
Journal of Machine Learning Research 24 (2023) 1-34 Submitted 6/20; Revised 10/22; Published 1/23

A Line-Search Descent Algorithm for Strict Saddle
Functions with Complexity Guarantees

Michael J. O’Neill mikeoneill@unc.edu
Department of Statistics and Operations Research
University of North Carolina at Chapel Hill
Chapel Hill, NC 27514, USA

Stephen J. Wright swright@cs.wisc.edu

Department of Computer Sciences

University of Wisconsin-Madison

Madison, WI 53706, USA

Editor: Suvrit Sra

Abstract

We describe a line-search algorithm which achieves the best-known worst-case complexity
results for problems with a certain “strict saddle” property that has been observed to hold
in low-rank matrix optimization problems. Our algorithm is adaptive, in the sense that
it makes use of backtracking line searches and does not require prior knowledge of the
parameters that define the strict saddle property.

Keywords: Strict Saddle, Nonconvex Optimization, Worst-Case Complexity

1. Introduction.

Formulation of machine learning (ML) problems as nonconvex optimization problems has
produced significant advances in several key areas. While general nonconvex optimization
is difficult, both in theory and in practice, the problems arising from ML applications
often have structure that makes them solvable by local descent methods. For example, for
functions with the “strict saddle” property, nonconvex optimization methods can efficiently
find local (and often global) minimizers (Sun et al., 2015).

This work focuses on the design of an optimization algorithm for a class of low-rank
matrix problems that includes matrix completion, matrix sensing, and Poisson principal
component analysis. (We refer the interested reader to Chi et al. (2019) for additional
applications of low-rank matrix optimization.) Our method seeks a rank-r minimizer of the
function f(X), where f : Rn×m → R. The matrix X is parametrized explicitly as the outer
product of two matrices U ∈ Rn×r and V ∈ Rm×r, where r ≤ min(m,n). We make use
throughout of the notation

W =

[
U
V

]
∈ R(m+n)×r. (1)

The problem is reformulated in terms of W and an objective function F as follows:

min
W

F (W) := f(UV T), where W , U , V are related as in (1). (2)

©2023 Michael J. O’Neill and Stephen J. Wright.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/20-608.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/20-608.html

O’Neill and Wright

Under suitable assumptions as well as the use of a specific regularizer, these problems obey
the “robust strict saddle property” described by Zhu et al. (2021). This property divides
the search space into three regions: one in which the gradient of F is large, a second in
which the Hessian of F has a direction of large negative curvature, and a third that is a
neighborhood of the solution set, inside which a local regularity condition holds.

In this work, we describe and analyze an algorithm with a favorable worst-case complex-
ity for this class of problems. We characterize the maximum number of iterations as well
as the maximum number of gradient evaluations required to find an approximate second
order solution, showing that these quantities have at most a logarithmic dependence on the
accuracy parameter for the solution. This is a vast improvement over the worst-case com-
plexity of methods developed for general smooth, nonconvex optimization problems, which
have a polynomial dependence on the inverse of the accuracy parameter (see, for example,
Carmon et al. (2018); Royer et al. (2020)).

While other algorithms for optimizing robust strict saddle problems have previously
been developed, knowledge of the strict saddle parameters is required to obtain a worst
case complexity that depends at most logarithmically on the solution accuracy (Sun et al.,
2015). For low-rank matrix problems, the strict saddle parameters depend on the singular
values of the matrices of the optimal solution set (Zhu et al., 2021), and are thus unlikely to
be known a-priori. Therefore, an essential component of any implementable method for low-
rank matrix problems is adaptivity to the optimization geometry, a property achieved by the
method developed in this paper. Our method maintains an estimate of the key strict saddle
parameter that is used to predict which of the three regions described above contains the
current iterate. This prediction determines whether a negative gradient step or a negative
curvature step is taken. When the method infers that the iterate is in a neighborhood
of the solution set, a monitoring strategy is employed to detect fast convergence, or else
flag that an incorrect prediction has been made. By reducing our parameter estimate
after incorrect predictions, our method naturally adapts to the optimization landscape and
achieves essentially the same behavior as an algorithm for which the critical parameter is
known.

Notation and Background. We make use in several places of “hat” notation for ma-
trices in the form of W in (1) in which the elements in the bottom half of the matrix are
negated, that is

Ŵ :=

[
U
−V

]
. (3)

We use the notation 〈A,B〉 = trace (A>B).

For a scalar function h(Z) with a matrix variable Z ∈ Rp×q, the gradient ∇h(Z) is an

p× q matrix whose (i, j)-th entry is ∂h(Z)
∂Zi,j

for all i = 1, 2, . . . , p and j = 1, 2, . . . , q. In some

places, we take the Hessian of ∇2h(Z) to be an pq×pq matrix whose (i, j) element is ∂2h(Z)
∂zi∂zj

where zi is the i-th coordinate of the vectorization of Z. In other places, the Hessian is

represented as a bilinear form defined by [∇2h(Z)](A,B) =
∑

i,j,k,l
∂2h(Z)
∂Zi,jZk,l

Ai,jBk,l for any

A,B ∈ Rp×q. We also write 〈A,∇2h(Z)B〉 for this same object.

2

A Line-Search Algorithm for Strict Saddle Functions

Under these definitions, we can define the maximum and minimum eigenvalues of
∇2h(Z) as

λmax(∇2h(Z)) = max
D

〈D,∇2h(Z)D〉
‖D‖2F

, λmin(∇2h(Z)) = min
D

〈D,∇2h(Z)D〉
‖D‖2F

. (4)

Occasionally we need to refer to the gradient and Hessian of the original function f ,
prior to reparameterization. We denote the gradient by ∇f(X) and the Hessian by ∇2f(X),
where X = UV >.

Our algorithm seeks a point that approximately satisfies second-order necessary opti-
mality conditions for a regularized objective function G : R(m+n)×r → R to be defined later
in (12), that is,

‖∇G(W)‖F ≤ εg, λmin(∇2G(W)) ≥ −εH , (5)

for small positive tolerances εg and εH .

We assume that explicit storage and calculation of the Hessian ∇2G(W) is undesirable,
but that products of the form ∇2G(W)Z can be computed efficiently for arbitrary matrices
Z ∈ R(n+m)×r. Computational differentiation techniques can be used to evaluate such
products at a cost that is a small multiple of the cost of the gradient evaluation ∇G(W)
(Griewank and Walther, 2008).

2. Contributions, Related Work.

One major class of algorithms that have been developed to solve low-rank matrix problems
utilizes customized initialization procedures to find a starting point which lies in the basin
of attraction of a global minimizer. A standard optimization procedure, such as gradient
descent, initialized at this point, typically converges to the minimizer — often at a linear
rate when the function satisfies a local regularity condition near the minimizer. These
methods have been applied to a wide variety of problems including phase retrieval (Candes
et al., 2015), blind-deconvolution (Li et al., 2019), matrix completion (Keshavan et al., 2010;
Sun and Luo, 2016), and matrix sensing (Tu et al., 2016).

Another line of work focuses on characterizing the set of critical points of f . Many
low-rank recovery problems are shown to obey the strict saddle assumption, in which all
saddle points of the function exhibit directions of negative curvature in the Hessian. Ad-
ditionally, these problems often have the favorable property that all local minimizers are
global minimizers. Examples include dictionary learning (Sun et al., 2016b), phase retrieval
(Sun et al., 2018), tensor decomposition (Ge et al., 2015), matrix completion (Ge et al.,
2017), and matrix sensing (Bhojanapalli et al., 2016; Ge et al., 2017). When these proper-
ties hold, gradient descent initialized at a random starting point converges with probability
1 to a global minimizer (Lee et al., 2016). Two recent works demonstrate that randomly
initialized gradient descent has a global linear rate of convergence when applied to phase
retrieval (Chen et al., 2019) and dictionary learning (Gilboa et al., 2019).

A number of works go a step further and characterize the global optimization geometry
of these problems. These problems satisfy the robust strict saddle property, in which the
domain is covered by a union of three sets: The first set is a neighborhood of a global
solution, any point in the second set has a direction of sufficient negative curvature in the

3

O’Neill and Wright

Hessian, and any point in the third set has a large gradient norm. (See Definition 4 below.)
This property has been shown to hold for tensor decomposition (Ge et al., 2015), phase
retrieval (Sun et al., 2018), dictionary learning (Sun et al., 2016a), and general low-rank
matrix problems (Zhu et al., 2021). Due to the covering of the domain by the three sets,
methods developed for general non-convex problems with saddle point escaping mechanisms
are of interest in this context. Indeed, methods such as gradient descent with occasional
perturbations to escape saddle points appear to converge at a global linear rate. However,
a close reading of these methods reveals that knowledge of the strict saddle parameters
defining the separate regions of the domain is required to escape saddle points efficiently
and obtain linear convergence rates. In particular, for gradient descent with perturbations,
these parameters are used to decide when the perturbations should be applied (Jin et al.,
2017, 2018). The same issue arises for methods developed specifically for strict saddle
functions, such as the second-order trust region method of Sun et al. (2015) and the Newton-
based method of Paternain et al. (2019), the latter requiring knowledge of a strict saddle
parameter to flip the eigenvalues of the Hessian matrix at every iteration. For low-rank
matrix problems of the form (2), these parameters correspond to the first and r-th singular
value of the optimal solution (Zhu et al., 2021) — information that is unlikely to be known
a-priori.

To make this issue more concrete, consider Algorithm 2 of Jin et al. (2017). When
the norm of the gradient falls below a chosen threshold, a perturbation is added to the
current iterate, which enables the algorithm to escape the neighborhood of a strict saddle
point. Then progress is monitored to ensure that sufficient descent occurs over the course
of the following gradient descent iterations. If insufficient progress is made, the algorithm
terminates with a high-probability guarantee that the iterate perturbed from is an approx-
imate second-order point. Thus, the key quantity in this algorithm is the threshold that
determines when a perturbation is applied. If this threshold is set to be O(σr(X

∗)2), where
σr(X

∗) is the r-th singular value of the optimal solution X∗, then the algorithm will find an
approximate second-order point with high-probability in Õ(σr(X

∗)−4 +σr(X
∗)−1 log(ε−1

g)),

where Õ hides logarithmic factors of σr(X
∗) and εH = O(

√
εg) (Jin et al., 2017, Theorem

8)). On the other hand, if σr(X
∗) is unknown and estimated to be small, such as O(εg), then

this algorithm may take as many as Õ(ε−2
g) iterations to find an approximate second-order

point. The descrepancy between these bounds is due to the possibility of the algorithm
spending many iterations in the neighborhood of a strict saddle point before adding a per-
turbation to escape it, drastically slowing progress. Finally, if σr(X

∗) is estimated to be
too large, the algorithm will add perturbations on iterations where the iterate may be very
far from a saddle point, and the overall convergence behavior of the algorithm is unclear.

In contrast, our algorithm does not rely on a particular initialization procedure or knowl-
edge of the strict saddle parameters, but still has a worst-case complexity that depends at
most logarithmically on the solution accuracy. To attain this goal, the method maintains an
estimate of the crucial strict saddle parameter along with gradient and negative curvature
information to infer which of the three regions (in the domain-covering property mentioned
above) is occupied by the current iterate. The method also employs a careful monitoring
strategy when it expects that the current iterate is in the neighborhood of a second-order
point, which utilizes a novel under approximation of the minimum eigenvalue of the Hessian
in order to reduce the computational overhead. By choosing appropriate steps based on

4

A Line-Search Algorithm for Strict Saddle Functions

this inference and monitoring scheme, the method converges to an approximate second-order
stationary point from any starting point while dependence on the approximation tolerances
in (5) is only logarithmic. We preview our main complexity result here. (Full details appear
in Theorem 21 and Corollary 22.)

