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1. Introduction

In this paper, the authors are concerned with the development of an LP- primal-dual weak Galerkin (L’-PDWG) finite
element method for the second order elliptic boundary value problem that seeks u such that

—Au+V-(Bu)=f, in £,

1.1
u=g, onas2, (1.
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where 2 ¢ R%d = 2, 3) is an open bounded and connected domain with piecewise smooth Lipschitz boundary 82 and
f € L9(£2) is a given function with g > 1. We assume that the convection vector g € [L*(£2)]¢ is bounded and piecewise
continuous. By a weak solution of (1.1) we mean a function u € L9(§2) with g > 1 such that

(u,Ac +B-Vo)=1(g,Vo -n)yo —(f,o0) Vo eV, (1.2)

where V = W, ?(2) N WP(2).

The weak Galerkin (WG) method was first introduced by Wang and Ye in [1,2] for second order elliptic equations,
where weak gradient and its discrete weak gradient were constructed to replace the standard gradient and its discrete
gradient. Later, the authors in [3] developed a primal-dual weak Galerkin (PDWG) finite element method for the second
order elliptic problem in non-divergence form, where a discrete weak Hessian operator in the weak formulation of the
model PDEs was designed. This PDWG algorithm can be characterized as a constrained L? optimization problem with
constraints given by the weak formulation of the model PDEs weakly defined on each element. In the past several years,
many theoretical a priori error estimates for weak Galerkin methods have been established in L? and discrete H™, m = 1, 2
norms. Readers are referred to [2,4-14] for an incomplete list of references.

The purpose of this paper is to present an LP- primal-dual weak Galerkin method for the problem (1.1), and establish
a general [P theory for the numerical method. To our best knowledge, there is one existing result in the [ (1 < p < o0)
error estimate for the mixed finite element method developed by Duran [15] for second order elliptic problems in R?,
but no results in [P are known for the weak Galerkin finite element methods in the literature. Different from the method
in [3], our numerical scheme is based on the weak formulation (1.2) together with a weak version of the dual operator
applied to the test functions. The new PDWG method can be characterized as a constrained L” optimization problem with
constraints that satisfy the PDE weakly on each element, which extends the idea of L? minimization problem in [3] to a
more general [P setting.

It should be pointed out that our theory for the [P- primal-dual weak Galerkin finite element method is based on the
assumption that the solution to the following adjoint problem

—Ap—B-Vo =y, in £2,

1.3
o =0, on 452, (1.3)

is W2P-regular in the sense that it has a unique solution in Wol’p(.Q) N W?2P(£2) and the solution satisfies

lelzp < Clixllop-

Here W™P(D) denotes the standard Sobolev spaces on sub-domain D C §2 equipped with the norm || - || pp and semi-
norm | - |, , p. When D = £, we omit the index D; and if p = 2, we set W™P(D) = H™(D), || - llmp.o = Il - llm.p, and

| - Imp.p = | - Im,p- Under this assumption, we shall derive an optimal order error estimate in the standard L7 norm for the
primal variable u and the standard W™P, 0 < m < 1 norms for the dual variable. Numerical experiments demonstrate
that our error estimate for the primal variable is optimal; i.e., the error bound is sharp.

The rest of this paper is organized as follows. In Section 2, we briefly review the weak differential operators and
their discrete versions. In Section 3, the primal-dual weak Galerkin scheme is introduced for the model problem (1.1)
based on LP theory. Section 4 is devoted to the establishment of the solution existence, uniqueness and stability. In
Section 5, we derive an error equation for our numerical methods, which is of essential importance in our later error
estimates. Sections 6 and 7 establish error estimates for the primal variable in LY norms and for the dual variable in
W™P 0 < m < 1 norms, respectively. Finally, a series of numerical examples are presented in Section 8 to verify the
mathematical convergence theory.

2. Weak differential operators

The Laplacian and the gradient are the principle differential operators used in the weak formulation (1.2) for the second
order elliptic model problem (1.1). This section gives a brief discussion of the weak Laplacian and gradient operators as
well as their discrete analogies [16].

Let T be a polygonal or polyhedral domain with boundary aT. A weak function on T refers to a triplet o = {09, 03, 04}
such that og € IP(T), 0, € [P(0T), and o,, € LP(dT). The first and second components o and o}, can be identified as the
value of ¢ in the interior and on the boundary of T. The third component o, is meant to represent the value of Vo -n on
the boundary of the element T. Note that o, and o, might be totally independent of the trace of oy and Voy - n on 9T,
respectively. Denote by W(T) the space of all scalar-valued weak functions on T; i.e.,

W(T) = {0 = {09, 0p, o} : 09 € [P(T), oy € IP(3T), 0y, € LP(3T)}. (2.1)
The weak Laplacian operator, denoted by A,, is defined as a linear functional in W2P(T) such that
(Ayo, w)r = (00, Aw)r — (0, Vw - M)yr + (05, W)ar,

for all w € W29(T).
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Denote by P,(T) the space of all polynomials on T with degree no more than r. A discrete analogy of A, o for o € W(T)
is defined as the unique polynomial A, ; 7o € P,(T) satisfying
(Aw,rro, wir = (00, Aw)r — (0p, Vw - My + (on, w)sr, VYw € Pr(T). (2.2)
For smooth oy such that oy € W2P(T), we have from the integration by parts
(Ay,rr0o, w)r = (Ao, w)r + (00 — 0p, Vw - M)yr — (Voo - 0 — 0y, w)r, (2.3)

for all w € P.(T). Similarly, the discrete weak gradient operator is defined as the unique polynomial V,, ;1o € [PA(T)]¢
satisfying

(Vur10, @) = —(00, V - @)1 + (05, ¢ - M)yr, Vg € [P(T)]". (24)
When oy € WIP(T), the following identity holds true:

(Vur10, 9)r = (Voo, @)r + {0 — 00, ¢ - N)yr, (2.5)
for all ¢ € [P(T)]%

3. Numerical algorithm

Denote by 7, a partition of the domain £2 into polygons in 2D or polyhedra in 3D which is shape regular in the sense
described in [2]. Denote by & the set of all edges or flat faces in 7; and 5,? = &, \ 082 the set of all interior edges or flat
faces. Denote by hr the meshsize of T € 7; and h = maxre7; hy the meshsize for the partition 7.

For any given integer k > 1, denote by W, (T) the local discrete space of the weak functions defined by

Wi(T) = {{o0, 0b, 0u} : 00 € P(T), 0y € P(e), 04 € Pr_y(e), e C OT}.

Patching Wy (T) over all the elements T € 7, through a common value of o, and o, on the interior interface 5,? yields a
weak finite element space Wj:

Wi = {{00, 0, 0n} : {00, 0%, o}l € Wil(T), VT € Ti ). (3.1)

Note that o, has two values o} and of on each interior interface e = 9T, N dTz € &) as seen from the two elements T;
and Tg, and they must satisfy o + of = 0. Denote by W) the subspace of W} with homogeneous boundary condition;
ie,

Wy = {{00, 0b, 0n} : {00, O, On}lT € Wi, 0plse =0, Ve € 9T, T € Ty}
Denote by M}, the finite element space consisting of piecewise polynomials of degree s where s = k — 1; i.e,,
My = {w : wir € P(T), VT € Tp}. (3.2)

We emphasize that both the weak gradient and the weak Laplacian operators are defined by using piecewise polynomials of
degree s = k — 1. For purely diffusive equations, one may assume the value of s = k — 2.

For simplicity of notation and without confusion, for any o € W, denote by A, 0 and V,,o the discrete weak Laplacian
Ay 7o and discrete weak gradient V,, s 7o computed by (2.2) and (2.4) on each element T, respectively; i.e.,

(Au)G)IT = Aw,S,T(UlT)v (Vuxa)|T = VUJ,S.T(UlT)v s=k—1.

For any o, A € Wj, and u € My, we introduce the following forms

s, o)=Y st 0), (3.3)
TeTh
b(u, A) =Y br(u, 1), (3.4)
TeTy
where

5100 0) =h1~? / 1o — AP~ sgn(ho — 200 — 0 )ds
oT

+ P | Vg -n— AP sgn(Vig - m— A,) (Voo - 1 — 0,)ds
aT
bT(uv )") =(u1 _ﬁ - VuA — Aw)‘)T-

The numerical scheme for the second order elliptic model problem (1.1) based on the variational formulation (1.2) can
be stated as follows:
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Primal-Dual Weak Galerkin Algorithm 3.1. Find (up; Ap) € My X W,?, such that
S(An, 0) + b(up, o) = (f, 00) — (g, on)ac, Yo e W), (3.5)
b(v, )‘«h) =0, Yv € M. (36)

In the next section, we shall study the solution existence and uniqueness for the primal-dual weak Galerkin finite
element algorithm (3.5)-(3.6). For simplicity of the analysis and presentation, we assume a constant value for the
convection term B on each element T € 7}, in the rest of the paper. This assumption is nonessential since the analysis can
be extended to variable and piecewise continuous functions S.

