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Fig. 1: (a) Experimental setting; (b) Experimental devices; (c) MatGAN system architecture; (d) Output of MatGAN.

ABSTRACT

This work presents MatGAN, a system that uses millimeter-
wave (mmWave) signals to capture high-quality images of a
person’s body while they sleep, even if they are covered under
a blanket. Unlike existing sleep monitoring systems, MatGAN
enables fine-grained monitoring and is privacy non-invasive,
and can work under obstruction and low-light conditions,
critical for sleep monitoring. MatGAN utilizes generative mod-
els to generate high-quality images from mmWave reflected
signals that accurately represent sleep postures under a blanket.
Early results indicate that MatGAN can effectively generate
sleep posture images with a median IoU of 0.64.

I. INTRODUCTION

Our body needs quality sleep to support healthy brain
function and to maintain good physical health. Poor sleep is
linked to various health issues such as cardiometabolic health
problems, Type 2 diabetes, stroke, efc. [1]. Therefore, it is
important to pay attention to sleep for individuals of all ages
and health status, particularly for those with certain health
risks. A key factor in evaluating sleep quality is the position
in which a person sleeps i.e., sleep posture.

People tend to change positions during sleep, such as lying
on their back, stomach, side, or curled up. To prevent serious
harm from poor sleep positioning and make it easier for
doctors to track a patient’s condition, a detailed sleep posture
monitoring system is necessary [2]. Therefore, a system that
tracks and records body positions would benefit doctors to
observe sleep behavior daily without the need for frequent in-
clinic visits, which can be costly and inconvenient.

At-home sensors used to monitor sleep can be inconvenient
or uncomfortable for users, as they may require the user
to wear sensors or place them on the bed, or embed them
in textiles. Vision-based systems that use a camera in the
bedroom to monitor sleep can invade privacy and are not able

to accurately identify sleep postures under blankets or in low
light conditions, which are common during sleep. Wireless
solutions that are currently available can provide general
information about things, such as posture classification and
angular orientation, but they are not able to provide detailed,
specific information about different parts of the body during
sleep due to low resolution. Having fine-grained information,
such as imaging or 3D joints, is critical in sleep monitoring
as it allows for tracking specific body parts and movements
to detect and prevent potentially fatal consequences that may
arise from improper sleep postures. The use of high-frequency
millimeter-wave (mmWave) wireless signals, which will be
more common in the future with the widespread adoption of
5G technology and beyond, could potentially allow for more
detailed, fine-grained monitoring. MmWave signals, which
have shorter wavelengths (in mm) and can function in low
light and through obstructions while preserving privacy, offer a
promising solution for non-intrusive sleep posture monitoring.

However, using mmWave signals to monitor sleep postures
poses challenges. The human body both reflects and absorbs
RF energy resulting in specular and variable reflections, which
makes it difficult to discern the positions of body parts and
generate full-body images. In addition, mmWave technology
has lower resolution compared to systems that use visible light.
To address these challenges, traditional imaging algorithms
have been proposed but they face the problem of image alias-
ing due to the limitations of antenna array size and placement,
resulting indistinguishable images for distinct postures.

To address these challenges, we propose MatGAN, a
learning-based system that enables fine-grained monitoring by
generating images under a blanket by modeling the relation-
ship between sleep postures and mmWave signals. Further,
such high-quality images can be used for joint estimation using
the open-source joint estimator module. To obtain the ground
truth, we rely on a pressure mattress that provides imaging



under the blanket but can only sense the body parts that are
in direct contact with the surface of the mattress and does
not give the full body information. MatGAN has two main
components: (1) An image-to-image translator that enables
complete ground truth collection; and (2) A custom cGAN
(conditional Generative Adversarial Network) that generates
sleep posture silhouette images from mmWave reflected sig-
nals. We have designed and prototyped MatGAN (See 1[b])
using commercial off-the-shelf (COTS) devices, by building
76-81GHz mmWave transceivers to collect reflected signals,
a Zed 2i Camera to collect ground truth depth images, and
a BodiTrak2 Pressure Mat to collect ground truth pressure
images. During deployment, MatGAN only requires reflected
signals as input to generate images. Our preliminary results
show that MatGAN can generate sleep posture silhouette
images with a median IoU of 0.64 and 90" percentile ToU
of 0.83, indicating a close similarity to the ground truth.