Main Result (Informal) Let the objective function G(W) satisfy the robust strict saddle
property and standard smoothness assumptions. Then, with high probability, Algorithm 1
terminates at a point satisfying (5) after no more than

Õ
(
σr(X

∗)−3 + σr(X
∗)−1 log max(ε−1

g , ε−1
H)
)

total iterations of Algorithms 1 and 2, and no more than

Õ
(

min((n+m)r, σr(X
∗)−1/2)σr(X

∗)−3 + σr(X
∗)−1 log max(ε−1

g , ε−1
H)
)

gradient evaluations and/or Hessian vector products.
We stress again that our algorithm is adaptive and that our results depend only loga-

rithmically on a starting estimate of σr(X
∗).

3. Robust Strict Saddle Property and Assumptions.

Here we provide the background and assumptions needed to describe the robust strict saddle
property for low-rank matrix problems, as well as the additional assumptions required by
our optimization algorithm. Section 3.1 provides definitions for functions invariant under
orthogonal transformations, our local regularity condition, and the robust strict saddle
property. Section 3.2 discusses the regularization term that we add to F (W) and provides
definitions for the gradient and Hessian of the regularized function. Finally, we describe
our assumptions and the strict saddle parameters in Section 3.3

3.1 Regularity Condition and Robust Strict Saddle Property.

Let Or := {R ∈ Rr×r : R>R = I} be the set of r × r orthogonal matrices. We have the
following definition.

Definition 1 Given a function h(Z) : Rp×r → R we say that h is invariant under orthog-
onal transformations if

h(ZR) = h(Z),

for all Z ∈ Rp×r and R ∈ Or.

It is easy to verify that F defined in (2) satisfies this property.
We note that the Frobenius norm of Z is invariant under orthogonal transformation as

well, i.e. ‖ZR‖F = ‖Z‖F for all R ∈ Or. We can define the distance between two matrices
Z1 and Z2 as follows:

dist(Z1, Z2) := min
R∈Or

‖Z1 − Z2R‖F . (6)

For convenience, we denote by R(Z1, Z2) the orthogonal matrix that achieves the minimum
in (6), that is,

R(Z1, Z2) := argminR∈Or ‖Z
1 − Z2R‖F (7)

5

O’Neill and Wright

We can now define the local regularity condition of interest in this work; these conditions
were defined in a slightly more general setting in Candes et al. (2015) and Tu et al. (2016).

Definition 2 Suppose h : Rp×r → R is invariant under orthogonal transformations. Let
Z∗ ∈ Rp×r be a local minimium of h. Define the ball of radius δ around Z∗ as

B(Z∗, δ) :=
{
Z ∈ Rp×r : dist(Z,Z∗) ≤ δ

}
,

where dist(·, ·) is defined in (6). Then, we say that h(Z) satisfies the (α, β, δ)-regularity
condition at Z∗ (where α, β, and δ are all positive quantities) if for all Z ∈ B(Z∗, δ), we
have

〈∇h(Z), Z − Z∗R〉 ≥ α dist(Z,Z∗)2 + β ‖∇h(Z)‖2F , where R = R(Z,Z∗). (8)

Note that α and β in Definition 2 must satisfy αβ ≤ 1/4 because of the Cauchy-Schwarz
inequality, which indicates that for any R ∈ Or we have

〈∇h(Z), Z − Z∗R〉 ≤ dist(Z,Z∗)‖∇h(Z)‖F ,

and the inequality of arithmetic and geometric means,

α dist(Z,Z∗)2 + β ‖∇h(Z)‖2F ≥ 2
√
αβdist(Z,Z∗)‖∇h(Z)‖F .

In addition, (8) implies that

β‖∇h(Z)‖F ≤ dist(Z,Z∗), (9)

holds for all Z ∈ B(Z∗, δ), by the Cauchy-Schwarz inequality and αdist(Z,Z∗)2 ≥ 0.

One important consequence of the regularity condition is local convergence of gradient
descent at a linear rate.

Lemma 3 Let the function h : Rp×r → R restricted to a δ neigborhood of Z∗ ∈ Rp×r
satisfies the (α, β, δ)-regularity condition and suppose that Z0 ∈ B(Z∗, δ). Then, after k+ 1
steps of gradient descent applied to h starting from Z0, with stepsizes νj ∈ (0, 2β] for all
j = 0, 1, . . . k, we have

dist2(Zk+1, Z∗) ≤

 k∏
j=0

(1− 2νjα)

 dist2(Z0, Z∗), (10)

so that Zk+1 ∈ B(x∗, δ).

Proof. This proof follows a similar argument to that of (Candes et al., 2015, Lemma 7.10)
Denote R(Z,Z∗) be defined as in (7). By the definition of the distance (6), our regularity

6

A Line-Search Algorithm for Strict Saddle Functions

condition (8), and νj ≤ 2β, we have when dist(Zj , Z∗) ≤ δ that

dist2(Zj+1, Z∗)

= ‖Zj+1 − Z∗R(Zj+1, Z∗)‖2F
≤ ‖Zj+1 − Z∗R(Zj , Z∗)‖2F by (6)

= ‖Zj − νj∇h(Zj)− Z∗R(Zj , Z∗)‖2F
= ‖Zj − Z∗R(Zj , Z∗)‖2F + ν2

j ‖∇h(Zj)‖2F
− 2νj〈∇h(Zj), Zj − Z∗R(Zj , Z∗)〉
≤ (1− 2νjα)dist2(Zj , Z∗)− νj(2β − νj)‖∇h(Zj)‖2F by (8)

≤ (1− 2νjα)dist2(Zj , Z∗) by νj ≤ 2β.

Since αβ ≤ 1/4 and νj ≤ 2β, we have that 0 ≤ 1− 2νjα ≤ 1. Thus dist(Zj+1, Z∗) ≤ δ too.
By applying this argument inductively for j = 0, 1, . . . , k, we obtain the result.

We are now ready to define the robust strict saddle property, for functions invariant
under orthogonal transformations.

Definition 4 Suppose that the twice continuously differentiable function h(Z) : Rp×r → R
is invariant under orthogonal transformations. For the positive quantities α, β, γ, ε, δ,
function h satisfies the (α, β, γ, ε, δ)-robust strict saddle property if at any point Z, at least
one of the following applies:

1. There exists a local minimum Z∗ ∈ Rp×r such that dist(Z,Z∗) ≤ δ, and the function
h restricted to the neighborhood dist(Z ′, Z∗) ≤ 2δ satisfies the (α, β, 2δ)-regularity
condition at Z∗ of Definition 2;

2. λmin(∇2h(Z)) ≤ −γ; or

3. ‖∇h(Z)‖F ≥ ε.

Under this property, each element Z of the domain belongs to at least one of three sets, each
of which has a property that guarantees fast convergence of descent methods. The param-
eters that define these regions for low-rank matrix problems are discussed in Section 3.3.

3.2 Regularization.

Let X∗ ∈ Rn×m be a critical point of f defined in (2), that is, ∇f(X∗) = 0. Suppose that
X∗ has rank r ≤ min(m,n) (see Assumption 1 below), and let X∗ = ΦΣΨ> be the SVD of
X∗, where Φ ∈ Rn×r and Ψ ∈ Rm×r have orthonormal columns and Σ is positive diagonal.
Define

U∗ = ΦΣ1/2R, V ∗ = ΨΣ1/2R (11)

for some R ∈ Or. To remove ambiguity in the matrix W that corresponds to X∗, we add
to F (W) the regularization term ρ defined by

ρ(W) :=
1

4

∥∥∥U>U − V >V ∥∥∥2

F
.

7

O’Neill and Wright

The regularized optimization problem that we solve in this paper is thus

min
U∈Rn×r,V ∈Rm×r

G(W) := F (W) +
1

2
ρ(W). (12)

The regularization parameter 1/2 is chosen for convenience and is sufficient to ensure the
robust strict saddle property holds. Note that for (U, V) = (U∗, V ∗) defined in (11), and
for any R ∈ Or, with W ∗ and Ŵ ∗ defined as in (1) and (3), we have

(Ŵ ∗)>W ∗ = (U∗)TU∗ − (V ∗)TV ∗ = RTΣR−RTΣR = 0. (13)

We can show from (11) together with the definitions of X∗ and W ∗ that

‖W ∗‖2 = 2‖X∗‖, ‖W ∗(W ∗)T ‖F = 2‖X∗‖F . (14)

(We include a proof of these claims in Appendix A, for completeness.)
For the gradient of G(W), we have

∇G(W) =

[
∇f(X)V

(∇f(X))>U

]
+

1

2
ŴŴ>W, (15)

where X = UV >. Given matrices D and D̂ defined by

D =

[
S
Y

]
, D̂ =

[
S
−Y

]
, where S ∈ Rn×r and Y ∈ Rm×r, (16)

the bilinear form of the Hessian of G is given by

[∇2G(W)](D,D) = [∇2f(X)](SV > + UY >, SV > + UY >) + 2〈∇f(X), SY >〉

+
1

2
〈Ŵ>W, D̂>D〉+

1

4
‖Ŵ>D +D>Ŵ‖2F , (17)

where X = UV >.

3.3 Assumptions and Strict Saddle Parameters.

We make the following assumptions on f(X), which are identical to those found in Zhu
et al. (2021). The first is about existence of a rank-r critical point for f .

Assumption 1 f(X) has a critical point X∗ ∈ Rn×m with rank r.

The second assumption is a restricted strong convexity condition for f .

Assumption 2 The twice continuously differentiable function f : Rn×m → R is (2r, 4r)-
restricted strongly convex and smooth, that is, for any matrices X,T ∈ Rn×m with rank(X) ≤
2r and rank(T) ≤ 4r, the Hessian ∇2f(X) satisfies

a‖T‖2F ≤ [∇2f(X)](T, T) ≤ b‖T‖2F , (18)

for some positive scalars a and b.

8

A Line-Search Algorithm for Strict Saddle Functions

Assumption 2 implies that the original function, prior to splitting the variable X into
U and V , obeys a form of restricted strong convexity and smoothness. This assumption is
satisfied when 4r-RIP holds, which occurs with high probability (under certain assumptions)
for such problems as low-rank matrix completion and matrix sensing (Recht et al., 2010).
We note here that while the RIP condition may fail to hold for some interesting applications,
these problems may be computationally difficult to solve (Yalçın et al., 2022), so they are
not the focus of this work.

We are able now to define the robust strict saddle conditions for G, using the following
slightly abbreviated version of (Zhu et al., 2021, Theorem 1).

Theorem 5 Let G(W) be defined as in (12). For the critical point X∗ ∈ Rn×m, with rank
r, suppose that X∗ = U∗(V ∗)T , where U∗ ∈ Rn×r and V ∗ ∈ Rm×r are defined as in (11),

and define W ∗ =

[
U∗

V ∗

]
. Let dist(·, ·) be defined as in (6), and let σr(Z) > 0 denote the r-th

singular value of the matrix Z. Suppose that Assumptions 1 and 2 are satisfied for positive
a and b such that

b− a
a+ b

≤ 1

100

σr(X
∗)3/2

‖X∗‖F ‖X∗‖1/2
.

