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ABSTRACT

This paper considers static models of traffic in urban regions that can produce multiple equilibria.
Models with one mode of travel can have one equilibrium in the light congestion regime and mul-
tiple in hypercongestion. Models with two modes, which differ by occupancy, can have multiple
in both light congestion and in hypercongestion due to mode-switching. We analyze whether the
equilibria that arise are stable to local perturbations of the stock of people traveling at once. For
one-mode models, unstable and stable equilibria can be distinguished by a simple rule-of-thumb.
For two-mode models, the same rule-of-thumb can identify certain unstable equilibria, but to de-
termine whether some equilibrium is stable requires performing a calculation for each equilibrium.
Keywords: Equilibrium, Stability, Multi-modal traffic
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INTRODUCTION

Even the simplest economic models can have more than one equilibrium: the “stag hunt” game (/),
wherein two people make one binary choice once, has two. It should probably not be surprising,
then, that static! traffic models, wherein masses of people interact with the rules of traffic physics,
also seem to yield multiple equilibria.

The canonical static model was first formulated in Walters (4). Consider a uniform highway
with a variable demand, represented as traffic flow, that depends on the road’s travel time. There
are no entries or exits along the highway, so vehicles can only arrive from upstream. The model’s
logic can be understood by way of a diagram like Fig. 1, with vehicle flow on the horizontal axis
and travel time (or some money cost index determined by travel time) on the vertical axis. In this
coordinate system, a demand curve T¢ (the blue line) gives the travel time which invites a certain
flow. Another curve T°, interpreted as a “supply curve,” gives the locus of flow/travel time pairs
consistent with the road’s fundamental diagram (that is, with the microscopic behavior of drivers
in stationary traffic). T¢ is assumed to be non-increasing, because fewer people want to drive when
driving takes longer. But 7° bends backwards when travel time is higher than a certain point. The
lower, rising branch of 7 is sometimes called “light congestion” and the upper, declining branch
“hypercongestion.”

travel time

0

0 veh. flow

FIGURE 1: Static model example with equilibria in hypercongestion

In Walters (4), intersections of the T and T curves are said to be the model’s equilibria,
where traffic physics and demand coincide. Since T¢ is non-increasing, there can only be one on
the light congestion branch. But it is easy to see from the figure that there could be many equilibria
on the hypercongestion branch. Figure 3 has three, with two in hypercongestion. The multiplicity
of equilibria poses the question of which ones would or could actually obtain. A debate ensued,
in particular, around the stability of hypercongested equilibria—that is, whether the system would
return to a given equilibrium following a slight perturbation away from it. (See reviews of this
debate in Small and Chu (5) and Arnott and Inci (6).) Some researchers favored the stability of
hypercongested equilibria where T¢ cuts T* from above (such as e;), and others where T¢ cuts T*
from below (such as e3).

IThere are two broad classes of economic models of traffic: static and dynamic. (See Lindsey and Verhoef (2) for
a review.) In dynamic models, such as the “bottleneck model” (3), travelers decide when to travel. In static models,
they only decide whether or by what mode to travel.
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In a series of papers (7-9), Verhoef cut the Gordian Knot by introducing the criterion of
“dynamic stability” (or “dynamic consistency”). An equilibrium is dynamically stable if it can
be reached from any other equilibrium by changing the arriving flow of traffic. In theory and
in car-following microsimulations, equilibria that imply hypercongestion along the entirety of a
route cannot be reached in this manner from equilibria in light congestion. Thus, whether or not
hypercongested equilibria are stable to some proposed perturbation, they cannot transpire. In place
of the declining branch of 7, Verhoef argues for a vertical branch such as the dashed line in Figure
1, to capture the impact of a stationary queue that does not reduce capacity. Consequently, only
one equilibrium can be obtained.

Granted that Verhoef is correct about the models he considers, the motivation for this paper
is that there are other static traffic models with multiple equilibria. First, there are models in
which the facility of interest has entries and exits dispersed throughout—such as a neighborhood
of city streets. Vehicles can rush into city streets from parking spaces and the periphery at a rate
higher than circulating traffic can possibly park or leave, and so hypercongestion is possible. These
models are usually “bathtub models,” meaning the rate trips finish is a well-defined function of
vehicle density and speed. Most bathtub models are dynamic: e.g., Small and Chu (5), Geroliminis
and Levinson (/0), Arnott (//), Simoni et al. (/2) and Lamotte and Geroliminis (/3). But a few
are static: e.g., Arnott and Inci (6), Lehe (/4), Lehe (/5) and Lehe and Pandey (/6). Arnott and
Inci (6) deals explicitly with the stability of various equilibria of a model in which drivers search
for scarce parking in a downtown zone.

