
Pandering in a (Flexible) Representative Democracy

Abstract

In representative democracies, the election of new
representatives in regular election cycles is meant
to prevent misbehavior by elected officials and
keep them accountable to the “will of the people."
This ideal is undermined when candidates are dis-
honest when campaigning for election over these
rounds. Much of the work on Computational Social
Choice to date has investigated strategic actions
in only a single round. We introduce a novel for-
mal model of pandering, or strategic preference
reporting by candidates, and examine the resilience
of two voting systems, Representative Democ-
racy (RD) and Flexible Representative Democracy
(FRD), to pandering within a single round and
across multiple rounds. For each voting system,
our analysis centers on the types of strategies can-
didates employ and how voters update their views
of candidates based on how the candidates have
pandered in the past. We provide theoretical results
on the complexity of pandering in our setting for
a single cycle, formulate our problem for multi-
ple cycles as a Markov Decision Process, and use
reinforcement learning to study the effects of pan-
dering by both single candidates and groups of
candidates over many rounds.

1 INTRODUCTION

Modern representative democracies use regular elections to
ensure that officials uphold the “will of the people." Periodic
elections are meant to prevent corrupt or ineffective officials
from maintaining power and to keep them honest. However,
current electoral systems are arguably insufficient for this
task because voters only have a say during the election (aside
from the potential recalls), which typically occur during
regular cycles or rounds. In recent years, ideas of delegative

voting, including liquid democracy [9] and flexible/weighted
representative democracy [2, 37] have been advanced in
the computer science and social choice literature. In these
delegative voting systems the voters collectively weight
their representatives, possibly updating their weights during
a round, i.e., between elections. These systems typically fall
under the heading of interactive democracy [13].

It has been proposed that delegative voting schemes can
interpolate between direct and representative democracy and
would be better at keeping representatives accountable [2,
17]. However, the idea that delegative voting will be better at
keeping representatives accountable, or that it will be better
at expressing the “will of the people", is largely untested
aside from some nascent applications of Liquid Democracy
(with transitive delegations) [36, 20]. Little is known about
how such systems perform in the presence of agents who
are strategic, selfish, and even malicious [49, 8]. Answering
questions surrounding responsiveness to voter preferences
and robustness to bad actors is critical for selecting and
comparing various democratic systems.

One of the primary features of representative systems is
that candidates campaign for votes, making promises and
promoting platforms of action on decisions to be considered
in the future. This process of campaigning is important to
inform voters of their options and seek support for these
promised positions. Unfortunately, politicians lie, especially
when trying to get elected or maintain power. This pander-
ing is a form of attack on representative democratic systems,
and we introduce the first formal model of pandering to
the literature on Computational Social Choice (COMSOC),
which has previously considered other forms of election
attack including manipulation, bribery, and control [11].

Pandering during campaigns is not a new problem, it is a
global phenomenon. US citizens consistently rank Congress-
people as occupying the least trustworthy profession [28]
and over half of Americans are unsatisfied with representa-
tive democracy as it stands [46]. A study involving Spanish
mayors [23] demonstrated that lying may increase a politi-

Submitted to the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023). To be used for reviewing only.

cian’s chances of being reelected. Studies have shown that
voters are often aware of pandering and become suspicious
of politicians that are perceived as panderers [29, 30]. Aus-
tralian voters demonstrably decrease support for politicians
upon the revelation of their lies [3].

Our core concern is whether delegative voting systems are
more or less vulnerable to dishonest candidates. To study
these questions we model two types of democratic voting
system; classic Representative Democracy (RD) and Flexi-
ble Representative Democracy (FRD) [2]. For each system,
each election cycle consists of (1) voters electing a subset
of candidates as a committee of representatives, and (2) the
representatives voting sequentially on a fixed set of issues.
This setting maps to most representative democracies across
the world where representatives decide on a slate of issues
between election rounds [4]. In order to study pandering we
analyze sequences of election cycles, and we refer to each
of these election cycles as a round. The difference between
RD and FRD is that in FRD the representatives vote using a
weighted majority rule where the weights are determined by
the voters, while in RD the representatives use (unweighted)
simple majority rule on each issue.

Contributions We formalize and study a novel model of
election attack, pandering, where candidates report their
positions strategically. We analyze two democratic voting
systems, representative democracy (RD) and flexible rep-
resentative democracy (FRD), in terms of their resilience
to attack by pandering. We first show that the pandering
is computationally hard for a single round, and provide an
optimization program to solve this problem. We then model
the problem of pandering over multiple rounds as a sequen-
tial decision making problem, formally a Markov Decision
Problem (MDP). We then use techniques from reinforce-
ment learning to solve this problem for pandering candidates
and investigate how robust RD and FRD are to these attacks.
We find that, generally, delegative voting systems such as
FRD are more robust to these types of attacks.

2 RELATED WORK

2.1 COMPUTATIONAL SOCIAL CHOICE

Research in COMOSC focuses on computational aspects
of collective decision making problems including voting
and allocating resources among groups of agents who are
self-interested [11]. Work in COMSOC has considered a
variety of election attacks including manipulation, where a
central agent is able to modify the votes of particular agents;
bribery, where modification actions come at some cost and
the attacker is bounded by a budget; and control, where
one can remove or change the candidates of an election
[16]. While there are many results on both the complexity
of and algorithms for these decision problems, they are

typically studied in a single round. Most closely related to
our work here is work on multi-issue [7] and shift bribery
in committee elections [12], where an agent may pay to
switch the preferences of individual voters. However, the
algorithms for bribery problems are typically minimization
problems under a budget constraint in a single round.