4. Solution existence and uniqueness

Denote by Qq the L? projection operator onto Py(T) for each element T. For each edge or face e C 3T, denote by Q, and
Q, the I? projection operators onto Py(e) and P,_;(e), respectively. For any w € W>P(£2), define by Q,w the L? projection
onto the weak finite element space W} such that on each element T,

Quw = {Qw, Qyw, Qu(Vw - m)}.

Denote by Qy, the L? projection onto the finite element space M.

Lemma 4.1 ([16]). The L? projection operators Q, and Qy, satisfy the following commutative properties:
Ay(Quw) = Qu(Aw),  w e WHH(T), (4.1)
Viu(Quv) = Qp(Vv),  veW(T). (42)

To show the existence of solutions, we consider the functional
J(o,v):= %S(U, o)+ b(v,0)—(F, o),
where (F,0) = (f, 00) — (g, on)ae and p > 1. If (up; Ap) € M, x W,? is the solution of (3.5)-(3.6), then we have from (3.6)
o )= 5Chn, ) = (F, 2a) = ot ). Yo € M.

On the other hand, for p > 1, since the functional J(o, up) is convex in o, Eq. (3.5) indicates that d,J(Ap, up)(o) = 0 for
allo € W,?, where 9,J(\y, up)(o) is the Gateaux partial derivative at Aj, in the direction of o. It follows that Aj, is a global
minimizer of the functional o — J(o, uy); i.e.,

JOw, up) <J(o,up), Yo € Wp.
Combining the last two inequalities yields
JOu, v) < J(An, up) < J(o, up), Yv € My, 0 € W). (4.3)

The above inequality implies that the solution (uy; Ap) is a saddle point of the functional J(-, -). Thus, (3.5)-(3.6) can be
formulated as the following min-max problem: Find u, € My, and A, € W,? such that

(Ap, up) = arg min maxJ(o, v).
oW veMy

Note that the exact solution u satisfies b(u, o) = (f, 09) — (g, on)se for all o. It follows from the second inequality of
(4.3) that the exact solution (A, u) satisfies

s(A, A) <s(o,0), Vo,

which yields A = 0, i.e., the exact Lagrangian multiplier A is equal to zero.

As a convex minimization problem, the above problem has a solution so that there must be a solution (uy; Ap,) satisfying
(3.5)=(3.6).

The rest of this section is devoted to a discussion of the uniqueness of the numerical solution (up; Ap).

Theorem 4.2. The numerical scheme (3.5)-(3.6) has one and only one solution (uy; Ap,) in the finite element space My, x W,?.
Proof. Let (uh ; A(l)) and (u; ), Ap ) be two solutions of (3.5)-(3.6). Denote

€ = A — )\;12) = {eo, €p, €n}, €p = u§f> — u(z).
For any constants 61, 65, we choose o = Olkm + 6, A(Z n (3.5) and use (3.6) to obtain

s, 0080 + 6,02y — s, 0,480 + 6,012 = 0.
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In particular, by taking (61, 6,) = (1, 0), (0, 1), we have
SO, 47 = SO, A8, 2, 42) = s, A2, (44

which yields, together with Young’s inequality |AB| < % + %, that

@ ;@ (1 5 (1) (1 (1) @ @
S(Ap s Ap ) SOy AT) S(Ap s Ap ) SOy AT
h h + h h , 5()\;12)’ )\;2)) < h h + h h

SO0, A0 <
q p q p

which yields
s, Ay = s A, (4.5)
On the other hand, for any two real numbers A, B, there holds

A+BJ°
——| < (AF +1BI")/2,

and the equality holds true if and only if A = B. It follows that

(1) (2) 4(1) (2)
A0 a2 0y 1
s(n 5 bk 5 i )5i(s(xg”,,\57”)+s(x§f),xﬁf>)):s(xg”,xg”). (4.6)

By (4.4)-(4.5) and Young's inequality,

(1 4 1 M 4 1 4@ (1) A;,U—I—Af)
s(Ay ' A,0) = 5(s(kh A ) s(g AT)) = sy, T

),

)
(), 3@ (1) 4@
M AT N+ A

1
S )
2 2

=
p

1
= SO+

which indicates that
(1) (2) 4 (M (2)
Al AT AT+ A
2 ’ 2
In light of (4.6), we easily obtain that
o AV 4+ A2 a8 4+
2 ’ 2
The above equality holds true if and only if
A0 =) =A% A on o,
Vil on =) = val® . n— A2, on aT,

n »

1 1
s, A < s( ).

)= (A, A50) = s, A2,

or equivalently,
€ = €, on AT, (4.7)
Veo-n = €,, on dT. (4.8)

Let (uﬁl”; kgf)) and (uﬁ,z); )»;12)) be two solutions of (3.5)-(3.6). We have from (3.6) that b(v, €;,) = 0. Using (2.3) and (2.5),
we have

0 =b(v, €n)
= Z(vv _ﬂ : wah - Aweh)T
TeTy
= Z —(Veo, Bv)r — (ep — €0, Bv - M)yr
TeTy

— (A€, v) — (€g — €p, VU -M)yr + (Veg - M — €, V)7
= Z(—,B - Veo — Aeg, v)r,
TeTh

where we used (4.7)-(4.8), which gives —B - Veg — Aeg = 0 on each T € 7. Together with (4.7)-(4.8), we arrive at
—B - Veo — Aeg = 0 in £2, with the boundary condition €g = 0 on 92 due to the fact that (4.7) and ¢, € W,?. Therefore,
we obtain €y = 0 in 2. Furthermore, we have ¢, = 0 and ¢, = 0, which leads to )\ﬁf) = kf).

We next show e, = 0. To this end, using )\51]) = }Lf) and Eq. (3.5) we obtain

blen. o) = s(A,), 0) = s(7. o) + blen. 0) = 0, Vo € Wy,

5
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which, together with the definition of the weak Laplacian A,, and the weak gradient V,,, yields

0=bhlen,0) = Y (en, —B - Vuo — Ayo)r

TeTh

= Z(V-(ﬂeh)— Aey, 00)r

TeTh

+ Z(Ub, Ven - m)yr — (on, €r)or — (€n, B - Nop)yr
TeTy

= Z(v.(ﬁeh)— Aep, oo)r

TeTh

+ Y | (IVen — Benll - neoy — llenllon) ds

ecgp Ve

forallo € W,?, where n, is the assigned outward normal direction to e € &, and [ - ]| is the jump on the edge e € &,. In

particular, by taking og = V - (Ben) — Aey, onlg, = —[lex]l, and Gblgg = [Ve, — Ben]l - n, we obtain oneach T € 7,

—Aep+ V- (Bey) =0, inT,

[er] =0, [Ven,— Ben]l-n. =0, on dT.
Consequently, from the solution uniqueness for (1.1) we have

e, =0, or equivalently ug) = uf).

This completes the proof. O

5. Error equation

Let u and (up; Ap) € My X W,? be the exact solution of (1.1) and its numerical solution arising from the PDWG scheme

(3.5)-(3.6), respectively. Denote two error functions by

ep = Qpl — Up,
€p = Qh)\. —Ap = —Ap.

