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Abstract

Fuzzing has been widely adopted as an effective testing tech-
nique for detecting software bugs. Researchers have explored
many parallel fuzzing approaches to speed up bug detection.
However, existing approaches are built on top of serial fuzzers
and rely on periodic fuzzing state synchronization. Such a de-
sign has two limitations. First, the synchronous serial design
of the fuzzer might waste CPU power due to blocking I/O
operations. Second, state synchronization is either too late so
that we fuzz with a suboptimal strategy or too frequent so that
it causes enormous overhead.

In this paper, we redesign parallel fuzzing with microser-
vice architecture and propose the prototype uFuzz. To bet-
ter utilize CPU power in the existence of I/O, uFUZZ breaks
down the synchronous fuzzing loops into concurrent microser-
vices, each with multiple workers. To avoid state synchroniza-
tion, uFuzz partitions the state into different services and
their workers so that they can work independently but still
use up-to-date information to make globally optimal deci-
sions. Our experiments show that uFUZZ outperforms exist-
ing fuzzers with 57% improvements in code coverage and
67% improvements in bug detection on average in 24 hours.
Besides, uFuzz finds three new bugs in well-tested real-world
programs.

1 Introduction

In recent years, fuzzing has been widely adopted as a software-
testing technique to detect security bugs [17, 36, 76, 79].
Compared with other program analysis techniques, fuzzing
ensures high throughput while requiring less manual effort
and pre-knowledge of the target software. In addition, fuzzing
is demonstrated to be practical for detecting security issues
in complex, real-world programs [8, 79]. Thus, considerable
computing resources are used for fuzzing in industry. For
example, Google implemented clusterfuzz [4] in 2016, and
over 36,000 bugs have been found through this project.

To improve the fuzzing efficiency, researchers propose a set
of optimizations to enhance each internal component [43, 50].

For instance, several projects implement grammar-based,
adaptive or unified mutators to generate more valid, effective
and diverse test cases [28, 46, 73, 83]. Hybrid fuzzing utilizes
heavy program analysis techniques to extract useful informa-
tion to help explore program state space [16, 59, 61, 67, 78].
Various algorithms are developed to adjust the input prior-
ity to make a balance between input space exploration and
exploitation [19, 70, 80]. Researchers also design and imple-
ment different feedback mechanisms to promote the fuzzing
speed [29, 51, 69]. These internal improvements have dramat-
ically increased the performance of a single fuzzing instance.

In addition to improving internal procedures, researchers
also set sights on parallel fuzzing. As fuzzing shows its
ability to detect bugs in complicated real-world software,
many companies decide to invest a large number of resources
such as CPU and memory in fuzzing [4, 11]. For exam-
ple, Google deploys a parallel fuzz infrastructure to conduct
CI/CD testing for newly submitted code [5]. The goal of
parallel fuzzing is to make full use of resources and detect
more bugs within a shorter time than single-instance fuzzing.
State-of-the-art parallel fuzzing approaches share a similar
architecture [2, 58, 72, 79]. Specifically, they launch multiple
fuzzing instances in separate processes and periodically per-
form corpus synchronization from each other. Each instance
follows the original logic of the underlying single-instance
fuzzer, which is designed to run as a single instance. For ex-
ample, it adopts a serial fuzzing loop which first takes one test
case from the input queue, then mutates the input to generate
new ones, and finally runs the program with the new input
while collecting feedback. Each instance maintains its own
fuzzing states such as the code coverage bitmap and average
speed of test case execution. The advantage of this parallel-
fuzzing architecture comes from the synchronization, which
allows one instance to catch up on the latest progress from
other instances, so all instances contribute to the program
state exploration for detecting bugs.

However, we identify two limitations that hinder scalability
in the current parallel fuzzing architecture. First, the existing
architecture is built on top of single-instance fuzzers, whose



fuzzing logic may not be suitable for parallel fuzzing purposes.
These single-instance fuzzers adopt a serial synchronous loop,
where the input generation and consumption must follow the
order. Once a procedure (e.g., test case execution) in this loop
gets blocked, for example, by file reading and writing, the
whole instance gets stuck. The CPU bound to the fuzzing in-
stance will be idle until the blocking operation completes. As
parallel fuzzing will run multiple instances at the same time
and introduces more I/O by synchronization, the instances are
more likely to get stuck, resulting more CPU power wasted.
We should reuse the idle CPU to fully utilize the computation
power. A straightforward solution is to launch more instances
such that the idle CPU can be switched to handle other non-
blocking instances, like launching 32 instances on a 16-core
machine. However, this method will introduce frequent con-
text switches between different fuzzing instances, which again
decreases the fuzzing performance.

Second, existing approaches periodically synchronize the
corpus from each other to allow instances with slow progress
to catch up. The synchronization will update the local fuzzing
states for all instances so that they can use the latest informa-
tion to make globally optimal choices. However, these state
updates are not timely enough. In the time window between
two consecutive synchronizations, each instance has to use
the local information to make decisions. Since local informa-
tion could be out-of-date, such decisions are not necessarily
optimal from the global perspective. After running fuzzing
instances for a long time, the accumulated non-optimal de-
cisions could significantly reduce the fuzzing efficacy. In-
creasing the frequency of synchronization could mitigate this
problem. However, as demonstrated in the previous work [75],
frequent synchronization brings heavy overhead, which will
reduce the fuzzing efficiency.

To overcome the limitations caused by the current architec-
ture, we need to redesign fuzzing tools to reduce the burdens
of synchronization and serialization. Fortunately, we find our
opportunity in microservice architecture [7]. Microservice
architecture organizes tasks in a set of loosely coupled, self-
contained services that can run concurrently with others. If
no service is blocked, all services collaborate with each other
according to the loose dependency. Once a running service
is blocked, other services can take over the computing re-
source (i.e., CPU) to make individual progress. Moreover,
each service will maintain its own state and only needs to
share minimal information with others in rare cases. Most of
the time, each service can make globally optimal decisions.

In this paper, we propose uFUZZ, a parallel fuzzing frame-
work using the microservice architecture. In order to adopt
this new architecture, we break the current serial fuzzing loop
into four microservices, i.e., corpus management, test case
generation, test case execution, and feedback collection. Each
microservice is self-contained and can schedule parallel work-
ers by itself. This effectively addresses the CPU idling issue
since each microservice is loosely coupled and can replace

the blocked service for execution. We take special care to
allow one service to complete its task as much as possible
before switching to others to minimize the overhead of con-
text switches. We further design an output cache mechanism
to reduce the coupling between different services, like input
generation and consumption. In this case, if one consumer ser-
vice gets stuck, the producer service can still make progress
and save results into the cache. Similarly, the consumer ser-
vices can retrieve results from the caches even if the producer
service gets stuck.

To address the challenges caused by synchronization delay,
we design two levels of state partition in uFuzz. First, uFuzz
splits the global state based on microservices so that each
service can use the state locally. For example, the coverage
bitmap will be put into the feedback collection service as it
will evaluate the code coverage and update the bitmap after
executing test cases. Second, different workers in each service
handle unique parts of the service states. Accumulating all
worker states will obtain the service states. These partitions
eliminate the state synchronization among different services
and workers and enable each service worker to use up-to-date
information to make globally optimal decisions.

We implement uFuzz in 9534 lines of Rust code, which
consists of the concurrent infrastructure (i.e., the asyn-
chronous runtime) and the fuzzer. The concurrent infrastruc-
ture is built on top of Tokio [3], a well-tested asynchronous
runtime library. For the fuzzer, we adopt the fork-server ex-
ecution, havoc mutation, and edge coverage feedback from
AFLplusplus-4.01c, and use a simple round-robin algorithm
that favors test cases finding more new code for seed selection.

To understand the effectiveness of our new design, we eval-
uate uFUZzz on popular benchmarks, including Magma [38]
and FuzzBench [48]. We compared uFUZzz with the state-of-
the-art parallel fuzzers, including AFLplusplus, AFLEdge and
AFLTeam, and found yFuUzz can explore 57% more program
states and 67% more bugs on average in 24 hours. Besides,
our experiments show that uFUzz can make progress in the
existence of blocking I/O with its concurrent design, and its
state partition helps improve code coverage by 96% and bug
detection by 47%. Moreover, we evaluated uFUzz and found
three new bugs on well-tested real-world programs.

In summary, this paper makes the following contributions:

* We propose a novel parallel fuzzing framework with
microservice architecture that well utilizes CPU power
even with blocking I/O and eliminates the state synchro-
nization.

* We implement the prototype, uFuzz, of our system to
effectively perform parallel fuzzing.

* We compared uFuzz with state-of-the-art fuzzers, and
the results show that uFuzz can find 57% more new
coverage and 67% more bugs in 24 hours on average.

We will release the code of uFUzz upon publication.
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Fig.1: The state-of-the-art parallel fuzzing approach. The fuzzer spawns multiple instances and runs them in parallel. Each instance is
self-contained and functionality-complete. They maintain their own local fuzzing states, such as the corpus and coverage bitmap. Most of the
time, the instances work independently as if there were no other instances. Occasionally, the instances perform corpus synchronization with

each other to share their fuzzing progress.
2 Problem

In this section, we first briefly describe how state-of-the-art
parallel fuzzing approaches work. Next, we discuss the lim-
itations of existing approaches. We then show the potential
of using microservice architecture to mitigate the limitations
of parallel fuzzing. Finally, we present our novel approach to
solving the problem.