Second, Lehe and Pandey (/6) shows that, under reasonable assumptions, a demand curve
such as T¢ can rise (that is, flow demanded can increase when speeds fall). The phenomenon is
named hyperdemand. The mechanism has to do with the distinction between the rate of person-
trips and vehicle flow: while the rate of person-trips reasonably falls with speed, the vehicle flow re-
quired by these trips may rise if falling speeds cause people to switch from high- to low-occupancy
vehicles. For example, suppose people dislike spending time on the bus more than in cars, so that
a fall in traffic speeds will persuade some people to switch from bus to car. When enough people
switch as to outweigh the number of drivers who quit their trips altogether, the vehicle flow consis-
tent with demands may rise with congestion—even though fewer people make trips. But whatever
the particular justification for switching, any model with hyperdemand can support multiple equi-
libria even without hypercongestion. Imagine the 7¢ curve of Fig. 1 drawn with a rising portion;
such could intersect the lower branch or dashed branch of 7° more than once.

This paper considers the stability of equilibria in models with hypercongestion and hyper-
demand. There are two models: (i) a one-mode bathtub model with hypercongestion; (ii) a two-
mode bathtub model with both hypercongestion and hyperdemand. In many places, the analysis
resembles Arnott and Inci (6), but there are several differences: (i) there is no parking constraint;
(1) the two-mode system is capable of hyperdemand; (iii) stability is established by considering
local perturbations at equilibria rather than via phase portraits of the global state space.

The paper is organized as follows. Section 2 describes a physical setting (a downtown zone)
and its physics, lays out a static version of the one-mode model and characterizes the model’s pos-
sible equilibria. Section 3 introduces clock time to the one-mode model and analyzes the stability
of equilibria to perturbations of the stock of people traveling at once. Section 4 lays out a static
version of the two-mode model for the same setting, shows how hyperdemand happens and char-
acterizes its equilibria. Section 5 introduces clock time to the two-mode model and analyzes the
stability of equilibria by considering the trace and determinant of its Jacobian. Section 6 gives a
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numerical simulation of the two-mode model with “nested logit” demands. Section 7 concludes.

ONE-MODE STATIC MODEL

This section describes a purely static one-mode model, including the physical setting, traffic re-
lations and units—which will all persist throughout the rest of the paper. There is no mention of
clock time here, because this section does not deal with out-of-equilibrium behavior whereby the
system state could change over time.

Physics
The setting is a downtown zone. Vehicles are spread uniformly over a homogeneous street network,
so that all vehicles move with the same speed. Distance units are arbitrary “du’s,” and time units
are “tu’s.” All vehicles are, for physics purposes, the same; they do not take up different amounts
of space. Hence, all traffic physics can be represented in units of “veh” (vehicles). Traffic physics
revolves around the following three statistics:

— t (tu/du): unit travel time

— k (veh/lane-du): vehicle density

— ¢ (veh/lane-tu): vehicle flow

The network is assumed to be sufficiently homogeneous such that all vehicles move at the
same speed, so there exists a function t = T'(k) giving the unit travel time for a given vehicle den-
sity. Because traffic slows down as the network becomes crowded, 7 (k) is always non-decreasing,
and rising above a certain vehicle density, as in Fig. 2a.

By the Fundamental Identity of Traffic Flow ¢ = k/t, there also exists a function g = f (k) =
k/T (k). This f(k) is the relationship called the Network or Macroscopic Fundamental Diagram.
Its existence in such downtown zones has been confirmed by some studies (e.g., Geroliminis and
Daganzo (/7) and Buisson and Ladier (/8)), and its form can be derived theoretically from facts
of the roadways (19, 20). f(k) is unimodal, as in Fig. 2b. Its maximum occurs at the “critical
density” k.. For k < k., vehicle flow rises with density; this is the light congestion regime. The
plots of Fig. 2 have that regime in pink. For k > k., where f’ < 0, the regime is hypercongestion.

The same information can be represented as a flow/unit travel time curve via the parametric
curve {f(k),T (k)} of Fig. 2¢, which is equivalent to the solid-line 7* in Fig. 1.