(5.1)
(5.2)

Lemma 5.1. Let u and (up; Ap) € My X W,? be the exact solution of (1.1) and its numerical solution arising from PDWG

scheme (3.5)-(3.6). The error functions e, and € satisfy the following equations:
s(en, o) + b(en, o) = (o), Vo € W,?,
b(v, en) = 0, Yv € M.
Here

(o) =) (u— O, 0 — Voo - M)y + (Vi - 0 — VQuit - 1, 69 — 0o
TeTy

+ Z((U — Qpu)B - M, 0 — 00)yr1-

TeTy

(5.3)
(5.4)

(5.5)

Proof. First, from (5.2) and (3.6) we may readily derive (5.4). Next, by using (3.4) for b(-, -) and choosing w = Quu in

(2.3) and (2.5), we have

b(Qhu5 O) = Z(Qhuv _ﬂ - Vo — AU}G)T
TeTy

= Z(thh —B - Voo — Aocg)r — (Quup - M, 0 — 00)s7
TeTy
+ (VQuu - n, op — 00)sr + (QnUt, Voo - M — op)s1
= Z(Ua —B - Voo — Aop)r — (Quuf - n, 0y — 00)s1
TeTy
+ (VQuu - m, oy — 0p)ar + (Qnit, Voo - 1 — o) ar.
6

(5.6)



W. Cao, C. Wang and J. Wang Journal of Computational and Applied Mathematics 419 (2023) 114698

Now applying the usual integration by parts to the integrals on T yields

b(Qnu, o)
=Y (—Au+ V- (Bu), oo)r + {(u— Quu)B - M, 0 — 00)s1
TeTy
+ (V(Qnu —u) - n, 0p — 0g)ar + ((Qntt — u), (Voo - M — on))ar — (g, On)ag
= (f,00)r — (g, on)ae (5.7)
+ ) (V(Quu—u)- 1, 05 — oo)yr + ((Qutt — u), (Voo - 1 — 01
TeTy
+ Y {(u— Qu)B - m, 0y — o0)ar,
TeTh

where we have used (1.1) and o, = 0 on 02. From A = 0, we have s(QuA, o) = 0. Subtracting (3.5) from (5.7) yields the
error Eq. (5.3). This completes the proof of the lemma. O

Eqgs. (5.3)-(5.4) are called error equations for the primal-dual WG finite element scheme (3.5)-(3.6).
6. L-Error estimate for the primal variable uj

Recall that 7, is a shape-regular finite element partition of the domain £2. For any T € 7, and Vw € L9(T) with g > 1,
the following trace inequality holds true:

||w||gq(aj') = Ch;1(||w||2q(r) + h?llvwllzqm)- (6.1)

For simplicity, denote by V} the kth order partial derivative operator taken on each element T € 7.

Theorem 6.1. Let g > 1and k > 1. Let u and (up; Ap) € My X W,? be the exact solution of the second order elliptic model
problem (1.1) and the numerical solution arising from PDWG scheme (3.5)-(3.6). The following error estimate holds true:
SChns ) < Ch™|VEull g o) + Coa I ViUl fy g, (6.2)

where §; j is the Kronecker delta.

Proof. Recall that €, = —Ap,. By letting 0 = —A;, in (5.3), we have from (5.4) and (5.5) that

SO An) = Y (U= Qptt, VAg - = An)yr + (Vu -0 — VOuu -1, Ap — Aodar
TeTy

(6.3)
+ ) {(u— Quu)B -1, ko — Aot
TeTy
For the first term on the right-hand side of (6.3), we use the Cauchy-Schwarz inequality to obtain
‘ Z(Qhu — U, An— Vig- ﬂ)ar’
TeTy
1 1 (6.4)
q p
S(Z llu— Qhu”ilq(ar)) (Z IAn — Vg - n”ip(ar)) .
TeTh TeTh
For the term ||ju — Qhu||fq(m, we have from the trace inequality (6.1) that
> = Quullfaary < D h;l(nu — Qntllfyy + M V(u — Qhu)u;’qm)
TeTh TeTh (6.5)
<CH" || Viullfy )
Substituting (6.5) into (6.4) gives
} Z(Qhu — U, An—Vig- ﬂ)ar’
TeTy
1
<CHIV ulhagay (D2 By Pl = Vo - mllr) ) (66)
TeTh
<G Y i llen = Veo - gy + G ViUl fy o)
TeTh



W. Cao, C. Wang and J. Wang Journal of Computational and Applied Mathematics 419 (2023) 114698

As to the second term on the right-hand side in (6.3), using the Cauchy-Schwarz inequality we have

}(Vghu ‘m—Vu-n, A — Ao)or|

1 1
=(D2 v n = Vo nifyr ) (D2 s = 2ol

TeTy TeTy

(6.7)

For the term |Vu-n— VQuu - n||zq(3T)' we have from the trace inequality (6.1) that

> IVu-n—Vouu-n|fy,
TeTy

<> h;l(nw — Vol + hHIV(Vu — VQhu)nfq(T)) (6.8)
TeTy
<Ch DNVl fg o) + Cah® [ Vi ullfy )
Substituting (6.8) into (6.7) gives
‘ Z(VQhU ‘n—Vu-n, A, — ko)ar’

TeTy
1

<C (R VFullaa) + 8 1h? | Viullace) (Z hy 2P llap — Ao||ﬁ(ar)) ! (6.9)
TeTh

1-2
<C3 > by ?llrb — Aollfpgary + Ca (h"knvgunﬁq(m + ak,]thuvﬁunﬁq(m) :
TeTy
The third term can be analogously estimated by

} Z((U —Quu)B-m, Ao — )»b)ar}

T (6.10)

1-2 K k
<G > hy Pllab — Aollfpgar + Ch™ I ViUl o)
TeTh

Substituting (6.6), (6.9), and (6.10) into (6.3) gives
(1—C1 — C3 = Gs)s(hn, An) < ChT | Viullfy o) + Corah® | Vil o),
which leads to
SChas ) < CR¥VEully o) + Coit P9I Vil g
by choosing C; such that 1 — C; — C3 — C5 > Cy > 0. This completes the proof of the theorem. O
Consider the auxiliary problem that seeks ¢ such that

~Ap—B-Vo=y. ing

6.11
¢ =0, onas2, ( )

where ¥ € [P(£2) is a given function. The problem (6.11) is said to have the W>P-regularity if there exists a constant C
independent of ¢ satisfying

@ll2,p < CllYrllo,p- (6.12)
The following is the main error estimate for the approximation up,.

Theorem 6.2. Let u be the strong solution of the second order elliptic problem (1.1) and (up; Ay) € My x W}? be its numerical
solution arising from the PDWG scheme (3.5)-(3.6). Assume that V,’fu e LYN),f € W29(), and the W>P-regularity
estimate (6.12) holds true for the auxiliary problem (6.11). Then the following Li-error estimate holds true:

K ( 1ok i
lu — uplliaey < Ch (IIV;,‘UIILQ(Q) + 8kl M IVRullage) 4+ If lk-2.q + ||g||/<7%,q,arz) .

Proof. For the solution ¢ of (6.11), by choosing 0 = Q¢ € W,? in (3.5) we obtain
S(hn, Quo) + (Up, =B - VuQuop — A, Qug) = (f, Qo) — (g, Qu(V - M) sz
From (4.1) and (4.2) we have
S(hn, Qu) + (tn, —Qn(B - Vo + AP)) = (f, Q) — (&, Q(V - M)y,

8
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or equivalently,
S(hn, Qu) + (un, ¥) = (f, Qo) — (g, Qu(V - M)
On the other hand, there holds, from (6.11) and the integration by parts, that
(u’ W) = (u’ _A(p - ﬂ : v¢) = _(v : (VU - ﬂu)’ d)) - <u7 V¢ : n)a.@
(f7 ¢) - (g7 v¢ : n)B.Q-
It follows from the last two inequalities that
(u—up, ¥)=50p, W)+ (f — Qf, ¢) — (g — Qug, VP - e, (6.13)

We next estimate the three terms appeared in the right hand side of the above equation. Using the approximation
property of Qg and the Cauchy-Schwarz inequality yields

|(f — Qof» @)l = |(f — Qaf, & — Qo)| < CH*[If 2.4 lIB1l2p-
Similarly, there holds
(g — Qug, Vo Mgl < Cllg — Qugllupa) Ve — Q@ Velrae)
< CHlgll-1 oo 912

Here in the last step, we have used (6.1) and the trace inequality.
To deal with the term s(Ay, Qn¢), from (3.3) we have

SO Qup) = Dy 7 / ho = Aol "sgn(ho — 1) Qo — Qup)ds
oT

TeTh

+ ) bt f Vi 1= 2P 15gn(Vio - 1 — 2)(VQogh - 1 — Qu)ds (6.14)

TeTy a7
=1+ 1.
For the term Iy, we use the Cauchy-Schwarz inequality and the trace inequality (6.1) to obtain
1 1
= Y m( / 2o = slPds)” / Qo — QpYds)’
aT T

TeTy
1

=C Z hy PP (/ar hy a0 — )»blpds) !