II. MatGAN DESIGN

We present our overall system design in Figure 1. First,
MatGAN trains an image-to-image translator to fill in missing
information in pressure mattress images and then, it uses
the collected ground truth to train ¢cGAN by learning the
relationship between mmWave reflected signals and sleep pos-
tures through thousands of data samples. In runtime, MatGAN
generates sleep posture silhouette images under the blanket
with just mmWave reflected signals as an input.

Image-to-image Translator for Ground Truth Genera-
tion: The current method for collecting images of a person’s
sleep posture while they are under a blanket is using a pressure
mattress, but this method only provides incomplete images as
it only captures the parts of the body in direct contact with the
mattress. We believe the quality of the silhouette images could
be further improved by filling in the missing information via
learning from other modalities, such as vision-based cameras.
Inspired by many previous research works on image-to-image
translation or missing data imputation in medical imaging,
we propose to use a customized generative model based on
the Pix2Pix network [3], which follows the baseline U-net
architecture to fill in the missing information.

c¢GAN for Silhouette Generator: While the image-to-
image translator module learns to fill in the missing informa-
tion in pressure mattress images to provide a ground-truth col-
lection platform, MatGAN proposes to overcome fundamental
challenges in mmWave imaging via the cGAN framework.
From hundreds of controlled human sleep posture experiments,
we collect input-output pairs of mmWave reflected signals
and pressure mattress images, respectively for different sleep
postures. First, we improve the quality of pressure mattress
images via a pre-trained image-to-image translator to collect
complete ground truth. Then, the cGAN framework learns the
association between the mmWave reflected signals collected
from mmWave devices with 192 virtual channels to the 2D
ground-truth sleep posture silhouette images via a Generator
G and a Discriminator D. Here, Generator is a encoder-
decoder network with five 2D convolutional layers and five
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Fig. 2: (a) Sleep posture images (reference, ground truth, and
generated). (b) CDF plot of cGAN’s performance.

2D deconvolutional layers. Convolutional layers in encoder
extracts abstract features from the mmWave reflected signals
of input size 192x256 with a total of 256 range-reflection bins
and deconvolutional layers in decoder converts those features
to a 2D sleep posture silhouette images.

Loss Function: To ensure the optimal convergence of the
network, we use vanilla GAN loss function Ls based on the
output from the cGAN network during training, along with the
mean squared error (MSE) of pixels of generated images with
the ground truth images. Total loss is defined as: Ly, =
A1 - Lg + Ao - Lp, where A, Ay are the hyperparameters to
explore to minimize the total loss during training.

IIT. PRELIMINARY RESULTS

The preliminary evaluation determines the effectiveness of
MatGAN’s cGAN network in generating high-quality images
of sleep from mmWave reflected signals. We collect data from
a single volunteer in five different sleep postures, with depth
images serving as the ground truth. We collect approximately
5000 training and 3000 test samples, evenly distributed among
the postures. We evaluate the performance of the cGAN using
Intersection of Union (IoU) to measure the similarity between
the generated and ground truth images. Results in Figure 2(a—
b) show that the cGAN generates images with a median IoU
of 0.64 and a 90" percentile IoU of 0.83, indicating a high
level of similarity to the ground truth.

IV. CONCLUSION AND FUTURE DIRECTIONS

In this work, we propose MatGAN, a method for generating
high-quality sleep posture silhouette images from mmWave
reflected signals. In the future, we plan to design and prototype
an image-to-image translator and evaluate the performance of
cGAN in diverse settings.
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