= =
= -
= tk) ¢
+ E |
~ |
= 1
[} 1
> |
0 1 0
0 veh/lane-du k. veh/lane-du 0 veh/lane-tu
(a) (b) (©)
FIGURE 2: Traffic relations for the zone
Demand

At a constant rate, opportunities to travel appear and “passengers” decide whether to make a trip on
the only mode available. Let the demand function G(¢) (pax/lane-du-tu) give the rate passengers
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begin trips, per lane-du of the zone, given a unit travel time 7. G(¢) declines (that is, demand falls
with 1), as trips take longer. When passengers travel, they do so in a mode with an occupancy of ¢
(pax/veh). Passengers’ mean trip length is / (du).

To tie traffic statistics to demands, let

O(t):=G(t)l/¢ (veh/lane-tu) (1)

give the vehicle flow demanded for a given t. While passengers demand trips, rather than
vehicle movement, Q(¢) gives the vehicle flow consistent with trip demands. Since G declines, and
Q(r) is its multiple, Q declines, too.

Since vehicle density maps to unit travel time via 7 (k), we can also write vehicle flow
demanded in terms of vehicle density. Define

D(k) := Q[T (k)] (veh/lane-tu). 2)

The derivative of D is Q'T’. Since T’ > 0 and Q' < 0, D is declining. This function is useful
in deriving equilibria below.

Equilibria
An equilibrium occurs when passengers’ travel choices give rise to a unit travel time which, in
turn, invites those same choices. At an equilibrium value of vehicle density k = k°, we have

f (ko) = D(ko) (veh/lane-tu). 3)

Figure 3 plots f(k) and D(k) (the two sides of (3)) in (k,q) space. In this figure, f(k) plays
the role of a “supply curve” and D(k) of a “demand curve.” Figure 1 presents the same situation in
the (g,t) space traditional to transportation economics, and has the same equilibria labeled.

Z| D)

£

<

4

Z| ) es

€3
0
0 k (veh/lane-du)

FIGURE 3: Equilibria in a one-mode system

There are three equilibria in the figures. Table 1 describes them according to two binary
properties: (i) whether the equilibrium occurs in light or hyper congestion; (ii) the equilibrium’s
“cut”” Cut describes whether, at equilibrium, D cuts f from above (i.e., D' < f’) or from below
(i.e., D' > f’). The curves were drawn to illustrate all three feasible? combinations of cut and
congestion regime.

2The combination of light congestion and a cut from below is infeasible, because f is rising in light congestion and
D always declines.
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equilibrium congestion cut

1 light above
2 hyper below
3 hyper above

TABLE 1: Properties of feasible equilibria for one-mode model

Demand shifts

An equilibrium’s cut implies lessons for public policy—though not necessarily good ones. Con-
sider a continuous policy metric, indexed by p, which reduces the vehicle flow demanded: i.e.,
such that dD / dp < 0. p could be the level of a toll, a measure of transit service quality or any
other initiative that would intuitively “get people out of their cars.” At first blush, cutting the
vehicle flow demanded ought to ameliorate congestion. But this is not necessarily so. Define

2(k) = D(k) = f(k), )
and let k = k, be the density at an equilibrium, such that z(k,) = 0. By applying the implicit
function theorem at k = k., we have
dk,  dz/dp 9D/dp
dp 8z/8k D —f
Since dD / dp < 0 by assumption (that is, the policy reduces the vehicle flow demanded),
it follows that

(&)

sgn{ dk./dp } = sgn{D'(k.) — f'(ke)}. (6)

Thus, if the equilibrium exhibits a cut from below (i.e., if D' > f”), then a marginal increase
in the policy will raise vehicle density and, by extension, the unit travel time.

This is an odd result. Why should reducing demand make traffic worse? The authors’
suspicion is that it should not, and that this result is a clue that equilibria with cuts from above
are of questionable relevance—mathematical artifacts of the model that could never be observed
in real life.

ONE-MODE STABILITY ANALYSIS

This section develops a “dynamical” analysis of the above model and considers stability of equi-
libria. We mean “dynamical” in the sense that we consider perturbation in clock time away from
equilibrium values, not in the sense that passengers schedule trips among different clock times.

