of the free boundaries is optimal at points inT'1 N
T,.

Suppose 0 € 'y NIy, then we are always in the second or the third case as in the proof of
Lemma 6.1. If we are ever in the third case at one step, then (6.4) implies that we are always
in the third case for later steps. From here, (6.3) and (6.4) imply that, up to a rotation,

cl < Iak—ell < Cl.
k k
As a result, for all small r, we can find x € I'y N B, such that

|1 Bcr(—logr)_l.

The free boundaryT'; is not better than C¥'°% at 0.
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In the following, we show that this is actually the generic behavior at points in Reg.

We show this generic behavior in R?. In general dimensions, the argument is similar.
To state the generic condition, we introduce two parameters for functions defined the
the sphere. For a continuous function f:S! — R, let & be the solution to
Ah=0 in Bjn{x; >0},
h=f on 0B; N {x; >0},
h=0 on By N {x; =0}

Define
2

0
Y1(f):= a—h(O), and yo(f) := h(0).

X1 0x10x>
Then we have the following:

Proposition 6.3. Let ¢,y : S! - R be two continuous functions with ||+ |y| < 1,
(pSl//SZ(pOﬂSlﬁ{xl < 0},

and

Y2(p) # v2(y).

Suppose (uy, uz, us) solves the 3-membrane problem in By with
1 1
Uy = > max{x;, 0} + e and uz = 3 max{xy,0}° — ey along dB,.

Then there are small positive constants €y and ry, depending only on |y2 (@) —y2(w)l, such
that for € < €9, we have the following alternatives:

(D Ifly1(@) = Y1) = 370ly2(9) — Y2 (W), then
FlﬂrzﬂB%ro =@.

@) Ifly1(@) = Y1) < 3r0ly2(9) — y2(W)l, then
Flnl“anro # Q.

Moreover, the free boundariesT'y and T, are no better than CV'°¢ at any points inT1nT'2NBy,.

Remark 6.4. Around a regular point, for y» (@) # y2(y), under all small perturbations in
the directions of ¢ and v, either the two free boundaries decouple, or the free boundaries
are precisely CV'\°8 at any remaining intersection.

Proof. Step 1: The free boundaries are no better than CY'°8 at any point inT1 NI, N By,.
For ry to be chosen, and xp € I'; NI'2 N By, define

1 1
u(x) = —Zul(xo +rpx) and w(x) = - us(xo+rox).
"o "o
Then
0el'ynIy.
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With the same argument for Lemma 4.9, we have
Y1(¢p)

1
(6.8) |lu——max{x-a—xp-a+e€ ,0}2|<§

2 o
and

1
6.9) Iw—Emax{x-ﬂ—xo-ﬁ+eylr(w),0}2|<é

0
in B; for some
81/2
(6.10) E<Ce(—5+ro) and la—e' —ey2(@)|+ | —e' — ey, (W) < Ce®.
T,

0

With Remark 6.2, it suffices to show that in the iteration in the proof for Lemma 6.1, we
will end up in the third case at some step.

Suppose not, then 0 e I', N I', implies that we always end up in the second case. At the
kth step, we have

lay —al+ Bk — Bl < CE.
Together with (6.10), this implies
1/2

lax — Bil = ce(ly2(p) —y2(w)| — Cro— C7).
0

172
)

By taking ro small such that Cry < %1|Y2 () = v2(¥)| and then gy small such that C-%- <

3
ile () —y2(w)], the previous estimate gives
lak — Brl = celya(p) —y2(@)| > 0.

This is a contradiction as the left-hand side converge to 0 as k — oo.
Step 2: Ifly1(g) = y1 ()| = 3 roly2(@) — y2 ()|, thenT1NT2N Bi, =@.
Define u and w as in Step 1 for xy =0, then

(u,w) e Z(a, B; a, b;€) in By

with a = —s%}‘m and b = —8%;”).

With a similar argument as in Lemma 5.7, we know that

1
(6.11) ifFumemB%;éQ), thenla—blszla—ﬁHCE.
On the other hand, with (6.10) and |y (¢) — 71 (y)| = %rolyz () —y2(w)|, we have
1
la—b| = §€|Y2((p) Y2l

1 1
> Jla—pl+ 2ely2(@) vl - Ce?.