2.1 How Existing Parallel Fuzzing Works

To better test complex programs with time constraints [5,
42], many fuzzers [2, 6, 22, 35, 79] support parallel fuzzing
mode to boost the fuzzing performance. The state-of-the-
art approach is to run multiple fuzzing instances of the same
fuzzer independently on multiple CPU cores. Additionally, the
instances perform periodic corpus synchronization with each
other because the corpus represents the fuzzing progress of an
instance. Synchronizing the corpus allows the latest progress
made by one instance to be caught up by the others and guide
their work [79]. As shown in Fig. 1, each instance maintains
a local seed corpus. Most of the time, these instances run
independently, as if there are no other instances. Occasionally,
they check each other’s seeds and copy those that trigger new
code to their own corpus.

Advanced parallel fuzzing approaches either run instances

of different fuzzers to combine their capability [25, 37, 55]
or further optimize the corpus distribution strategy by parti-
tioning the synchronized corpus among instances to avoid
duplicated fuzzing efforts [44, 58, 72].
Fuzzing State. Corpus synchronization improves fuzzing
because the corpus is part of the fuzzing state. The fuzzing
state of a fuzzing instance is the minimum information to
represent its full fuzzing progress. They might include the
corpus, average running time of the test case executing, seeds
of the random number generator, etc.

2.2 Limitation of Existing Approaches

Existing parallel fuzzers maintain a local fuzzing state in each
instance and perform state synchronization periodically. Such
approaches mainly have two problems: (1). It aggravates
the problem of CPU idling due to the serial design of the
underlying fuzzer. (2). The global fuzzing state cannot be
synchronized to each instance both timely and efficiently,
which results in suboptimal performance.

CPU Idling due to Blocking I/O. Existing fuzzers run their
instances in a serial synchronous loop [2, 35, 79]. For exam-
ple, the fuzzing pipeline of AFLplusplus is as follows: Select
a test case, mutate it, execute it, check the execution feedback,
and loop. If any of the steps are blocked by I/O, the other steps
can do nothing but wait. Therefore, such a design might suffer
from performance degradation in the existence of I/O. I/O can
come from two sources. First, the tested program involves
heavy blocking I/O (e.g., a compression application might
do heavy file I/0.). During the execution phase, the fuzzing
loop can get stuck, waiting for the I/O to complete. Since the
fuzzing loop is synchronous, the CPU cannot perform other
tasks, such as test case mutation, but wait, resulting in the
CPU idling. For example, we measured the CPU usage of
fuzzing tcpdump with AFLplusplus and found that the CPU
usage was only 70%. We checked the system calls made by
tcpdump using strace [12] and found that tcpdump was wait-
ing for blocking system calls such as poll to return. Second,
when fuzzing with multiple instances, state synchronization
might also bring in lots of file I/0O. Take AFLplusplus as
an example. When running in parallel mode, each instance
periodically checks and synchronizes the corpus with other
instances in a shared folder. This has been shown to bring
lots of I/O, such as shared folder locking and file copying,
which hurts the fuzzing performance [75]. A simple solution
is to spawn more instances on the same CPU (i.e., oversub-
scription). However, that might lead to higher CPU usage but



not better fuzzing performance. This is because, without a
well-calibrated task scheduler, multiple instances will try to
occupy the same CPU and cause lots of resource contention,
such as excessive context switching. Such contention hurts
the performance of each fuzzer and might result in a worse
overall performance.

Fuzzing State Not Timely Synchronized. The instances
maintain their local fuzzing states and perform periodic syn-
chronization. Before the next synchronization, they use the
possibly outdated states and fuzz with the locally optimal
fuzzing strategy, which can be suboptimal globally. On the
other hand, we cannot synchronize too frequently, which has
a high overhead [75].

We did a quick experiment to verify our hypothesis. We
used AFLplusplus to fuzz Quick]S [9], a popular JavaScript
engine and a benchmark from OSS-Fuzz [8]. As a comparison,
we fuzzed with one instance of AFLplusplus for ten hours
and ten instances in parallel for one hour, respectively. The
measured metrics include the edge coverage and how many
of the interesting test cases in the corpus are further selected
for fuzzing. The result shows that if we fuzz with a single
instance for 10 hours, about 13,700 new program paths are
found, and about 80% of the interesting test cases are further
used for fuzzing. However, when fuzzing with ten instances
in parallel for an hour, we only find about 6,700 new program
paths, which is only 49% of the coverage of a single instance.
About only 40% of the test cases are further selected for
fuzzing. We assume the fuzzing strategy of the single-instance
fuzzer is optimal. That means the ten instances use suboptimal
strategies and thus duplicate their works on similar test cases,
while the globally optimal strategy is to explore test cases
diversely. Similar results are also found in [72].

To further verify that the performance gap is caused by syn-
chronization delay, we change the synchronization frequency
of AFLplusplus and measure the change in the fuzzing per-
formance in terms of code coverage. More specifically, we
fuzz Quick]S with ten AFLplusplus instances for one hour
by setting their synchronization frequency per hour from 2
(AFLplusplus’s default setting) to 40,000 (which performs
synchronization after every test case execution). The result is
shown in Fig.2. As we can see, if the frequency is too low, the
code coverage is also low because the instances are using sub-
optimal fuzzing strategies. If the synchronization frequency
is high, the code coverage also drops dramatically because
the overhead of synchronization is too high. However, even
the best result in the curve is still much worse than that of the
single instance fuzzing. This means that simply changing the
synchronization frequency does not solve the problem.

From the above discussion, we want a parallel fuzzing
framework that supports concurrency to better utilize CPU
power even in the existence of I/O and can synchronize in-
stances’ states timely with little overhead so that we can use
optimal fuzzing strategy. However, it is difficult to do so on
top of existing fuzzers with monolithic serial architecture. We
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Fig. 2: Code coverage of 10 AFLplusplus instances testing
Quick]S with different synchronization frequency in an hour.

need a different architecture.

2.3 Microservice Architecture

We find microservice architecture [7] fits parallel fuzzing
well and can potentially mitigate its current limitations. First,
microservice architecture structures the application as a set
of small, loosely coupled, collaborating services. These ser-
vices run concurrently with others. For parallel fuzzing, we
can break the different phases in the serial fuzzing loop into
concurrent services, where we might run other services if
one gets stuck. Second, the services are self-contained (i.e.,
it does not rely on others to finish its job), which means it
does not need to synchronize with others. For parallel fuzzing,
the services can be self-contained if each of them focuses
on a single complete functionality of fuzzing, where we do
not need state synchronization among the services. Third, in-
side a service, we can easily scale the capability by creating
multiple instances and partitioning the service data among
the instances. For parallel fuzzing, we can create multiple
workers inside a service to achieve parallelism and partition
the fuzzing state it maintains among the workers. And these
workers do not need to synchronize with each other because
their states have no overlap. We only need to ensure that the
workers can work independently using their local states and
still achieve a globally optimal result.

2.4 Our Approach

This paper aims to design a parallel fuzzing framework that
embraces concurrency to better utilize CPU power even with
blocking I/O and avoids synchronization but still gets optimal
performance. We achieve our goal in two steps: redesign-
ing the fuzzing framework with microservice architecture
migration and partitioning the fuzzing state. Microservice
architecture adds concurrency to the framework and enables
the fuzzer to fully utilize the CPU power in the existence of
I/0. Fuzzing state partition allows the instances to fuzz with
locally optimal strategy and still achieve an overall globally
optimal performance without synchronization.

Redesign with Microservice Architecture. We break the
traditional serial fuzzing loop into four services based on
functionality: Corpus management, test case generation, test
case execution, feedback collection. The whole fuzzing state
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Fig. 3: Overview of uFuzz. Instead of running multiple fuzzing instances and performing periodic synchronization, uFUZZ breaks the
traditional monolithic architecture into a microservice one. The new architecture consists of four self-contained services, each maintaining a
partition of the fuzzing state. The services are loosely dependent on each other using output caching. Inside each service, we run multiple

workers to exploit parallelism.

is also partitioned into the services in a way that each service
only needs its partition to function and is thus self-contained.
However, these services are still tightly dependent on each
other: every service produces output for other services to
consume and vice versa. Instead of running the services syn-
chronously, we utilize output caching to decouple production
and consumption so that they can run concurrently. When one
service gets stuck, other services can still make progress and
cache the outputs. After the stuck service is ready to run again,
it can directly consume the cached outputs without waiting
for the producer to generate them. In this way, we can better
utilize the CPU power even with blocking I/O.

Partition the Fuzzing State. We have performed the first
level of fuzzing state partition by breaking down the mono-
lithic structure. Now each service maintain its own fuzzing
state. However, if the state is shared by the workers, we still
need state synchronization among the workers. We further par-
tition the state among the workers inside the service to avoid
synchronization. We use two rules to guide the partition. First,
each partition of the state should be functionality-complete,
which means the worker can finish its job without using oth-
ers’ states. Second, if each worker adopts its locally optimal
strategy, we expect to get a globally optimal result by accu-
mulating individual results. In this way, the workers can run
independently and do not need synchronization with others.
Since we only have one global and distributive fuzzing state,
the state changes are directly applied to the states inside the
workers. Therefore, the workers always fuzz with the update-
to-date global state and make optimal decisions. This avoids
the problem of periodic synchronization, which either brings
high overhead or large synchronization lagging.