Setup
We introduce a number of new variables and orient the discussion around instantaneous values of
passenger stocks. Let u be the “clock time.” Define the following instantaneous quantities at clock
time u:
* P(u) (pax/lane-du) passenger density: the density of passengers traveling at once (nor-
malized per lane-du);
* E(u) (pax/lane-du-tu) exif rate: the rate passengers complete trips per lane-du (and hence
exit the network);
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* A(u) (pax/lane-du-tu) arrival rate: the rate passengers begin trips per lane-du (and hence
arrive in the network);

* t(u) (du/tu) instantaneous unit travel time;

* k(u) (veh/lane-du) instantaneous vehicle density.

Let a dot over a quantity indicate its time derivative. Conservation of passengers implies

P(u) =A(u) —E(u) (pax/lane-du-tu). (7)

That is, the rate of change in passenger density on each mode is simply the flow of arriving
passengers net of exiting passengers, normalized per lane-du of roadspace. Our goal is to turn (7)
into an autonomous system where the rates of change of passenger stocks are written in terms of
the instantaneous levels of passenger stocks. To start, we will make a pair of assumptions that let
A(u) and E(u) be decomposed. The first concerns arrivals:

Assumption 1 (Myopia). The arrival rate at clock time u depends only on t(u):

A(u) =Glt(u)] (pax/lane-du-tu). 8)

We call this assumption “myopia” (nearsightedness) because passengers make decisions
based only on current traffic; passengers do not forecast how traffic might change in the course of
their trips.

The second assumption concerns exits.

Assumption 2 (Bathtub Physics). The exit rate at clock time u is given by

_ P(u)
E(u)—m

(pax/lane-du-tu). ©)

This is to say the model is assumed to have the “bathtub” physics coined by William Vick-
rey (in notes published as Vickrey (217)). Beyond the homogeneity and the function 7' (k) we have
given our setting, a requirement for Bathtub Physics to apply exactly and continuously is that the
distribution of arriving traffic has a constant, negative exponential distribution of trip lengths (Jin
(22) supplies a rigorous treatment of the question). Arnott and Inci (6) makes the same assumption.

Occupancy being ¢ (pax/veh), a passenger density of P(u) means vehicle density is

k(u) =P(u)/¢ (veh/lane-du). (10)
Swapping T [k(u)] for #(u) yields
P
E(u) = T k((b:t))] ; (pax/lane-du-tu) (11)
Au) = G{T[k(u)]} (pax/lane-du-tu) (12)
With (11) and (12), we can now write the autonomous system as:
. P
P=G|T(P —_——. 13
TP/~ Fpra (13)

Here the dependence on clock time has been dropped, because the system does not depend
explicitly on clock time; only on the level of P.
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Steady-state equilibria

Now consider steady-state equilibria. In a steady-state equilibrium, P = 0: the stock of passen-
gers is constant. Suppose that it is constant at a level P = P°. By setting the LHS of (13) to 0,
substituting PY for P and rearranging the RHS, Py can be written as the fixed point:

Py=Gli(Ro/9)] -1-T(Po/6). (14)

But economists traditionally look at traffic equilibria in terms of vehicle flows. So note
that, via the Fundamental Identity f = k/t and the fact k = P/¢, we have

P

flk] = f[P/o] = W (veh/lane-tu). (15)
Next, rewrite (13) as
P:G[T(P/(p)] —M, (16)
and using equation (2),
p=2[p/o) - flp/0]]. (a7
It follows that, at P = Py, we have
D(P°/9) = f(P/9). (18)

Stability

Not all equilibria that satisfy (18) are stable, which Strogatz (23) defines as: “An equilibrium is
defined to be stable if all sufficiently small disturbances away from it damp out in time.” More
specifically, stability requires that

dP/dP < 0. (19)

If this is the case, following a small increase (decrease) in P at an equilibrium, P will tend
to decline (rise) back towards its equilibrium level. Differentiating (17) yields

dP/dP = %(D’ - 1. (20)

Hence, we have:

Proposition 1. For the one-mode model, an equilibrium is stable if and only if it has a cut from
above (i.e., if D' < f').

Equilibria with cuts from below (D’ > f’), which have questionable policy implications,
are unstable. Note that one advantage of analysis in the (k,q) plane is that e; and e3 in Fig. 3 have
the same cut. To state the same information using the (g,¢) plane of Fig. 1, we would have to say
that an equilibrium is stable if and only if it 7¢ cuts T* from above in light congestion or from
below in hypercongestion.