Define the following regions of the space of matrices R(m+n)×r:

R1 :=
{
W : dist(W,W ∗) ≤ σr(X∗)1/2

}
,

R2 :=
{
W : σr(W) ≤

√
1

2
σr(X

∗)1/2, ‖WW>‖F ≤
20

19
‖W ∗(W ∗)>‖F

}
,

R′3 :=
{
W : dist(W,W ∗) > σr(X

∗)1/2, ‖W‖ ≤ 20

19
‖W ∗‖,

σr(W) >

√
1

2
σr(X

∗)1/2, ‖WW>‖F ≤
20

19
‖W ∗(W ∗)>‖F

}
,

R′′3 :=
{
W : ‖W‖ > 20

19
‖W ∗‖ =

√
2

20

19
‖X∗‖1/2, ‖WW>‖F ≤

10

9
‖W ∗(W ∗)>‖F

}
,

R′′′3 :=
{
W : ‖WW>‖F >

10

9
‖W ∗(W ∗)>‖F =

20

9
‖X∗‖F

}
.

(Note that the definitions of R′′3 and R′′′3 make use of (14).) Then there exist positive
constants cα, cβ, cγ, and cε such that G(W) has the following strict saddle property.

1. For any W ∈ R1, G(W) satisfies the local regularity condition:

〈∇G(W),W −W ∗R(W,W ∗)〉 (19)

≥ cασr(X∗) dist2(W,W ∗) +
cβ
‖X∗‖

‖∇G(W)‖2F ,

where dist(W,W ∗) is defined in (6) and R(W,W ∗) is defined in (7). That is, definition
(8) is satisfied with h = G, x = W , α = cασr(X

∗), β = cβ‖X∗‖−1, and δ = σr(X
∗)1/2.

2. For any W ∈ R2, G(W) has a direction of large negative curvature, that is,

λmin(∇2G(W)) ≤ −cγσr(X∗). (20)

9

O’Neill and Wright

3. For any W ∈ R3 = R′3 ∪R′′3 ∪R′′′3 , G(W) has a large gradient, that is,

‖∇G(W)‖F ≥ cεσr(X∗)3/2, for all W ∈ R′3; (21a)

‖∇G(W)‖F ≥ cε‖W‖3, for all W ∈ R′′3; (21b)

‖∇G(W)‖F ≥ cε‖WW>‖3/2F , for all W ∈ R′′′3 . (21c)

It follows from this theorem that the function G satisfies the robust strict saddle property
of Definition 4 with

α = cασr(X
∗), γ = cγσr(X

∗), δ = σr(X
∗)1/2, β = cβ‖X∗‖−1, (22)

and different values of ε that depend on the region:

εR′3 = cεσr(X
∗)3/2,

εR′′3 = cε‖W‖3 ≥ cε
(√

2
20

19

)3

‖X∗‖3/2,

εR′′′3 = cε‖WW>‖3/2F ≥ cε
(

20

19

)3/2

‖X∗‖3/2F .

The regions defined in Theorem 5 span the space of matrices occupied by W but are
not a partition, that is,

R1 ∪R2 ∪R3 = R1 ∪R2 ∪R′3 ∪R′′3 ∪R′′′3 = R(n+m)×r. (23)

The constants cα, cβ , cγ , and cε in this theorem may vary between problems in this class.
Settings that work for all problems mentioned above are

cα =
1

16
, cβ =

1

260
, cγ =

1

6
, cε =

1

50
. (24)

(For clarity, we use the same constant, cε, for each equation in (21) even though slightly
tighter bounds are possible if each is treated individually.) Note that these constants are
used in the algorithm presented below.

In addition to the strict saddle assumption, we make the following standard assump-
tions on G, concerning compactness of the level set defined by the initial point W 0 and
smoothness.

Assumption 3 Given an initial iterate W 0, the level set defined by LG(W 0) = {W |G(W) ≤
G(W 0)} is compact.

Assumption 4 The function G is twice Lipschitz continuously differentiable with respect
to the Frobenius norm on an open neighborhood of LG(W 0), and we denote by Lg and LH
the respective Lipschitz constants for ∇G and ∇2G on this set.

Under Assumptions 3 and 4, there exist scalars Glow, Ug > 0, UH > 0, and RL > 0 such
that the following are satisfied for all W in an open neighborhood of LG(W 0):

G(W) ≥ Glow, ‖∇G(W)‖F ≤ Ug, ‖∇2G(W)‖ ≤ UH , ‖W‖ ≤ RL, (25)

10

A Line-Search Algorithm for Strict Saddle Functions

where the third condition is taken on the “unrolled” Hessian of G. These assumptions also
imply the following well known inequalities, for W and D such that all points in the convex
hull of W and D lie in the neighborhood of the level set mentioned above:

G(W +D) ≤ G(W) + 〈∇G(W), D〉+
Lg
2
‖D‖2F , (26a)

G(W +D) ≤ G(W) + 〈∇G(W), D〉+
1

2
〈D,∇2G(W)D〉+

LH
6
‖D‖3F . (26b)

Finally, we make an assumption about knowledge of the Lipschitz constant of the gra-
dient of f(X).

Assumption 5 The gradient ∇f(X) is Lipschitz continuous on an open neighborhood of{
Z : Z = UV >,

[
U
V

]
∈ LG(W 0)

}
,

and the associated constant, denoted by L∇f , is known or can be efficiently estimated. That
is, for any Xa, Xb in the set defined above, we have

‖∇f(Xa)−∇f(Xb)‖F ≤ L∇f‖Xa −Xb‖F . (27)

In many interesting applications, L∇f is easily discerned or can be efficiently computed.
An example is the low-rank matrix completion problem where a set of observations Mij ,
(i, j) ∈ Ω is made of a matrix, and the objective is f(X) = 1

2

∑
(i,j)∈Ω (Xij−Mij)

2. Here, we

have L∇f = 1. A similar example is matrix sensing problem, in which f(X) = 1
2‖A(X)−y‖22,

where A : Rn×m → Rp is a known linear measurement operator and y ∈ Rp is the set of
observations. In this case, we can write A(X) = [〈Ai, X〉]i=1,2,...,p where Ai ∈ Rn×m for all
i = 1, 2, . . . , p, so that ∇f(X) =

∑p
i=1(〈Ai, X〉 − yi)Ai and thus L∇f =

∑p
i=1 ‖Ai‖2F .

4. The Algorithm.

We describe our algorithm in this section. Sections 4.1 and 4.2 give a detailed description
of each element of the algorithm, along with a description of how the key parameters in
the definition of strict saddle are estimated. Section 4.4 shows that the algorithm properly
identifies the three types of region described in Theorem 5 once the parameter γk is a
sufficiently good estimate of σr(X

∗).

4.1 Line-Search Algorithm for Strict Saddle Functions.

Our main algorithm is defined in Algorithm 1. At each iteration, it attempts to identify the
region curently occupied by W k. A step appropriate to the region is computed. The critical
parameter in identifying the regions is γk, which is our upper estimate of the parameter
γ = σr(X

∗) (ignoring the constant cγ), which plays a key role in the definitions of the
regions in Theorem 5. When the large gradient condition is satisfied (that is, when W k is
estimated to lie in R3), a gradient descent step is taken. Similarly, when the condition for
large negative curvature is satisfied (that is, when W k is estimated to lie in R2), a direction
of significant negative curvature is found by using Procedure 3, and a step is taken in a

11

O’Neill and Wright

Algorithm 1 Line-Search Algorithm For Strict Saddle Functions

Inputs: Optimality tolerances εg ∈ (0, 1), εH ∈ (0, 1); starting point W 0; starting guess
γ0 ≥ σr(X∗) > 0; step acceptance parameter η ∈ (0, 1); backtracking parameter θ ∈ (0, 1);
Lipschitz constant L∇f ≥ 0;
Optional Inputs: Scalar M > 0 such that ‖∇2G(W)‖ ≤ M for all W in an open neigh-
borhood of LG(W 0);
converged ← False;
for k = 0, 1, 2, . . . do

if ‖∇G(W k)‖F ≥ cεγ3/2
k then {Large Gradient, Take Steepest Descent Step}

Compute νk = θjk , where jk is the smallest nonnegative integer such that

G(W k − νk∇G(W k)) < G(W k)− ηνk‖∇G(W k)‖2F ; (28)

W k+1 ←W k − νk∇G(W k); γk+1 ← γk;
else {Seek Direction of Large Negative Curvature}

Call Procedure 3 with H = ∇2G(W k), ε = cγγk, and M (if provided);
if Procedure 3 outputs direction s corresponding to λmin(∇2G(W k)) ≤ −cγγk/2
then {Search in Large Negative Curvature Direction}

Set Dk ← −sgn
(
〈S,∇G(W k)〉

)
|〈S,∇2G(W k)S〉|S, where S is the R(n+m)×r ma-

trix formed by reshaping the output vector s from Procedure 3;
Compute νk = θjk , where jk is the smallest nonnegative integer such that

G(W k + νkD
k) < G(W k) + η

ν2
k

2
〈Dk,∇2G(W k)Dk〉; (29)

W k+1 ←W k + νkD
k; γk+1 ← γk;

else {Procedure 3 certifies λmin(∇2G(W k)) ≥ −cγγk: Initialize Local Phase}
αk ← cαγk; δk ←

√
2γ

1/2
k ; βk ←

2cβ
(δk+‖W k‖F)2 ;

if αkβk ≤ 1
4 and ‖∇G(W k)‖F ≤ δk

βk
and

2‖∇f(Xk)‖F + 1
2‖(Ŵ

k)>W k‖F ≤ (2L∇f + 1
2)(2‖W k‖F + δk)δk then

{Try Local Phase} Call Algorithm 2 with W k
0 = W k, εg, εH , αk, βk, δk, η, θ,

and L∇f to obtain outputs W k+1, Tk, converged;
if converged = True then {Local Phase Found Near-Optimal Point}

Terminate and return W k+1;
end if

else {Do not update W}
W k+1 ←W k;

end if
γk+1 ← 1

2γk;
end if

end if
end for

scaled version of this direction. (The approach for negative curvature steps is similar to
that of Royer et al. (2020).) In both cases, a backtracking line search is used to ensure
sufficient decrease in G.