3 Design

Fig.3 shows the overview of uFuzz. We first break the tradi-
tional serial fuzzing loop into four services (§3.1). This step
partitions the responsibility and the state of the fuzzer into
different services so that they do not need state synchroniza-
tion with each other. These self-contained services are the
candidates for concurrency. Next, we utilize output caching to
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Fig.4: The internal structure of a service in uFuzz. Each service
has a fuzzing state, an input queue dispatcher, an output caching
queue, and some workers. The fuzzing state is partitioned into the
workers. The input queue dispatcher accepts from other services
and dispatches them to the workers. The workers handle the inputs
in parallel and send the results to the output caching queue. The
consumer services can fetch these results whenever they are ready.

allow the services to run concurrently (§3.2) and achieve max-
imum parallelism with load balancing (§3.3). Then we further
perform state partitioning among workers so that each worker
maintains a self-contained partition of the fuzzing state (§3.4).
This allows the workers to avoid synchronization with each
other but still get an overall optimal result. Finally, we connect
the services together with zero-copy communication (§3.5)
to achieve efficient parallel fuzzing.

3.1 From Monolith to Microservice

As the first step to support concurrency and reduce CPU idling
due to blocking 1/O, we break the monolithic serial fuzzing
loop into multiple services. We use the following guidelines
from the microservice architecture for the breakdown. First,
each service should be micro and focus only on one core
functionality of the fuzzing. Second, the services should be
self-contained, which means they should not rely on the states
of other services to function. If any part of the fuzzing state is
used by a service, then it should be maintained by the service.
As a result, we classify four core functionalities from the
fuzzing loop and break them into four services, which are



listed below:

Corpus Management Service. It is responsible for perform-
ing test case scheduling and maintaining a corpus of interest-
ing test cases and their associated metadata (e.g., performance
scores). The corpus can include those finding new code cov-
erage and those that trigger new bugs, etc. Based on the meta-
data of the test cases, the scheduling algorithm chooses some
from the corpus that can help test case generation.

Test Case Generation Service. It generates new test cases
to fuzz the tested program either from scratch or by mutating
existing ones. For example, it can utilize the BNF grammar
to generate structured inputs or bit-flip existing test cases to
generate new variants.

Execution Service. It executes the tested target with the
generated test cases and generates necessary feedback (e.g.,
the code coverage information, whether the tested program
crashes or timeouts during the execution, etc.).

Feedback Collection Service. It collects the feedback from
the execution service and classifies whether they are interest-
ing or not. This information can be used to decide whether
a test case should be added to the corpus. It can also gener-
ate fuzzing statistics in different metrics for other services to
improve their strategies. For example, it can calculate how
many good test cases are generated from a specific seed and
report that to the corpus management service. The corpus
management service can then utilize the statistics to update
the performance scores of the corresponding test cases and
fine-tune its scheduling algorithm.

We see these services are dependent on each other and
form a loop: each service consumes some outputs from other
services and also produces some for them. Therefore, these
services still need to run in a serial way that one getting stuck
blocks the overall progress. We need to further loosen the cou-
pling between the services so that they can run concurrently
and mitigate CPU idling, as described in the next section.

3.2 Concurrency by Output Caching

Each service is both a producer (produces inputs for other ser-
vices) and a consumer (consumes outputs from other services).
We decouple the production and consumption of each service
by output caching so that the services can run concurrently.
More specifically, we connect the services with an output
caching queue. When a service produces some results, it first
sends them to the output queue instead of to the consumer
service directly. If the consumer service is busy temporarily,
the results just stay in the queue, and the producer service is
free to produce more results. Once the consumer service is
ready to process new inputs, it can directly fetch the cached
ones from the output queue. In this way, services can run
concurrently. When one gets blocked, others can still run and
make progress.

Congestion Control. One problem of output caching is that

it allows the producer to generate unlimited outputs without
constraints. Therefore, it might happen that one service keeps
generating outputs and fully occupies all the CPU cores. Un-
der this situation, other services have no chance to run and
consume these cached outputs. And the fuzzing cannot make
overall progress. For example, the corpus management ser-
vice can keep selecting test cases for mutation and send them
to the queue. And the test case generation service can not con-
sume them as all the CPU cores are busy running the corpus
management service.

Therefore, we adopt congestion control by limiting the
maximum number of cached results in the queue. When the
producer service finds that the output queue is full, it knows
that the consumer service needs more time to process the
cached outputs. Then it will yield to the scheduler and be
hung up so that other services can run. In this way, the rate
of production and consumption can reach a dynamic balance,
and the fuzzing can make smooth progress continuously.

3.3 Parallelism by Load Balancing

To fully utilize the computation power of multiple cores, each
service of uFuzz can have multiple workers in parallel. To
achieve maximum parallelism, the number of workers should
be the same as the number of cores, and we perform load
balancing with an input dispatcher to keep all workers busy.
The input dispatcher maintains a first-in-first-out queue
of idle workers and adopts two strategies of load balancing:
"first come, first served" and dynamic input partitioning. We
define a worker as idle if it is ready to process input but
not currently processing any. Such workers notify the input
dispatcher to put them into the back of the queue in order.
Whenever an input arrives, the input dispatcher tries to pop
an idle worker out of the queue and dispatch the input to
it, which is "first come, first served." If the queue is empty,
which means all workers are busy, the input dispatcher will
wait for a worker to become idle. This strategy works well
for most cases. However, the sizes of the incoming inputs
are not fixed, and sometimes they can be very large. If we
simply dispatch an input to one worker, it might result in one
worker processing a large input while other workers are idle.
To avoid this situation, we further perform dynamic input
partition before dispatching. If the arrived input is larger than
a threshold value and there are more than one idle workers,
we partition the input evenly based on the number of idle
workers and dispatch each partition to an idle worker. With
the two strategies, we can achieve maximum parallelism by
keeping the workload of each worker balanced dynamically.

3.4 Avoid Synchronization by State Partition

As the result in Fig.2 shows, if the fuzzing instances main-
tain their local states and rely on periodic synchronization,
we end up with suboptimal performance due to either syn-



chronization lagging or high overhead. Therefore, we avoid
synchronization by partitioning the fuzzing state. Afterward,
we maintain only one global state but in a distributive way.

We already perform the first level of state partition by break-
ing the fuzzing loop into microservices. We further perform
the second level inside each service. More specifically, we par-
tition the state among the workers in a way that each worker
maintains a unique and functionality-complete partition. Ev-
ery worker only needs its own part of the state to finish its
job. The workers do not need state synchronization with each
other. Besides, the partition enables us to achieve an overall
optimal result by simply accumulating the results from the
workers. In this way, the workers can run independently.

We categorize the fuzzing states into two types. The first
type has a known fixed size before the fuzzing starts. For
example, the feedback collection service maintains a bitmap
for recording code coverage. The size of the bitmap is fixed
and configured by the users. The second type has an unknown
variable size. For example, the seed corpus is part of the
fuzzing state and grows as we fuzz. Due to these different
characteristics, we perform static partition for the first type
and dynamic partition for the second, as described below.

Static State Partition. For the fuzzing state of fixed size, we
partition it statically and evenly among the workers. There-
fore, we know which worker maintains which partition in
advance. When new inputs arrive, the input dispatcher parti-
tion the inputs based on the partition boundary and dispatch
them to the corresponding workers. For example, suppose that
we have a 1000-byte bitmap and 10 workers in the feedback
collection service. By static partition, each worker should
maintain 100 bytes (e.g., the first maintains byte O to byte
99, and the second maintains byte 100 to 199). When the
execution service generates new bitmap information, the in-
formation is partitioned and dispatched to different workers
in the feedback collection service. By accumulation, if none
of the workers in the feedback collection service find new
bits, the executed test case is considered uninteresting and
otherwise interesting.

Dynamic State Partition with Tagging. For the fuzzing
state of variable size, we cannot predict the size in advance
to perform static partition. Instead, we use dynamic partition:
whenever a new part of the state is generated, we partition it
evenly and distribute it to the workers. Since the new state
is randomly distributed, the partition in each worker should
have similar data distribution as the global state. This is im-
portant because most fuzzing strategies are randomized ones,
which means their performance is not dependent on the size
or the specific values of the underlying data but on their dis-
tribution. Therefore, a fuzzing strategy that is optimal for
the global state should also be optimal for the partitioned
state. For example, if the corpus management service has 25
workers and maintains a corpus of 1000 interesting test cases.
500 of the test cases are considered as good (i.e., they can
potentially trigger more new codes), and the other 500 are

bad. By uniformly random partition, each worker is expected
to maintain 20 good test cases and 20 bad test cases. If the test
case selection strategy for the global state is to first explore
the good test cases and then the bad ones, then every worker
just independently follows this strategy to achieve the same
expected result.

One problem with dynamic partition is that there is no
partition boundary. It is difficult for the input dispatcher to
figure out how to dispatch the inputs. For example, the feed-
back collection service can send some performance reports of
the evaluated test cases to the corpus management (e.g., the
test case X generates 20 new test cases that trigger new code
coverage) for fine-tuning the scheduling algorithm. The input
dispatcher of the corpus management service cannot figure
out which worker maintains the test case X and should receive
such inputs easily. If we maintain the global knowledge of
which worker maintains which test cases, it will be too much
overhead as the corpus size grows. Therefore, for dynamic
state partition, we assign each worker a unique ID and tag the
states it maintains with the ID. Such tagged IDs will remain
in all intermediate outputs that are related to the states (i.e.,
the test cases sent out by the corpus management will contain
the IDs of the workers maintaining them.). Since the number
of workers can be known in advance, the input dispatcher can
dispatch the inputs based on the ID.