To summarise, equilibria e; and e3 in Fig. 3 are stable because they have a cut from above
(D' < f"). Equilibrium ej3 if Fig. 3 with questionable policy implications has a cut from below
(D' > f’) and is unstable.
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TWO-MODE STATIC MODEL

This section repeats the analysis of Sec. 2 but with two modes: L and H. A system with just one
mode of travel has only one equilibrium in light congestion, but a system with two or more modes
has the potentially for multiple equilibria in light congestion.

Physics

The setting is unchanged from the previous one-mode model: the same functions 7' (k) and f(k)
give, respectively, the unit travel time and vehicle flow given a vehicle density k. In this case,
however, our understanding of “vehicle density” must be broadened. Let the unit “veh,” previously
an actual vehicle, now stand for a “vehicle unit”: a measure of space consumed by vehicles. A
car, for instance, might take up one vehicle unit and a bus four. Mode i = L, H has an occupancy
¢; (pax/veh) giving the number of passengers per vehicle unit. Without loss of generality, suppose
that ¢, < @, so that H carries more passengers per vehicle unit. A trip by H could be thought
of as a bus trip (provided that the number of buses scales with their passengers) and a trip by L
a trip driving oneself in a car. Thus, vehicle density k is the number of vehicle units per lane-du
of network, and vehicle flow g gives the rate a roadside observer counts vehicle units pass (rather
than actual vehicles).

Demand

In this model, in addition to choosing whether to travel, passengers also decide how to travel. Let
G (1) (pax/lane-du-tu) give the rate (per lane-du of network) that passengers demand trips on mode
i=L,H, given a unit travel time r. When the unit travel time rises, a trip by either mode takes more
time. Hence, total demand declines with ¢:

G, + Gy < 0. (21)

Since passengers can switch between modes, G} or G, could be positive, as long as total
demand falls. This possibility leads to the hyperdemand phenomenon mentioned above.
Assume trips on mode i = L, H have mean length /; (du). In this case, the function

l l
0(t) = 2GL(t)+LGy(t)  (veh/lane-tu) (22)
)3 )
gives vehicle flow demanded conditional on 7. Next take the derivative
) )
0't)= —LGZ(I) + (PEG;H () (veh/lane-tu?). (23)
L H

Even though total demand for trips (the sum G + Gg) falls with 7, it is possible that Q'(7) is
still positive, because Q(¢) is a weighted sum of Gy and Gy. For example, suppose Iy /¢y < I1/@r
and that, at some ¢ = t*, Gy falls and G, rises such that

I/ On
IL/¢L

In this case, we have Q' (1*) > 0 and G} (t*) + G}, (t*) < 0: the vehicle flow demanded rises
with the unit travel time, even though the total trip demand falls. For an explicit justification of
why this might happen, see Lehe and Pandey (/6), but for our purposes here what matters is the
possibility.

0 < —Gy(t") < GL(t*) < —=Gy(tY). (24)
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As above, let

D) = QT (K)] = ‘LG T ()] + liHGH[T(k)] (veh/lane-tu) (25)

(V73 ¢
give the vehicle flow demanded conditional on vehicle density. Like g = Q(t), g = D(k)
has the potential to rise or fall over different intervals of its argument. When D(k) rises over some
interval of k or Q(r) rises over an interval of ¢, we say that interval exhibits hyperdemand. When
either falls, we say that interval exhibits light demand. The idea behind this choice of names is to
match demand-side phenomena to light and hypercongestion.

Equilibria
The equilibrium condition for this model is the same as in the one-mode case: at an equilibrium
value of vehicle density k = k°, we have

f (ko) = D(ko) (veh/lane-tu). (26)

A vehicle density is imply the sum of the density of vehicles engaged in each mode: k =
Pr/¢r+ Py /¢n. So, the equilibrium can be expressed as a tuple (P, Py) = (PB,P}),) such that

F(P2/op+P/o5) =D(PL/op + P /o)  (vehlane-tu). 27)

q (veh/lane-tu)

0 k (veh/lane-du)

FIGURE 4: Equilibria for two-mode system

A key difference, relative to the one-mode situation, is that now more classes of qualitatively-Jj
distinct equilibria are possible. Figure 4 plots examples of f(k) and D(k), with D(k) having two
intervals of hyperdemand, the densities associated with which are highlighted in green. There
are six equilibria. Table 1 describes the six equilibria by three binary properties: (i) whether the
equilibrium occurs in light or hypercongestion; (ii) whether the equilibrium occurs in light or hy-
perdemand; (iii) the equilibrium’s cut. The curves in Fig. 4 were drawn to illustrate all feasible’
combinations of the three properties.