There has been some work in COMSOC involving strategic
agents and multiple rounds including iterative voting [31],
where agents repeatedly vote until a consensus is reached.
The framework of dynamic social choice [35] formulates
the preferences of voters over candidates as an MDP and
then investigates stationary policies in this setting as social
choice functions, similar to e.g., page rank. However, nei-
ther of these settings involve strategic actions on the part
of the candidates, only the voters. Most closely related to
our work here is that of Dutta et al. [15] who investigate
strategic candidacy games, where agents can decide to par-
ticipate or not in an election round as candidates, which
corresponds to a dynamic version of the control problem
discussed above. However, in this setting candidates have
fixed, known positions and are only deciding whether or
not to stand for an election if they can win, whereas our
candidates may misrepresent their positions.

We are focused on representative forms of democracy, where
a small set of agents is selected from among a group of candi-
dates. These problems are also studied within the COMSOC
literature under the heading of committee elections or multi-
winner elections [14] and the questions around strategic
attacks mentioned above have been studied for multi-winner
elections [38], but this work again does not investigate an en-
tire democratic system, where later issues are to be decided,
nor these questions over multiple rounds. Finally, Liquid
Democracy [9, 13], and variants including flexible/weighted
representative democracy [2, 37], are popular areas of study
in COMSOC as they provide a rich problem space to inves-
tigate as the underlying delegation graphs can be complex,
and interconnected [19]. We build directly on these systems
and investigate novel election attacks within these systems.
Finally, investigating the properties of voting systems over
multiple rounds of decisions is becoming an area of inter-
est within COMSOC, with ideas like perpetual voting [24],
where properties like fairness should be ensured over elec-
tion histories, have been recently studied.

2.2 SEQUENTIAL DECISION MAKING,
REINFORCEMENT LEARNING AND
SECURITY GAMES

Sequential decision making and control problems are popu-
lar across AI. Many complex decisions must be made repeat-
edly, in the face of an uncertain and dynamic environment.
The traditional tool to study these problems is the Markov
Decision Process (MDP) [43]. An MDP is a formal model
where, over a number of time steps, t ∈ T , and an agent

2

receives an observation of the current state s ∈ S , where S
defines the total state space of the system, and the agent must
select an action a ∈ A for each s. The environment evolves
according to a transition function T which gives probabil-
ities of transitioning from one state to the next, given an
action. At each state, the agent receives a real-valued reward
signal, R, and the goal of the agent is to accrue as much
(discounted) reward as possible while acting in this environ-
ment. The goal in an MDP is to find a policy π : S → P(A),
i.e., a mapping of states to actions. Ideally, we want to solve
an MDP by finding a policy π∗ that maximizes the expected
(discounted) reward over a sequence of actions. In the MDP
literature, classical tabular methods are used to find π∗ in-
cluding value iteration (VI) and Q-learning. Such method
finds an optimal policy by estimating the expected reward
for taking an action a in a given state s, i.e., the Q-value of
pair (s, a) [43]. MDPs of this form are used across AI for
sequential decision making tasks including recommending
items to users [21], robot control [1], creating safe AI sys-
tems [34], and modeling the dynamics between attackers
and defenders in security games [44, 27].

Currently, deep reinforcement learning, which leverages
deep learning for solving complex reinforcement learning
problems with very large state and action spaces, achieves
human level or above human-level performance on many
tasks. Deep neural network enables reinforcement learning
to approximate and parameterize the Q-table or other tabu-
lar values instead of computing them directly. Thus, deep
reinforcement learning is capable of solving games with
large state and action spaces. Classical deep reinforcement
learning algorithms such as DQN [32] conquer Atari games
(which are video games with discrete action space such as
Pong) and Go [42]. Another algorithm PPO [40] is capable
of beating world champions in more complex video games
such as DOTA2 [6].

Sequential games have been commonly used to model strate-
gic and learning behavior by agents in security settings. For
example, an advanced and persistent attack typically starts
with information collection to identify the vulnerability of
a system and may act in a “low-and-slow” fashion to ob-
tain long-term advantages [45, 10]. On the other hand, an
intelligent defender can profile the potential attacks and
proactively update the system configuration to reverse in-
formation asymmetry [25, 41]. As the interaction between
the attacker and the defender can generally be modeled as
a Markov game with partial observations, reinforcement
learning has been used to develop strong attacks and de-
fenses in various settings. In particular, it has been used to
corrupt the state signals received by a trained RL agent [48]
and deceive a learning defender in repeated games [33]. In
a recent paper, Li et al. [26] show that RL-based attacks can
obtain state-of-the-art performance in poisoning federated
learning, where a set of malicious insiders craft adversarial
model updates to reduce the global model accuracy. Given

the difficulty of collecting sufficient samples in security-
critical domains, an offline model-based approach is often
adopted. To our knowledge, using RL to develop strategic
attacks against voting systems has not been considered.

3 ELECTORAL PANDERING MODEL

3.1 PREFERENCES OVER ISSUES AND
CANDIDATES

Let V be a set of n voters and C be a disjoint set of m can-
didates, voters elect a subset of candidates D ⊂ C where
|D| = k to serve as a committee. The committee of repre-
sentatives will then vote on a sequence of r binary issues.
We assume that every voter and candidate has a binary pref-
erence over every issue. For voter v ∈ V , we denote their
preference vector by v ∈ {0, 1}r. Similarly, for candidate
c ∈ C, their preference vector is denoted c ∈ {0, 1}r. The
collective preference profiles are denoted by V and C.