3.5 Zero-Copy Communication

As mentioned before, we break the fuzzing loop into different
services, and each service consumes the outputs from other
services and produces some for them. Considering the fast
speed of fuzzing, the amount of passing data can be huge
and thus potentially introduce high communication overhead.
Therefore,we design a safe zero-copy mechanism to reduce
communication overhead. Specifically, we utilize pointer pass-
ing with shared memory to pass only a constant size of data
regardless of the amount of generated outputs and unique
ownership to enable safe access to data across services. For
example, suppose the average size of the generated test cases
is 1,000 bytes long, and the test case generation service gen-
erates 1,000 new test cases per second. Assuming we always
copy the data from one service to another, the required data
copying from the test case generation service to the execution
service will be 1,000,000 bytes per second. The number will
keep going up if we fuzz with more cores. However, if we
can pass a pointer to the data, we only need eight bytes on an
x64 system.

Pointer Passing with Shared Memory. Instead of asking
both the producer and consumer service to unnecessarily allo-
cate memory to store and copy the data from one to the other,
we create shared memory between the services and pass the
pointers to the shared memory. After the shared memory is
set up, the producer service writes its outputs directly to the
shared memory. To "pass" the data to the consumer, the pro-



Table 1: Line of codes of different components of uFuzz, which
sum up to 9534 lines.

Module Language LOC
Concurrent Runtime Rust 1,980
Corpus Management Rust 759
Testcase Mutation Rust 1,604
Fork-Server Execution Rust 1,453
Feedback Collection Rust 1,169
Others Rust/Protobuf 2,569
Total Rust/Protobuf 9,534

ducer simply passes a pointer to the data and the size of the
data to the output queue. Afterward, the consumer can fetch
the pointer and the size to perform accurate data access. In
this way, regardless of the output size, we only need to pass
the small constant-size pointers and integers.

Unique Ownership for Safe Access. Introducing shared
memory incurs a potential safety problem. Since the shared
memory is accessible from multiple services, if we allow
the services to access the memory at the same time, race
condition could happen. Therefore, we wrap the pointers with
unique ownership to ensure safe memory access. This unique
ownership guarantees that, at most one service can access the
underlying shared memory at any moment. This is reasonable
because the consumer should only access the output after the
producer has finished generating it, and the producer has no
need to access its output afterward.

4 Implementation

We implement yFUZZ in 9534 lines of code. Table 1 shows
the breakdown.

Concurrent Runtime. We use Tokio as the concurrent run-
time of uFuzz. The runtime is responsible for efficient task
scheduling. Each worker in the services of uFUZz is run as a
task in the runtime. As users configure the number of workers,
the number of total tasks is fixed. In this way, we avoid the
overhead of unnecessary task creation. We maintain a double-
ended queue of unfinished tasks to execute. If the runtime is
looking for a task to run, it pops one from the front of the
queue. When a service receives inputs, its workers will get
notified, and uFuzz will try to put them in front of the queue,
which allows them to be picked up for execution sooner. After
a worker finishes its work, we put it at the back of the queue
so that workers from other services have a chance to run. To
avoid unnecessary service switching, when a service receives
inputs, it processes as many of them as possible. If all the
inputs are processed or the service gets stuck, uFuzz will
move to the next service with inputs to be processed.

Corpus Management. The corpus management service
maintains a corpus of test cases and their performance scores
used in the test case selection algorithm. The performance
score of a test case reflects how many interesting variants it
has generated. When a test case is added to the corpus, we as-

Table 2: Line of source codes and the number of inserted bugs
of the tested six targets. Larger code spaces usually result in more
complex programs.

Target Poppler SQLite openssl sndfile 1libxml2 PHP
LOC 342K 320K 695K 66K 457K 1,488K
Bug Num 22 20 20 18 17 16

sign it an initial score and adjust it according to the feedback.
For example, if a mutated variant of a test case triggers a new
code path, the score of the test case is increased. For test case
selection, we sort the test cases by scores and select them in
descending order with random skipping.

Test Case Generation. yFuzz uses AFLplusplus’s havoc
mutation as its test case generation, which performs unstruc-
tured bit flip and byte modification on existing test cases.
Since test case generation and execution are in separate ser-
vices, sending the mutated test cases one by one to the ex-
ecution service will result in too much service switching,
considering the fuzzing speed. Instead, we mutate each test
case multiple times and send the new variants in bulk to
the execution service to reduce the overhead. We also skip
the deterministic stage and only perform the havoc stage as
AFLplusplus’s parallel fuzzing mode does.

Execution. The execution service adopts the popular fork-
server approach [2, 79]. Each worker in the execution service
has its own fork server. When a worker receives an input to
execute, it feeds the input into the fork server and requests
a fork. The forked process executes the target binary with
the test case as input and generates the code coverage and
execution status (e.g., crash, timeout).

Zero-Copy Communication. We run all services of uFuzz
in the same process to share the address space. In this
way, zero-copy communication can be achieved by simple
pointer passing. We use Rust’s std::sync::Arc, a thread-
safe reference-counting pointer, to wrap our data. We achieve
unique ownership by ensuring that the reference counter of
the pointer is always one, which means only one owner can
operate on the underlying memory.

5 [Evaluation

Our evaluation aims to answer the following questions.
* Can uFuzz outperform state-of-the-art parallel fuzzers?
(§5.2)
* Can yFUZZ’s microservice architecture and state parti-
tion improve fuzzing performance?
e Can pyFuzz find new bugs in real-world programs?
(§5.4)

5.1 Evaluation Setup

Benchmark. We use the state-of-the-art benchmark
Magma [38] to evaluate uFuzz. The measured metrics in-



clude bug detection capability and code coverage. Due to
the time and resource limit, we rank the programs in Magma
by the number of inserted bugs and test the top six pro-
grams: Poppler, SQLite, openssl, sndfile,libxml2, PHP. We
use the corpus from Magma for all the targets and run them
through AFLplusplus’s test case minimizers to remove re-
dundant ones. We compare uFUzZz with three state-of-the-art
fuzzers: AFLplusplus [2], AFLTeam [58], and AFLEdge [72].
AFLplusplus is the most popular fork of AFL with various
improvements and is still actively maintained. AFLTeam and
AFLEdge are the most recent and the open-source advanced
parallel fuzzers, which focus on partitioning fuzzing tasks
to different instances and are good comparison for uFuzz’s
state partition. AFLEdge and AFLTeam work by integrating with
existing single-instance fuzzers. Therefore, we run AFLTeam
and AFLEdge on top of AFLplusplus for a fair comparison.

Environment Setup. We perform our evaluation on three
machines, each with an Ubuntu 18.04 operating system, an In-
tel Xeon CPU E5-2680 v3 processor with 48 visual cores and
256GB memory. For bug detection, we calculate the number
of bugs with Magma, which assigns a unique bug ID to all
its inserted bugs and prints a log whenever a bug is triggered.
Due to the randomness in fuzzing, we further apply Magma’s
survival analysis to convert bug triggering time to bug survival
time, which is the expected time a bug remains undiscovered.
A smaller survival time indicates a fuzzer can find the bug in
shorter time. We instrument the tested programs to test edge
coverage with hit counters. For the code coverage and bug
detection experiments, we run the fuzzers with 40 fuzzing
instances on 40 cores inside docker for 24 hours and repeat
the process five times. For uFuzz, we run 40 workers for
each service but still use only 40 cores which is the same as
the other fuzzers. We report the average results to reduce the
random noise.

5.2 Comparison against existing fuzzers

We compare uFUZzz against three state-of-the-art fuzzers to
understand its strengths and weaknesses in parallel fuzzing,
including the de facto AFLplusplus and the two most recent
parallel fuzzers, AFLEdge and AFLTeam. Since uFUZZ’s seed
scheduling algorithm is different from AFLplusplus’s, we
also compare with AFLplusplus-M, which is AFLplusplus
with uFuzz’s seed scheduling algorithm, to see whether per-
formance improvement is due to our seed scheduling. We
also want to understand whether increasing the synchroniza-
tion frequency of existing fuzzers can improve fuzzing as
a simple solution. Therefore, we add a comparison with
AFLplusplus-F, which is AFLplusplus performing synchro-
nization every 30 seconds instead of 30 minutes. We use 30
seconds because we find by experiments that it has lower
overhead and achieves almost the same coverage as that of a
shorter synchronization interval. We compare these fuzzers
in two metrics: bug detection (the number of triggered bugs

and their survival time) and edge coverage.

Bug Detection. As shown in Table 3, uFuzz finds 12
bugs in 24 hours, while AFLplusplus, AFLEdge, AFLTeam,
AFLplusplus-M, and AFLplusplus-F find only 8, 8, 6, 7, and
9 bugs, respectively. All the nine bugs found by other fuzzers
are also covered by uFuzz, and uFuzz found seven of
them within the shortest time. Three of the bugs (PDF201,
XMLOO2, XMLOO3) are only found by uFUzz. AFLplusplus finds
one more bug than AFLplusplus-M, meaning that the seed
scheduling of uFUZZ might not be as good as AFLplusplus’s
in bug detection. However, uFuzz can still find more bugs
quickly, thanks to the microservice design and state partition.
We plan to adopt the advanced seed scheduling algorithm of
AFLplusplus to further improve the performance of uFuzz.
Additionally, AFLplusplus-F finds all the eight bugs found
by AFLplusplus and one more. Out of the § common bugs,
AFLplusplus-F finds six of them faster. This shows that higher
synchronization does help improve the bug detection capabil-
ity of AFLplusplus because the fuzzing instances can catch
up with the latest progress earlier.