The same analysis as in Sec. 2.4 could be repeated here, and equilibria with cuts from
below demonstrated to have absurd policy implications. The situation has not changed in that
regard: a policy that reduced D(k) in the vicinity of an equilibrium with an cut from below would
make congestion worse. A difference is that, now, cuts from below can occur in light congestion.

3Two combinations are infeasible: (i) an equilibrium in light congestion and light demand with a “below” cut; (ii)
an equilibrium in hypercongestion and hyperdemand with an “above” cut.
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equilibrium congestion demand cut

1 light hyper above
2 light hyper below
3 light light above
4 hyper light below
5 hyper light above
6 hyper hyper below

TABLE 2: Properties of feasible equilibria for two-mode model

TWO-MODE STABILITY ANALYSIS
We now derive a dynamic model and the stability of equilibria for the two-mode case. Differences
between the one and two-mode case include:
* The dynamic model will now be a system of equations in two variables, forcing us to
work with the Jacobian of our system instead of the derivative.
* Stability is impossible to establish from the cut in (k,q) space.

Setup

For mode i = L, H, let P;(u), A;(u) and E;(u) be, respectively, the passenger stock, arrival flow and
exit rate of passengers at clock time u. #(u) and k(u) are still the instantaneous unit travel time and
vehicle density, respectively. The conservation law for each mode’s passengers is:

P.(u) =A;(u) — E;(u) (pax/lane-du-tu). (28)
We will now proceed to turn this into a two-equation autonomous system along the lines of
0 Vehicle density evolves in clock time according to
k(u) = Pr(u)/¢r+Pu(u)/Pu  (veh/lane-du), (29)
and so unit travel time evolves as
t(u) =Tk(u) =T[P.(u)/or+ Py(u)/oy] (tu/du). (30)

Assumption 1 still holds, albeit in modified form: travelers decide whether and how to
travel based only on the instantaneous unit travel time, so that, for mode i = L, H,

Ai(u) = G,-{T[PL(u) /o1 + P (1) /¢H]} (pax/lane-du-tu). 31)
As for the exit rate, Assumption 2 still holds, but now applies to each mode. Hence,
P.
Ei(u) = i) (pax/lane-du-tu). (32)

T[PL(u)/ L+ Pu(u)/oulli
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1 With (31) and (32), we can now write the autonomous system as:
PP P,
? = GL{ (¢L ¢H)} y LP Gy
L H
L H T (E + ¢_H> IL
. P P P
el ()]
L H
4 L)L )
5 Or, equivalently, to write things in terms of vehicle flows, let
l;
6 Di(k) := — Py —G;[T (k)] (35)
1
7 give the vehicle flow demanded on mode i, given k. The autonomous system becomes
: P P P,
8 B % DL( L+—H)— — (36)
L oL Ou T<¢_€+¢_Z>ZL¢L
. P P P
9 Py = ;P—L ( SRR ) — . 37)
" H oL Ou T<¢_i+¢_Z>ZH¢H
11 For each equation, the second term in curly brackets is the realized flow of vehicle units

12 engaged in that mode.