TeTy

_l (6.15)
(11006 = @)+ 11V (o0 — D)

1
p

1 = N 1
< GG a) Y e ? (WP IVl )
TeTh

1
< Cs(hn, )7 IV llip(e2)-
Similarly, for I, we again use the Cauchy-Schwarz inequality and the trace inequality (6.1) to obtain
1 1
L<y h;“’(f (Vio-n = 2 ds)° (/ (Vg -1 — QupYds)”
TeT aT T (6.16)
1
< CsChny A0 1V llip(e)-
Substituting (6.15) and (6.16) into (6.14) and using (6.2) and (6.12) yields
1
s, Q)| <Csn, 2)T 192l
<C (MM VEullae) + 8k 1R I VEullse) 1V ).
Combining the three estimates for the terms on the right hand side of (6.13), we easily get
[ = un, )| = O (I Vhulhaca) + Bal® 1 VEulocay + I -2 + 1811 .00 ) 1V e
Consequently,
llu — uplae) < Ch¥ (IIV;’fulqu(g) + 8l I VEullage) + If lk-2.q + ||g||k7%,q,arz) .

This completes the proof of the theorem. O
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7. Error estimates for the dual variable
In this section we shall establish some error estimates for the dual variable A4 in W and IP. To this end, let ¢ be the
solution of the following auxiliary problem
—Ap+B-Vo=0, in$2,
$+pVe (7.1)
¢ =0, onoas,

where 6 is a given function in LI(£2). Assume the dual problem (7.1) has the W29-regularity in the sense that there exists
a constant C such that
lellz,g < Cll6llo,q- (7.2)
From (2.3) and the usual integration by parts we have
(Awv, @) = (Ayv, Qnp)
= (Avo, Qu)r + (vo — vy, V(Qug) - M7 + (vp — Vg - 1, Q) ot

TeTy
= Z(Avo, @)1 + (vo — vp, V(Qne) - Myr + (vp — Vg - N, Qre)yr
TeTy
= Z(Uo, A@)r + (vo — vp, V(Qrep — @) - M)yr + (Vg — Vg - N, Qpe — @)sr
TeTy
so that
(v0, A¢) = (B0, 9)+ Y {9 — Qng, v — Vg - My
T<7h (7.3)
+ Z (vo — v, V(¢ — Qne) - M)yr.

TeTh
Analogously, from (2.5) we have (note that s = k — 1 so that Vg € [P(T)]9)
(vo, B+ Vo)r = —(Vvo, Be)r + (vo, 9B - M)t
= —(Vvo, BOn@)r + (vo, 9B - M)ar (7.4)
= —(B - Vuv, @)r + (b — vo, QupB - M)ar + (vo, ¥ B - M)sr.
Summing (7.4) over all T € Ty, yields
(vo, B Vo) =— (B Vuv, 9} + Y _ (vo — vy, (I — Q)p - M)y (75)
TeTy
We have the following error estimates for the variable Ag.

Theorem 7.1. Let u and (up; Ay) € My % W,? be the solutions of (1.1) and (3.5)-(3.6), respectively. Assume that the dual
problem (7.1) has the W29(£2) regularity with the a priori estimate (7.2). Then the following estimate holds true:

ChI|| V| P + ch2- 1 V2u P k=1, 76

Cha= k2 yky  47P, k> 1.

IAollop <

Proof. For any given function 6 € L9(£2), let ¢ be the solution of (7.1). From (7.3) and (7.5) we have
(0, 20) = (Ao, —Ap + B - Vo)
= (_Aw)\h - ﬂvquh» </))
+ Z(Qﬂ — On@, VAo - — Ap)ar + Z(kb — 20, V(¢ — Qnep) - M)y

TeTy TeTy

+ Z()Lo — Xp, (I = Qp)pB - m)yr
TeTy
=hL+hL+55+I1,
We next estimate [;, 1 <i < 4, respectively. In light of (3.6), we have
il = [(Awhn + B+ Vwin, ¢)|
[((Awhn+ B Vyhn, ¢ — Qnp)l
0.

10
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As to I, we have from the Cauchy-Schwarz inequality and the trace inequality (6.1),

L] = Z(‘P — Qhp, VAo - M — Ap)or
TeTy

D ohTPIVAe =l | D hrlle — Quell]

TeTh TeTh
1

S(An, An)? (lo — Qrello.g + hlIV(e — Que)llo,q)

1
< B SGu, AP 1@ llmt1.q-

Following the same argument, there holds

1 1
3] < W™ 5Oy An)P @llmetgs (lal S A28, 20)? @l ma1.q-

Here m = 1 for k > 1 and m = 0 for k = 1. It is so because there holds P1(T) C My(T) for k > 1 and My(T) consists of
only piecewise constants for k = 1.
By combining all the estimates for I;, i < 4 and the estimate (6.2) in Theorem 6.1 we arrive at

IA

A

(o, )1 < B (RO Tkl + 51 h V[ T2uE) Nl (7.7)

The estimate (7.6) then follows from the W29(£2)-regularity (7.2) with m = 0 and m = 1, respectively. This completes
the proof. O

Theorem 7.2. Let u and (up; Ay) € My % W° be the solutions of (1.1) and (3.5)-(3.6), respectively. Assume that the dual
problem (7.1) has the W9(£2)-regularity with the a priori estimate (7.2). Then we have

IV 20llop < CHYT 1 VEulgy + Co kI Viully - (7.8)
Proof. For simplicity, consider the case of k > 1. For any given function n € [C'(£2)]? with n = 0 on &, let ¢ be the
solution of the dual problem (7.1) with 8 = —V - 5. It is easy to see that

(Vio, n) = —(Xo, V- ) = (Ao, 0).
In light of (7.7), we get

(Vao, mI < DTV ulE Pl g < ROV VU8R Imllo.q
with ¢ being the solution of (7.1). As the set of all such 7 is dense in LI(§2), we then obtain

1V2ollop < B VY.

This completes the proof. O
8. Numerical results

Our numerical experiments are based on the PDWG algorithm (3.5)-(3.6) with k = 1, 2 for the finite element spaces
W), and M, defined in (3.1)-(3.2). The system of nonlinear Eqgs. (3.5)-(3.6) is solved by using an iterative scheme similar
to that for the L' minimization problem in [17]. Specifically, given an approximation (upt, A7) at step m, the scheme shall
compute a new approximate solution (uj"*', A7*1) € My x W such that

()“m+l U)+b( m+1s ) = (fa 00)_ (gﬂ 0")3.97 Vo € Whv
b(v, A1) = 0, Yv € My,
where

S(arto) = Y Y / (125 = A1+ €P 205" = A7 Dloo — op)ds
TeTh

+ 2 b p/ (IVAG - = A + P 2(Vag™t! - m — A 1)(Voo - n — oy)ds.
TeTy

Here € is a small, but positive constant. All the numerical results are obtained with ¢ = 103 if not otherwise stated.
Various approximation errors are computed for u;, and A, including the L9 error for ej, := u — uy,, and the WP, WP, and