If we choose rp and €y small enough, then ielyz () —y2(p)| - Ce? > .
Thus (6.11) implies
Irynli'ynBr =¢@.

1
1
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Step 3: If ly1() = y1(@)| < 3roly2(@) — y2()|, thenT1 NT2N By, # @.

Let u, w, a, B, a and b be as in Step 2.

With [y, (@) —y1(w)| < %rolyg((p) —vY2(y)|, the lines {x-a = a} and {x- § = b} intersect at a
pOil’lt X € By

Consequently, if we define the following points

p1:=0Bin{x-a=a}, q1:=0Bn{x-B =0}

p2:=0B1n{2a—-P)-x=2a->b}, and g2 :=0B1N{(2—a)-x=2b—aj},
then
|p1— g2l = cely2(@) —y2(¥)l and |q1 — p2| = cely2 (@) —y2 (W)l

Meanwhile, the previous proposition implies that the free boundaries I', and I';, are
C! curves in B;. Moreover, the intersection I';, N dB; consists of two points within CVeE
distance from p; and p, respectively. The intersection I'y, N 0B; consists of two points
within Cv/e& distance from ¢; and g, respectively.

If we choose ¢y and ry small such that € < cely2 (@) —y2(w)], the connectedness of the
free boundaries implies that they intersect. See Figure 9.

_ /((2ﬁfa)-z:2bfa}

{2a—p)-z=2a—0b}

{z-a=a}

FIGURE9. I', and I', intersect.

7. FREE BOUNDARY REGULARITY OF Sing,

In this section, we prove Theorem 1.4. Recall that singular points of type 1, Sing;, are
defined in Definition 2.10.

The proof is based on an iteration of Proposition 5.3. To iterate, however, the angle
between the hyperplanes, namely, |a — ], has to stay below the critical level.

This is obtained through the following lemma on Weiss energy:
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Lemma 7.1. Let (u;, Uy, u3) be a solution to the 3-membrane problem in By with0 € I’y nI,.
Suppose that

|u; — P(a, B; a,b)| + |us + Q(a, B; a, b)| < €4 inside B;
for (PQ)(a,B;a,b) asin (5.1) and
la — Bl e (58}1/2,25821/2).

Then thereisn >0 andr € (0,1/2), depending on the dimension, such that
1
W((uk‘))o) r) < W((uk),(), 5) - 17

Here € is a dimensional constant, and d is the dimensional constant in Proposition 5.3.

The functional W is the Weiss energy defined in (2.1).

Proof. Suppose, on the contrary, that there is no suchn and r.
Then we can find a sequence of solutions (), satisfying the assumptions, but
1 1
W((uk)nyo) rn) = W((uk)n)o! 5) - ;
with r;, — 0 for all 7.
With 0 e I'; n Ty, Theorem 2.3 gives compactness to the sequence. That is, up to a sub-
sequence,
(i) — () in C%(By)
for a solution (uy) in B; satisfying

(7.1) lu; — P(a, B;a,b)| +|lus + Q(a, B;a,b)| < €4 in By

for some |a — f| € [582/2,2682/2].

As aresult, we can apply Lemma 5.9 to u = u; and w = —u3 to get
1 .
(7.2) lu; — P, )| < Eedpg in By,

for P(a’, B) asin (5.1) and
la'— B = |a— Bl +20¢e,.

On the other hand, uniform convergence of the gradient in By, implies
1
W((ug),0, E) < W((ug),0),

where W ((uy),0) is the limit defined in (2.2).
Thanks to Theorem 2.4, we know that () is 2-homogeneous in By ».
Together with (7.2), this homogeneity implies that for x € By,
! /

1 . , a 5 1 , b 2 1
|u1(x) — —min{x-a’'— —,0}* — —max{x-f — —,0}°| < —¢&4.
2 P2 4 P2 2
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With (7.1), we have

1 1
|§min{x-az—a,0}2+L—Lmax{x-ﬁ—b,O}2

1 a 1 b 3
— —min{x-a’ - —,0}> - —max{x- g’ — —,0%| < =¢y4
2 P2 4 p2 2

in Bl.