12

A Line-Search Algorithm for Strict Saddle Functions

Algorithm 2 Local Phase for Strict Saddle Problems

Inputs: Optimality tolerances εg ∈ (0, 1], εH ∈ (0, 1]; starting point W k
0 ; strict saddle

parameters αk, βk, δk > 0; step acceptance parameter η ∈ (0, 1); backtracking parameter
θ ∈ (0, 1); Lipschitz constant L∇f ≥ 0;
Outputs: W k+1, Tk, converged;
converged ← False;
κ0 ← 1; τ0 ← (2L∇f + 1

2)(2‖W k
0 ‖F + δk)δk;

t← 0;

while ‖∇G(W k
t)‖F ≤

√
κt
βk
δk and 2‖∇f(Xk

t)‖F + 1
2‖(Ŵ

k
t)>W k

t ‖F ≤ τt do

Compute νt = 2βkθ
jt , where jt is the smallest nonnegative integer such that

G(W k
t − νt∇G(W k

t)) < G(W k
t)− ηνt‖∇G(W k

t)‖2F ; (30)

W k
t+1 ←W k

t − νt∇G(W k
t);

κt+1 ← (1− 2νtαk)κt; τt+1 ← (2L∇f + 1
2)(2‖W k

t+1‖F +
√
κt+1δk)

√
κt+1δk;

t← t+ 1;
if ‖∇G(W k

t)‖ ≤ εg and 2‖∇f(Xk
t)‖F + 1

2‖(Ŵ
k
t)>W k

t ‖F ≤ εH then
converged ← True;
break

end if
end while
W k+1 ←W k

t ;
Tk ← t;

13

O’Neill and Wright

When neither of these two scenarios are satisfied, the algorithm enters a “local phase”
defined by Algorithm 2. This process begins by estimating the robust strict saddle param-
eters of Definition 4. These parameters are chosen so that the local phase will converge
linearly to an approximate second-order point provided that γk is within a factor of two of
the value of σr(X

∗), that is,

γk ∈ Γ(X∗) :=
[

1
2σr(X

∗), σr(X
∗)
)
. (31)

When γk is in the interval Γ(X∗), the value of δk defined in Algorithm 1 is an upper bound
on δ, while αk and βk are lower bounds on α and β from Definition 4. Conditions are checked
during the execution of the local phase to monitor for the predicted fast convergence —
conditions that will be satisfied whenever γk ∈ Γ(X∗). If these conditions are not satisfied,
then (31) does not hold, so we halve the value of γk and proceed without taking a step in
W .

The local phase, Algorithm 2, begins by initializing an inner iteration counter t as well
as the scalar quantities κt and τt, which are used to check for linear convergence of W k

t ,
for t = 0, 1, 2, . . . to a point satisfying (5). Each iteration of the local phase consists of
a gradient descent step with a line search parameter νt obtained by backtracking from
an initial value of 2βk. Once a stepsize νt is identified and the gradient descent step is
taken, κt is updated to reflect the linear convergence rate that occurs when γk ∈ Γ(X∗)
and W k ∈ R1. At each iteration, this linear convergence rate is checked, by examining
the gradient of G(W) as well as the the gradient of the original function f(X). Under
the assumptions discussed in Section 3.3, these quantities provide estimates for (5), since
the minimum eigenvalue of the Hessian of G(W) can be lower bounded using ∇f(X) (see
Section 4.3 for details). These checks ensure that the local phase either converges at a linear
rate to a point satisfying (5), or else exits quickly with a flag ”converged” set to ”False,”
indicating that the current estimate γk of σr(X

∗) is too large.

4.2 Minimum Eigenvalue Oracle.

Procedure 3 Minimum Eigenvalue Oracle

Inputs: Symmetric matrix H ∈ RN×N , tolerance ε > 0;
Optional input: Scalar M > 0 such that ‖H‖ ≤M ;
Outputs: An estimate λ of λmin(H) such that λ ≤ −ε/2 and vector s with ‖s‖ = 1 such
that s>Hs = λ OR a certificate that λmin(H) ≥ −ε. In the latter case, the certificate is
false with probability at most ρ, for some fixed ρ ∈ [0, 1).

The Minimum Eigenvalue Oracle (Procedure 3) is called when the large gradient con-

dition ‖∇G(W k)‖F ≥ cεγ3/2
k does not hold. The input matrix H is the “unrolled” Hessian

of G(W), a symmetric matrix of dimension N = (n + m)r. The oracle either returns a
direction along which the Hessian has curvature at most −ε/2, or certifies that the mini-
mum curvature is greater than −ε. In the latter case, the certificate may be wrong with
some probability ρ ∈ [0, 1), where ρ is a user-specified parameter. When the certificate is
returned, Algorithm 1 enters the local phase.

Procedure 3 can be implemented via any method that finds the smallest eigenvalue
of H to an absolute precision of ε/2 with probability at least 1 − ρ. (A deterministic

14

A Line-Search Algorithm for Strict Saddle Functions

implementation based on a full eigenvalue decomposition would have ρ = 0.) Several
possibilities for implementing Procedure 3 have been proposed in the literature, with various
guarantees. In our setting, in which Hessian-vector products and vector operations are the
fundamental operations, Procedure 3 can be implemented using the Lanczos method with a
random starting vector (see Carmon et al. (2018)). This approach does not require explicit
knowledge of H, only the ability to find matrix-vector products of H with a given vector.
The following result from (Royer et al., 2020, Lemma 2) verifies the effectiveness of this
approach.

Lemma 6 Suppose that the Lanczos method is used to estimate the smallest eigenvalue of
H starting with a random vector uniformly generated on the unit sphere, where ‖H‖ ≤M .
For any ρ ∈ [0, 1), this approach finds the smallest eigenvalue of H to an absolute precision
of ε/2, together with a corresponding direction s, in at most

min

{
N, 1 +

⌈
1

2
ln(2.75N/ρ2)

√
M

ε

⌉}
iterations, (32)

with probability at least 1− ρ.

Procedure 3 can be implemented by outputting the approximate eigenvalue λ for H,
determined by the randomized Lanczos process, along with the corresponding direction
s, provided that λ ≤ −ε/2. When λ > −ε/2, Procedure 3 returns the certificate that
λmin(H) ≥ −ε, which is correct with probability at least 1 − ρ.

We note here that while the second-order optimality conditions could be checked using
the minimum eigenvalue oracle inside of the local phase, this procedure can be quite in-
efficient compared to the rest of the algorithm. From the result of Lemma 6, it is clear
that attempting to verify that λmin(∇2G(W)) ≥ −εH holds could require as many as

min
{

(n+m)r,O(ε
−1/2
H)

}
gradient evaluations/Hessian-vector products. This dependence

on εH — worse than the logarithmic dependence on tolerances that is the stated goal of this
work. We avoid this issue by using ∇f(X) to estimate a lower bound of the spectrum of
∇2G(W), as discussed in the following section. This allows us to maintain the logarithmic
dependence on our optimization tolerances εg and εH while still ensuring convergence to an
approximate second-order point.

4.3 Lower-Bounding the Spectrum of ∇2G(W k).

We now prove two technical results about quantities that lower-bound the minimum eigen-
value of Hessian of G(W). These bounds motivate some unusual expressions in Algorithms 1
and 2 that allow us to check the second-order approximate optimality condition in (5) in-
directly, and ultimately at lower cost than a direct check of λmin(∇2G(W)).

Lemma 7 Suppose that Assumption 2 holds, and let W and Ŵ be defined in (1) and (3),
respectively, with G(W) defined in (12). Then we have

λmin(∇2G(W)) ≥ −2‖∇f(X)‖F −
1

2
‖Ŵ>W‖F ,

where X = UV >.

15

O’Neill and Wright

Proof. Let D be defined as in (16), with component matrices S and Y . Since rank(X) =
rank(UV >) ≤ r and rank(SV > + UY >) ≤ 2r, we have by Assumption 2 that

〈SV > + UY >,∇2f(X)(SV > + UY >)〉 ≥ a‖D‖2F ≥ 0.

It follows from (17) and the Cauchy-Schwarz inequality that

〈D,∇2G(W)D〉 = 〈SV > + UY >,∇2f(X)(SV > + UY >)〉+ 2〈∇f(X), SY >〉

+
1

2
〈Ŵ>W, D̂D〉+

1

4
‖Ŵ>D +D>Ŵ‖2F

≥ −2‖∇f(X)‖F ‖S‖F ‖Y ‖F −
1

2
‖Ŵ>W‖F ‖D̂‖F ‖D‖F .

Defining D′ and D̂′ by

D′ =

[
S′

Y ′

]
∈ arg min

D

〈D,∇2G(W)D〉
‖D‖2F

, D̂′ =

[
S′

−Y ′
]

we have

λmin(∇2G(W)) ≥ −2
‖∇f(X)‖F ‖S′‖F ‖Y ′‖F

‖D′‖2F
− 1

2

‖Ŵ>W‖F ‖D̂′‖F ‖D′‖F
‖D′‖2F

≥ −2‖∇f(X)‖F −
1

2
‖Ŵ>W‖F ,

where the final inequality follows by ‖S′‖F ≤ ‖D′‖F , ‖Y ′‖F ≤ ‖D′‖F , and ‖D̂‖F = ‖D̂′‖F .

Next, we show how to relate the lower bound of Lemma 7 to the distance between W
and W ∗. The following result has an expression that is similar to one that appears in
Algorithm 1, in the condition that determines whether to call Algorithm 2.

Lemma 8 Suppose that Assumptions 1, 2, and 5 hold. Let W and Ŵ be as defined as in
(1) and (3), respectively, and let X∗ be as in Assumption 1, with U∗ and V ∗ (and hence
W ∗) defined as in (11), for some R ∈ Or. Then we have

2‖∇f(X)‖F + 1
2‖Ŵ

>W‖F ≤
(
2L∇f + 1

2

)
(2‖W‖F + dist(W,W ∗)) dist(W,W ∗).

Proof. We begin by bounding ‖∇f(X)‖F . Given W , and hence U and V , let R =
R(W,W ∗) in (11) be the matrix in Or that minimizes ‖WR−W ∗‖F , so that dist(W,W ∗) =
‖WR −W ∗‖F for this value of R. (Note that the same minimizes ‖ŴR − Ŵ ∗‖F , that is,
R(W,W ∗) = R(Ŵ , Ŵ ∗)). By Assumption 5 and the definition of X∗, we have

‖∇f(X)‖F = ‖∇f(X)−∇f(X∗)‖F
= ‖∇f(UR(V R)>)−∇f(U∗(V ∗)>)‖F
≤ L∇f‖UR(V R)> − U∗(V ∗)>‖F .

16

A Line-Search Algorithm for Strict Saddle Functions

Further, we have

‖UR(V R)> − U∗(V ∗)>‖F = ‖UR(V R)> − UR(V ∗)> + UR(V ∗)> − U∗(V ∗)>‖F
≤ ‖UR(R>V > − (V ∗)>)‖F + ‖(UR− U∗)(V ∗)>‖F
≤ ‖UR‖F ‖R>V > − (V ∗)>‖F + ‖(V ∗)>‖F ‖UR− U∗‖F
≤ (‖UR‖F + ‖V ∗‖F)‖WR−W ∗‖F
≤ (‖W‖F + ‖W ∗‖F)dist(W,W ∗),

so that

2‖∇f(X)‖F ≤ 2L∇f (‖W‖F + ‖W ∗‖F)dist(W,W ∗). (33)

To bound ‖Ŵ>W‖F , we have by (Ŵ ∗)>W ∗ = 0 (see (13)) that

‖Ŵ>W‖F = ‖(ŴR)>WR‖F
= ‖(ŴR)>WR− (ŴR)>W ∗ + (ŴR)>W ∗ − (Ŵ ∗)>W ∗‖F
≤ ‖(ŴR)>(WR−W ∗)‖F + ‖((ŴR)> − (Ŵ ∗)>)W ∗‖F
≤ ‖(ŴR)>‖F ‖WR−W ∗‖F + ‖W ∗‖F ‖(ŴR)> − (Ŵ ∗)>‖F
≤ (‖W‖F + ‖W ∗‖F)dist(W,W ∗). (34)

By combining (33) and (34), we have

2‖∇f(X)‖F +
1

2
‖Ŵ>W‖F ≤ (2L∇f +

1

2
)(‖W‖F + ‖W ∗‖F)dist(W,W ∗).

To obtain the result, note that for R = R(W,W ∗), we have

‖W ∗‖F = ‖W ∗ −WR+WR‖F ≤ ‖W ∗ −WR‖F + ‖WR‖F = dist(W,W ∗) + ‖W‖F .