11
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Table 8.1
Numerical error and rate of convergence for the [P-PDWG method with k = 2, s = k — 1 for Example 1.
h 12o0ll2,p rate 120111, rate 12o0ll0,p rate llenllo.q rate
3.54e—01 2.05e—03 - 2.58e—04 - 1.50e—04 - 1.48e—02 -
1.77e—01 9.95e—04 1.04 4.89e—05 2.40 3.60e—05 2.06 3.92e—03 1.92
p=1 8.84e—02 4.92e—04 1.02 1.05e—05 2.22 8.85e—06 2.02 1.00e—03 1.97
4.42e—02 2.45e—04 1.06 2.42e—06 2.11 2.19e—06 2.01 2.53e—04 1.98
2.21e—02 1.22e—04 1.00 5.81e—07 2.06 5.46e—07 2.01 6.37e—05 1.99
3.54e—01 1.05e—02 - 1.82e—03 - 4.75e—04 - 4.01e—03 -
1.77e—01 2.54e—03 2.05 1.79e—04 3.35 2.95e—05 4.01 9.96e—04 2.01
p=2 8.84e—02 6.26e—04 2.02 1.96e—05 3.18 1.84e—06 4.00 2.48e—04 2.00
4.42e—02 1.55e—04 2.01 2.30e—06 3.09 1.15e—07 4.00 6.20e—05 2.00
2.21e—02 3.87e—05 2.00 2.79e—07 3.05 7.20e—09 4.00 1.55e—05 2.00
3.54e—01 7.36e—02 - 1.12e—02 - 1.35e—03 - 3.22e—03 -
1.77e—01 9.05e—03 3.02 5.52e—04 434 2.65e—05 5.67 7.60e—04 2.08
p=3 8.84e—02 1.03e—03 3.14 2.76e—05 432 5.77e—07 5.52 1.77e—04 2.11
4.42e—02 1.12e—04 3.19 1.39e—06 431 1.42e—08 5.35 4.04e—05 2.13
2.21e—02 1.21e—05 3.22 7.46e—08 422 3.85e—10 5.12 9.35e—06 2.11
3.54e—01 4.27e—01 - 6.56e—02 - 3.00e—03 - 2.96e—03 -
1.77e—01 2.73e—02 3.97 1.50e—03 5.45 4.83e—05 5.96 6.05e—04 2.29
p=4 8.84e—02 1.20e—03 451 3.65e—05 5.36 7.17e—07 6.07 1.37e—04 2.14
4.42e—02 6.39e—05 423 1.23e—06 4.90 1.17e—08 5.94 3.36e—05 2.03
2.21e—02 3.83e—06 4.06 4.04e—08 493 1.86e—10 5.97 8.37e—06 2.00
3.54e—01 2.73e—02 - 4.79e—02 - 5.48e—03 - 3.91e—03 -
p=>5 1.77e—01 6.50e—02 —1.25 4.14e—03 3.53 1.51e—04 5.19 5.41e—04 2.85
8.84-02 1.84e—03. 5.14 8.16e—05 5.66 1.56e—06 6.60 1.31e—04 2.04
4.42e—02 5.75e—05 5.00 1.32e—06 5.94 1.25e—08 6.97 3.28e—05 2.00
Table 8.2
Numerical error and rate of convergence for the [P-PDWG method with k = 2,s = k — 2 for Example 1.
h I2oll2,p rate l2oll1p rate 1%ollo,p rate llenllo.q rate
3.54e—01. 4.27e—02 - 1.23e—01 - 3.23e—03 - 1.02e—01 -
1.77e—01 4.16e—02 0.04 1.33e—01 —0.11 2.08e—03 0.64 5.46e—02 0.90
p=1 8.84e—02 4.02e—02 0.05 1.40e—01 —0.06 1.60e—03 0.38 2.82e—02 0.95
4.42e—02 3.90e—02 0.04 1.43e—01 —0.04 1.44e—03 0.14 1.45e—02 0.96
2.21e—02 3.85e—02 0.02 1.45e—01 —0.02 1.40e—03 0.04 7.36e—03 0.97
3.54e—01 8.54e—02 - 2.75e—01 - 1.32e—02 - 1.04e—01 -
1.77e—01 3.70e—02 1.21 7.81e—02 1.82 2.37e—03 2.47 5.44e—02 0.93
p=2 8.84e—02 1.60e—02 1.21 2.08e—02 1.91 4.95e—04 2.26 2.78e—02 0.97
4.42e—02 7.12e—03 1.17 5.37e—03 1.95 1.16e—04 2.09 1.41e—02 0.98
2.21e—02 3.28e—03 1.12 1.36e—03 1.98 2.88e—05 2.01 7.07e—03 0.99
3.54e—-01 3.12e—01 - 5.23e—01 - 3.21e—02 - 1.00e—01 -
1.77e—01 1.38e—01 1.18 6.50e—02 3.01 2.50e—03 3.68 5.31e—02 0.92
p=3 8.84e—02 2.89e—02 2.26 4.56e—03 3.83 1.36e—04 4.20 2.71e—02 0.97
4.42e—02 5.42e—03 2.42 3.225e—04 3.82 1.70e—05 3.01 1.35e—02 1.01
2.21e—02 1.01e—03 2.43 2.47e—05 371 2.29e—06 2.89 6.66e—03 1.02

(continued on next page)

LP errors for Ap. The finite element partition 7, is obtained through a successive refinement of a coarse triangulation of
the domain, by dividing each coarse element into four congruent sub-elements by connecting the midpoints of the three
edges of the triangle. The right-hand side function, the boundary condition is calculated from the exact solution.

Example 1. The domain in the model problem (1.1) is given by £2 = (0, 1)%. Vanishing convection 8 = 0 is considered
in this test problem. The functions f and g are chosen so that the exact solution is given by u = sin(x) sin(y).

Tables 8.1-8.3 illustrate the approximation error and the rate of convergence for the primal variable u; and the dual
variable Ao withk = 1,2andp =1, ..., 5. Forp > 1, one observes a convergence rate of O(h**!) for the error ||e; llo,q with
s = k—1, k—2, which is consistent with the theory shown in Theorem 6.2. For p = 1 and k = 2, one observes a convergence
rate of O(h**1) for the error ||ey|lo..o - an optimal order of convergence in the maximum norm. For the dual variable
approximation Ao, the tables suggest the following rates of convergence: O(h?) for || Ao |l2,p, O(hP* 1) for || Aol 1,p»and O(hP*2)
for [|Aollop With k = 2, s = k — 1. For the case of s = 0 with k = 1, 2, one observes a convergence of O(hP~1) for [1Aoll2,p
and O(hP) for ||Ag|lm,p, m = 0, 1. In other words, this numerical experiment suggests || Ag|lmp = O(hP*>~™), m < 2, when
the approximating space W;(T) contains linear functions on each element. The convergence is reduced to ©O(hP+1-max(1.m))
if only piecewise constant functions are seen in Wj(T). We emphasize that the numerical dual variable Aq outperforms

12
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Table 8.2 (continued).

h I2oll2,p rate I2oll1.p rate [1%ollo.p rate llenllo.q rate
3.54e—01 2.36e—01 - 1.49e—01 - 2.33e—02 - 1.12e—01 -
1.77e—01 3.08e—01 —3.84 6.84e—02 1.12 3.75e—03 2.63 5.02e—02 1.16
p=4 8.84e—02 1.80e—02 4.10 2.06e—03 5.05 2.52e—04 3.90 2.48e—02 1.02
4.412e—02 7.86e—04 451 7.88e—05 471 1.47e—05 4.10 1.28e—02 0.96
2.21e—02 5.87e—05 3.74 4.13e—06 425 9.02e—07 4.03 6.46e—03 0.98
3.54e—01 5.21e—03 - 1.23e—02 - 3.61e—03 - 4.38e—01 -
1.77e—01 2.57e—01 —5.62 5.13e—02 —2.06 2.80e—03 0.37 5.10e—02 3.10
p=5 8.84e—02 1.32e—02 428 2.16e—03 457 4.07e—04 2.78 2.38e—02 1.10
4.42e—02 6.97e—04 424 6.62e—05 5.03 1.41e—05 4.85 1.23e—02 0.95
2.21e—02 3.87e—05 4.17 2.02e—06 5.03 4.41e—07 5.00 6.24e—03 0.98
Table 8.3
Numerical error and rate of convergence for the [P-PDWG method with k = 1,s = k — 1 for Example 1.
h I2oll1p rate I%ollo.p rate llenllo.q rate
3.54e—01 1.19e—01 - 3.11e—03 - 1.12e—01 -
1.77e—01 1.31e—01 0.14 1.77e—03 0.81 6.08e—02 0.89
p=1 8.84e—02 1.39e—01 —0.08 1.03e—03 0.78 3.60e—02 0.76
4.42e—02 1.43e—01 —0.04 8.77e—04 0.23 2.22e—02 0.70
2.21e—02 1.45e—01 —0.02 1.00e—03 —0.20 1.34e—02 0.72
3.54e—01 2.50e—01 - 1.14e—02 - 3.45e—02
1.77e—01 7.44e—02 1.75 2.07e—03 2.46 1.75e—02 0.98
p=2 8.84e—02 2.04e—02 1.87 4.83e—04 2.10 8.46e—03 1.05
4.42e—02 5.32e—03 1.94 1.22e—04 1.98 4,08e—03 1.05
2.21e—02 1.36e—03 1.97 3.10e—05 1.98 2.01e—03 1.03
3.54e—01 4.68e—01 - 2.89e—02 - 3.19e—02 -
1.77e—01 5.87e—02 2.99 2.57e—03 3.49 1.54e—02 1.06
p=3 8.84e—02 4.18e—03 3.81 1.14e—04 450 7.48e—03 1.04
4.42e—02 2.81e—04 3.90 8.05e—06 3.82 3.73e—03 1.00
2.21e—02 1.96e—05 3.84 1.27e—06 2.66 1.86e—03 1.00
3.54-01 1.41e—01 - 1.67e—02 - 3.38e—02 -
1.77e—01 5.22e—02 1.44 2.96e—03 2.50 1.56e—02 1.12
p=4 8.84e—02 1.54e—03 5.08 1.90e—04 3.96 7.52e—03 1.05
4.42e—02 6.88e—05 4.48 1.37e—05 3.79 3.75e—03 1.00
2.21e—02 3.99e—06 4.11 8.87e—07 3.95 1.88e—03 1.00
3.54e—01 2.62e—02 - 4.16e—03 - 6.20e—02 -
1.77e—01 4.03e—02 —0.62 3.01e—03 0.47 1.70e—02 1.87
p=>5 8.84e—02 1.88e—03 4.42 3.91e—04 2.94 7.76e—03 1.13
4.42e—02 6.35e—05 4.89 1.40e—05 4.80 3.86e—03 1.01
2.21e—02 1.98e—06 5.00 4.40e—07 4,99 1.93e—03 1.00

the theory predicted in Theorems 7.1-7.2 with rates depending on p. This p-dependence of the convergence remains
mysterious to the authors.

