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This article introduces a new primal-dual weak Galerkin (PDWG) finite element method 
for second order elliptic interface problems with ultra-low regularity assumptions on the 
exact solution and the interface and boundary data. It is proved that the PDWG method is 
stable and accurate with optimal order of error estimates in discrete and Sobolev norms. 
In particular, the error estimates are derived under the low regularity assumption of u ∈
Hδ(�) for δ > 1

2 for the exact solution u. Extensive numerical experiments are conducted 
to provide numerical solutions that verify the efficiency and accuracy of the new PDWG 
method.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we are concerned with the development of a new primal-dual weak Galerkin (PDWG) finite element 
method for second order elliptic interface problems with low regularity assumptions on the exact solution and the interface 
and boundary data. To this end, let N and M be two positive integers and � ⊂ Rd(d = 2, 3) is an open bounded domain 
with piecewise smooth Lipschitz boundary ∂�. The domain � is partitioned into a set of subdomains {�i}N

i=1 with piecewise 
smooth Lipschitz boundary ∂�i for i = 1, · · · , N; � = ⋃N

i=1 ∂�i \ ∂� is the interface between the subdomains in the sense 
that

� =
M⋃

m=1

�m,

where there exist i, j ∈ {1, · · · , N} such that �m = ∂�i ∩ ∂� j for m = 1, · · · , M . The elliptic interface problem seeks an 
unknown function u satisfying
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−∇ · (ai(x)∇ui) + ∇ · (bi(x)ui) + ciui = f i, in �i, i = 1, · · · , N, (1.1)

ui =gi, on ∂�i ∩ ∂�, i = 1, · · · , N, (1.2)

�u��m =φm, on �m,m = 1, · · · , M, (1.3)

�(a∇u − bu) · n��m =ψm, on �m,m = 1, · · · , M, (1.4)

where ui = u|�i , ai = a|�i , bi = b|�i , ci = c|�i , and �(a∇u − bu) · n��m = (ai∇ui − biui) · ni + (a j∇u j − b ju j) · n j with 
ni and n j being the unit outward normal directions to ∂�i ∩ �m and ∂� j ∩ �m , and �u��m = ui |�m − u j |�m . Assume the 
elliptic coefficients a, b and c are piecewise smooth with respect to the partition � = ∪N

i=1�i . We further assume that a(x)
is symmetric and positive definite matrices uniformly in �.

Elliptic interface problems arise in many applications of mathematical modeling and simulation of practical problems 
in science and engineering. These applications include computational electromagnetic [18,23,54,53], fluid mechanics [30], 
materials science [24,28], and biological science [52,14,7], to mention just a few. The physical solution to interface problems 
often possesses discontinuity and/or non-smoothness across the interfaces so that the standard numerical methods will not 
work at their full capacity. To address this challenge, many finite element methods (FEMs) [38,4,9,12,42] and finite difference 
methods based on Cartesian grids [41,40,31,33,1] have been developed for effective solving of the elliptic interface problem 
in the last several decades. In the classical FEMs, unstructured partitions were employed to deal with the irregularity 
of the domain geometry, particularly around the interface and domain boundary. The interface-fitted FEMs are based on 
proper formulations of the interface problem combined with finite element partitions that align well with the interface. 
The penalty methods or Lagrangian multiplier approaches were developed in [16,6] by imposing the interface condition 
in the weak formulation. Incorporating the interface conditions into the numerical formulation has the potential of not 
only increasing the accuracy of the approximate solutions near the interface, but also the flexibility of allowing the use of 
computational grids that do not align with the physical interfaces. The discontinuous Galerkin (DG) methods [11,17,21,29]
were developed by using Galerkin projections and properly defined numerical fluxes to enforce the interface conditions in a 
weak sense. Weak Galerkin (WG) FEMs have been developed in [37,38] by using discrete weak differential operators in the 
usual variational form of the elliptic interface problem together with a treatment of the interface condition via the boundary 
unknowns associated with the weak finite element approximations. The embedded or immersed FEMs [12,19,25,45,20,26,
35,27,47,48] were devised to allow the interface to cut through finite elements for problems with moving interfaces and 
complex topology. Consequently, structured Cartesian meshes could be used to avoid the time-consuming mesh generation 
process in the immersed FEMs. Recently, a Hybrid High-Order (HHO) method on unfitted meshes was designed and analyzed 
in [5] for elliptic interface problems by means of a consistent penalty method in which the curved interface is allowed to 
cut through the mesh cells in a general fashion.