By Lemma 5.7, |al, | b, I;’—;I, Ip%l < Ceg4. The estimate above contradicts |a’'— | = |a — |+

20¢, if €4 is small.
This implies the angles remain below the critical level along Sing; :

Lemma 7.2. Suppose (u1, uy, us) solves the 3-membrane problem in B, with
0 € Sing;
and .
W (i), 0,1) < Wi + 2.
If, for somee < €4,
luy —P(a,B;a,b)| +|us+Q(a, B;a,b)| <€ in B;
for (P,Q)(a, B;a,b) asin (5.1) with|a— | < 26€Y2 then
la — Bl < 8e'/2.

Here 6, €4 andn are dimensional constants.
Recall that W is the Weiss energy of unstable half-space solutions as in (2.3).

Proof. Let n be the constant from Lemma 7.1.
Suppose |a — B| = §&'/?. We get a contradiction by iterating Lemma 5.9.
Define uy = uy, wo = —us, ap=a, fo= P and €g = €. Then

(1o, wo) € & (ap, Po; €0) in By,

where the class of solutions .# is defined in Definition 5.1
Suppose, for some (m — 1), we have found

(Um—1, Wm-1) € L (X m-1, Pm—1;Em—1) in By

with |@pm-1 ~ Brm-11 € [6e,2 |, 26€)12 1.
If £,,,-1 = €4, then we terminate the iteration.

Otherwise, we apply Lemma 5.5 to get
(Um-1, Wm—1) € L (@, ,Bl;gm—l) in By,

with Ia’ - ﬁ/| =|a,;_1— ﬁm—ll +20€,,-1.
Define

1 1
Um = — Um-1(p2X) and wy, = ?wm—l(sz);
2 2

am=a',Bm=p ande,, = (_ng);

OJ
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Then we have
(Umy W) € L (Am, Pm; €m) In By

with
1/2
Moreover,
40
3/2
Em 2 Em_l + Egm_l.

In particular, within finite steps, we have €,, > €4, and the iteration terminates.
At the final step, we have

(Um, W) € L (@ m, Bm; €m) in By
with 164 <& <éeg, and |am, — Bl € (6112, 26€1%].
Consequently, Lemma 7.1 gives
W((ux) m,0,7) < W((ug) m, 0, %) —1.
Rescale back and use the monotonicity of Weiss energy, we have
W ((ug),0,7p5") < W((ug),0,1) —n< Wy — %n.

Meanwhile, 0 € Sing; implies W ((uy),0) = Wi > W ((ug), 0, rp’zﬂ), contradicting the mono-
tonicity of the Weiss functional. 0J

Remark 7.3. One consequence of this lemma is that Sing, is generically unstable.
Consider perturbations as in Proposition 6.3, but for unstable half-space solutions, that
is, solutions satisfying the following along 0B; :

1 1 9 1 . 1 2
uy = 5 minfx;, 0} + - max{x;, 0} + £9, and ug = =7 min{x;, 0" — 2 maxix;, 0} — £y

Define u = uy and w = —us. With similar arguments as in the proof of Proposition 6.3,
(u, w) are well-approximated, within error €, by unstable half-space profiles with

la— Bl ~ ly2(p) —y2(p)| > 582,

Lemma 7.2 then says that Sing, N By, is empty for a small ry.
In particular, with the complete classification of homogeneous solutions in two dimen-
sions, T1 NT2 N By, consists of regular points after this perturbation in R?.

The previous lemma says that the angle stays strictly below the critical level. Conse-
quently, iterations of Proposition 5.3 can be performed indefinitely. This leads to the fol-
lowing point-wise estimate at points in Sing; .

Theorem 1.4 is a direct consequence of this point-wise localization.