4.4 Behavior of Algorithm 1 under Accurate Parameter Estimates.

In this section, we will show that when Wk lies in the regions R2 and R3 of Theorem 5
and when γk lies in the interval Γ(X∗) defined by (31), the Algorithm 1 will successfully
take either a large-gradient step or a negative curvature step (with high probability). Addi-
tionally, once the local phase is reached with γk ∈ Γ(X∗) and W k ∈ R1, the sequence W k

t ,
t = 0, 1, 2, . . . generated in the local phase converges at a linear rate to a point satisfying
(5).

These results are crucial building blocks for the main convergence results, as they show
that once the parameter γk is a good estimate of σr(X

∗), the algorithm behaves well enough
(with high probability) to not reduce γk any further, and converges rapidly thereafter at
a rate that depends mostly on a polynomial in the inverse of σr(X

∗) rather than of the
tolerances in (5).

We begin by showing that when Wk ∈ R3 and γk ∈ Γ(X∗), Algorithm 1 will take a
large-gradient step.

17

O’Neill and Wright

Lemma 9 Let Assumptions 1 and 2 hold. Suppose that W k ∈ R3 and that γk ∈ Γ(X∗).

Then ‖∇G(W k)‖F ≥ cεγ3/2
k , so a large-gradient step is taken by Algorithm 1.

Proof. First, assume that W k ∈ R′3. Then, by (21a) in Theorem 5, we have

‖∇G(W k)‖F ≥ cεσr(X∗)3/2 ≥ cεγ3/2
k ,

where the second inequality follows from γk ∈ Γ(X∗). Thus, a gradient step will be taken
if W k ∈ R′3.

Next, assume that W k ∈ R′′3. Since γk ∈ Γ(X∗), we have that ‖X∗‖ ≥ σr(X∗) ≥ γk. By
the definition of R′′3, we have

‖W k‖ > 20

19

√
2‖X∗‖1/2 ≥ γ1/2

k .

Therefore, by the strict saddle property, and in particular (21b), we have

‖∇G(W k)‖F ≥ cε‖W k‖3 ≥ cεγ3/2
k

so a gradient step is taken in this case as well.

Finally, assume that W k ∈ R′′′3 . Similarly to above, we have ‖X∗‖F ≥ σr(X
∗) ≥ γk.

From the definition of R′′′3 , we have

‖W k(W k)>‖F >
20

9
‖X∗‖F ≥ γk.

Combining this with (21c), we have

‖∇G(W k)‖F ≥ cε‖W k(W k)>‖3/2F ≥ cεγ3/2
k ,

so a gradient step is taken in this case too.

Next we consider the case in which W k ∈ R2 and that γk ∈ Γ(X∗). If a large-gradient
steps is not taken at iteration k, then Algorithm 1 will invoke Procedure 3 to seek a negative
curvature direction and (with high probability) will find it, and subsequently take a step
along this direction.

Lemma 10 Let Assumptions 1 and 2 hold. Suppose that W k ∈ R2 and that γk ∈ Γ(X∗).
Then if a large-gradient step is not taken at iteration k of Algorithm 1 (because ‖∇G(W k)‖F <
cεγ

3/2
k), the algorithm will instead take a negative-curvature step with probability at least

1− ρ.

Proof. Since γk ∈ Γ(X∗), we have γk ≤ σr(X∗). By Part 2 of Theorem 5, we have

λmin(∇2G(W k)) ≤ −cγσr(X∗) ≤ −cγγk,

so a negative curvature step is taken whenever Procedure 3 is invoked (which occurs when

‖∇G(W k)‖F < cεγ
3/2
k), provided that Procedure 3 finds a direction of negative curvature,

which happens with probability at least 1 − ρ.

18

A Line-Search Algorithm for Strict Saddle Functions

Together, Lemmas 9 and 10 imply that once γk ∈ Γ(X∗), then (with high probabilty)
the local phase (Algorithm 2) will be invoked only when W k does not belong to R2 or R3.
In this case, it must belong to R1, according to (23). With this observation in mind, we
focus on the behavior of the local phase when γk ∈ Γ(X∗). We show that the conditions
for the “while” loop are satisfied for all t. (Later, we show in Lemma 17 a bound on the
number of iterations required for the termination conditions in the “if” statement to hold.)

Lemma 11 Let Assumptions 1, 2, 3, 4, and 5 hold. Suppose that γk ∈ Γ(X∗) hold and
that W k

0 ∈ R1. Then, if Algorithm 2 is invoked by Algorithm 1, we have for all t ≥ 0 that
W k
t in Algorithm 2 satisfies

‖∇G(W k
t)‖F ≤

√
κt
βk

δk, (35a)

2‖∇f(Xk
t)‖F +

1

2
‖(Ŵ k

t)>W k
t ‖F ≤ τt. (35b)

Proof. Since W k
0 ∈ R1 and γk ∈ Γ(X∗), it follows that

δk :=
√

2γ
1/2
k ≥ σr(X∗)1/2

and therefore dist(W k
0 ,W

∗) ≤ δ = σr(X
∗)1/2 ≤

√
2γ

1/2
k = δk, where δ is from the (α, β, δ)

regularity condition (19) and is defined to be σr(X
∗)1/2 in Theorem 5. Let R = R(W k

0 ,W
∗)

be the orthogonal matrix that minimizes ‖W ∗R−W k
0 ‖F . Then, using (14), we have

√
2‖X∗‖1/2 = ‖W ∗‖ ≤ ‖W ∗‖F = ‖W ∗R‖F

≤ ‖W ∗R−W k
0 ‖F + ‖W k

0 ‖F
= dist(W k

0 ,W
∗) + ‖W k

0 ‖F
≤ δk + ‖W k

0 ‖F .

It follows that

βk =
2cβ

(δk + ‖W k
0 ‖F)2

≤
cβ
‖X∗‖

= β. (36)

where β is from the (α, β, δ) regularity condition (19) and defined to be cβ‖X∗‖−1 in The-
orem 5. Therefore, by taking a stepsize νt ≤ 2βk ≤ 2β, it follows from Lemma 3 that
W k
t ∈ B(W ∗, δ) for all t ≥ 0 and

dist2(W k
t ,W

∗) ≤ dist2(W k
0 ,W

∗)
t−1∏
j=0

(1− 2νjα) ≤ δ2
k

t−1∏
j=0

(1− 2νjαk) = κtδ
2
k, (37)

where we used α = cασr(X
∗) ≥ cαγk = αk, dist(W k

0 ,W
∗) ≤ δk, and the definition of κt.

Recalling (9) and the definition of β in our strict saddle conditions, it follows that

cβ
‖X∗‖

‖∇G(W k
t)‖ ≤ dist(W k

t ,W
∗), for all t ≥ 0.

19

O’Neill and Wright

Together with (37) this implies

‖∇G(W k
t)‖ ≤

√
κt
‖X∗‖
cβ

δk ≤
√
κt
βk

δk,

where we used ‖X∗‖/cβ = 1/β ≤ 1/βk for the latter inequality, thus proving (35a). To
prove (35b) (which holds for W k

0 by our local phase initialization step in Algorithm 1, by
the definition of τ0), we have from Lemma 8 and (37) that

2‖∇f(Xk
t)‖F + 1

2‖(Ŵ
k
t)>W k

t ‖F
≤ (2L∇f + 1

2)(2‖W k
t ‖F + dist(W k

t ,W
∗))dist(W k

t ,W
∗)

≤ (2L∇f + 1
2)(2‖W k

t ‖F +
√
κtδk)

√
κtδk = τt,

as required.

5. Complexity Analysis.

This section presents our complexity results for Algorithm 1. We provide a brief “roadmap”
to the sequence of results here.

We start by showing (Lemma 12) how the parameters αk, δk, and βk in the algorithm
relate to the properties of the objective function and solution, in particular the key quantity
σr(X

∗). We follow up with an elementary result (Lemma 13) that shows that the reduction
in G from a backtracking line search along the negative gradient direction is a multiple of
‖∇G(W)‖2, then apply this result to the line searches (28) and (30) (see Lemmas 14 and
15, respectively). For backtracking steps along negative curvature directions (29), we show
that the reduction in G is a multiple of γ3

k (Lemma 16).

The next result, Lemma 17, is a bound on the number of iterations taken in Algo-
rithm 2 when it is invoked with γk ≥ 1

2σr(X
∗). We then return to the main algorithm

(Algorithm 1) and derive a bound on the number of non-local iterations (negative gradient
or negative curvature steps) under the assumptions that γk ≥ 1

2σr(X
∗) and G is bounded

below (Lemma 18). Lemma 19 then derives conditions under which a call to Algorithm 2
will be made that results in successful termination.

Lemma 20 is a particularly important result, showing that with high probability, we
have that γk ≥ 1

2σr(X
∗) at all iterations, and placing a bound on the number of times that

Algorithm 2 is invoked. This result leads into the main convergence results, Theorem 21
and Corollary 22, which show iteration and complexity bounds for the algorithm.

5.1 Strict Saddle Parameters.

In this subsection, we provide bounds on the parameters αk, βk, δk, and γk that are gener-
ated throughout Algorithm 1 and used to estimate the strict saddle parameters.

Lemma 12 Let Assumptions 1, 2, and 3 hold. Let αk, γk, δk, and βk be the values of
defined in Algorithm 1 (for those iterations k on which they are defined). Then, for any k

20

A Line-Search Algorithm for Strict Saddle Functions

such that γk ≥ 1
2σr(X

∗) holds, we have

1

2
σr(X

∗) ≤ γk ≤ γ0, (38a)

cα
2
σr(X

∗) ≤ αk ≤ cαγ0, (38b)

σr(X
∗)1/2 ≤ δk ≤

√
2γ0, (38c)

2cβ(√
2γ0 +RL

)2 ≤ βk ≤ 2cβ
σr(X∗)

, (38d)

where RL is defined in (25).

Proof. By the definition of our algorithm, it follows that γ0 ≥ γk for all k. In addition,
by our assumption that γk ≥ 1

2σr(X
∗) holds, we have proved (38a).

Noting that αk = cαγk, (38b) follows directly from (38a).

For δk, we have from γk ≥ 1
2σr(X

∗) that δk =
√

2γk ≥ σr(X
∗)1/2, while δk =

√
2γk ≤√

2γ0, proving (38c).

Recalling the definition of βk, we have

βk =
2cβ

(δk + ‖W k‖F)2
=

2cβ(√
2γk + ‖W k‖F

)2 ≤ 2cβ
σr(X∗)

.

For a lower bound on βk, note that the backtracking linesearches at each step ensure mono-
tonicity of the iterates, so that W k ∈ LW 0 for all k ≥ 0. Thus, we have

βk =
2cβ(

δk + ‖W k‖F
)2 =

2cβ(√
2γk + ‖W k‖F

)2 ≥ 2cβ(√
2γ0 +RL

)2 ,
completing our proof of (38d).

5.2 Line Search Guarantees.

We now provide guarantees of termination and descent for the two line searches in Algo-
rithm 1 and the line search in Algorithm 2. We begin by providing a generic lemma for
Armijo backtracking on gradient descent steps.