Numerical methods in the context of finite differences for the elliptic interface problem include the ghost fluid method 
[13], maximum principle preserving and explicit jump immersed interface method (IIM) [32,46,3,33], coupling interface 
method [10], piecewise-polynomial interface method [8], and matched interface and boundary (MIB) method [54,55,50]. For 
problems with non-smooth interfaces, some second order finite difference schemes have been devised in the context of 
the MIB framework in 2D and 3D [51,52,47,48]. Other algorithms based on various mathematical techniques for the elliptic 
interface problem include the integral equation method [36,49], the finite volume method [39], and the virtual node method 
[2,22].

Even though successes have been achieved in the endeavor of solving elliptic interface problems, challenges remain in 
the search of new and efficient numerical algorithms for problems with very complicated interface geometries, and for 
problems with low-regularity solutions. The low-regularity of the solution is often caused by the geometric singularities of 
the interfaces and/or the non-smoothness of the interface data [37,26].

The goal of this paper is to develop a new numerical method for the elliptic interface problem (1.1)-(1.4) which is appli-
cable to solutions with low-regularity assumptions. This new method is devised by coupling a weak formulation of (1.1)-(1.4)
that is derivative-free on the exact solution u with its dual equation, yielding a new primal-dual weak Galerkin finite ele-
ment method (PDWG). Compared with the WG methods [37,38], the proposed PDWG results in a symmetric formulation for 
a non-symmetric interface problem. More importantly, the new PDWG method is applicable to the model problem (1.1)-(1.4)
with rough boundary and interface data on gi , φm , and ψm . The new method thus provides an efficient numerical algorithm 
for elliptic interface problems under low regularity assumptions for the exact solution.

The paper is organized as follows. In Section 2, we derive a weak formulation for the elliptic interface problem (1.1)-(1.4)
that is derivative-free on the solution variable. In Section 3, we briefly review the weak differential operators and their 
discrete analogies. In Section 4, we describe the PDWG method for the model problem (1.1) based on the weak formulation 
(2.1) and its dual. In Section 5, we establish the solution existence, uniqueness, and stability. In Section 6, we provide an 
error equation for the PDWG solutions. In Section 7, we derive some error estimates based on various regularity assumptions 
on the exact solution. Finally, in Section 8 we report a couple of numerical results to illustrated and verify our convergence 
theory.
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2. Preliminaries and notations

We follow the standard notations for Sobolev spaces and norms defined on a given open and bounded domain D ⊂ Rd

with Lipschitz continuous boundary. As such, ‖ · ‖s,D and | · |s,D are used to denote the norm and seminorm in the Sobolev 
space Hs(D) for any s ≥ 0. The inner product in H s(D) is denoted by (·, ·)s,D for s ≥ 0. The space H0(D) coincides with 
L2(D) (i.e., the space of square integrable functions), for which the norm and the inner product are denoted as ‖ · ‖D and 
(·, ·)D . The space Hs(D) for s < 0 is defined as the dual of H−s

0 (D) [15] through the usual L2(D) pairing. When D = � or 
when the domain of integration is clear from the context, we shall drop the subscript D in the norm and the inner product 
notation.

We introduce the following space

V =
{

v : v ∈ H1
0(�) ∩

N∏
i=1

H2(�i), a∇v ∈ H(div;�)

}
.

For sufficiently smooth boundary and interface data gi , φm , and ψm , the solution of the elliptic interface problem (1.1)-(1.4)
satisfies the following weak formulation:

(u,L(v) − b · ∇v + cv) = φ(v), ∀v ∈ V , (2.1)

where L(v)|�i = −∇ · (ai(x)∇v|�i ) and

φ(v) = ( f , v) −
N∑

i=1

〈gi,ai∇v · ni〉∂�i∩∂� −
M∑

m=1

〈φm,ai∇v · nm〉�m +
M∑

m=1

〈ψm, v〉�m .

Here f |�i = f i , ni in the term 
∑N

i=1〈gi, ai∇v · ni〉∂�i∩∂� is the unit outward normal direction to the boundary ∂�i ∩ ∂� for 
i = 1, · · · , N . The unit vector nm is normal to the interface �m and has a direction consistent with the interface condition 
(1.4). The weak form (2.1) can be derived by testing (1.1) against any v ∈ V followed by twice use of the divergence theorem. 
For boundary and interface data that are not smooth (e.g., for φm, ψm ∈ L2(�m) and gi ∈ L2(∂�i ∩ ∂�)), the elliptic interface 
problem may not possess a strong solution satisfying (1.1)-(1.4) in the classical sense, but it may have a solution with 
low-regularity that satisfies the weak form (2.1).