Lemma 7.4. Suppose (u1, uy, us) solves the 3-membrane problem in B, with
0 € Sing;

and .
W((uk),o, D<sW;+ 51]
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If
|luy — P(a, B;a,b)| +|usz + Q(a, B;a,b)| < € in By,

for (PQ)(a,B;a,b) asin (5.1), |a— Bl < 26eY? and e < €4, then, up to a rotation,
I'1NTyN B, C{x;] < Critea;

forallre(0,1/2).
Hered, €4, a g, n and C are dimensional constants.

Proof. This proofis based on an iteration of Proposition 5.3.
Define u = u; and w = —us. It suffices to prove

[,NT,NB, x| <Crit®y

forall r € (0,1/2).

Define uy = u, wo = w, ag = a, fo = B, and gy = €. Then applying the previous lemma,

we have
(o, wo) € & (o, Po; €0) in By

with |ao — ol < 5}/

Suppose we have completed the mth step of this iteration, that is, we have found

(Um, Wm) € L (Am, Pm; €m) IN By

with [, — Bl < 6el/2.
Then we apply Proposition 5.3 to get

1
(U, W) € L, B S €m) in By,

with |@' — /| < |, — Bml + Cep.
Define 1
(Um+1, Wm+1) = _Z(um’ wm)(p1X),
1
Ami1 =0, Bmr1 =P and €41 = %em. Then

(Um+1, Wm+1) € L (@m1, Pm+1; Em+1) in By.

Also,

1/2 1/2
|@ms1 = Pmr1l <O€" + Cem <6R2€m41) "+ CEmr.

Consequently, we have |a,+1 — Bm+1l < 268}7&1 if 4 is small.

Moreover, if we define @7 = uy41, o = —Ume1 + Wiye1 and i3 = — w41, then
- 1
W((iiy),0,1) = W((uk),O,pi"“) < W((ug),0,1) < Wy + 517-

In particular, Lemma 7.2 gives

1/2
|@m+1 = Pm+1l <O€,7 5.

This completes the (m + 1)th step of the iteration.
Now for r € (0,1/2), find the integer m such that p[**" < r < pI™.
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The estimate at step m( implies that

1
r,NT,NB,c{x al< cwg”zr}

1 s +1
for some a € $471. Using p]™"" < r, we have

I,NT,NB,c{x-al<Ce?riteay

where a; depends on p;. U

8. FREE BOUNDARY REGULARITY OF Sing,

In this section, we prove Theorem 1.6 about the stratification of singular points of type
2, Sing,, as in Definition 2.10.

The proofis an application of the classical ideas of Monneau [M]. It suffices to prove the
following monotonicity formula at points in Sing,. The rest follows exactly like in [M].

The reader is encouraged to consult Colombo-Spolaor-Velichkov [CSV], Figalli-Serra
[FSe] for recent developments on the singular set in the classical obstacle problem, and
to consult Savin-Yu [SY2, SY3] for regularity of the singular set in the fully nonlinear obsta-
cle problem.

Lemma 8.1. Suppose that (11, uz, ug) solves the 3-membrane problem in By with 0 € Sing,.
Let (vy, v2, v3) be a parabola solution as in Definition 2.9.
Then the following is a non-decreasing function inr € (0,1) :

1 2
M(r) =~ /aBrZ(uk—Uk) .

Proof. Define wy = uy—vifork=1,2,3.
Let W denote the Weiss energy as in (2.1).
By its monotonicity as in Theorem 2.4, and the definition of Sing,, we have

0 <2W((uk)y0) r) _ZW((U]C))O) r)

1 2
= (IVuel? = Vel + 2wy - 2w ——/ (- 1v?)
pd+2 /B,Z k k 1 3 Fd+3 aBrZ k k
1
rd+2

1
pi / Y (—wiAwg —2wiAve) + 2wy —2ws
B,

Vwgl? +2Vwy -V 2w, -2 2 242
BZ(I Wil™ +2Vwi - Vvg) + 2wy - Ws =073 . > (Wi +2wivy)

- 2 Z(w2+2wkvk)+ ! / Zwk(wk) +i/ Zwk(vk)
rd+3 3B, k rd+2 Jop Vo pd+2 3B, v

where (-), denotes the normal derivative of a function.
By definition of parabola solutions, we have Av; = 1 and Avs = —1. Their homogeneity
implies r(v), = 2vy along 0B,. Thus we can continue the previous estimate to get