Example 2. The domain in this test case is given by £ = (0, 1)%. The convection term has the following form
B = (—y,x). The functions f and g are chosen such that the exact solution to the elliptic problem is given by u =
1 sin(x +y) + cos(x — y) + 3.

Tables 8.4-8.5 show the approximation error and rates of convergence for the primal variable u; and the dual variable
M withk=1,2andp =1, ..., 5. As the model problem contains a non-trivial convection term, the space Wj, is taken as
(3.2) with s = k — 1. From Tables 8.4-8.5 we observe the same convergence phenomenon as that for the purely diffusive
equation in Example 1. More precisely, it is observed that the error |es|lo 4 converges to zero at the rate of O(h*+1) for
p > 1, which is consistent with the theory developed in Theorem 6.2. For A, it appears that the convergence is dependent
upon the value of p: O(hP+2~™) for k = 2 and O(hP+2~m(1m) for k = 1 in the metric || Ao |lmp, m < 2. In other words, the
construction of the finite element space M, has effect on the convergence of the dual variable Aq. Like in Example 1, the
numerical convergence for the dual variable A is faster than the theory predicted in Theorems 7.1-7.2 with non-trivial
convection terms in the model equation.

Tables 8.4-8.5 also show the approximation error and convergence rates for the L'-PDWG method, i.e., p = 1. For the
case of k = 2 and s = 1, we see an optimal order of convergence in the maximum norm for the primal variable. Like
Example 1, the convergence for the dual variable ), varies with respect to the choice of My. For s = 1, Table 8.4 shows a
convergence rate of O(hPT2~ma(1.m) for the error Ao llm,p With m < 2. For s = 0, no convergence is seen from Table 8.5
for [[Agllmp, m < 1.

13



W. Cao, C. Wang and J. Wang Journal of Computational and Applied Mathematics 419 (2023) 114698

Table 8.4
Numerical error and rate of convergence for the [P-PDWG method with k = 2, s = k — 1 for Example 2.

h I2oll2.p rate Aol rate I2ollo.p rate llenllo.q rate

3.54e—01 4.87e—03 - 8.18e—04 - 8.78e—04 - 2.47e—02 -
1.77e-01 2.45e—03 0.99 2.18e—04 191 2.17e—04 2.01 6.16e—03 2.00
p=1 8.84e—02 1.23e—03 1.00 5.58e—05 1.96 5.40e—05 2.01 1.58e—03 1.96
4.42e—02 6.14e—04 1.00 1.41e—05 1.98 1.35e—05 2.00 3.98e—04 1.99
2.21e—02 3.07e—04 1.00 3.54e—06 1.99 3.36e—06 2.00 1.00e—04 1.99

3.54e—-01 2.20e—02 - 2.26e—03 - 2.17e—-03 - 5.73e—-03 -
1.77e—01 5.46e—03 2.01 2.37e—04 3.26 1.36e—04 4.00 1.41e—03 2.02
p=2 8.84e—02 1.36e—03 2.00 2.74e—05 3.11 8.49e—06 4.00 3.52e—-04 2.01
4.42e—02 3.41e—04 2.00 3.33e—06 3.04 5.30e—07 4.00 8.80e—05 2.00
2.21e—02 8.51e—05 2.00 4.11e—07 3.02 3.31e—08 4.00 2.20e—05 2.00

3.54e—-01 1.33e—01 . 1.40e—02 - 5.21e-03 - 4.70e—03 .
1.77e—01 1.80e—02 2.89 8.77e—04 3.99 9.80e—05 573 1.16e—03 2.02
p=3 8.84e—02 2.17e—03 3.05 5.22e—05 4.07 1.97e—06 5.64 2.87e—04 2.01
4.42e—02 2.59e—04 3.07 3.14e—-06 4.06 4.41e—08 5.48 7.14e—05 2.01
2.21e—-02 3.09e—-05 3.07 1.92e—-07 4.04 1.11e—-09 5.32 1.79e—05 1.99

3.54e—01 3.46e—01 - 4.97e—02 - 9.70e—03 - 4.43e—03 -
1.77e-01 5.86e—02 2.56 3.23e-03 3.94 1.45e—04 6.06 1.11e—-03 2.00
p=4 8.84e—02 3.37e—-03 4.12 9.82e—05 5.04 1.91e—-06 6.25 2.83e—04 1.97
4.42e—02 2.03e—04 4.06 3.06e—06 5.00 2.85e—08 6.07 7.15e—05 1.99
2.21e—-02 1.25e—-05 4.01 9.61e—08 4.99 4.41e—-10 6.01 1.79e—-05 2.00

3.54e—-01 5.46e—01 - 9.69e—02 - 1.38e—02 - 4.83e—03 -
p=>5 1.77e—01 1.68e—01 1.70 1.03e—02 3.23 3.67e—04 5.24 1.13e—03 2.10

8.84e—02 6.03e—03 4.80 1.97e—-04 571 3.70e—06 6.63 2.84e—04 1.99

4.42e—02 1.89e—-04 5.00 3.10e—06 5.99 2.91e—-08 6.99 7.08e—05 2.00

Table 8.5
Numerical error and rate of convergence for the [P-PDWG method with k = 1,s = k — 1 for Example 2.
h I2oll1,p rate I2ollo.p rate llenllo,q rate
3.54e—01 7.72e—02 - 1.04e—02 - 2.10e—01 -
1.77e—01 8.44e—02 —0.13 9.49e—03 0.14 1.22e—01 0.78
p=1 8.84e—02 8.90e—02 —0.08 9.27e—03 0.03 7.14e—02 0.78
4.42e—02 9.16e—02 —0.04 9.31e—03 —0.00 4.49e—02 0.67
2.21e—02 9.29e—02 —0.02 9.42e—03 —0.01 2.80e—02 0.68
3.54e—01 1.60e—01 - 3.09e—02 - 4.96e—02
1.77e—01 4.76e—02 1.75 7.83e—03 1.98 2.47e—02 1.00
p=2 8.84e—02 1.31e—02 1.86 2.02e—03 1.96 1.19e—02 1.06
4.42e—02 3.47e—03 1.92 5.14e—04 197 5.64e—03 1.07
2.21e—-02 8.90e—04 1.96 1.30e—04 1.99 2.74e—03 1.04
3.54e—01 3.16e—01 - 7.09e—02 - 4.43e—02
1.77e—01 4.17e—02 2.92 8.68e—03 3.03 2.07e—02 1.09
p=3 8.84e—02 3.45e—03 3.60 7.93e—04 3.45 9.88e—03 1.07
4.42e—02 3.04e—04 351 7.64e—05 3.38 4.86e—03 1.02
2.21e—02 3.12e—05 3.28 8.05e—06 3.25 2.42e—03 1.01
3.54e—01 9.35e—02 - 4.03e—02 - 5.01e—02 -
1.77e—01 4.59e—02 1.03 1.02e—02 1.99 2.10e—02 1.25
p=4 8.84e—02 3.84e—03 3.58 9.62e—04 3.40 9.70e—03 1.12
4.42e—02 2.39e—04 4.01 5.76e—05 4.06 4.73e—03 1.03
2.21e—02 1.49e—05 4.00 3.55e—06 4.02 2.35e—03 1.01
3.54e—01 6.61e—03 - 8.87e—03 - 2.51e—01 -
1.77e—01 2.82e—02 —2.09 451e—03 0.98 2.14e—02 3.55
p=>5 8.84e—02 7.21e—03 1.97 1.76e—03 1.36 9.70e—03 1.14
4.42e—02 2.51e—04 4.85 5.98e—05 4.88 4.70e—03 1.04
2.21e—02 7.85e—06 5.00 1.87e—06 5.00 2.34e—03 1.01

Example 3. Let £2 = (0, 1)’ and £2; = (0.25, 0.75)%, 2, = £2\£2;. Consider the following problem: Find an unknown
function u satisfying