Definition 2.1. A function u ∈ L2(�) is said to be a weak solution of the elliptic interface problem (1.1)-(1.4) if it satisfies 
(2.1).

The dual or adjoint problem to (2.1) seeks an unknown function λ ∈ V such that

(w,L(λ) − b · ∇λ + cλ) = χ(w), ∀w ∈ Hε(�), (2.2)

where χ is a given functional in Hε(�). In the rest of the paper, we assume that the dual or adjoint problem (2.2) has one 
and only one solution in H2−ε(�) with the following regularity estimate

‖λ‖2−ε ≤ C‖χ‖−ε . (2.3)

This regularity assumption implies that when χ ≡ 0, the dual problem (2.2) has only the trivial solution λ ≡ 0. We point 
out that the adjoint problem is a regular second order elliptic problem involving no interfaces at all.

The weak variational problem (or primal equation) (2.1) and its dual form (2.2) are seemingly unrelated to each other 
in the continuous case. However, they are strongly connected and support each other in the context of the weak Galerkin 
approach for each of them. The rest of the paper will reveal this connection and show how they support each other and 
jointly provide an efficient numerical method for the elliptic interface problem (1.1)-(1.4).

3. Weak differential operators

The two principal differential operators in the weak formulation (2.1) for the second order elliptic interface problem (1.1)
are L and the gradient operator ∇ . The discrete weak version for L and ∇ has been introduced in [44,43]. For completeness, 
we shall briefly review their definition in this section.

Let T be a polygonal or polyhedral domain with boundary ∂T . A weak function on T refers to a triplet σ = {σ0, σb, σn}
with σ0 ∈ L2(T ), σb ∈ L2(∂T ) and σn ∈ L2(∂T ). Here σ0 and σb are used to represent the value of σ in the interior and on 
the boundary of T and σn is reserved for the value of a∇σ · n on ∂T . Note that σb and σn may not necessarily be the trace 
of σ0 and a∇σ0 · n on ∂T , respectively. Denote by W(T ) the space of weak functions on T :

W(T ) = {σ = {σ0,σb,σn} : σ0 ∈ L2(T ),σb ∈ L2(∂T ),σn ∈ L2(∂T )}. (3.1)
3
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The weak action of L = −∇ · (a∇) on σ ∈W(T ), denoted by Lwσ , is defined as a linear functional on H2(T ) such that

(Lwσ , w)T = (σ0,Lw)T + 〈σb,a∇w · n〉∂T − 〈σn, w〉∂T ,

for all w ∈ H2(T ).
The weak gradient of σ ∈W(T ), denoted by ∇wσ , is defined as a linear functional on [H1(T )]d such that

(∇wσ ,ψ)T = −(σ0,∇ · ψ)T + 〈σb,ψ · n〉∂T ,

for all ψ ∈ [H1(T )]d .
Denote by Pr(T ) the space of polynomials on T with degree no more than r. A discrete version of Lwσ for σ ∈ W(T ), 

denoted by Lw,r,T σ , is defined as the unique polynomial in Pr(T ) satisfying

(Lw,r,T σ , w)T = (σ0,Lw)T + 〈σb,a∇w · n〉∂T − 〈σn, w〉∂T , ∀w ∈ Pr(T ), (3.2)

which, from the usual integration by parts, gives

(Lw,r,T σ , w)T = (Lσ0, w)T − 〈σ0 − σb,a∇w · n〉∂T + 〈a∇σ0 · n − σn, w〉∂T , (3.3)

for all w ∈ Pr(T ), provided that σ0 ∈ H2(T ).
A discrete version of ∇wσ for σ ∈ W(T ), denoted by ∇w,r,T σ , is defined as a unique polynomial vector in [Pr(T )]d

satisfying

(∇w,r,T σ ,ψ)T = −(σ0,∇ · ψ)T + 〈σb,ψ · n〉∂T , ∀ψ ∈ [Pr(T )]d, (3.4)

which, from the usual integration by parts, gives

(∇w,r,T σ ,ψ)T = (∇σ0,ψ)T − 〈σ0 − σb,ψ · n〉∂T , ∀ψ ∈ [Pr(T )]d, (3.5)

provided that σ0 ∈ H1(T ).