1 1
rd+2/ Z(_kawk)+rd+3/a > wielr(wi)y — 2wgl.
B, B,

0<
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Note that

d 1
r M) =2—0 aB,Z wilr (we)y — 2wy,

it suffices to show that }_ wAw; = 0.
We actually verify this condition for general N, that is, when there are an arbitrary num-
ber of membranes. See the following remark. 0

Remark 8.2. It is interesting to note that a similar proof works when there are arbitrary
number of membranes.

Suppose that (uy, uy, ..., uy) solves the N-membrane problem with constant forcing terms
fi> fo>--> fn, and that vy = %x-Akx are parabola solutions satisfying vy = viy, and
trace(Ax) = fi. To extend the previous proof for this situation, the only non-trivial step is
to show that

Y (uk — vi) Alug — vg) = 0.
Suppose for some m, n, we have, at a point x,
Up(X) > Upt1(X) = Ups2(X) = = Upym(X) > Uptma (X).

Then we have YT A(uy — vi)(x) = 0 and Aug(x) = %221’1” fj foreach k = n+1,n+
2,...,m, which imply

n+m
Y (e — i) () A(ug — vi) (x)
k=n+1
n+m
== Y v Aug— v (%)
k=n+1
n+m n+m 1 n+m
= > ve@fi— Y. vk@(= Y. fi).
k=n+1 k=n+1 j=n+1

By the rearrangement inequality, this is non-negative since Vi = Vi4+1 and fi = fr+1.

APPENDIX A. FREE BOUNDARY REGULARITY IN THE OBSTACLE PROBLEM

This appendix is devoted to the study of the obstacle problem, namely,

Au=Zuso
uz=z0

(A.1) in Q.
The goal is to show that the free boundary 0{u > 0} is regular when the solution is well-
approximated by a half-space solution.

In essence, this is the classical result by Caffarelli [C1]. However, for our purpose, we
need a version with a quantified C1'*-estimate. This seems difficult to find in the literature.
We include it here with a proof. Our proof is different from the one in [C1]. A similar
argument was used in [B].

Theorem A.1. Suppose u solves the obstacle problem (A.1) in By with 0 € 0{u > 0}.
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If we have, for somee < €,
]. 2 .
Iu—zmax{xl—a,O} | <€ in B,

then 0{u > 0} is a C"*-hypersurface in By ;> with C*"*-norm bounded by Ce.
Here e, and C are dimensional constants.

The proof is based on an improvement of flatness argument. To simplify our notations,
we introduce the following class of solutions:

Definition A.2. Fora € S and a € R, we write
ueX(a;a;e) in B,

if u solves the obstacle problem in B, with 0 € 0{u > 0}, and
1 2 2,
Iu—Emax{x-a—a,O} | <er<inB,.
Similar to Lemma 3.5, we have

Lemma A.3. Suppose u solves the obstacle problem in B,.
Ifu< ﬁrz along 0B, then u(0) = 0.

Similar to Lemma 4.6, we have

LemmaA.4. Suppose u € Z(a; a;¢€) in By.
Define P = %max{x- a—a,0}2.
Then there are dimensional constants A and €4 such that

P(-— Aea) <u< P(-+ Aea) in By)»
ife<ey.
Theorem A.1 is a direct consequence of the following improvement-of-flatness result.

Lemma A.5. Suppose ue€ Z(a;a;e€) in By for somee < €.
Then there are ' € S~ and a’ € R, satisfying|a' — a|+ |a’ — a| < Ce, such that

1
11, .
ueRa;a ,56) inB,.
Hereey, p and C are dimensional constants.

Proof. Tt suffices to prove the result when a = e'.
Similar to Lemma 4.2, we have |a| < Ce!/2.
Define P = 3 max{x; — a,0}* and 2 = 1 (u— P).
Then |i| <1in B;.

With u = P — ¢, we have

AQt=0in By nix; > a+ Ce"?.