With m candidates, there are
(
m
k

)
possible ways to elect k

representatives. However, it is infeasible for voters to ex-
press preferences over all possible committees of size k.
Therefore, representatives are elected via k-Approval with
random tie-breaking. Each voter reports the subset of can-
didates of which they approve and the k candidates who
receive the greatest number of approvals get elected. Fol-
lowing Abramowitz and Mattei [2], voters submit approval
preferences over candidates based on the fraction of issues
on which they agree. That is, v approves of c if g(v, c) > 1/2
where g(v, c) is based on the Hamming distance between
preference vectors. Let dH(x,y) =

∑
i≤r |x(i) − y(i)|

be the Hamming distance between two vectors of length
r. For any two vectors x and y of length r, we refer to
g(x,y) = 1− 1

rdH(x, c) as their agreement and 1
rdH(x,y)

as their disagreement. Intuitively, g(v, c) is the fraction of
issues the voter and candidate agree upon. Our measure of
the quality of a voting system is the agreement (or disagree-
ment) between the vector of outcomes it produces and the
outcomes preferred by the voter majority.

3.2 PANDERING IN ELECTIONS

We introduce a novel model of election attack we call pan-
dering, wherein candidates are allowed to strategically mis-
report their private preferences in an attempt to get elected.
We denote by ĉ the reported preferences of c, while their true
preferences c remain private. We assume that a subset of the
candidates S ⊆ C are strategic, i.e., candidate c ∈ S may
pander (c ̸= ĉ). All other candidates c ∈ C\S are truthful.
Voter preferences over candidates are therefore based on
the agreement between their preferences and the candidates’
reported preferences: ĝ(v, c) = 1 − 1

rdH(v, ĉ). Strategic
candidates are assumed to know the full voter profile V but
not the private or public preferences of other candidates at

3

the time they report their public preferences. These strate-
gic candidates pander in order to maximize the number of
approvals they receive to maximize their chances of being
elected and hence affect the outcomes of the democratic
system. While candidates can be strategic about the prefer-
ences they report before the election, we assume they always
vote according to their true preferences. A more sophisti-
cated candidate might also be strategic about when they
vote according to their true preferences, but as we will show,
computing one’s pandering strategy when always voting
according to one’s true preferences is already NP-Hard.

3.3 RD AND FRD

Following Abramowitz and Mattei [2], in classic Repre-
sentative Democracy (RD) the candidates are elected by k-
Approval with random tie-breaking, and each set of elected
representatives votes on a sequence of r binary issues using
simple majority voting before the next election. By contrast,
in Flexible Representative Democracy (FRD) the representa-
tives use weighted majority voting on every issue and these
weights are determined on every issue by the voters. Each
voter has 1 unit of weight to assign to the representatives
and may distribute it among the representatives however
they wish. The weight of a representative on an issue is then
the sum of weights assigned to them. That is, each voter v
assigns each representative c a weight 0 ≤ wt(v, c) ≤ 1 on
each issue t such that

∑
c∈D wt(v, c) = 1 for all t and

the weight of a representative is wt
c =

∑
v∈V wt(v, c).

If c(t) ∈ {0, 1} is the preference of c on issue t, then
weighted majority voting leads the outcome to be 1 if∑

c∈D wt
cc(t) > n/2, 0 if

∑
c∈D wt

cc(t) < n/2, and breaks
ties randomly otherwise. Section 5 will detail how we model
the way voters assign these weights in our pandering model.

4 PANDERING IN A SINGLE ROUND

We show that even in a single round it is NP-Hard for a
strategic candidate c ∈ S to compute the profile ĉ that
maximizes the number of approvals they receive when c
has full information about the voter preferences V . We care
maximizing approvals as we do not assume they have access
to the reported preferences of other candidates at the time
they report their own preferences.

Problem 1 (Maximum Approval Pandering (MAP)). Given
a profile of n voters over r issues V ∈ {0, 1}r×n, compute
ĉ = argmax

c∈{0,1}r

|{v ∈ V : dH(v, c) < r
2}|.

Our proof below that Maximum Approval Pandering is NP-
Hard follows a proof by Neal Young [47], with slight modi-
fication and simplification. The proof uses a Karp reduction
via the known NP-Complete problem of Max 2-SAT [18]. In
Max 2-SAT, one is given a Boolean formula in conjunctive
normal form where each clause contains at most two literals

and the task is to find an assignment to the variables such
that a maximum number of clauses is satisfied.

Theorem 1. Maximum Approval Pandering is NP-Hard

Proof. Suppose we have a Boolean formula in conjunctive
normal form with n variables and m clauses for which
each clause has exactly two literals. Assume without loss of
generality that n = 2k is some power of 2.We will construct
a collection of binary vectors V to serve as input to an
instance of MAP. We start by adding m + 1 copies of the
vector (0)2n and m+ 1 copies of (1)2n to the collection V .
Consider the elements of each vector v ∈ V to be in pairs
so that v is of the form {00, 01, 10, 11}n. Now for all j ∈
{2i : 0 ≤ i < k}, add m+ 1 copies of the string (0j1j)n/j

and m + 1 copies of its complement (1j0j)n/j . Now V
contains 2k(m+ 1) vectors, each of length 2n. Notice that
for a vector c to be within a distance dH(v, c) ≤ n of all
vectors v ∈ V , it must be of the form {01, 10}n. Any other
vector c will have dH(c,v) > n for at least m + 1 of the
vectors in V . Now we add m additional vectors to V based
on the clauses of our Boolean formula. For each clause, let
xi and xj be the two variables that appear in the clause, and
construct the vector v such that all elements are zero, except
that the ith (resp. jth) pair is 01 if xi (resp. xj) appears
positively in the clause and 10 if it appears negatively. Thus,
V now contains m additional binary vectors each of length
2n, and each contains exactly 2 ones and 2n−2 zeroes. Any
vector c that maximizes the number of vectors v ∈ V for
which dH(c,v) ≤ n must still be of the form {01, 10}n,
because a different vector could reduce it’s distance to the
m new vectors based on clauses only at the expense of being
too great a distance from at least m+ 1 of the other vectors.
As v only approves of c if they agree on strictly more than
half the issues, not greater than or equal to half the issues,
append a 1 to all vectors in V . Now any solution to the MAP
instance will be of the form ({01, 10}n)(1) and its first n
pairs of values 01 and 10 can be read as giving the truth
values of the variables in the original Boolean formula.