4. Primal-dual weak Galerkin algorithm

Let Th be a finite element partition of the domain � consisting of polygons or polyhedra that are shape-regular [43]. 
Assume that the edges/faces of the elements in Th align with the interface �. The partition Th can be grouped into N
sets of elements denoted by T i

h = Th ∩ �i , so that each T i
h provides a finite element partition for the subdomain �i for 

i = 1, · · · , N . The intersection of the partition Th also introduces a finite element partition for the interface �, denoted by 
�h . Denote by Eh the set of all edges or flat faces in Th and E0

h = Eh \ ∂� the set of all interior edges or flat faces. Denote 
by hT the meshsize of T ∈ Th and h = maxT ∈Th hT the meshsize for the partition Th .

For any given integer k ≥ 1, denote by Wk(T ) the local discrete space of the weak functions given by

Wk(T ) = {{σ0,σb,σn} : σ0 ∈ Pk(T ),σb ∈ Pk(e),σn ∈ Pk−1(e), e ⊂ ∂T }.
Patching Wk(T ) over all the elements T ∈ Th through a common value σb on the interior interface E0

h , we arrive at the 
following weak finite element space Wh :

Wh = {{σ0,σb,σn} : {σ0,σb,σn}|T ∈ Wk(T ),∀T ∈ Th
}
.

Note that σn has two values σ L
n and σ R

n satisfying σ L
n + σ R

n = 0 on each interior interface e = ∂T L ∩ ∂T R ∈ E0
h as seen from 

the two elements T L and T R . Denote by W 0
h the subspace of Wh with homogeneous boundary values; i.e.,

W 0
h = {{σ0,σb,σn} ∈ Wh : σb|∂� = 0}.

Denote by Mh the finite element space consisting of piecewise polynomials of degree k − 1; i.e.,

Mh = {w : w|T ∈ Pk−1(T ),∀T ∈ Th}.
For simplicity of notation and without confusion, for any σ ∈ Wh , denote by Lwσ and ∇wσ the discrete weak actions 

Lw,k−1,T σ and ∇w,k−1,T σ computed by using (3.2) and (3.4) on each element T ; i.e.,

(Lwσ)|T = Lw,k−1,T (σ |T ), σ ∈ Wh,

(∇wσ)|T = ∇w,k−1,T (σ |T ), σ ∈ Wh.
4
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For any σ , λ ∈ Wh and u ∈ Mh , we introduce the following bilinear forms

s(σ ,λ) =
∑

T ∈Th

sT (σ ,λ), (4.1)

b(u, λ) =
∑

T ∈Th

bT (u, λ), (4.2)

where

sT (σ ,λ) =h−3
T 〈σ0 − σb, λ0 − λb〉∂T + h−1

T 〈a∇σ0 · n − σn,a∇λ0 · n − λn〉∂T

+ τ (σ0, λ0)T ,

bT (u, λ) =(u,Lwλ − b · ∇wλ + cλ0)T ,

with τ > 0 being a parameter.
The following is the primal-dual weak Galerkin scheme for the second order elliptic interface problem (1.1) based on the 

variational formulation (2.1).

Primal-Dual Weak Galerkin Algorithm 4.1. Find (uh; λh) ∈ Mh × W 0
h , such that

s(λh,σ ) + b(uh,σ ) = φh(σ ), ∀σ ∈ W 0
h , (4.3)

b(w, λh) = 0, ∀w ∈ Mh. (4.4)

Here φh(σ ) = ( f , σ0) − ∑N
i=1〈gi, σn〉∂�i∩∂� − ∑M

m=1〈φm, σn〉�m + ∑M
m=1〈ψm, σb〉�m .

5. Stability analysis

Let Q 0 be the L2 projection operator onto Pk(T ), k ≥ 1. Analogously, denote by Q b and Q n the L2 projection operators 
onto Pk(e) and Pk−1(e), respectively, for e ⊂ ∂T . For w ∈ H1(�), define the L2 projection Q h w ∈ Wh as follows

Q h w|T = {Q 0 w, Q b w, Q n(a∇w · n)}.
The L2 projection operator onto the finite element space Mh is denoted as Qk−1

h .
For simplicity, we assume the coefficient coefficients a(x), b(x) and c(x) are piecewise constants with respect to the 

finite element partition Th . The analysis can be extended to piecewise smooth coefficients a(x), b(x) and c(x) without any 
difficulty.