=V - (aVu)+ pu=f, in 27U 2,,
u=g, onasf (8.1)
[ull; =0, [(«¢Vu—pBu)-nlly =y, onl =038;N0382s,
where n is the unit outward normal of I" with respect to £21, and [[u]l denotes the jump of u across the interface I". We

take f = 0, 8 = (0, 0) and a piecewise constant function « defined as a|p, = 5, a|p, = 1. The functions g and v are
chosen so that the exact solution to this problem is given by u = e* cos(y) + 10.
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Table 8.6

Numerical error and rate of convergence for the [P-PDWG method with k = 2, s = k — 1 for Example 3.
h lI2oll2.p rate I2oll1,p rate 1%0ll0,p rate llenllo,q rate
3.54e—01 1.19e—02 - 9.22e—04 - 8.57e—05 - 7.176e—02 -
1.77e—01 4.90e—03 1.29 1.66e—04 2.47 1.11e—05 2.96 1.85e—02 1.96

p=1 8.84e—02 2.25e—03 1.12 3.34e—05 2.31 1.40e—06 2.99 4.58e—03 2.01

4.42e—02 1.09e—03 1.04 7.57e—06 2.14 1.75e—07 2.99 1.18e—03 1.95
2.21e—02 5.41e—04 1.01 1.82e—06 2.06 2.20e—08 3.00 3.16e—04 191
3.54e—01 5.02e—02 - 7.14e—03 - 7.86e—04 - 1.21e—02 -
1.77e—01 9.29e—03 2.43 6.07e—04 3.55 4.77e—05 4.04 3.06e—03 1.98

p=2 8.84e—02 1.97e—03 224 5.62e—05 343 2.91e—-06 4.03 7.68e—04 2.00
4.42e—02 4.57e—04 2.11 5.90e—06 3.25 1.79e—07 4.02 1.92e—-04 2.00
2.21e—02 1.11e—04 2.04 6.79e—07 3.12 1.11e—08 4.01 4.80e—05 2.00

3.54e—01 6.98e—02 - 1.30e—-02 . 1.37e—-03 - 7.30e—03

1.77e—01 4.48e—03 3.96 4.41e—04 4.88 2.85e—05 5.59 1.66e—03 2.13
p=3 8.84e—02 3.59e—04 3.64 1.78e—05 4.63 5.95e—07 5.58 3.70e—04 2.17

4.42e—02 3.91e-05 3.20 8.42e—07 4.40 1.29e—08 5.53 7.99e—05 2.21

2.21e—-02 4.94e—06 2.98 4.63e—08 4.19 2.98e—10 543 1.75e—05 2.19

3.54e—01 9.83e—03 - 1.97e—03 - 1.94e—-04 - 5.61e—03 -
1.77e-01 3.93e—-04 4.64 3.17e-05 5.95 1.54e—06 6.98 1.11e-03 2.33
p=4 8.84e—02 2.34e—05 4.07 8.58e—07 5.21 1.69e—08 6.50 2.71e—04 2.04
4.42e—02 1.43e—06 4.03 2.81e—08 493 2.41e—10 6.14 6.76e—05 2.00
2.21e-02 8.86e—08 4.02 8.98e—10 4.97 3.67e—12 6.03 1.67e—05 2.02

3.54e—-01 6.28e—03 - 1.17e—03 - 8.38e—05 - 2.16e—02 -
p=>5 1.77e—01 1.70e—04 5.21 1.25e—05 6.54 4.63e—07 7.50 4.88e—03 2.15

8.84e—02 4.92e—06 5.11 2.05e—07 5.94 3.49e—-09 7.05 1.25e—03 1.96

4.42e—02 1.49e—-07 5.04 3.23e—-09 5.98 2.71e—11 7.01 3.19e—04 1.98

Based on the variational formulation, we numerically solve the above problem by slightly modifying our algorithm
(3.5)-(3.6) as follows: Find (un; Ay) € My, x W2, such that

S(Ap, o)+ b(up, o) = (f, 00) — (g, On)a + (¥, op) s Yo e W),

b(v, Ap) = 0, Yv € M,
where
s(r,0) = Z h%_zp/ [Ao — AplP'sgn(hg — Ap)(oo — o3 )ds
TeTh aT
1-p p—1
+ Z h; / Vg -n— AP 'sgn(@Vig - n— Ap)aVog - n — oy,)ds.
TeTy aT
b(u, 2) =) (U, =B Viyh — €Ay d)r.
TeTh

Tables 8.6-8.8 show the numerical performance for the primal variable u, and the dual variable %y for k = 1,2
and p = 1,...,5. It can be seen that, for both the linear (i.e., k = 1) and quadratic (i.e., k = 2) PDWG methods, the
convergence rate for the error ||ey||o q is of order ©(h**1). This numerical experiment suggests that the theoretical estimate
in Theorem 6.2 should hold true for elliptic problems with piecewise constant diffusions. Analogously to Example 1, the
error ||Agllmp, m = 0, 1, 2, for the dual variable converges to zero at the rate of O(hP*2~™)when k = 2,s = k — 1 and
p > 1. As shown in Tables 8.7-8.8, the rate of convergence varies in ways that depend on the value of p fork = 1,s = k—1
and k = 2,s = k — 2. Note that no convergence was seen from Tables 8.7-8.8 for the dual variable X, for the case of
p=1s=0.

Example 4. In this test, we consider the model problem (8.1) in the domain £2 = (0, 1)*> = £, U £2,, where £2; is the
circular domain centered at (0.5, 0.5) with radius 0.25 and £2, = £2\£2,. The diffusive and convective terms are given by

a'Q = 17 ﬂ'.Q] = (O’ l)! ﬂ'ﬂz = (150)
The functions f, g and v are chosen so that the exact solution to this problem is u = ey,