The complexity of MAP may be surprising, as one might
expect that a candidate taking the position of the voter major-
ity on each issue would be optimal. However, Anscombe’s
Paradox shows in dramatic fashion that this is not the case,
as for certain voter profiles the majority of voters can be in
the minority on the majority of issues [5]. We will use this
greedy pandering strategy of reporting the voter majority
preference on every issue as a baseline for comparison in
Section 6. We will discuss pandering optimally in a single
round in more detail in Section 6.1.

5 PANDERING IN MULTIPLE ROUNDS

If we only considered a single round, strategic candidates
would pander on as many issues as necessary to maximize

4

the number of approvals they receive without consequence
since voters would not discover the strategic actions and
then distrust that candidate. Hence, we extend our setting
into a multi-round model where strategic candidates face
consequences for past pandering, since these actions hurt
their credibility in the eyes of the voters. We now focus on
sequences of election cycles, or rounds, in which commit-
tees of representatives are elected at regular intervals. We
assume that number of issues r is the same for all rounds.

A time step t, there have been t− 1 issues already decided,
and the next issue to be voted on by the representatives is
issue t. Agent preferences over singular issues are indexed
as v(t) and c(t) respectively. Some time steps correspond
to the beginning of a new round in which an election must
take place before issue t is decided. We will use qt to denote
the round containing time step t. We use the superscript q
to denote variables defined for round q including the prefer-
ence profiles V q and Cq over only the issues of that round,
individual preferences vq and cq which are binary strings
of length r, the set of elected representatives Dq ⊂ C, and
the fraction of issues agreed upon by a voter and candidate
in that round ĝq(v, c). While strategic candidates may mis-
report their preferences to get elected, we assume that they
always vote according to their true preferences once they
have been elected to the representative body. All pander-
ing by representatives is revealed, but not the pandering of
candidates who do not get elected.

At every time step, each candidate has a credibility 0 ≤
hc(t) ≤ 1, where initially hc(1) = 1 for all candidates
implying a presumption of total honesty at the start. The
credibility of a candidate can never become greater than 1.
We denote the credibility of a candidate at the time of an
election by hq

c , so if t is the first time step of a new round
then hqt

c = hc(t). Now, in each election, voter v approves of
candidate c in round q if and only if ĝq(v, c)hq

c > 1/2. That
is, voters’ approvals depend on both their agreement with a
candidate and how credible the candidate is. Even if a voter
agrees with a candidate on every issue, if the candidate is
not sufficiently credible, the voter will not approve of them.

In RD, the credibility of candidates only matters at the
beginning of each round, when the voters express their pref-
erences over the candidates, as once a candidate is elected,
all issues are decided independently by the representatives
until the next round. However, for FRD, the credibility of
representatives affects how the voters weight them on each
issue, and so the way their credibility updates at each time
step matters. In FRD, the representatives decide each issue
by weighted majority vote, where the issue-specific weights
are determined by the voters. The weights assigned by a
voter to the elected representatives must sum to 1, so all vot-
ers contribute an equal total weight. We assume that voters
assign weight only to representatives who agree with them
on each issue, and assign it in proportion to the representa-
tives’ credibility. The weight assigned by v to representative

c ∈ D on issue t is

wt(v, c) =
(1− |v(t)− c(t)|)hc(t)∑

c∈C

(1− |v(t)− c(t)|)hc(t)

The weight of a representative on issue t is the sum of
weights assigned to them: wt

c =
∑

v∈V wt(v, c).

We model three competing forces influencing the credibility
of candidates over time: changes in credibility for pandering,
changes for being truthful, and for un-elected candidates,
changes due to the fading memory of past pandering. If a
candidate gets elected, their credibility is updated in each
time step after they vote. If a candidate is not elected, their
credibility is updated before the next round. If c is elected in
round qt and panders on issue t, then hc(t+ 1) = β1hc(t)
where 0 ≤ β1 ≤ 1 reflects how sensitive the voters are to
pandering revelations. If c is elected and does not pander
on issue t, then hc(t+1) = max{(1+ β2)hc(t), 1}, where
β2 ≥ 0 reflects how much credibility a candidate earns
by being truthful on an issue. Lastly, if a candidate is not
elected, it is never revealed to what degree they pandered in
that round and so their credibility is updated at the end of
the round by hq+1

c = max{1, hq
c(1 + β3)} where β3 ≥ 0

reflects the fading memory of their past pandering.

Given that it is NP-Hard for to solve MAP in a single round
it is at least as hard for a candidate to be optimally strate-
gic over multiple rounds when agent preferences in future
rounds are not known in advance and effects on the can-
didate’s credibility over time must be taken into account.
Hence, for sequential decision making problem, we turn to
reinforcement learning to study how effective a candidate
can be in pandering over many rounds.