13 Steady-state equilibria

14 In a steady-state equilibrium, P, = Py = 0; the density of passengers is unchanging for both the

15 modes of travel. Let PB and Pg be the densities of passengers at equilibria, and let k0 = Pg /o +
16 Pg /@ be the corresponding vehicle density. Thus, in equilibrium,
r PO PO 7 PO
17 Gp|T (¢—L + ¢—H> = W (pax/lane-du-tu) (38)
L OH L
- I r ( Ayt ) I
[ (P) PO\ P
18 Gy|T (‘P_L + ¢—H> = ﬁ (pax/lane-du-tu). (39)
L OH L
19 ] -7 ( ot o ) l”
20 Alternatively, multiply both sides of (38) by I,/ ¢y, both sides of (39) by /5 /¢y and then
21 sum the results to obtain
22 D(K”) = £(k°)  (veh/lane-tu). (40)
23 This is the equilibrium condition we gave for the two-mode static model earlier.
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1 Stability
2 Having derived conditions for equilibria, we now consider their stability. To begin, note our two-
3 dimensional dynamical system can be written in terms of the function
R\ (B
: (7))~ 2] “
alr(3+8)] -y,
oL ' Ou T < P i Py ) I
Gl (& 30| - i
or ' 9 T ( P n Py ) I
6 L oL ¢ )l
7 F captures in a function the relationships given by (38)—(39).
8 The stability of a two-dimensional system depends on the Jacobian of the transformation,
9 F, at equilibrium:
_ [dP./dP.  dP,/dPy
0 VE= [dPH /dP, dBy [dPy . (43)
12 A two-dimensional dynamical system like ours is locally stable at an equilibrium when the
13 real parts of both eigenvalues of the Jacobian, VF, are negative there Alligood1997. This occurs if
14 and only if det(VF) > 0 and tr(VF) < 0; otherwise, the equilibrium is unstable.
15 Take derivatives to fill in VF. Below, for brevity, assume that all functions and derivatives
16 are evaluated at an equilibrium vehicle density k = k°. First,
p, G T P 1 T 1
17 =L L = D 4D (44)
AP, ¢op  To LT TIp I T T
by GyT' T P, 1 1 T 1
18 A _ JH H _ Dy + Dy — . (45)
19 dPy Oy Toy lyT Tly lH T T
20 As for the cross partial derivatives, it can be shown that
dp, dp, 1
21 a _efdh 1 (46)
dPy oy (dPL T
dp dp 1
22 —H:¢—H{—H+—}. (47)
23 dP, ¢ (dPy  Tln
24 Thus,
dp; dP, dp, dP,
25 det[VF] = ———H2 _~LZL
26 dP,dPy  dPy dPy
27 simplifies to
28 det|VF — 48
28 llVF) = (1~ D). @)
30 It follows that the determinant is positive if and only if the equilibrium exhibits a cut from
31 above (i.e., if D' < f'). We have it that:
32 Proposition 2. For the two-mode model, equilibria with cuts from below are unstable.
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Still, a cut from above does not imply stability. To be stable requires not only that the
determinant of VF be positive but also that its trace be negative. With some work, the trace of VF
in equilibrium can be simplified to

b, dBy (1 1\, . L[, TN\ 1/, T’
w(VF) =L S (2 V(D — )~ — (D, +Dy > | ——( D}y + Dy
"VF) = 3p, T ap, <1H+1L)( 1) =3 \PrtDuop ) = Pt Dip

(49)

While the sign of the first term depends on the equilibrium’s cut, the signs and magnitudes
of the second two terms do not. Hence, it is impossible to say whether the trace is positive from
the cut in (k,q) space. Perhaps the most novel thing that can be said is that there is nothing keeping
the trace from being negative, even if D’ > 0. Hence, equilibria in hyperdemand can be stable as
long as they have a cut from above.

NUMERICAL SIMULATION OF TWO-MODE SYSTEM

In this section we conduct an approximate numerical simulation of the two-mode system in which
demand arises from by a nested logit* model. The simulation does not prove anything theoretically,
but since the analysis so far has been very general it is illustrative to work through a concrete
case. We say the simulation is “approximate” because, for simplicity, we assume that all travelers
have the same trip length—in which case the bathtub physics granted by Assumption 2 are only
approximate.

P
// AN
N

Donot / N Travel
travel / N
/ o
p \
y N
Outside
option
High Low
occupancy occupancy

FIGURE 5: Nested Logit model for two mode system

Figure 5 shows the structure of tree diagram for mode choice. There is an “outside option”
(subscript O) which stands for not traveling, and a “travel” nest that contains modes L and H. For
a traveler n, the utility of mode i = L, H, O, given a unit travel time ¢, is

Ui(i) =Vi(t) + & (9, (50)

where &,; is a random utility component and V; is the “systematic utility” of mode i. The

4See Train (24) for a thorough exposition of the nested logit model and its assumption.
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systematic utilities are

VL(Z‘) =ar—olir () (1))
Vu(t) =ag —algt ($) (52)
Vo(t) =0 3, (33)

where ay,ay ($) are mode-specific constants, a ($/tu) is the (universal) value of time
(which is the same on both modes) and [;,/y are the lengths of a trip taken on each mode. The
second terms in V7 and V are the respective costs of travel time.