The same algorithm as that for Example 3 was employed for solving this problem. Tables 8.9-8.10 show the
performance of the [’-PDWG for u, and A, for k = 1,2 and p = 1, ..., 4. It can be seen that the convergence for the
error |lexllo,q is of order o(h*+1) for k = 1,2 and p > 1, which suggests that the results of Theorem 6.2 may hold true for
elliptic problems with piecewise constant or smooth convection. For ||A¢||m p, Tables 8.9-8.10 demonstrate a convergence
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Table 8.7
Numerical error and rate of convergence for the [P-PDWG method with k = 2, s = k — 2 for Example 3.
h 120ll2,p rate 12011, rate I2ollo,p rate llenllo,q rate
3.54e—01 8.36e—00 - 3.79e—00 - 3.85e—01 - 6.45e—01 -
p=1 1.77e—01 1.20e—00 2.79 9.03e—01 2.07 8.98e—02 2.10 3.62e—01 0.83
8.84e—02 1.09e—00 0.15 8.55e—01 0.08 8.19e—02 0.13 3.12e—01 0.21
4.42e—02 1.09e—00 0.00 8.76e—01 —0.03 8.30e—02 —0.02 2.69e—01 0.22
3.54e—01 6.49e—01 - 5.77e—01 - 8.48e—02 - 1.39e—01 -
1.77e—01 2.19e—01 1.57 1.72e—01 1.75 2.34e—02 1.86 8.11e—02 0.77
p=2 8.84e—02 1.01e—01 1.11 5.10e—02 1.76 6.66e—03 1.82 4.59e—02 0.82
4.42e—02 4.56e—02 1.14 1.46e—02 1.81 1.86e—03 1.84 2.41e—02 0.93
2.21e—02 1.98e—02 1.20 3.96e—03 1.88 4.97e—04 1.91 1.21e—02 0.99
3.54e—01 1.03e4-00 - 8.11e—01 - 1.21e—01 - 1.21e—01 -
1.77e—01 4.74e—01 1.12 1.64e—01 2.30 2.35e—02 2.36 6.25e—02 0.96
p=3 8.84e—02 1.30e—01 1.87 1.37e—02 3.58 1.85e—03 3.67 2.93e—02 1.10
4.42e—02 2.63e—02 2.30 9.76e—04 3.82 1.22e—04 3.92 1.43e—02 1.04
2.21e—02 5.11e—03 2.37 6.87e—05 3.83 7.83e—06 3.97 7.07e—03 1.01
3.54e—01 2.90e—02 - 7.04e—02 - 7.84e—03 - 1.19e—01 -
1.77e—01 9.24e—01 —5.00 1.58e—01 —1.16 2.34e—02 —1.58 5.82e—02 1.03
p=4 8.84e—02 7.81e—02 3.60 4.66e—03 5.08 5.39e—04 5.44 2.74e—02 1.09
4.42e—02 3.95e—03 431 1.11e—04 5.39 1.32e—05 5.35 1.37e—02 1.00
2.21e—02 2.83e—04 3.80 3.59e—06 4.96 5.06e—07 471 6.84e—03 1.00
3.54e—01 1.66e—00 - 2.71e—01 - 3.93e—02 - 1.17e—01 -
p=>5 1.77e—01 5.55e—02 4.90 9.24e—03 4.88 1.15e—03 5.09 5.40e—02 1.20
8.84e—02 1.83e—03 493 8.84e—05 6.71 8.65e—06 7.06 2.69e—02 1.00
4.42e—02 8.89e—05 4.36 1.86e—06 5.58 1.50e—07 5.85 1.35e—02 1.00
Table 8.8
Numerical error and rate of convergence for the [P-PDWG method with k = 1,5 = k — 1 for Example 3.
h 12011, rate I2ollo,p rate llenllo,q rate
3.54e—-01 4.35e—01 - 4.89e—02 - 5.31e—01 -
1.77e—01 2.52e—01 0.79 2.66e—02 0.88 4.04e—01 0.39
p=1 8.84e—02 2.46e—01 0.03 2.43e—02 0.13 3.41e—01 0.25
4.42e—02 2.57e—01 —0.06 2.45e—02 —0.01 2.95e—01 0.21
2.21e—02 2.71e—01 —0.07 2.55e—02 —0.05 2.56e—01 0.20
3.54e—01 4.70e—01 - 7.58e—02 - 1.47e—01 -
1.77e—01 1.48e—01 1.67 2.13e—02 1.83 8.87e—02 0.73
p=2 8.84e—02 4.52e—02 1.71 6.04e—03 1.82 5.41e—02 0.71
4.42e—02 1.33e—02 1.77 1.71e—03 1.82 3.11e—-02 0.80
2.21e—02 3.74e—03 1.83 4.72e—04 1.86 1.67e—02 0.90
3.54e—01 6.49e—01 - 1.08e—01 - 1.26e—01 -
1.77e—01 1.40e—01 2.22 2.08e—02 2.38 6.55e—02 0.94
p=3 8.84e—02 1.22e—02 3.52 1.72e—03 3.60 3.10e—02 1.08
4.42e—02 8.73e—04 3.80 1.20e—04 3.84 1.48e—02 1.07
2.21e—02 5.78e—05 3.92 7.69e—06 3.96 7.17e—03 1.04
3.54-01 8.70e—02 - 1.27e—02 - 1.20e—01 -
1.77e—01 1.30e—01 —0.58 2.08e—02 —0.71 6.11e—02 0.98
p=4 8.84e—02 3.35e—03 5.28 4.82e—04 5.43 2.75e—02 1.15
4.42e—02 6.33e—05 5.73 9.16e—06 5.72 1.37e—02 1.01
2.21e—02 1.87e—06 5.08 3.38e—07 4.76 6.83e—03 1.00
3.54e—01 2.83e—01 - 4.90e—02 - 1.19e—01 -
1.77e—01 6.13e—03 553 9.44e—04 5.70 5.40e—02 1.15
p=>5 8.84e—02 3.75e—05 7.35 6.05e—06 7.29 2.69e—02 1.00
4.42e—02 7.05e—07 5.73 1.34e—07 5.49 1.35e—02 1.00
2.21e—-02 2.28e—08 495 4.35e—09 495 6.73e—03 1.00
Table 8.9
Numerical error and rate of convergence for the [P-PDWG method with k = 2,s = k — 1 for Example 4.
h I2oll2,p rate I2oll1,p rate I%ollo,p rate llenllo,q rate
3.54e—01 4.52e—02 - 5.87e—03 3.69e—03 2.34e—01 -

1.77e—01 1.62e—02 1.48 1.27e—03 221 8.91e—-04 2.05 8.70e—02 143
p=1 8.84e—02 6.81e—03 1.25 2.94e—04 2.11 2.21e—04 2.01 2.73e—02 1.67
4.42e—02 3.13e-03 1.12 7.05e—05 2.06 5.52e—05 2.00 7.88e—03 1.79
2.21e-02 1.51e—-03 1.06 1.72e—05 2.03 1.38e—05 2.00 2.13e—-03 1.89

(continued on next page)
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Table 8.9 (continued).

h I2o0ll2.p rate I%oll1.p rate 120 llo.p rate llenllo.q rate

3.54e—01 2.10e—01 - 3.29e—-02 - 1.24e—02 - 3.44e—02

1.77e—01 3.87e—02 2.44 2.86e—03 3.52 7.94e—04 3.97 8.92e—03 1.95
p=2 8.84e—02 7.90e—03 2.29 2.62e—04 3.45 4.99e—05 3.99 2.25e—03 1.99

4.42-02 1.75e—03 2.17 2.62e—05 3.32 3.12e—06 4.00 5.636e—04 2.00

2.21e—02 4.14e—04 2.08 2.88e—06 3.19 1.95e—07 4.00 1.41e—04 2.00

3.54e—01 4.75e—01 - 9.00e—02 . 2.47e—02 - 2.38e—02

1.77e—01 7.43e—02 2.68 7.34e—03 3.62 7.95e—04 4.96 5.18e—03 2.20
p=3 8.84e—02 6.28e—03 3.56 3.22e—04 451 1.54e—05 5.69 1.19e—03 2.12

4.42e—02 8.25e—04 293 1.64e—05 4.30 3.08e—07 5.65 2.76e—04 2.10

2.21e—02 4.48e—05 275 9.48e—07 4.11 6.75e—09 551 6.55e—05 2.08

3.54e—01 2.87e—01 - 6.20e—02 - 1.34e—02 - 1.97e—02
1.77e-01 1.21e-01 125 1.37e—-02 2.18 8.25e—04 4.02 4.53e—03 2.12

p=4 8.84e—02 1.91e—02 2.66 5.84e—04 4.55 1.18e—05 6.13 9.90e—04 2.19
4.42e—02 1.39e—03 3.78 1.97e—05 4.89 1.64e—07 6.17 2.41e—04 2.04
Table 8.10
Numerical error and rate of convergence for the [P-PDWG method with k = 1,5 = k — 1 for Example 4.
h I2oll1,p rate I2ollo.p rate llenllo.q rate
1.77e—01 1.07e—00 - 8.89e—02 - 1.09e—00 -
p=1 8.84e—02 8.14e—01 0.39 4.59e—02 0.95 7.15e—01 0.60
4.42e—02 8.01e—01 0.02 4.37e—02 0.07 5.42e—01 0.40
2.21e—02 8.21e—01 —0.03 4.50e—02 —0.04 4.52e—01 0.26
3.54e—01 1.16e—00 - 1.33e—01 - 3.01e—01
1.77e—01 3.46e—01 1.74 3.50e—02 193 1.57e—01 0.94
p=2 8.84e—02 1.09e—01 1.67 1.07e—02 1.80 7.68e—02 1.03
4.42e—02 3.23e—02 1.75 2.78e—03 1.85 3.54e—02 1.12
2.21e—02 8.87e—03 1.86 7.31e—04 193 1.61e—02 1.13
3.54e—-01 9.50e—01 - 1.14e—01 - 2.29e—01 -
1.77e—01 2.37e—01 2.00 2.91e—02 1.96 1.16e—01 0.98
p=3 8.84e—02 2.69e—02 3.14 3.59e—03 3.02 5.40e—02 1.10
4.42e—02 2.08e—03 3.69 3.33e—-04 343 2.60e—02 1.05
2.21e—02 1.61e—04 3.69 3.17e—05 3.40 1.29e—02 1.02
3.54e—01 7.06e—00 - 1.24e—00 - 5.98e—01 -
1.77e—01 1.67e—01 5.41 1.77e—02 6.13 1.35e—-01 2.14
p=4 8.84e—02 1.12e—02 3.90 2.44e—03 2.86 5.41e—02 1.32
4.42e—02 1.03e—03 3.44 1.99e—04 3.61 2.61e—02 1.05
2.21e—02 6.60e—05 3.96 1.21e—05 4.04 1.27e—02 1.04

of O(hP*2~™) when k = 2 and O(hP) when k = 1. It was observed the numerical convergence for the dual variable Ao
performs significantly better than the theory shown in Theorems 7.1-7.2. Tables 8.9-8.10 also show the convergence of
the numerical approximations for p = 1 and k = 1, 2. The convergence for the dual variable Ao varies according to the
choice of Mj. For s = 1, the convergence for [|Agl|m p is at the rate of O(hP+2-max(1.m)y ‘bt for s = 0, no convergence was
observed.

Data availability
No data was used for the research described in the article.
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