5.1 VOTING SYSTEMS AS MDPS

In our analysis we consider two types of strategic candi-
dates: selfish and malicious. A selfish candidate seeks to
maximize their influence over the outcomes to push them
in favor of their preference, so their utility is based on the
number of issues they cause to agree with their personal
preference as a representative. On the other hand, a mali-
cious candidate prefers the opposite outcome to the voter
majority on every issue (they just want to watch the world
burn). Their utility is based on the number of issues whose
outcome disagrees with the voter majority, i.e., the total
disagreement. In our experiments we also investigate the
robustness of these systems when there are groups of strate-
gic candidates. Malicious candidates coordinate with one
another, while selfish candidates do not. In the next section
we formally define the decision problem of the candidates
as a finite horizon MDP, where the horizon is 100 rounds,
each containing 9 issues. We use a discount factor γ = 1,
i.e., no discounting of future rewards in all our analysis.

5

(a) (b) (c) (d)

Figure 1: Training curve of strategic candidates in RD voting systems compared with baselines, β1 = 0.95.

5.2 MDP FOR SELFISH CANDIDATES

Since selfish candidates only care about their own benefit,
each of them will take actions independently from each
other. For each selfish candidate c ∈ S we define: the
state space as Sq = (V q, cq, hq

c , q); the action space as
Aq = {0, 1}r; and the transition function as T : Sq×Aq →
P(Sq+1). We assume that all voters’ and candidates’ pref-
erences are i.i.d. random variables from a fixed stationary
distribution across all rounds. Therefore, the probability of
any voter and candidate profile is independent of the state
and history. Similarly, the credibility of candidates at the
beginning of the round hq+1

c depends only on hq
c and Aq , so

the Markov property is satisfied.

The goal of an individual selfish candidate is to find a policy
π : Sq → Aq in order to maximize the cumulative reward
over a finite time horizon (100 rounds). We set the reward
as Rq = f(aq, cq, Dq(c),oq), where Dq(c) is a binary in-
dicator variable representing whether the strategic candidate
c is elected in round q only through pandering, which means
the strategic candidate c will not get elected by being honest
in round q, and oq is the binary vector of outcomes in round
q. Informally, if a selfish is elected due to pandering when
they otherwise would not have been, their reward is equal to
the number of issues on which they agree with the outcome
in that round. Otherwise, if they do not get elected or would
be elected by being honest, the reward is zero.

5.3 MDP FOR MALICIOUS CANDIDATES

Since malicious candidates share the same objective, they
cooperate with each other in order to damage the system.
Thus, we model all malicious candidates as sharing the same
state space, action space, and reward. Formally, the state
space is Sq = (V q, cq, {hq

c′}c′∈S , q); the action space is
Aq = {0, 1}r|S|; and transition function T : Oq × Aq →
P(Sq+1) is the state transition function, which is the same
as the selfish candidate MDP described above.

The goal of the malicious candidates is to find a joint policy
π : Sq → Aq in order to maximize the joint cumulative
rewards over the time horizon. We set the reward function
of the malicious candidates to be Rq = f(oq, õq) where
õq is the vector of outcomes that would have resulted if no

strategic candidates pandered in round q. Informally, mali-
cious candidates only care about increasing disagreement. If
a malicious candidate is elected due to pandering when they
otherwise would not have been elected by being honest, they
receive a reward equal to the number of issues whose out-
comes disagree with the voter majority minus the number of
issues that would have disagreed with the voter majority had
they been truthful. Thus, if a malicious agent is not elected,
is elected by being truthful, or the outcomes all agree with
the voter majority, the agent receives a reward of zero.

6 EXPERIMENTS

6.1 PANDERING IN A SINGLE ROUND

In Maximum Approval Pandering (MAP), if we were only
interested in a single round, then candidates would pander
greedily, on as many issues as possible in order to get elected.
In Figure 2 we plot the fraction of disagreement, i.e., how
often the outcome of the election system agrees with the
voter majority for a single round with 900 issues. The mali-
cious candidate panders by reporting their preferences c as
equal to the voter majority on every issue (greedy), whereas
their private preferences ĉ is actually the voter minority on
every issue. In this simulation, and in all experiments in our
paper, the preferences of all voters and truthful candidates
are uniformly random on every issue, i.e., p = 0.5.

Figure 2: Fraction of outcomes that disagree with the voter
majority for a single round with 900 issues vs. β1 with a
single malicious candidate pandering greedily.

Even though the malicious candidate panders on all issues,
Figure 2 already illustrates some interesting differences be-
tween RD and FRD. Notably, if voters ignore the pandering
of candidates (β1 = 1) for a single round, then one is better

6

off not allowing a weighting of the representatives and stick-
ing with RD instead. This is because strategic candidates
will be given higher weight, as their reported preferences
were better able to match those of the voters. However, once
voters pay attention to the pandering of candidates and be-
gin to punish them for it even slightly, FRD becomes far
superior to RD in following the voter majority.

6.2 MULTIPLE ROUND SETUP

Preferences In the rest of our experiments, the preferences
of all voters, truthful candidates, and selfish candidates are
drawn uniformly at random for every issue, i.e., p = 0.5. We
set the preferences of malicious candidates to be the voter
minority on every issue as they are seeking to create the most
disagreement possible. We refer the reader to the appendix
to view experiments with different preference distributions.

Reinforcement Learning and Environment Details In
each round we have n = 50 voters, |C| = 10 candidates,
of which |D| = 5 will be elected. We vary the number of
strategic candidates |S| ∈ {0, 1, 2, 3}. In each round the
representatives will vote on a sequence of r = 9 binary
issues, and there will be 100 rounds for a total of 900 issues
(time horizon). For the credibility parameters we examine
β1 ∈ {0.9, 0.95} based on our findings Figure2, and fix
β2 = 0.003 and β3 = 0.01 for simplicity. We use the DQN
algorithm implemented with stable-baselines3 [39] to all
our agents. Either all of the candidates in S ⊂ C are selfish
or they are all malicious. We train policies for one, two
and three malicious candidates and policy for one selfish
candidate. We ran our experiments on a server with Intel
i9-12900KF and Nvidia RTX 3090. It took about 60 hours
to train 1 million rounds for three malicious candidates.