Lemma 13 Suppose that Assumptions 3 and 4 hold. Suppose that a step is computed from
W using a backtracking linesearch along the negative gradient direction with a step length
ν = ζθl, where l is the smallest nonnegative integer such that

G(W − ν∇G(W)) < G(W)− ην‖∇G(W)‖2F , (39)

where η ∈ (0, 1) is the sufficient decrease parameter. Then the backtracking line search
requires at most j ≤ j̃ + 1 iterations, where

j̃ =

[
logθ

(
2(1− η)

Lgζ

)]
+

, (40)

21

O’Neill and Wright

terminating with steplength ν satisfying

ν ≥ min

{
ζ,

2θ(1− η)

Lg

}
(41)

and

G(W)−G(W − ν∇G(W)) ≥ ηmin

{
ζ,

2θ(1− η)

Lg

}
‖∇G(W)‖2F .

Proof. Suppose that the initial steplength is accepted (that is, ν = ζ). Then,

G(W − ζ∇G(W)) < G(W)− ζη‖∇G(W)‖2F

so the claim holds in this case. Consider now the case in which ζ is not accepted and
backtracking is needed. For any l ≥ 0 such that (39) does not hold, we have from (26a)
that

−ηζθl‖∇G(W)‖2F ≤ G(W − ζθl∇G(W))−G(W)

≤ −ζθl〈∇G(W),∇G(W)〉+
Lgζ

2θ2l

2
‖∇G(W)‖2F

= −ζθl
(

1− Lgζθ
l

2

)
‖∇G(W)‖2F .

By rearranging this expression, we obtain

Lg
2
ζθl ≥ 1− η ⇒ θl ≥ 2(1− η)

Lgζ
. (42)

For any l > j̃ we have

θl < θj̃ ≤ 2(1− η)

Lgζ

so (42) cannot be satisfied for any l > j̃ and the line search must terminate with ν = ζθj

for some 1 ≤ j ≤ j̃ + 1. The previous index l = j − 1 satisfies (42), so we have

ν = ζθj = (ζθ)θj−1 ≥ 2θ(1− η)

Lg
.

Thus,

G(W)−G(W − ν∇G(W)) ≥ ηζθj‖∇G(W)‖2 ≥ 2ηθ(1− η)

Lg
‖∇G(W)‖2,

so the conclusion of the theorem holds in this case too.

Lemma 13 is used directly in the next two results, which provide termination and de-
crease guarantees for the linesearches used in the large gradient case and in the local phase.

22

A Line-Search Algorithm for Strict Saddle Functions

Lemma 14 Suppose that Assumptions 3 and 4 hold. Suppose that the backtracking step
(28) is taken at outer iteration k. Then, the backtracking line search requires at most
jk ≤ jgrad + 1 iterations, where

jgrad :=

[
logθ

(
2(1− η)

Lg

)]
+

, (43)

and the resulting step satisfies W k+1 = W k − νk∇G(W k)

G(W k)−G(W k+1) ≥ cgrad‖∇G(W k)‖2F (44)

where

cgrad = ηmin

{
1,

2θ(1− η)

Lg

}
. (45)

Proof. This proof follows directly from Lemma 13 with ζ = 1.

Lemma 15 Suppose that Assumptions 1, 2, 3, and 4 hold. Suppose that the backtracking
step (30) is taken at inner iteration t of outer iteration k of Algorithm 2, and that γk ≥
1
2σr(X

∗). Then, the backtracking line search requires at most jt ≤ ĵk + 1 iterations, where

ĵk :=

[
logθ

(
1− η
Lgβk

)]
+

, (46)

the resulting step satisfies W k
t+1 = W k

t − νt∇G(W k
t), and

G(W k
t)−G(W k

t+1) ≥ clocal‖∇G(W k
t)‖2F (47)

where

clocal = ηmin

{
4cβ

(
√

2γ0 +RL)2
,

2θ(1− η)

Lg

}
.

Proof. This result follows from Lemma 13 with ζ = 2βk and (38d) from Lemma 12.
Next, we provide similar guarantees for the negative curvature linesearch in Algorithm 1.

Lemma 16 Suppose that Assumptions 3 and 4 hold. Suppose that the backtracking step
(29) is taken at outer iteration k of Algorithm 1. Then, the backtracking line search requires
at most jk ≤ jnc + 1 iterations, where

jnc :=

[
logθ

(
3(1− η)

LH

)]
+

, (48)

and the resulting step satisfies W k+1 = W k + νkD
k

G(W k)−G(W k+1) ≥ cncγ
3
k (49)

where

cnc =
ηc3
γ

16
min

{
1,

(
3θ(1− η)

LH

)2
}
. (50)

23

O’Neill and Wright

Proof. First, by the scaling applied to Dk in Algorithm 1, it follows that

−‖Dk‖3F = 〈Dk,∇2G(W k)Dk〉 ≤ −1

8
c3
γγ

3
k , (51)

where the last inequality follows from 〈S,∇2G(W k)S〉 ≤ −1
2cγγk and ‖S‖F = 1. In addition,

we have
〈∇G(W k), Dk〉 ≤ 0. (52)

Suppose that the unit step is accepted (that is, νk = 1). Then

G(W k +Dk)−G(W k) <
η

2
〈Dk,∇2G(W k)Dk〉 ≤ − η

16
c3
γγ

3
k ≤ −cncγ

3
k ,

holds so the claim holds in this case. For the remainder of the proof, we assume that νk < 1,
that is, jk ≥ 1. For any j ≥ 0 such that (29) does not hold, we have from (26b), (51), and
(52) that

−ηθ
2j

2
‖Dk‖3F =

ηθ2j

2
〈Dk,∇2G(W k)Dk〉

≤ G(W k + θjDk)−G(W k)

≤ θj〈∇G(W k), Dk〉+
θ2j

2
〈Dk,∇2G(W k)Dk〉+

LHθ
3j

6
‖Dk‖3F

≤ −θ
2j

2
‖Dk‖3F +

LHθ
3j

6
‖Dk‖3F

= −θ
2j

2

(
1− LHθ

j

3

)
‖Dk‖3F

By rearranging this expression, we have

LH
3
θj ≥ 1− η ⇒ θj ≥ 3(1− η)

LH
. (53)

For any j > jnc we have

θj < θjnc ≤ 3(1− η)

LH

so (53) cannot be satisfied for any j > jnc and the line search must terminate with νk = θjk

for some 1 ≤ jk ≤ jnc + 1. The value j = jk − 1 satisfies (53), so we have

θjk ≥ 3θ(1− η)

LH
.

Thus, by (51), we have

G(W k)−G(W k+1) ≥ −η
2
θ2jk〈Dk,∇2G(W k)Dk〉 ≥ η

16

(
3θ(1− η)

LH

)2

c3
γγ

3
k ≥ cncγ

3
k .

Thus, the claim holds in the case of νk < 1 also, completing the proof.

24

A Line-Search Algorithm for Strict Saddle Functions

5.3 Properties of Algorithm 2.

This section contains a single lemma that provides a bound on the maximum number of
inner iterations that may occur during the local phase, Algorithm 2, when it is invoked with
a suitable value of γk.

Lemma 17 Let Assumptions 1, 2, 3, 4, and 5 hold and define

νmin :=
2θ(1− η)

Lg
. (54)

Then, for all k such that γk ≥ 1
2σr(X

∗) holds, if Algorithm 2 is invoked at iteration k, it
terminates in at most

T := 2
log Ĉ + log(max(ε−1

g , ε−1
H))

νmincασr(X∗)
(55)

iterations, where

Ĉ := max

{√
γ0

(√
2γ0 +RL

)2
2cβ

, (2L∇f + 1
2)
(

2RL +
√

2γ0

)√
2γ0

}
. (56)

Proof. Note first that since for any τ ∈ [0, 1) we have τ ≤ − log(1− τ) = log(1/(1− τ)),
it follows from the definition (55) that

T ≥ 2
log Ĉ + log(max(ε−1

g , ε−1
H))

log(1/(1− νmincασr(X∗)))
, (57)

provided that νmincασr(X
∗) ∈ [0, 1).

By the result of Lemma 15, the backtracking line search terminates in at most ĵk + 1
iterations, where ĵk is defined in (46). From this definition, we have

νt ≥ 2βkθ
ĵk+1 ≥ 2θ(1− η)

Lg
= νmin, for all t ≥ 0. (58)

Assume for contradiction that Algorithm 2 does not terminate on or before iteration T .
Then,

‖∇G(W k
T)‖F > εg and/or 2‖∇f(Xk

T)‖F + 1
2‖(Ŵ

k
T)>W k

T ‖F > εH

hold for t = T , and for the tests at the start of the “while” loop of Algorithm 2, we have
that

‖∇G(W k
t)‖F ≤

√
κt
βk

δk, for all t = 0, 1, . . . , T , (59a)

2‖∇f(Xk
t)‖F + 1

2‖(Ŵ
k
t)>W k

t ‖F ≤ τt, for all t = 0, 1, . . . , T . (59b)

From (58) and Lemma 12, we have 1 − 2νtαk ≤ 1 − νmincασr(X
∗) for all t. From this

observation together with νt ≤ 2βk and αkβk ≤ 1/4, we have

0 < νmincασr(X
∗) ≤ 2νtαk ≤ 4αkβk ≤ 1,

25

O’Neill and Wright

so that T satisfies (57). Moreover, we have

κT =
T −1∏
t=0

(1− 2νtαk) ≤
T −1∏
t=0

(1− νmincασr(X
∗)) = (1− νmincασr(X

∗))T . (60)

Consider first the case in which termination does not occur at the “if” statement in
iteration T because ‖∇G(W k

T)‖F > εg. We then have

εg < ‖∇G(W k
T)‖F

≤
√
κT
βk

δk

≤ (1− νmincασr(X
∗))T /2

δk
βk

≤ (1− νmincασr(X
∗))T /2

√
γ0

2cβ
(
√

2γ0 +RL)2,

where the final inequality follows from Lemma 12. Noting that 1/(1− νmincασr(X
∗)) ≥ 1,

we have by manipulation of this inequality that

T < 2 log

(√
γ0(
√

2γ0 +RL)2

2cβεg

)
/ log(1/(1− νmincασr(X

∗)))

which implies that

T < 2
log Ĉ + log(ε−1

g)

log(1/(1− νmincασr(X∗)))
,

which contradicts (57).
The second possibility is that Algorithm 2 fails to terminate in the “if” statement in

iteration T because 2‖∇f(Xk
T)‖F + 1

2‖(Ŵ
k
T)TW k

T ‖F > εH . In this case, we have

εH < 2‖∇f(Xk
T)‖F + 1

2‖(Ŵ
k
T)>W k

T ‖F
≤ τT = (2L∇f + 1

2)(2‖W k
T ‖F +

√
κT δk)

√
κT δk from (59b)

≤ (2L∇f + 1
2)(2‖W k

T ‖F + δk)
√
κT δk since κT ≤ 1

≤ (2L∇f + 1
2)(2‖W k

T ‖F + δk)(1− νmincασr(X
∗))T /2δk from (60)

≤ (1− νmincασr(X
∗))T /2(2L∇f + 1

2)(2RL +
√

2γ0)
√

2γ0,

where the final inequality follows from δk =
√

2γk ≤
√

2γ0, Assumptions 3 and 4, and (25).
By manipulating this inequality and recalling that 1/(1− νmincασr(X

∗)) ≥ 1, we find that
this bound implies

T < 2 log

(
(2L∇f + 1

2)(2RL +
√

2γ0)
√

2γ0

εH

)
/ log(1/(1− νmincασr(X

∗)))

so that (similarly to the above)

T < 2
log Ĉ + log(ε−1

H)

log(1/(1− νmincασr(X∗)))
,

26

A Line-Search Algorithm for Strict Saddle Functions

which again contradicts (57).
Since both cases lead to a contradiction, our assumption that Algorithm 2 does not

terminate on or before iteration T cannot be true, and the result is proved.