Code Coverage. As shown in Fig. 5, on average uFuzz
identifies 23%, 45%, 102%, 88%, and 33% more new edges
than AFLplusplus, AFLEdge, AFLTeam, AFLplusplus-M, and
AFLplusplus-F respectively on the six targets. We can see
from Table 2 that the improvement of uFUzZ against the
second-best fuzzer is related to the complexity of the targets.
If the programs have larger code bases and more program
states to explore , uFUZZ can achieve much higher code cov-
erage than the second-best fuzzer (e.g., 40% more in Poppler
and 37% more in PHP than AFLplusplus). Otherwise, if the
programs are small and fuzzers can achieve saturated cover-
age in a short time, then the improvement of uFUZZ is not ap-
parent (10% more in openssl than AFLplusplus and 6% less
in sndfile than AFLplusplus-F). Another thing we see is that
AFLplusplus has higher code coverage than AFLplusplus-M,
which shows that the simple scheduling algorithm of uFuzz
is not as good as AFLplusplus’s in input space exploration.
This means the improvement of uFuzz does not come from
its scheduling algorithm but its new architecture and state
partition. We notice that AFLEdge and AFLTeam have worse
performance than AFLplusplus. We carefully investigated
their source code and execution status and found that they
both run their partition algorithms at a fixed time interval (i.e.,
every hour). The algorithms aggregate the fuzzing progress of
all their instances (e.g., the corpus of all instances) and then
perform partitioning, which requires heavy analysis. However,
since we are running the experiment with 40 instances and
the total size of the corpus is large, the analysis can take a
long time to finish. For example, we find that it takes AFLEdge
more than three hours to finish one round of partitioning on
PHP. By the time it finishes, the fuzzing has made three more
hours’ progress and the partition results might not be opti-
mal anymore. Interestingly, we notice that the coverage of
AFLplusplus-F is higher than AFLplusplus at the beginning
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Fig.5: Edge coverage found by evaluated fuzzers with 40 cores for 24h. AFLplusplus-F is AFLplusplus with a synchronization interval of
30 seconds, an empirical value that can reach higher code coverage with lower overhead based on our testing. AFLplusplus-M is AFLplusplus
with uFuzz seed scheduling. uFuzz-S is uFuzz without state partitioning. uFuzz-SM is uFuzz without state partitioning and concurrency.

(i.e., in the first few hours) but lower in the end. We inves-
tigate the results and find the following reasons. When the
fuzzing starts, the corpus is small and the input space is not
well explored. An instance might find a bunch of interest-
ing test cases, but cannot explore all of them timely. Under
this situation, faster synchronization allows other instances to
catch up with the progress and help explore the interesting test
cases. A small corpus also allow the instances to synchronize
with low overhead. However, as the code coverage is about
to be saturated, there are not as frequent progress updates as
in the beginning and AFLplusplus-F still synchronizes fre-
quently. Every time an instance wants to synchronize with
another’s corpus, it has to walk through the directory to see
whether there are any new test cases. Since the corpus has
grown bigger, such operations become more expensive, SO
the fuzzing speed of AFLplusplus-F goes down, resulting in
a slower increase in code coverage. If we further check the
bug triggering time in Table 3, we can see that seven out of
the 9 bugs found by AFLplusplus-F are within the first four
hours. This is when faster synchronization is still beneficial
for fuzzing.

Overall, uFuzz outperforms the three compared parallel
fuzzers AFLplusplus, AFLEdge, AFLTeam, and their variants in
both bug detection and code coverage. The fuzzing effective-
ness of uFuzz comes from both its concurrent design and
state partition.
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5.3 Contribution of Microservice Architec-
ture and State Partition

We compare uFuzz with uFuzz-S, which is uFuzz with
blocking synchronization but without state partition, to
understand their contributions in parallel fuzzing. Since
HFUzz-S introduces blocking I/0, we further compare it with
uFuUzz-SM, which is uFuzz-S without concurrency and runs
services synchronously. More specifically, every worker in
uFUZz-S maintains a copy of the global state. Whenever there
are state updates, uFuzz-S will propagate the updates to all
its workers synchronously. The workers cannot handle new
inputs until the state update is finished.

Bug Detection. pFuUzz successfully identifies 12 bugs in
the targets in 24 hours, while both uFuzz-S and uFuzz-SM
finds only 8. As shown in Table 3, uFuzz finds all the
bugs that are found by uFuzz-S and uFuzz-SM much faster,
spending 46.6% and 53.7% less of the time respectively. Al-
though uFuzz-S and uFuzz-SM found the same eight bugs,
uFuzz-S found five of them faster. We checked the fuzzing
speed of these fuzzers to investigate the cause of the perfor-
mance gap. We found that although uFuzz-S has blocking
synchronization, its fuzzing speed has no significant differ-
ence from that of uFuzz, which has no blocking synchro-
nization. This is because the concurrency allows uFuzz-S to
run other services during the state updates; thus its overall
progress will not be blocked. However, the fuzzing speed of
uFUzz-SM is only 91% of uFUZz-S on average. This means
that in uFuzz-S, when some services get blocked during syn-
chronization, the other services cannot take over the CPU and



Table 3: Bug Detection Results in 24 Hours. We measure the bug detection capability in the number of identified bugs and their survival
time. Targets are the top six programs with the most inserted bugs from the Magma benchmark. The bug ID is a unique identifier for the inserted
bug in Magma. Results for openssl and PHP are excluded because no fuzzers find any inserted bug in these targets in 24 hours. We repeat the
experiment for 5 times. For each bug and fuzzer, we use Magma to calculate its average survival time across the 5 runs, which indicates the time
it takes for the fuzzer to find the bug. If the fuzzer cannot find the bug in 24 hours, we mark the survival time as co. The time highlighted in
green means the corresponding fuzzer is the fastest to find the corresponding bug.

Targets  BugID uFUzz  AFLplusplus AFLEdge AFLTeam AFLplusplus-F  AFLplusplus-M  uFuzz-S uFuzz-SM
PDF010 | 12h56m 19h18m 22h13m  05h31m 13h13m 18h19m oo oo
Poppler  PDF016 | 01m40s 16m40s 01m40s  16m40s 01m40s 01m40s 03h21m 03h25m
PDF021 | 05h22m oo oo oo oo oo 0o oo
ndfile SNDO17 | 01h24m 03h34m 02h51m  02h46m 16m45s 16m40s 02h46m 01h25m
SND020 | 01h24m 04h15m 02h5Im  02h46m 02h50m 02h50m 02h46m 01h25m
XMLO002 | 12h57m oo oo oo o0 oo o0 oo
XMLO003 | 02h46m oo oo oo oo oo oo oo
libxml2 ~ XMLO09 | 16m40s 02h46m 02h46m  02h46m 02h46m 02h46m 03h06m 03h31m
XMLO12 | 15h13m oo 0o oo 20h45m oo 20h07m 22h38m
XMLO17 | 01m40s 16m40s 01m40s  01m40s 01m40s 16m40s 02h48m 02h46m
SQLite SQLO002 | 02h46m 10h34m 07h28m oo 03h16m 07h53m 06h19m 09%h14m
SQLO18 | 02h46m 02h52m 05h14m 0o 03h40m o 03h33m 07h10m
Total Bugs Found 12 8 8 6 9 7 8 8

utilize the computation power. Therefore, we can have two
conclusions: First, with concurrency, the fuzzer continues to
make progress in the existence of blocking I/O and thus well
utilizes the CPU power. Second, with state partition, uFuzz
can find more bugs faster.

Code Coverage. Asshown in Fig.5, uFuzz finds 96% and
117% more edge than uFuzz-S and uFuzz-SM respectively
in the six targets on average. From Fig.5, we find that the cov-
erage increase of uFuzz is much faster than uFuzz-S until
the coverage is saturated. We checked the execution status
and found that workers in the corpus management service
of uFuzz-S tend to select duplicated test cases for mutation.
This is because the workers have the exact same state as each
other and use the same scheduling algorithm. Such duplica-
tion can slow down fuzzers’ exploration. uFUzz-SM has the
worst performance because it not only suffers from the afore-
mentioned duplication but also slower fuzzing speed due to
blocking I/O.

Overall, uFuzz outperforms yFuzz-S and uFuzz-SM in
both bug detection and code coverage. Both the microser-
vice architecture and state partition contribute to uFUZZ’s
strengths. The concurrent design allows uFUzz to make
progress in the existence of blocking I/O. State partition al-
lows all the workers to work independently and still achieves
an overall optimal result.

5.4 Identified New Bugs

Since we do not propose any new fuzzing strategy but help the
existing strategies parallel more efficiently, we only ran some
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preliminary experiments to fuzz some programs from OSS-
Fuzz for a short time. Yet we still find three new bugs in these
well-tested programs, showing that uFUZZ is applicable in
real-world fuzzing. We do not use Magma for new bug detection
because Magma uses the fixed old version of the programs
to insert bugs stably. The three identified bugs include one
logical error and two memory-corruption, of which one has
been fixed and one acknowledged by the developers at the
time of writing. We omit the details currently for anonymity.
We are confident in uFUZZ since it has better performance
than existing fuzzers according to our evaluation.

6 Discussion

In this section, we present some limitations of the current im-
plementation of yFUZzz and discuss their possible solutions.