State Space Compression The dimension of the state
space in the MDP for selfish candidates is (n + 1) · r + 2
and for malicious candidates it is (n+1) ·r+ |S|+1. These
dimensions are too large to efficiently train our candidates.
In order to compress the large state space, we compress
the full profile V q down to the vector v∗q where v∗q(t) =
1
r

∑
v∈V vq(t). This compression decreases the dimension

of voter preferences from n · r down to r for both selfish
and malicious candidates but at the cost of not knowing the
preferences of any specific voter on any issue.

Action Space Compression Even if candidates could
solve the MAP problem in every round, it is not neces-
sarily optimal to pander on as many issues as necessary to
get elected, as some rounds may require more or less pan-
dering. Candidates must be strategic about how many issues
they are willing to lie about in a given round. Hence, we
give our candidates the ability to solve the following more
general version of the MAP problem in every round, so their
only strategic choice is in selecting the maximum number

of issues they are willing to pander on in each round.

Problem 2 (Constrained Maximum Approval Pandering
(CMAP)). For any profile of voter preferences over r binary
issues V ∈ {0, 1}r×n, private preferences c of a candidate,
and integer 0 ≤ a ≤ r, compute a preference to report
that maximizes approvals subject to the constraint that it
panders on at most a issues:

ĉ = argmax
c′:dH(c,c′)≤a

|{v ∈ V : dH(v, c′) <
r

2
}|

We created a mathematical program to solve CMAP
with Mathmatica [22] for all our experiments on pander-
ing. With the CMAP problem, the action space becomes
Aq = {0, 1, 2, . . . , r} for selfish candidates and Aq =
{0, 1, 2, . . . , r}|S| for malicious candidates.

Reward Design Selfish candidates only receive reward
if they get elected by pandering and not if they are being
honest. This reward function encourages selfish candidate to
find the best pandering policy that will let them get elected
the most, which corresponds to real life selfish politicians
who want to maximize their own fame. In the malicious set-
ting, all malicious candidates share the same reward in each
round which captures how far the malicious candidates, who
want to devastate the voting system, can get the outcomes to
deviate the majority will of the voters. Selfish: For each c ∈
S: Rq

c = f(aq, cq, Dq(c),oq) = Dq(c) · (1− 1
rdH(oq, c)).

Malicious:Rq = f(oq, õq) = 1
rdH(oq, õq).

Testing Details We run each of our experiments under
10 random seeds and report average and error bars in our
graphs. Testing environments uses the same parameters as
training environment. For the setting with multiple selfish
candidates, each of the selfish candidate uses the same pol-
icy. This means that, from the view of each selfish candidate
all other selfish candidates are treated as benign candidates.
This gives us an approximation of the optimal policy in
this setting. We do this as solving the full Markov game,
or multi-agent MDP induced by multiple, self-interested
selfish candidates where each takes the others actions into
consideration, is computationally infeasible.

6.3 MULTIPLE ROUND RESULTS

6.3.1 Convergence and Baseline Comparison

Figure 1 shows the training curve for varying numbers of ma-
licious candidates and a single selfish candidate. Along with
the training curves to show convergence, we plot three naive
baselines: random, random(solver) and greedy. A random
pandering candidate randomly chooses ĉ in each round, the
random(solver) pandering candidate will randomly choose
the number of issues to lie each round and feed the number
into the CMAP solver to generate ĉ, while an candidate that

7

(a) (b) (c) (d)

Figure 3: Effects of pandering by up to |S| = 3 selfish candidates out of |C| = 10 in RD and FRD where k = 5 get elected. Figure (a)
shows the average reward of each selfish candidate for β1 ∈ {0.9, 0.95}. Figure (b) shows what fraction of the 900 total issues (across 100
rounds) are decided against the voter majority for β1 ∈ {0.9, 0.95}. Malicious candidates for the same settings are shown in (c) and (d).

is greedily pandering always chooses the voter majority as
his/her public preference. Figure 1 (a) shows that our RL
candidate is able to quickly learn how to pander, and outper-
forms all of the baselines. Looking at (b) and (c) we see that
as we add more malicious candidates, the convergence takes
longer, but the malicious candidates are able to outperform
the baselines by a greater margin as the candidates are able
to learn a cooperative policy and achieve a higher reward. In
fact, even at the start of training, the RL candidates are able
to outperform the baselines, i.e., with very little training.

6.3.2 Experiments with Selfish Candidates

Figure 3 details the results of our experimental results with
selfish candidates. Recall that selfish candidates pander to
increase their influence over election outcomes and steer
the voting outcomes to match their private preferences. Fig-
ure 3(a) shows that the average reward received by selfish
candidates is lower under FRD than it is under RD in every
scenario, indicating that FRD is more resilient to pander-
ing by selfish candidates. However, the difference between
β1 = 0.9 and β1 = 0.95 dwarfs the difference between
RD and FRD, meaning that sensitivity to pandering has a
much greater effect on the reward of selfish candidates than
allowing the weighting of representatives.

Figure 3(b) shows that FRD is significantly better than RD
at leading to voting outcomes that have lower disagreement,
i.e., represent the voter majority, no matter how many selfish
candidates are present. Here again we see that the difference
between RD and FRD is much larger than the difference
between β1 = 0.9 and β1 = 0.95. To highlight the drastic
difference, in RD with no selfish candidates at all over 30%
of issues decided by the representatives go against the voter
majority, while in FRD with 3 selfish candidates and the
weaker value of β1 = 0.95, the fraction of issues decided
against the voter majority is below 15%.