The cumulative distribution of the random components &, = { €0, €L, €x } 1S

exp |:_67£m, _ (6*811L/u + e*E;;L/M)”} : (54)

where ¢ > 0 is a metric of correlation between the two modes.
Given these assumptions, the probability of choosing to travel is

[exp(VL(r) /1) +exp (Ve () /)"

Ptravel](t) = ) (55)
exp(Vo) + [exp(VL(r) /1) +exp(Vir (1) /)"
and probability of choosing to travel by mode i, given that one chooses to travel, is
: exp (Vi(1)/1)
Pliltravel|(t) = (56)
el = Vi) /) +exp(V_i0) /1)
where —i is the mode not chosen. Hence, the demand functions for the model are
Gr(t) = y Z|[L|travel|(t) P[travel|(t)  (pax/lane-du-tu) (57)
Gu(t) = y Z|[H|travel|(t) P[travel|(t) (pax/lane-du-tu), (58)

where Y (pax/lane-du-tu) is the maximum possible rate of demand.

The simulation is run with the following parameters: y = 45.0 (pax/lane-du-tu), a; = 5.7
($),ag =80, lp=1andly =2, x=1.1, ¢, =1, ¢y =4, u = 0.4. These are chosen arbitrarily
by trial-and-error to produce hyperdemand. As for traffic physics, we use

0.75
T (k) =exp {%]

Figure 6 shows the vehicle demand in (¢,7) and (k,q) space. ej, e, and e3 are the three
equilibria, all in light congestion. e; and e3 have cuts from above, e, from below. Table 3 gives
the trace, determinant and eigenvalues A; and A, of VF evaluated at each equilibrium. For the
values we have chosen, the trace happens to be negative for all three equilibria, but as expected the
determinant is positive for e, which has a cut from below.

(59)

tr(VF) det(VF) M A
e1 -0.30009 0.022329 -0.16361 -0.16361
ex -0.08016 -0.0100 -0.14793 0.06777

ez -0.20286 0.011606 -0.10143-0.0361 -0.10143+0.0361

TABLE 3: Trace, determinants and eigenvalues of VF at equilibria

Figure 7 shows the system’s phase portrait. We start with selected values of our stock
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FIGURE 6: Simulation results

variables P;, and Py and let the system evolve over time according to F. As the figure shows, e;
and ez are both sinks while e; is a saddle node.

CONCLUSION
This paper has the stability of equilibria for one- and two-mode static models of traffic in down-
towns which can exhibit multiple equilibria. Via a pair of purely static models (Sections 2 and 4),
we showed that a one-mode system can exhibit multiple equilibria in light congestion and multiple
in hypercongested traffic, while a two-mode system can exhibit multiple equilibria even in light
congestion. The reason for the latter is that the vehicle flow consistent with demands can rise with
the unit travel time, due to switching between high- and low-occupancy modes.

Sections 3 and 5 conducted stability analysis on the static models of, respectively, the one-
and two-mode models. Both stability analyses were conducted under a pair of assumptions: (i)
that “passengers” (travelers or decision-makers) only care about traffic conditions when they begin
their trips; (ii) that the rate of exits depends only on the stock of passengers and the unit travel
time (the inverse of speed). For a one-mode model, the stability of an equilibrium depends only
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FIGURE 7: Phase portrait for nested logit simulation

on the relative slopes of aggregate “supply” and “demand” curves. For the two-mode model, some
equilibria can be shown to be unstable by those relative slopes, but others cannot be shown to be
stable. A numerical simulation in Sec. 6 confirms that such equilibria are stable and that the trace
and determinant of the two-mode system’s Jacobian have the requisite signs at stable equilibria.

Perhaps the broadest lesson of the paper is that traffic systems may be full of surprises.
Particularly when mode-switching plays a prominent role, there may be multiple, stable equilibria.
The last ten years have witnessed a proliferation of new modes for travel in downtowns, including
ride-hailing of various kinds and electric-assist bicycles and scooters. New autonomous modes
could be on the horizon. When there are multiple equilibria, policies such as tolls, transit subsidies
and infrastructure changes not only affect traffic at the margin but can generate major, sustained
changes by moving among these equilibria.

Further work could seek to verify how accurately the proposed theoretical models describe
transportation systems. Since we can only observe the current state of a city’s transportation sys-
tem, we might only “observe” one equilibria, but demand and traffic models that have already been
estimated might imply other equilibria which policymakers have not considered. Another avenue
of research could be identifying optimal policies for jumping between equilibria —for example,
in our numerical simulation, from e3 to e;. Such research would need to consider the day-to-day
dynamics of adjustment and the role of credibility in setting travelers’ expectations.
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