Meanwhile, Lemma A.4 implies

(A.2) |0 < Ce'’? in Byjgnix; < a+ Ce''?).
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Let h be the solution to
Ah=0 inBygnix; >a+Cel’?},

h=d indBygnix; >a+Cel?,

h=0 in Byjgn{x; = a+ Cel’?.
The previous estimate on 7 gives

it~ hl < Ce"? in Byjg N {x; > a+ Ce'?.
Using the definition of #i, (A.2) and boundary regularity of h, this leads to

1
|u— [E(xl - a)2 +e(x;—a)(y: + Z Yixi)ll < Ce(‘s”2 + r3) in B, Nn{x; > a}
k=2

for some bounded constants y and for all r < 1/2.
el +eYisayret

I — o I_ '_al<
TS 1o e and a’' = a—e¢y;, then|a' —al+|a —al < Cg, and

If we define ¢’ =

1/2

1 / I m2 3y :
Iu—imax{x-a—a,O}lsCs(e +r°)in B;.

To conclude, we first choose p small such that Cp® < 1p?, then &4 small such that Cel/? <

12

apb- -
APPENDIX B. AN AUXILIARY FUNCTION

In this section, we study an auxiliary function that is useful for the two arguments for
improvement of angles. To be precise, our result reads

Proposition B.1. Let H be the solution to the following equation
AH=0 in RN {x; > 0},
H = (x2)*Zjo<x,<1y  0n{x1 =0},
lim|y—ooc H=0.
Then there are two positive constants Ay and A such that, foreach0 < r < 1/2, we have
|H— A1x1 + Ao x1 X2logr| < Cr? in B, n{x; > O}.
Here C is a dimensional constant.

Note that H depends only on the variables x; and x,. Thus it suffices to consider the
problem in R?. To simplify our notations, we write

R? = R*N {x; > 0}.
We build H from dyadic blocks. The basic building block is the following:
Lemma B.2. Let hy be the solution to the following equation
Ahy=0 inR?,
ho = (x2)*n<xp<zy 0N {21 =0},

lim|x|_,oo h() =0.
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Then 0 < ho <4, 2 ho(0) > 0 and 55— ho(0) > 0.

Proof. The bound on hy follows from the maximum principle.

The strong maximum principle implies that hy is strictly positive in R2. With h(0) = 0,
we have aixlho (0) > 0.

Let g be the solution to

Ag=0 in R?,
8§ =2x2%1<|xy<2y ON{x; =0},
lim|x|_,oog =0.
By symmetry, g(x1,0) =0 for all x; > 0.
Note that % hg solves the same equation, except that it assumes boundary value 2x, 1 < x, <2}
along {x; = 0}. Thus aixzho = g along {x; = 0}. The strong maximum principle implies

0
—ho(x1,0) > g(x1,0) > 0 for x; > 0.
aX2

. 2
With a%zho(O) =0, we have ﬁho (0) > 0. L]
Now we give the proof of Proposition B.1:

Proof. Tt is elementary that H can be decomposed as the following series

1 k

Hx)=)_ e ).
k=1

For r € (0,1/2), with 0 < hg < 4 we have

16 ,

1 1
Z —kh0(2 x)<4 Z 4—k<?r .
k=logy r k=log r
2 2
Meanwhile, for x € B,/» and k < log 1r, we have |2¥x| < 1/2. Boundary regularity of hg
implies
2

1 k 0 k k L k.3 ki3
4—k|h0(2 x)—a—)qho(O)Z xl_d hy(0)4 x1x2|<cﬂ|2 x|° < C2%|x|°.

X10X2
2 2
Note that we have used %ho (0) = a%hg (0) = aaTghO (0) =0.

Define A; = %ho (0), and A, = ﬁho (0). Then the previous estimate implies

1 1
Y —hC'0- Y (GAm+Axx)l<C Yy 2xP<cr’

I<k<log: r 1<k<log; r 1<k<log; r
2 2 2
Combining these, we have

1 .
|H-Aix; ), —k—Aleleog%rlsCrzlnBr/zﬂ{xl>0}.
1<k<log; r
2
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