5.4 Worst Case Complexity of Algorithm 1.

We now work toward our main complexity result, Theorem 21. We begin with a lemma
which bounds the maximum number of large gradient and/or negative curvature iterations
that can occur while γk ≥ 1

2σr(X
∗).

Lemma 18 Suppose that Assumptions 1, 2, 3, and 4 hold. Let Algorithm 1 be invoked with
γ0 ≥ σr(X∗). Then, while γk ≥ 1

2σr(X
∗), Algorithm 1 takes at most

Klarge :=
8(G(W 0)−Glow)

min {c2
εcgrad, cnc}σr(X∗)3

(61)

large gradient steps and/or large negative curvature steps.

Proof. We partition the iteration indices k that are used in Algorithm 1 prior to ter-
mination as follows: K1 contains those iteration indices for which a large gradient step is
taken, K2 contains those for which a large negative curvature step is taken, and K3 contains
those for which the local phase is initialized.

By Lemma 14 we have for all k ∈ K1 that

G(W k)−G(W k+1) ≥ cgrad‖∇G(W k)‖2F ≥ c2
εcgradγ

3
k ,

where cgrad is defined in (45). Similarly, by Lemma 16, for all k ∈ K2, we have

G(W k)−G(W k+1) ≥ cncγ
3
k ,

where cnc is defined in (50).
Now, consider k ∈ K3. On iterations where the local phase is initialized but not invoked

(that is, the condition in the “if” statement immediately prior to the call to Algorithm 2 is
not satisfied), then G(W k)−G(W k+1) = 0. On iterations where the local phase is invoked,
by the definition of Tk in Algorithm 1 and the result of Lemma 15, it follows that

G(W k)−G(W k+1) =

Tk−1∑
t=0

G(W k
t)−G(W k

t+1) ≥
Tk−1∑
t=0

clocal‖∇G(W k
t)‖2F ≥ 0.

Thus, G(W k)−G(W k+1) ≥ 0 holds for all k ∈ K3.
By defining K = K1 ∪K2 ∪K3, we have

G(W 0)−G(W |K|) =

|K|∑
i=0

(G(W i)−G(W i+1))

≥
∑
i∈K1

(G(W i)−G(W i+1)) +
∑
j∈K2

(G(W j)−G(W j+1))

≥
∑
i∈K1

c2
εcgradγ

3
i +

∑
j∈K2

cncγ
3
j

≥
∑

k∈K1∪K2

min{c2
εcgrad, cnc}γ3

k .

27

O’Neill and Wright

By assumption, we have γk ≥ 1
2σr(X

∗), so that

G(W 0)−G(W |K|) ≥ 1

8
min{c2

εcgrad, cnc}σr(X∗)3|K1 ∪K2|.

Since G(W |K|) ≥ Glow, we have

|K1 ∪K2| ≤
8(G(W 0)−Glow)

min{c2
εcgrad, cnc}σr(X∗)3

= Klarge,

proving our claim.
Next, we show that if γk is close to σr(X

∗) and W k is in the region R1, then provided
that Procedure 3 certifies a near-positive-definite Hessian, Algorithm 2 will be called and
successful termination of Algorithm 1 will ensue.

Lemma 19 Let Assumptions 1, 2, 3, 4, and 5 hold. At iteration k, suppose that both
γk ∈ Γ(X∗) and W k ∈ R1 hold and that Procedure 3 certifies that
λmin(∇2G(W k)) ≥ −cγγk. Then Algorithm 1 terminates at a point W k+1 that satisfies
approximate optimality conditions (5).

Proof. By the definitions of Γ(X∗), αk, and δk, together with (22) and (24), it follows

that αk = cαγk ≤ cασr(X
∗) = α, and δk =

√
2γ

1/2
k ≥ σr(X

∗)1/2 = δ. Letting R =
R(W k,W ∗) ∈ Or be the orthogonal matrix that minimizes ‖W ∗R −W k‖F , we have from
(14) and W k ∈ R1 that

√
2‖X∗‖1/2 = ‖W ∗‖ ≤ ‖W ∗‖F = ‖W ∗R‖F

≤ ‖W ∗R−W k‖F + ‖W k‖F
= dist(W k,W ∗) + ‖W k‖F
≤ δk + ‖W k‖F

so that

βk =
2cβ

(δk + ‖W k‖F)2
≤

cβ
‖X∗‖

= β.

Since αβ ≤ 1
4 holds by definition, it follows from αk ≤ α and βk ≤ β that αkβk ≤ 1

4 , so
that the first condition of the “if” statement prior to the local phase of Algorithm 1 holds.
Now, by (9) and W k ∈ R1, ‖∇G(W k)‖ ≤ dist(W k,W ∗)/β holds. Thus,

‖∇G(W k)‖ ≤ δ

β
≤ δk
βk
,

is satisfied, so the second condition of the “if” statement prior to the local phase of Algo-
rithm 1 also holds. Finally, by Lemma 8 and dist(W k,W ∗) ≤ δk, we have

2‖∇f(Xk)‖F + 1
2‖(Ŵ

k)>W k‖F ≤
(
2L∇f + 1

2

)
(2‖W k‖F + δk)δk,

so that the final condition of the “if” statement also holds and Algorithm 2 will be invoked
at W k. Thus, by Lemma 11 and Lemma 17, Algorithm 1 terminates at W k+1 that satisfies
(5).

Next, we show that with high probability, γk ≥ 1
2σr(X

∗) holds for all k.

28

A Line-Search Algorithm for Strict Saddle Functions

Lemma 20 Suppose that Assumptions 1, 2, 3, 4, and 5 hold. Let Algorithm 1 be invoked
with γ0 ≥ σr(X

∗). Then, with probability at least (1 − ρ)Klarge (where Klarge is defined in
Lemma 18), we have that

γk ≥
1

2
σr(X

∗), for all k,

and Algorithm 2 is invoked at most

Klocal := log2

(
2γ0

σr(X∗)

)
times. (62)

Proof. By the definitions of Algorithm 1 and Γ(X∗), it is clear that γj <
1
2σr(X

∗) can

only occur at an iteration j such that γk ∈ Γ(X∗) holds for some k < j. Let K̂ denote the
set of (consecutive) iterations for which γk ∈ Γ(X∗).

Consider any iteration k ∈ K̂. Due to the structure of Algorithm 1, γk will be halved

only on iterations k for which ‖∇G(W k)‖F < cεγ
3/2
k is satisfied and Procedure 3 certifies

that λmin(∇2G(W k)) ≥ −cγγk. From Lemma 9, ‖∇G(W k)‖ < cεγ
3/2
k cannot hold for

W k ∈ R3 and γk ∈ Γ(X∗), so γk cannot be halved on such iterations. Next, consider
k ∈ K̂ such that W k ∈ R1 and Procedure 3 certifies that λmin(∇2G(W k)) ≥ −cγγk. In
this case, Algorithm 1 terminates at W k+1, by Lemma 19. Thus, it follows that γk can
be reduced to a level below 1

2σr(X
∗) only if there is some iteration k ∈ K̂ such that

W k ∈ R2, ‖∇G(W k)‖F < cεγ
3/2
k and Procedure 3 certifies that λmin(∇2G(W k)) ≥ −cγγk.

For γk ∈ Γ(X∗) and W k ∈ R2, we have λmin(∇2G(W k)) ≤ −cγσr(X∗) < −cγγk, thus this
“certification” by Procedure 3 would be erroneous, an event that happens with probability
at most ρ. Otherwise, a negative curvature backtracking step is taken.

Since the maximum number of large negative curvature steps that can occur while
γk ∈ Γ(X∗) is bounded by Klarge (Lemma 18), there are at most Klarge iterations for which
both W k ∈ R2 and γk ∈ Γ(X∗) hold. It follows that with probability at least (1 − ρ)Klarge ,
Procedure 3 does not certify that λmin(∇2G(W k) ≥ −cγγk while W k ∈ R2 for all k ∈ K̂.
This further implies that with probability at least (1 − ρ)Klarge , γk ≥ 1

2σr(X
∗) holds for all

k.
The second claim follows immediately from the first claim together with the facts that

Algorithm 2 is invoked at least once for each value of γk, and that successive values of γk
differ by factors of 2.

We are now ready to state our iteration complexity result.

Theorem 21 Suppose that Assumptions 1, 2, 3, 4, and 5 hold. Then, with probability at
least (1− ρ)Klarge , Algorithm 1 terminates at a point W k satisfying (5) in at most

Kouter := Klarge +Klocal (63)

outer iterations (where Klarge and Klocal are defined in (61) and (62), resp.) and

Ktotal := Klarge + 2
log Ĉ + log max(ε−1

g , ε−1
H)

νmincασr(X∗)
Klocal (64)

total iterations at a point satisfying (5), where Ĉ is defined in (56) and νmin is defined in
(54).

29

O’Neill and Wright

Proof. By Lemma 20, with probability (1 − ρ)Klarge , γk ≥ 1
2σr(X

∗) holds for all k and
Algorithm 1 invokes Algorithm 2 at most Klocal times. Thus, by Lemma 18, it follows
that Algorithm 1 takes at most Klarge large gradient steps and/or large negative curvature
iterations with probability at least (1−ρ)Klarge . Altogether, this implies that with probability
at least (1 − ρ)Klarge , the maximum number of outer iterations in Algorithm 1 is bounded
by Klarge +Klocal, proving (63).

The bound (64) follows by combining Lemma 17 (which bounds the number of iterations
in Algorithm 2 at each invocation) with the fact that Algorithm 2 is involved at most Klocal

times, with probability at least (1 − ρ)Klarge .
We turn our attention now to providing a complexity in terms of gradient evaluations

and/or Hessian vector products. One more assumption is needed on Procedure 3.

Assumption 6 For every iteration k at which Algorithm 1 calls Procedure 3, and for a
specified failure probability ρ with 0 ≤ ρ� 1, Procedure 3 either certifies that ∇2G(W k) �
−εI or finds a vector of curvature smaller than −ε/2 in at most

Nmeo := min
{
N, 1 +

⌈
Cmeoε

−1/2
⌉}

(65)

Hessian-vector products (where N = (m + n)r is the number of elements in W k), with
probability 1− ρ, where Cmeo depends at most logarithmically on ρ and ε.

Assumption 6 encompasses the strategies we mentioned in Section 4.2. Assuming the
bound UH on ‖∇2G(W)‖ to be available, for the Lanczos method with a random starting
vector, (65) holds with Cmeo = ln(2.75(nr+mr)/ρ2)

√
UH/2. When a bound on ‖∇2G(W)‖

is not available in advance, it can be estimated efficiently with minimal effect on the overall
complexity of the method, see Appendix B.3 of Royer et al. (2020).

Under this assumption, we have the following corollary regarding the maximum number
of gradient evaluations/Hessian vector products required by Algorithm 1 to find a point
satisfying our approximate second-order conditions (5).