6.3.3 Experiments with Malicious Candidates

Figure 3 shows the results on average candidate reward and
majority disagreement for settings with varying a varying

number of malicious agents. Figure 3(c) shows that FRD
yields a lower average reward for malicious candidates than
RD for any number of malicious candidates, but the differ-
ence between β1 = 0.9 and β1 = 0.95 is far less striking
than for selfish candidates as seen in Figure 3(a). Thus, both
sensitivity to pandering and the weighting of representatives
are important in the presence of malicious candidates.

Note that the reward functions are different for the two
candidates types, so these scales are not directly comparable,
only the relative effect sizes of the different parameters are.
Figure 3(d) shows a similarly drastic difference between
FRD and RD that dwarfs the difference between the two β1

values. The fraction of issues that disagree with the voter
majority is higher for every number of strategic candidates
when the candidates are malicious versus when they are
selfish under RD, but for FRD there is little difference.

7 DISCUSSION AND CONCLUSIONS

As we have seen in Section 6, FRD is able to account for
the presence of both malicious and selfish candidates better
than RD, resulting in more issues being decided with the
majority of voters. Comparing the results in Figure 2 with
those in Figure 3, we see that holding regular elections is,
in fact, important in upholding the "will of the people". In
Figure 2, even for RD, the fraction of majority disagreement
is around 0.68, while in Figure 3 it is 0.5. So, even when
we have multiple, optimal malicious candidates, they are
unable to cause as much damage as a single candidate in
a single round. This observation holds for both RD and,
even more so for FRD. We observe that FRD has lower
fraction of disagreement and a lower attacker reward across
all tested scenarios. Thus, we can draw the conclusion that
FRD is more resilient than RD in the face of pandering.
The average reward is almost the same for all scenarios
expect malicious candidates under β1 = 0.95, indicating
that damage from strategic candidates is almost linear in
|S|, except malicious when β1 = 0.95, where we see that
a high tolerance for pandering leads to more coordination
opportunities for malicious candidates.

8

References

[1] P. Abbeel, A. Coates, M. Quigley, and A. Ng. An
application of reinforcement learning to aerobatic heli-
copter flight. Advances in neural information process-
ing systems, 19, 2006.

[2] B. Abramowitz and N. Mattei. Flexible representative
democracy: An introduction with binary issues, 2019.

[3] M. J. Aird, U. K. H. Ecker, B. Swire, A. J. Berinsky,
and S. Lewandowsky. Does truth matter to voters?
the effects of correcting political misinformation in an
australian sample. Royal Society Open Science, 5(12):
180593, 2018.

[4] C. J. Anderson, D. Bol, and A. Ananda. Humanity’s
Attitudes about Democracy and Political Leaders: Pat-
terns and Trends. Public Opinion Quarterly, 85(4):
957–986, 11 2021.

[5] G. E. Anscombe. On frustration of the majority by
fulfilment of the majority’s will. Analysis, 36(4):161–
168, 1976.

[6] C. Berner, G. Brockman, B. Chan, V. Cheung, P. De-
biak, C. Dennison, D. Farhi, Q. Fischer, S. Hashme,
C. Hesse, et al. Dota 2 with large scale deep rein-
forcement learning. arXiv preprint arXiv:1912.06680,
2019.

[7] D. Binkele-Raible, G. Erdélyi, H. Fernau, J. Gold-
smith, N. Mattei, and J. Rothe. The complexity of
probabilistic lobbying. Discrete Optimization, 11:1–
21, 2014.

[8] D. Bloembergen, D. Grossi, and M. Lackner. On ratio-
nal delegations in liquid democracy. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 1796–1803, 2019.

[9] C. Blum and C. I. Zuber. Liquid democracy: Poten-
tials, problems, and perspectives. Journal of Political
Philosophy, 24(2):162–182, 2016.

[10] K. D. Bowers, M. E. V. Dijk, A. Juels, A. M. Oprea,
R. L. Rivest, and N. Triandopoulos. Graph-based
approach to deterring persistent security threats. US
Patent 8813234, 2014.

[11] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D.
Procaccia. Handbook of computational social choice.
Cambridge University Press, 2016.

[12] R. Bredereck, P. Faliszewski, R. Niedermeier, and
N. Talmon. Complexity of shift bribery in committee
elections. In Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[13] M. Brill. Interactive democracy. In Proceedings of the
17th International Conference on Autonomous Agents
and MultiAgent Systems, pages 1183–1187, 2018.

[14] J. R. Chamberlin and P. N. Courant. Representative de-
liberations and representative decisions: Proportional
representation and the borda rule. American Political
Science Review, 77(3):718–733, 1983.

[15] B. Dutta, M. O. Jackson, and M. Le Breton. Strategic
candidacy and voting procedures. Econometrica, 69
(4):1013–1037, 2001.

[16] P. Faliszewski and A. D. Procaccia. Ai’s war on manip-
ulation: Are we winning? AI Magazine, 31(4):53–64,
2010.

[17] B. A. Ford. Delegative democracy. Technical report,
2002.

[18] M. R. Garey and D. S. Johnson. Computers and in-
tractability. A Guide to the, 1979.

[19] P. Gölz, A. Kahng, S. Mackenzie, and A. D. Procaccia.
The fluid mechanics of liquid democracy. ACM Trans-
actions on Economics and Computation, 9(4):1–39,
2021.

[20] R. Hainisch and A. Paulin. Civicracy: Establishing a
competent and responsible council of representatives
based on liquid democracy. In 2016 Conference for
E-Democracy and Open Government (CeDEM), pages
10–16, 2016. doi: 10.1109/CeDEM.2016.27.