6.1 Distributed Fuzzing

Currently, uFuzz is implemented as a multithreaded program,
which allows all threads to share the same memory space so
that they can share data efficiently. uFuzz can easily be ex-
tended to support distributed fuzzing in two ways. One way is
to run one uFUZZ on each machine and perform state synchro-
nization by connecting services with remote procedure calls
(RPC), which is the state-of-the-art approach. For example,
we can run yFuzz on different machines and connect their
corpus management to synchronize the corpus and connect
their feedback collection to synchronize the code coverage
bitmap. More importantly, although state synchronization



over the network can cause slow I/0, uFuzz will not be af-
fected by this kind of I/O thanks to its concurrency design. If
one service need to wait for the network communication to
complete, the other services can still run and make individual
progress. Another way is to utilize the microservice archi-
tecture to run different services on different machines and
communicate over the network. We only need to add input
caching to each service. In this way, each service can keep
fetching the result from other services into the input cache and
running the workers to consume the inputs concurrently. As
long as we warm up each service by filling enough results in
the input cache before fuzzing, each service can run without
waiting for network I/O.

6.2 Support More Mutation Strategy

Since uFuzz focuses on better parallelizing existing fuzzing
strategies instead of inventing new ones, the current imple-
mentation of uFUZz only supports the basic mutation strat-
egy: AFLplusplus’s havoc mutation. The havoc mutation
only performs bit-level or byte-level unstructured mutation.
This limits uFUzZ’s effectiveness on fuzzing targets that re-
quire structure-aware or semantic-aware inputs. To further im-
prove uFuzz’s applicability, we plan to integrate yFUuzz with
LibAFL [30], a recently open-sourced reusable fuzzing devel-
opment kit that implements many reusable advanced fuzzing
strategies. Thanks to the modularized design of uFuzz, we
can easily incorporate advanced strategies by modifying only
the mutation service without changing the whole framework.

6.3 Support Collaborative Fuzzing

The current implementation of uFuUzz does not support collab-
orative fuzzing, which combines all kinds of different fuzzers
to get a higher overall fuzzing performance. This is because
uFUZZ now assumes that each service maintains one united
global state and each worker inside the service maintains one
partition of the state. However, different fuzzers can have
different fuzzing states for the same functionality and uFuzz
cannot distinguish workers of different states inside a service.
For example, grammar fuzzers might maintain a corpus in the
form of abstract syntax trees (AST) instead of a binary stream.
Suppose we combine a grammar-based mutation along with a
bit-level mutation in uFUZZ. In that case, the input dispatcher
of the test case generation service might wrongly dispatch an
AST test case to a worker of bit-level mutation. We plan to
try two ways to support collaborative fuzzing with uFuzz.
First, we can tag both the data of service communication and
the workers. Moreover, we restrict the input dispatcher to
only dispatch inputs to workers with matching tags. In this
way, a service can maintain different types of workers and
different states. Another way is that we can use uFUzz as
a base fuzzer for existing collaborative fuzzing approaches.
For example, we want to combine 20 instances of a bitflip
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fuzzer and 10 instances of a grammar fuzzer. Then we can
implement both fuzzers in uFUZZ, and then use them as the
base fuzzers in the existing collaborative fuzzing framework
such as ClusterFuzz [4].

7 Related Work

Existing works on scaling fuzzing performance can be mainly
divided into two categories: vertical and horizontal scal-
ing [10]. Vertical scaling refers to improving the performance
of the internal components of a single-instance fuzzer, such as
improving fuzzing strategy or fuzzing speed. Horizontal scal-
ing refers to improving the performance of parallel fuzzing.

7.1 Fuzzing Strategy Improvement

Improving the fuzzing strategy focuses on enhancing the in-
ternal components of a fuzzer, which can include test case
generation, feedback, and seed scheduling. There are mainly
two types to test case generation in fuzzing: generation-based
fuzzing [34, 49, 76, 77] and mutation-based fuzzing [47, 74,
79]. Generation-based fuzzing focuses on testing software
that consumes structural inputs [1, 40, 49, 57, 68]. They typi-
cally utilize a model that describes the format of the inputs to
generate structural inputs that can reach deeper logic of the
software. SQLSmith [1] uses the SQL grammar and database
schemes to generate more valid queries. MoWF [57] lever-
ages the file format information to fuzz the deeper program
code beyond the parser. Mutation-based fuzzing differs from
generation-based fuzzing in that it performs mutation on ex-
isting test cases to generate new ones. In this way, the fuzzer
can use various feedback information collected from the exe-
cution phase to guide its test case generation. AFL [79] uses
edge coverage to model program states to guide its mutation,
which is highly effective. The mutation strategy, feedback
quality, and seed scheduling algorithm can all influence the
performance of mutation-based fuzzers. Adopting the method-
ology from generation-based fuzzers, some language proces-
sor fuzzers [13, 24, 83] utilize language grammar to perform
constrained mutation. Other fuzzers [20, 67, 78] use sym-
bolic execution or concolic execution to get through complex
program conditions. T-Fuzz [56] further proposes a way to
dynamically transform the program in order to remove cer-
tain checks that are hard for the fuzzer to bypass successfully.
To improve feedback quality, researchers try to find better
models for the program states. CollAFL [32] provides more
accurate coverage information by mitigating path collisions in
AFL. Some fuzzers [14, 15, 22, 31, 33, 61] use taint analysis
to incorporate data flow information into their coverage met-
rics. PATA [45] further proposes a path-aware taint analysis
by distinguishing between multiple occurrences of the same
constraint. The learning-enabled fuzzer NEUZZ [64] lever-
ages a surrogate neural network to smoothly approximate the
branching behavior of the program in order to generate useful



test cases. Another way is to improve the seed scheduling
algorithm [65, 81]. AFLFast [19], MOPT [18], DigFuzz [82]
collect information about the test cases and prioritize those
with higher potential to reach new code regions.

uFUZzz does not improve existing fuzzing strategies. In-
stead, it focuses on better parallelizing these strategies. With
its microservice design, existing fuzzing strategies can be
easily integrated into the corresponding services and achieve
a better result in parallel fuzzing.

7.2 Fuzzing Speed Improvements

Improving fuzzing speed allows fuzzers to run more execu-
tions in the same amount of time with the same fuzzing strat-
egy [21, 27, 39, 41, 52, 53, 62, 71], which is usually orthogo-
nal to the fuzzing strategy. Various techniques [26, 52, 54, 71]
have been proposed to improve the instrumentation of the
target program to reduce its overhead. UnTracer [52] pro-
poses coverage-guided tracing to trace block coverage only
when new ones are discovered. Nagy et al. [54] further extend
the idea of coverage-guided tracing to support edge cover-
age recording. Odin [71] adopts dynamic recompilation to
prune necessary instrumentation on the fly. RetroWrite [26]
uses static binary rewriting to support high-speed coverage-
guided binary-only fuzzing with an efficient binary-only Ad-
dress Sanitizer. Researchers have also explored hardware-
assisted feedback-collecting mechanisms. kAFL [63], Hong-
gfuzz [35], and PTrix [23] utilize Intel’s Processor Trace
technology, which enables them to efficiently collect cover-
age feedback with minimum overhead. Another well-explored
topic is to improve the symbolic execution speed for hybrid
fuzzing. Qsym [78] implements a symbolic execution engine
tailed for fuzzing. Instead of translating the instructions to the
intermediate representation and then executing them symboli-
cally, Qsym tightly integrates the symbolic emulation with the
native execution. SymCC [59] generalizes the idea of Qsym
and presents a compiler that builds concolic execution right
into the binary. In this way, the symbolic execution engine
can run natively without any interpretation. Furthermore, uti-
lizing QEMU, SymQEMU [60] modifies the IR of the target
program before it gets translated into the host architecture,
which enables compiling symbolic execution capabilities into
the binary without access to its source code. Efforts to im-
prove the fuzzing speed can also be combined with uFUZZ to
facilitate the parallel fuzzing performance.

7.3 Parallel Fuzzing

Existing works improve the performance of parallel fuzzing
also by either improving the fuzzing strategy [25, 44, 58,
66, 72, 84] or improving the fuzzing speed [75]. One pop-
ular way to improve the fuzzing strategy is task partition-
ing. PAFL [44] proposes an efficient guiding information
synchronization method and statically divides fuzzing tasks
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based on branching information to reduce the overlap be-
tween instances. AFLEdge [72] further utilizes static analysis
to dynamically create mutually exclusive and evenly weighted
fuzzing tasks. Another way to improve the fuzzing strategy is
to combine the capabilities of different fuzzers, which is also
called ensemble fuzzing [25] or collaborative fuzzing [37].
The main idea is that different fuzzers might have different
strengths on different targets. We can fuzz the same target with
different fuzzers and share their fuzzing progress to let them
help each other and achieve an overall better performance.
EnFuzz [25] designs three heuristics for evaluating the diver-
sity of existing fuzzers and choosing the most diverse subset
to perform ensemble fuzzing through efficient seed synchro-
nization. Cupid [37] further proposes a collaborative fuzzing
framework that can automatically discover the best combi-
nation of fuzzers for a target. One well-known problem of
parallel fuzzing is the bottleneck of the underlying operating
system. Xu et al. [75] found that the fuzzing performance can
significantly degrade when running with multiple cores due
to the file system contention and the scalability of the fork
system call. Thus, they proposed three new operating primi-
tives that allow much higher scalability and performance for
parallel fuzzing. The current state-of-the-art fuzzers [2, 6, 35]
support persistent fuzzing mode, which reuses the same pro-
cess for multiple test cases to reduce the overhead of forking.
Moreover, in-memory test cases [2] are also adopted to reduce
the I/O overhead and file system contention.