Corollary 22 Suppose that the assumptions of Theorem 21 are satisfied, and that Assump-
tion 6 is also satsified with Nmeo defined in (65). Then, with probability (1 − ρ)Klarge , the
number of gradient evaluations and/or Hessian-vector products required by Algorithm 1 to
output an iterate satisfying (5) is at most

Nmeo (Klarge +Klocal) + 2
log Ĉ + log max(ε−1

g , ε−1
H)

νmincασr(X∗)
Klocal, (66)

and Nmeo satisfies the upper bound

Nmeo ≤ min
{

(n+m)r, 1 +
⌈√

2Cmeoc
−1/2
γ σr(X

∗)−1/2
⌉}

.

Proof. All iterations in the local phase, Algorithm 2, require a single gradient evaluation.
Likewise, each large gradient step requires a single gradient evaluation.

Procedure 3 is invoked at every large negative curvature iteration and before each time
the local phase is tried. With probability (1 − ρ)Klarge , the maximum number of large

30

A Line-Search Algorithm for Strict Saddle Functions

negative curvature iterations is bounded by Klarge while the maximum number of times the
local phase is entered is bounded by Klocal. In addition, by Assumption 6, Procedure 3
requires at most Nmeo Hessian-vector products. Thus, the maximum number of gradient
evaluations and/or Hessian-vector products required is bounded by the quantity in (66).

Since γk ≥ 1
2σr(X

∗) with probability (1− ρ)Klarge , it follows that

Nmeo = min
{
N, 1 +

⌈
Cmeoc

−1/2
γ γ

−1/2
k

⌉}
≤ min

{
(n+m)r, 1 +

⌈√
2Cmeoc

−1/2
γ σr(X

∗)−1/2
⌉}

,

verifying the bound on Nmeo.

It is worth discussing what happens in the “failure mode,” where Procedure 3 with
an iterate for which in fact λmin(∇2G(W k)) < −cγγk, yet it erroneously certifies that
λmin(∇2G(W k)) ≥ −cγγk. In this situation, one of three things can happen. First, the
test for involving Algorithm 2 may fail, so the algorithm continues with W k+1 = W k and
γk+1 = 1

2γk. Second, Algorithm 2 may be invoked but may return without the “convergence”
flag set to “True”, in which case Algorithm 1 continues with γk+1 = 1

2γk and W k+1 having
G(W k+1) ≤ G(W k). Third, Algorithm 2 may terminate at a point satisfying (5). In the
first two cases, if γk > σr(X

∗), not much is lost; the algorithm can still recover and perform
with the complexity described above. If, however, the erroneous certification causes γk to
be reduced below the interval Γ(X∗), most of the results proved above will no longer hold.
The algorithm may still converge, but we lose the guaranteed bounds on the number of
iterations.

6. Conclusion.

We have described an algorithm that finds an approximate second-order point for robust
strict saddle functions. This method does not require knowledge of the strict saddle pa-
rameters that define the optimization landscape or a specialized initialization procedure.
By contrast with other methods proposed recently for finding approximate second-order
points for nonconvex smooth functions (see, for example, Carmon et al. (2018); Royer et al.
(2020)), the complexity is not related to a negative power of the optimality tolerance pa-
rameter, but depends only logarithmically on this quantity. The iteration complexity and
the gradient complexity depend instead on a negative power of σr(X

∗), the smallest nonzero
singular value of the (rank-r) minimizer of f .

One future research direction lies in investigating whether accelerated gradient methods
are suitable for use in the local phase of Algorithm 1. While effective in practice (Pauwels
et al., 2017), little is known about the convergence rate of these algorithms when the
(α, β, δ)-regularity condition holds. In Xiong et al. (2020), the authors showed that under
certain parameter settings, accelerated gradient methods converge at a linear rate. However,
due to the techniques used, it is difficult to understand from this paper when this linear
rate substantially improves over the convergence rate of gradient descent.

Acknowledgments

31

O’Neill and Wright

Research supported by NSF Awards 1628384, 1634597, 1740707, 2023239, and 2224213;
Subcontract 8F-30039 from Argonne National Laboratory; Award N660011824020 from
the DARPA Lagrange Program; and AFOSR under subcontract UTA20-001224 from the
University of Texas.

Appendix A. Proof of (14)

By the definition of W ∗ and the operator norm:

‖W ∗‖2 = λmax(W ∗(W ∗)>) = max
z

z>W ∗(W ∗)z

‖z‖2

= max
zΦ,zΨ

[
zΦ

zΨ

]> [
ΦΣΦ> ΦΣΨ>

ΨΣΦ> ΨΣΨ>

] [
zΦ

zΨ

]
‖zΦ‖2 + ‖zΨ‖2

= max
zΦ,zΨ

(Φ>zΦ + Ψ>zΨ)>Σ(Φ>zΦ + Ψ>zΨ)

‖zΦ‖2 + ‖zΨ‖2
,

where we have partitioned the vector z in an obvious way. Let φ1 denote the first left
singular vector of X∗ and ψ1 denote the first right singular vector of X∗. Then, it is clear
that the maximum is obtained by setting zΦ = φ1 and zΨ = ψ1, so that (Φ>zΦ +Ψ>zΨ)> =
(2, 0, 0, . . . , 0) and ‖zΦ‖2 + ‖zΨ‖2 = 2, yielding ‖W ∗‖2 = λmax(W ∗(W ∗)>) = 2σ1(X∗) =
2‖X∗‖, as claimed.

To prove the second result, the definition of the Frobenius norm gives

‖W ∗(W ∗)>‖F =

√√√√ r∑
i=1

λi (W ∗(W ∗)>)
2
.

Now, let ψi be the i-th left singular vector of X∗ and φi be the i-th right singular vector of
X∗. It is clear that we obtain an eigenvector for the ith eigenvalue of W ∗(W ∗)> by setting

zi =

[
φi
ψi

]
. Similar to the calculation above for z1, we have

λi

(
W ∗(W ∗)>

)
=
z>i W

∗(W ∗)>zi
‖zi‖2

= 2σi(X
∗)

and thus √√√√ r∑
i=1

λi (W ∗(W ∗)>)
2

=

√√√√ r∑
i=1

(2σi(X∗))2 = 2

√√√√ r∑
i=1

σ2
i (X

∗) = 2‖X∗‖F .

References

Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Global optimality of local
search for low rank matrix recovery. In Advances in Neural Information Processing Sys-
tems, pages 3873–3881, 2016.

32

A Line-Search Algorithm for Strict Saddle Functions

Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval via Wirtinger
flow: Theory and algorithms. IEEE Transactions on Information Theory, 61(4):1985–
2007, 2015.

Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Accelerated methods for non-convex
optimization. SIAM Journal on Optimization, 28:1751–1772, 2018.

Yuxin Chen, Yuejie Chi, Jianqing Fan, and Cong Ma. Gradient descent with random
initialization: Fast global convergence for nonconvex phase retrieval. Mathematical Pro-
gramming, 176(1-2):5–37, 2019.

Yuejie Chi, Yue M Lu, and Yuxin Chen. Nonconvex optimization meets low-rank matrix
factorization: An overview. IEEE Transactions on Signal Processing, 67(20):5239–5269,
2019.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points - Online
stochastic gradient for tensor decomposition. In Volume 40: Conference on Learning
Theory, 3-6 July 2015, Paris, France, pages 797–842. PMLR, 2015.

Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank problems:
A unified geometric analysis. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1233–1242. JMLR. org, 2017.

Dar Gilboa, Sam Buchanan, and John Wright. Efficient dictionary learning with gradient
descent. In International Conference on Machine Learning, pages 2252–2259, 2019.

A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Al-
gorithmic Differentiation. Frontiers in Applied Mathematics. SIAM, Philadelphia, PA,
second edition, 2008.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to
escape saddle points efficiently. In International Conference on Machine Learning, pages
1724–1732. PMLR, 2017.

Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Accelerated gradient descent escapes
saddle points faster than gradient descent. In Conference On Learning Theory, pages
1042–1085. PMLR, 2018.

Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion from
a few entries. IEEE Transactions on Information Theory, 56(6):2980–2998, 2010.

Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient descent
only converges to minimizers. In Conference on Learning Theory, pages 1246–1257, 2016.

Xiaodong Li, Shuyang Ling, Thomas Strohmer, and Ke Wei. Rapid, robust, and reliable
blind deconvolution via nonconvex optimization. Applied and Computational Harmonic
Analysis, 47(3):893–934, 2019.

Santiago Paternain, Aryan Mokhtari, and Alejandro Ribeiro. A Newton-based method for
nonconvex optimization with fast evasion of saddle points. SIAM Journal on Optimiza-
tion, 29(1):343–368, 2019.

33

O’Neill and Wright

Edouard Jean Robert Pauwels, Amir Beck, Yonina C Eldar, and Shoham Sabach. On
fienup methods for sparse phase retrieval. IEEE Transactions on Signal Processing, 66
(4):982–991, 2017.

Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank solutions
of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471–501,
2010.

Clément W Royer, Michael O’Neill, and Stephen J Wright. A Newton-CG algorithm with
complexity guarantees for smooth unconstrained optimization. Mathematical Program-
ming, Series A, 180(1):451–488, 2020.

Ju Sun, Qing Qu, and John Wright. When are nonconvex problems not scary? arXiv
preprint arXiv:1510.06096, 2015.

Ju Sun, Qing Qu, and John Wright. Complete dictionary recovery over the sphere i:
Overview and the geometric picture. IEEE Transactions on Information Theory, 63
(2):853–884, 2016a.

Ju Sun, Qing Qu, and John Wright. Complete dictionary recovery over the sphere i:
Overview and the geometric picture. IEEE Transactions on Information Theory, 63
(2):853–884, 2016b.

Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase retrieval. Foundations
of Computational Mathematics, 18(5):1131–1198, 2018.

Ruoyu Sun and Zhi-Quan Luo. Guaranteed matrix completion via non-convex factorization.
IEEE Transactions on Information Theory, 62(11):6535–6579, 2016.

Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, and Benjamin Recht.
Low-rank solutions of linear matrix equations via procrustes flow. In Proceedings of
the 33rd International Conference on International Conference on Machine Learning -
Volume 48, Proceedings of Machine Learning Research, pages 964–973. JMLR, 2016.

Huaqing Xiong, Yuejie Chi, Bin Hu, and Wei Zhang. Analytical convergence regions of
accelerated gradient descent in nonconvex optimization under regularity condition. Au-
tomatica, 113:108715, 2020.

Baturalp Yalçın, Haixiang Zhang, Javad Lavaei, and Somayeh Sojoudi. Factorization ap-
proach for low-complexity matrix completion problems: Exponential number of spurious
solutions and failure of gradient methods. In International Conference on Artificial In-
telligence and Statistics, pages 319–341. PMLR, 2022.

Zhihui Zhu, Qiuwei Li, Gongguo Tang, and Michael B Wakin. The global optimization
geometry of low-rank matrix optimization. IEEE Transactions on Information Theory,
67(2):1308–1331, 2021.

34

	Introduction.
	Contributions, Related Work.
	Robust Strict Saddle Property and Assumptions.
	Regularity Condition and Robust Strict Saddle Property.
	Regularization.
	Assumptions and Strict Saddle Parameters.

	The Algorithm.
	Line-Search Algorithm for Strict Saddle Functions.
	Minimum Eigenvalue Oracle.
	Lower-Bounding the Spectrum of 2 G(Wk).
	Behavior of Algorithm 1 under Accurate Parameter Estimates.

	Complexity Analysis.
	Strict Saddle Parameters.
	Line Search Guarantees.
	Properties of Algorithm 2.
	Worst Case Complexity of Algorithm 1.

	Conclusion.
	Proof of (14)