[21] E. Ie, V. Jain, J. Wang, S. Narvekar, R. Agarwal, R. Wu,
H.-T. Cheng, M. Lustman, V. Gatto, P. Covington,
et al. Reinforcement learning for slate-based recom-
mender systems: A tractable decomposition and prac-
tical methodology. arXiv preprint arXiv:1905.12767,
2019.

[22] W. R. Inc. Mathematica, Version 13.1. URL https:
//www.wolfram.com/mathematica. Cham-
paign, IL, 2022.

[23] K. A. Janezic and A. Gallego. Eliciting preferences
for truth-telling in a survey of politicians. Proceedings
of the National Academy of Sciences, 117(36):22002–
22008, 2020.

[24] M. Lackner. Perpetual voting: Fairness in long-term
decision making. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pages
2103–2110, 2020.

[25] H. Li, W. Shen, and Z. Zheng. Spatial-temporal mov-
ing target defense: A markov stackelberg game model.
In International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), 2020.

9

https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica

[26] H. Li, X. Sun, and Z. Zheng. Learning to attack feder-
ated learning: A model-based reinforcement learning
attack framework. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

[27] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel,
and I. Mordatch. Multi-agent actor-critic for mixed
cooperative-competitive environments. Advances in
neural information processing systems, 30, 2017.

[28] N. McCarthy. America’s most & least trusted profes-
sions [infographic]. Forbes, 6 2021.

[29] K. M. McGraw, M. Lodge, and J. M. Jones. The
pandering politicians of suspicious minds. The Jour-
nal of Politics, 64(2):362–383, 2002. doi: 10.1111/
1468-2508.00130.

[30] J. McMurray. Polarization and pandering in
common-value elections. Brigham Young University.
Manuscript, 2017.

[31] R. Meir. Strategic voting. Synthesis lectures on artifi-
cial intelligence and machine learning, 13(1):1–167,
2018.

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller. Play-
ing atari with deep reinforcement learning, 2013.

[33] T. H. Nguyen, Y. Wang, A. Sinha, and M. P. Wellman.
Deception in finitely repeated security games. In AAAI
Conference on Artificial Intelligence (AAAI), 2019.

[34] R. Noothigattu, D. Bouneffouf, N. Mattei, R. Chandra,
P. Madan, K. R. Varshney, M. Campbell, M. Singh,
and F. Rossi. Teaching AI agents ethical values using
reinforcement learning and policy orchestration. IBM
J. Res. Dev., 63(4/5):2:1–2:9, 2019.

[35] D. Parkes and A. Procaccia. Dynamic social choice
with evolving preferences. In Proceedings of the AAAI
conference on artificial intelligence, volume 27, pages
767–773, 2013.

[36] A. Paulin. An overview of ten years of liquid democ-
racy research. In The 21st Annual International Con-
ference on Digital Government Research, pages 116–
121, 2020.

[37] M. Pivato and A. Soh. Weighted representative democ-
racy. Journal of Mathematical Economics, 88:52–63,
2020.

[38] A. D. Procaccia, J. S. Rosenschein, and A. Zohar.
Multi-winner elections: Complexity of manipulation,
control and winner-determination. In IJCAI, volume 7,
pages 1476–1481, 2007.

[39] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernes-
tus, and N. Dormann. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Ma-
chine Learning Research, 22(268):1–8, 2021.

[40] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov. Proximal policy optimization algorithms.
2017.

[41] S. Sengupta and S. Kambhampati. Multi-agent rein-
forcement learning in bayesian stackelberg markov
games for adaptive moving target defense. arXiv
preprint arXiv:2007.10457, 2020.

[42] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

[43] R. S. Sutton and A. G. Barto. Reinforcement Learn-
ing: An Introduction, 2nd Edition. A Bradford Book,
Cambridge, MA, USA, 2018.

[44] M. Tambe. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge uni-
versity press, 2011.

[45] M. van Dijk, A. Juels, A. Oprea, and R. L. Rivest.
FlipIt: The Game of “Stealthy Takeover”. Journal of
Cryptology, 26(4):655–713, 2013.

[46] R. Wike and S. Schumacher. Democratic rights popu-
lar globally but commitment to them not always strong.
Pew Research Center’s Global Attitudes Project, 3
2021.

[47] N. Young. Complexity of maximizing hamming
distances below a threshold. URL https://
cstheory.stackexchange.com/q/52032.
URL:https://cstheory.stackexchange.com/q/52032
(version: 2022-10-20).

[48] H. Zhang, H. Chen, C. Xiao, B. Li, D. Boning, and C.-
J. Hsieh. Robust deep reinforcement learning against
adversarial perturbations on observations. In Advances
in Neural Information Processing Systems (NeurIPS),
2020.

[49] Y. Zhang and D. Grossi. Power in liquid democracy.
In Proceedings of the AAAI conference on Artificial
Intelligence, volume 35, pages 5822–5830, 2021.

10

https://cstheory.stackexchange.com/q/52032
https://cstheory.stackexchange.com/q/52032

	Introduction
	Related Work
	Computational Social Choice
	Sequential Decision Making, Reinforcement Learning and Security Games

	Electoral Pandering Model
	Preferences Over Issues and Candidates
	Pandering in Elections
	RD and FRD

	Pandering in a Single Round
	Pandering in Multiple Rounds
	Voting Systems as MDPs
	MDP for Selfish Candidates
	MDP for Malicious Candidates

	Experiments
	Pandering in a Single Round
	Multiple Round Setup
	Multiple Round Results
	Convergence and Baseline Comparison
	Experiments with Selfish Candidates
	Experiments with Malicious Candidates

	Discussion and Conclusions