Instead of building on top of existing single-instance serial
fuzzers, uFUZzZ redesigns parallel fuzzing with microservice
architecture. It mitigates the problem caused by blocking I/O
and periodic state synchronization.

8 Conclusion

We present uFuzz, a parallel fuzzing framework in microser-
vice architecture that supports concurrency to improve CPU
utilization in the existence of blocking I/O and avoids state
partition to fuzz with a globally optimal strategy. Our evalua-
tion shows uFUZz is more effective in parallel fuzzing than
existing fuzzers with 57% improvement in code coverage and
67% improvement in bug detection on average in 24 hours.
Besides, uFuzz finds three new bugs in well-tested real-world
programs.



References

[1]
[2]

[3

[t

[4
[5

= =

[6
[7
[8]

— =

[9
[10]

—

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18

[19]

[20]

[21]

[22]

[23

[t

SQLSmith. https://github.com/ansel/sqlsmith, 2016.

Aflplusplus. https://github.com/AFLplusplus/AFLplusplus,
2022.

Build reliable network applications without compromising speed.
https://tokio.rs/, 2022.

Clusterfuzz. https://github.com/google/clusterfuzz, 2022.

Clusterfuzzlite. https://google.github.io/

clusterfuzzlite/, 2022.
libfuzzer. https://11lvm.org/docs/LibFuzzer.html, 2022.
Microservice architecture. https://microservices.io/, 2022.

Oss-fuzz - continuous fuzzing for open source software. https://
github.com/google/oss- fuzz, 2022.

Quickjs javascript engine. https://bellard.org/quickjs/, 2022.
Scalability.
2022.

A self-hosted fuzzing-as-a-service platform. https://github.com/
microsoft/onefuzz, 2022.

https://en.wikipedia.org/wiki/Scalability,

strace is a diagnostic, debugging and instructional userspace utility for
linux. https://github.com/strace/strace, 2022.

Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick
Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert. Nautilus: Fishing
for deep bugs with grammars. In NDSS, 2019.

Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik,
and Thorsten Holz. REDQUEEN: fuzzing with input-to-state corre-
spondence. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27,
2019. The Internet Society, 2019.

Sofia Bekrar, Chaouki Bekrar, Roland Groz, and Laurent Mounier. A
taint based approach for smart fuzzing. In 2012 IEEE Fifth Interna-
tional Conference on Software Testing, Verification and Validation,
pages 818-825. IEEE, 2012.

Tim Blazytko, Cornelius Aschermann, Moritz Schlogel, Ali Abbasi,
Sergej Schumilo, Simon Worner, and Thorsten Holz. Grimoire: Syn-
thesizing structure while fuzzing. In Proceedings of the 28th USENIX
Conference on Security Symposium, SEC’ 19, pages 1985-2002, USA,
2019. USENIX Association.

Marcel Bohme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. Directed greybox fuzzing. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
pages 2329-2344, 2017.

Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-
based greybox fuzzing as markov chain. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
CCS 16, page 1032-1043, New York, NY, USA, 2016. Association
for Computing Machinery.

Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-
based greybox fuzzing as markov chain. /EEE Transactions on Soft-
ware Engineering, 45(5):489-506, 2017.

Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: unassisted
and automatic generation of high-coverage tests for complex systems
programs. In OSDI, volume 8, pages 209-224, 2008.

Ju Chen, Jinghan Wang, Chengyu Song, and Heng Yin. Jigsaw: Effi-
cient and scalable path constraints fuzzing. In 2022 IEEE Symposium
on Security and Privacy (SP), pages 1531-1531. IEEE Computer Soci-
ety, 2022.

P. Chen and H. Chen. Angora: Efficient fuzzing by principled search. In
2018 IEEE Symposium on Security and Privacy (SP), pages 711-725,
2018.

Yaohui Chen, Dongliang Mu, Jun Xu, Zhichuang Sun, Wenbo Shen,
Xinyu Xing, Long Lu, and Bing Mao. Ptrix: Efficient hardware-assisted

14

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

fuzzing for cots binary. In Proceedings of the 2019 ACM Asia Con-
ference on Computer and Communications Security, pages 633-645,
2019.

Yongheng Chen, Rui Zhong, Hong Hu, Hangfan Zhang, Yupeng Yang,
Dinghao Wu, and Wenke Lee. One engine to fuzz ’em all: Generic
language processor testing with semantic validation. In 2021 IEEE
Symposium on Security and Privacy (SP), pages 642-658. IEEE, 2021.

Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang,
Chijin Zhou, Xun Jiao, and Zhuo Su. {EnFuzz}: Ensemble fuzzing
with seed synchronization among diverse fuzzers. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1967-1983, 2019.

Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer.
Retrowrite: Statically instrumenting cots binaries for fuzzing and sani-
tization. In 2020 IEEE Symposium on Security and Privacy (SP), pages
1497-1511, 2020.

Ren Ding, Yonghae Kim, Fan Sang, Wen Xu, Gururaj Saileshwar, and
Taesoo Kim. Hardware support to improve fuzzing performance and
precision. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 2214-2228, 2021.

Sung Ta Dinh, Haehyun Cho, Kyle Martin, Adam Oest, Kyle Zeng,
Alexandros Kapravelos, Gail-Joon Ahn, Tiffany Bao, Ruoyu Wang,
Adam Doupé, et al. Favocado: Fuzzing the binding code of javascript
engines using semantically correct test cases. In NDSS, 2021.

Andrea Fioraldi, Daniele Cono D’Elia, and Davide Balzarotti. The
use of likely invariants as feedback for fuzzers. In 30th USENIX Se-
curity Symposium (USENIX Security 21), pages 2829-2846. USENIX
Association, August 2021.

Andrea Fioraldi, Dominik Maier, Dongjia Zhang, and Davide Balzarotti.
Libafl: A framework to build modular and reusable fuzzers. 2022.

Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin,
Dong Wu, and Zuoning Chen. {GREYONE}: Data flow sensitive
fuzzing. In 29th USENIX Security Symposium (USENIX Security 20),
pages 2577-2594, 2020.

Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu
Pei, and Zuoning Chen. Collafl: Path sensitive fuzzing. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 679—-696. IEEE, 2018.

Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based directed
whitebox fuzzing. In 2009 IEEE 31st International Conference on
Software Engineering, pages 474—484, 2009.

Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-
based whitebox fuzzing. SIGPLAN Not., 43(6):206-215, jun 2008.

Google. Honggfuzz, 2016. https://google.github.io/
honggfuzz/.

Samuel GroB. Fuzzil: Coverage guided fuzzing for javascript engines.
Master thesis, TU Braunschweig, 2018.

Emre Giiler, Philipp Gorz, Elia Geretto, Andrea Jemmett, Sebastian
Osterlund, Herbert Bos, Cristiano Giuffrida, and Thorsten Holz. Cu-
pid: Automatic fuzzer selection for collaborative fuzzing. In Annual
Computer Security Applications Conference, pages 360-372, 2020.

Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. Magma: A
ground-truth fuzzing benchmark. Proc. ACM Meas. Anal. Comput.
Syst., 4(3), December 2020.

Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao, Rongxin Wu,
and Charles Zhang. Beacon: Directed grey-box fuzzing with provable
path pruning. In 2022 IEEE Symposium on Security and Privacy (SP),
pages 36-50. IEEE, 2022.

Bo Jiang, Ye Liu, and W. K. Chan. Contractfuzzer: Fuzzing smart con-
tracts for vulnerability detection. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, pages 259-269, New York, NY, USA, 2018. Association for
Computing Machinery.

Jinho Jung, Stephen Tong, Hong Hu, Jungwon Lim, Yonghwi Jin, and


https://github.com/anse1/sqlsmith
https://github.com/AFLplusplus/AFLplusplus
https://tokio.rs/
https://github.com/google/clusterfuzz
https://google.github.io/clusterfuzzlite/
https://google.github.io/clusterfuzzlite/
https://llvm.org/docs/LibFuzzer.html
https://microservices.io/
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://bellard.org/quickjs/
https://en.wikipedia.org/wiki/Scalability
https://github.com/microsoft/onefuzz
https://github.com/microsoft/onefuzz
https://github.com/strace/strace
https://google.github.io/honggfuzz/
https://google.github.io/honggfuzz/

[42]

[43]

[44]

[45]

[46]

[47]

[48

[49]

[50]

[51]

[52]

[53]

[54

[55

[56]

[57]

Taesoo Kim. Winnie: Fuzzing windows applications with harness
synthesis and fast cloning. In Proceedings of the 2021 Network and
Distributed System Security Symposium (NDSS 2021), 2021.

Thijs Klooster, Fatih Turkmen, Gerben Broenink, Ruben ten Hove, and
Marcel Bohme. Effectiveness and scalability of fuzzing techniques in
ci/cd pipelines. arXiv preprint arXiv:2205.14964, 2022.

Gwangmu Lee, Woochul Shim, and Byoungyoung Lee. Constraint-
guided directed greybox fuzzing. In 30th USENIX Security Symposium
(USENIX Security 21), pages 3559-3576, 2021.

Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, Chijin Zhou,
and Jiaguang Sun. Pafl: extend fuzzing optimizations of single mode
to industrial parallel mode. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 809—
814, 2018.

Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Yu Jiang,
Jianzhong Liu, Zhe Liu, and Jiaguang Sun. Pata: Fuzzing with path
aware taint analysis. In JEEE Symposium on Security and Privacy (SP).
IEEE Computer Society, Los Alamitos, CA, USA, pages 154-170, 2022.

Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee,
Yu Song, and Raheem Beyah. {MOPT}: Optimized mutation schedul-
ing for fuzzers. In 28th USENIX Security Symposium (USENIX Security
19), pages 1949-1966, 2019.

Chenyang Lyu, Shouling Ji, Xuhong Zhang, Hong Liang, Binbin Zhao,
Kangjie Lu, and Raheem Beyah. Ems: History-driven mutation for
coverage-based fuzzing. In 29th Annual Network and Distributed
System Security Symposium. https://dx. doi. org/10.14722/ndss, 2022.

Jonathan Metzman, Lasz16 Szekeres, Laurent Simon, Read Sprabery,
and Abhishek Arya. Fuzzbench: an open fuzzer benchmarking plat-
form and service. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 1393-1403, 2021.

MozillaSecurity. funfuzz. https://github.com/

MozillaSecurity/funfuzz, 2020.

Cheolwoo Myung, Gwangmu Lee, and Byoungyoung Lee.
{MundoFuzz}: Hypervisor fuzzing with statistical coverage
testing and grammar inference. In 315t USENIX Security Symposium
(USENIX Security 22), pages 1257-1274, 2022.

Stefan Nagy and Matthew Hicks. Full-speed fuzzing: Reducing fuzzing
overhead through coverage-guided tracing. In 2019 IEEE Symposium
on Security and Privacy (SP), pages 787-802. IEEE, 2019.

Stefan Nagy and Matthew Hicks. Full-speed fuzzing: Reducing fuzzing
overhead through coverage-guided tracing. In 2019 IEEE Symposium
on Security and Privacy (SP), pages 787-802, 2019.

Stefan Nagy, Anh Nguyen-Tuong, Jason D Hiser, Jack W Davidson,
and Matthew Hicks. Breaking through binaries: Compiler-quality in-
strumentation for better binary-only fuzzing. In 30th USENIX Security
Symposium (USENIX Security 21), pages 1683—1700, 2021.

Stefan Nagy, Anh Nguyen-Tuong, Jason D. Hiser, Jack W. Davidson,
and Matthew Hicks. Same coverage, less bloat: Accelerating binary-
only fuzzing with coverage-preserving coverage-guided tracing. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS 21, page 351-365, New York, NY,
USA, 2021. Association for Computing Machinery.

Sebastian Osterlund, Elia Geretto, Andrea Jemmett, Emre Giiler,
Philipp Gorz, Thorsten Holz, Cristiano Giuffrida, and Herbert Bos.
Collabfuzz: A framework for collaborative fuzzing. In Proceedings of
the 14th European Workshop on Systems Security, pages 1-7, 2021.

Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz: Fuzzing by
program transformation. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 697-710, 2018.

Van-Thuan Pham, Marcel Bohme, and Abhik Roychoudhury. Model-
based whitebox fuzzing for program binaries. In Proceedings of the

15

[58]

[591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

31st IEEE/ACM International Conference on Automated Software En-
gineering, ASE 2016.

Van-Thuan Pham, Manh-Dung Nguyen, Quang-Trung Ta, Toby Murray,
and Benjamin IP Rubinstein. Towards systematic and dynamic task
allocation for collaborative parallel fuzzing. In 2027 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pages 1337-1341. IEEE, 2021.

Sebastian Poeplau and Aurélien Francillon. Symbolic execution with
SymCC: Don’t interpret, compile! In 29th USENIX Security Sympo-
sium (USENIX Security 20), pages 181-198. USENIX Association,
August 2020.

Sebastian Poeplau and Aurélien Francillon. Symgemu: Compilation-
based symbolic execution for binaries. In NDSS, 2021.

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. Vuzzer: Application-aware evolutionary
fuzzing. In NDSS, volume 17, pages 1-14, 2017.

Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Worner,
and Thorsten Holz. Nyx: Greybox hypervisor fuzzing using fast snap-
shots and affine types. In 30th USENIX Security Symposium (USENIX
Security 21), pages 2597-2614, 2021.

Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. {kAFL}:{Hardware-Assisted} feed-
back fuzzing for {OS} kernels. In 26th USENIX Security Symposium
(USENIX Security 17), pages 167-182, 2017.

Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi
Ray, and Suman Jana. Neuzz: Efficient fuzzing with neural program
smoothing. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 803-817. IEEE, 2019.

Dongdong She, Abhishek Shah, and Suman Jana. Effective seed
scheduling for fuzzing with graph centrality analysis. arXiv preprint
arXiv:2203.12064, 2022.

Congxi Song, Xu Zhou, Qidi Yin, Xinglu He, Hangwei Zhang, and Kai
Lu. P-fuzz: a parallel grey-box fuzzing framework. Applied Sciences,
9(23):5100, 2019.

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Driller: Augmenting fuzzing through
selective symbolic execution. In NDSS, volume 16, pages 1-16, 2016.

Spandan Veggalam, Sanjay Rawat, Istvan Haller, and Herbert Bos.
Ifuzzer: An evolutionary interpreter fuzzer using genetic programming.
In European Symposium on Research in Computer Security, pages
581-601. Springer, 2016.

Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and Chengyu Song.
Be sensitive and collaborative: Analyzing impact of coverage metrics
in greybox fuzzing. In 22nd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2019), pages 1-15, 2019.

Jinghan Wang, Chengyu Song, and Heng Yin. Reinforcement learning-
based hierarchical seed scheduling for greybox fuzzing. 2021.

Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Xinyi Xu, and
Yu Jiang. Odin: On-demand instrumentation with on-the-fly recom-
pilation. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
PLDI 2022, page 1010-1024, New York, NY, USA, 2022. Association
for Computing Machinery.

Yifan Wang, Yuchen Zhang, Chenbin Pang, Peng Li, Nikolaos Trian-
dopoulos, and Jun Xu. Facilitating parallel fuzzing with mutually-
exclusive task distribution. In International Conference on Security
and Privacy in Communication Systems, pages 185-206. Springer,
2021.

Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming
Cui, Lingming Zhang, and Yuqun Zhang. One fuzzing strategy to rule
them all. In Proceedings of the International Conference on Software
Engineering, 2022.


https://github.com/MozillaSecurity/funfuzz
https://github.com/MozillaSecurity/funfuzz

[74]

[75]

[76]

(771

(78]

[79]

Peng Xu, Yanhao Wang, Hong Hu, and Purui Su. Cooper: Testing the
binding code of scripting languages with cooperative mutation.

Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. De-
signing new operating primitives to improve fuzzing performance. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2313-2328, 2017.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and
understanding bugs in ¢ compilers. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI’ 11, New York, NY, USA, 2011.

Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi
Fang, Xiaoyang Sun, Lizhong Bian, Haibo Wang, and Zheng Wang.
Automated conformance testing for javascript engines via deep com-
piler fuzzing. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
pages 435-450, 2021.

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim.
Qsym: A practical concolic execution engine tailored for hybrid fuzzing.
In Proceedings of the 27th USENIX Conference on Security Symposium,
USA, 2018.

Michal Zalewski. American Fuzzy Lop (2.52b). http://lcamtuf.

16

[80]

[81]

[82]

[83]

[84]

coredump.cx/afl, 2019.

G Zhang, P Wang, T Yue, X Kong, S Huang, X Zhou, and K Lu. Mob-
fuzz: Adaptive multi-objective optimization in gray-box fuzzing. In
Network and Distributed Systems Security (NDSS) Symposium 2022,
2022.

Kunpeng Zhang, Xi Xiao, Xiaogang Zhu, Ruoxi Sun, Minhui Xue, and
Sheng Wen. Path transitions tell more: Optimizing fuzzing schedules
via runtime program states. arXiv preprint arXiv:2201.04441, 2022.

Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. Send hardest prob-
lems my way: Probabilistic path prioritization for hybrid fuzzing. In
NDSS, 2019.

Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee,
and Dinghao Wu. SQUIRREL.: Testing Database Management Systems
with Language Validity and Coverage Feedback. In Proceedings of
the 27th ACM Conference on Computer and Communications Security
(CCS), Orlando, USA, November 2020.

Xu Zhou, Pengfei Wang, Chenyifan Liu, Tai Yue, Yingying Liu, Con-
gxi Song, Kai Lu, and Qidi Yin. Unifuzz: Optimizing distributed
fuzzing via dynamic centralized task scheduling. arXiv preprint
arXiv:2009.06124, 2020.


http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl

	Introduction
	Problem
	How Existing Parallel Fuzzing Works
	Limitation of Existing Approaches
	Microservice Architecture
	Our Approach

	Design
	From Monolith to Microservice
	Concurrency by Output Caching
	Parallelism by Load Balancing
	Avoid Synchronization by State Partition
	Zero-Copy Communication

	Implementation
	Evaluation
	Evaluation Setup
	Comparison against existing fuzzers
	Contribution of Microservice Architecture and State Partition
	Identified New Bugs

	Discussion
	Distributed Fuzzing
	Support More Mutation Strategy
	Support Collaborative Fuzzing

	Related Work
	Fuzzing Strategy Improvement
	Fuzzing Speed Improvements
	Parallel Fuzzing

	Conclusion