Lemma 5.1. [44,43] The operators Q h and Qk−1
h satisfy the following commutative properties:

Lw(Q h w) = Qk−1
h (Lw), ∀w ∈ H2(T ), (5.1)

∇w(Q h w) = Qk−1
h (∇w), ∀w ∈ H1(T ). (5.2)

The stabilizer s(·, ·) given in (4.1) naturally induces the following semi-norm in the weak finite element space Wh

|||ρ|||w = s(ρ,ρ)
1
2 , ρ ∈ Wh. (5.3)

Lemma 5.2. The semi-norm ||| · |||w given in (5.3) defines a norm in the linear space W 0
h .

Proof. It suffices to verify the positivity property for ||| · |||w . Assume |||ρ|||w = 0 for some ρ ∈ W 0
h . It follows that ρ0 = 0 on 

each element T , ρ0 = ρb and a∇ρ0 · n = ρn on each ∂T . We thus obtain ρ0 ∈ C0(�) and further ρ0 ≡ 0 in �. Using ρ0 = ρb
and a∇ρ0 · n = ρn on each ∂T gives ρb ≡ 0, ρn ≡ 0, and further ρ ≡ 0 in �. This completes the proof of the lemma. �

Consider the auxiliary problem of seeking � such that

L(�) − b · ∇� + c� = ψ, in �, (5.4)

� = 0, on ∂�, (5.5)

where ψ ∈ L2(�) is a given function. Assume that the problem (5.4)-(5.5) has a solution � ∈ ∏N
i=1 H1+γ (�i) satisfying
5
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(
N∑

i=1

‖�‖2
1+γ ,�i

) 1
2

≤ C‖ψ‖γ −1, (5.6)

with some parameter γ ∈ ( 1
2 , 1].

Lemma 5.3. (inf-sup condition) Under the assumption of (5.6), there exists a constant β > 0 independent of the meshsize h such that

sup
0 �=σ∈W 0

h

b(v,σ )

|||σ |||w
≥ βh1−γ ‖v‖1−γ , ∀v ∈ Mh. (5.7)

Proof. Let � be the solution of (5.4)-(5.5) satisfying (5.6). By letting σ = Q h�, we have from Lemma 5.1 and (5.4) that

b(v,σ ) =
∑
T ∈Th

(v,Lw(Q h�) − b · ∇w Q h� + c Q 0�)T

=
∑
T ∈Th

(v,Qk−1
h (L�) − b ·Qk−1

h (∇�) + c Q 0�)T

=
∑
T ∈Th

(v,L� − b · ∇� + c�)T =
∑
T ∈Th

(v,ψ)T

(5.8)

for all v ∈ Mh . From the trace inequality (7.1), the estimate (7.3) with m = γ , and the estimate (5.6), there holds∑
T ∈Th

h−3
T

∫
∂T

|σ0 − σb|2ds =
∑

T ∈Th

h−3
T

∫
∂T

|Q 0� − Q b�|2ds

≤
∑

T ∈Th

h−3
T

∫
∂T

|Q 0� − �|2ds

≤
∑

T ∈Th

C{h−4
T ‖Q 0� − �‖2

T + h2γ −4
T ‖Q 0� − �‖2

γ ,T }

≤Ch2γ −2
N∑

i=1

‖�‖2
1+γ ,�i

≤ Ch2γ −2‖ψ‖2
γ −1.

(5.9)

A similar analysis can be applied to yield the following estimate:∑
T ∈Th

h−1
T

∫
∂T

|a∇σ0 · n − σ n|2ds ≤Ch2γ −2‖ψ‖2
γ −1. (5.10)

Furthermore, by letting σ = Q h� and using (5.6), we arrive at∑
T ∈Th

τ

∫
T

|σ0|2dT =
∑
T ∈Th

τ

∫
T

|Q 0�|2dT

≤C
N∑

i=1

‖�‖2
1+γ ,�i

≤ C‖ψ‖2
γ −1.

(5.11)

Combining the estimates (5.9)-(5.11) and then using the definition of |||σ |||w , we obtain

|||σ |||2w ≤ Ch2γ −2‖ψ‖2
γ −1. (5.12)

Thus, it follows from (5.8) and (5.12) that

sup
0 �=σ∈W 0

h

b(v,σ )

|||σ |||w
≥ sup

0 �=σ=Q h�∈W 0
h

b(v,σ )

|||σ |||w

≥ sup
0 �=ψ∈L2(�)

∑
T ∈Th

(v,ψ)T

|||Q h�|||w

≥ sup
0 �=ψ∈L2(�)

(v,ψ)

Chγ −1‖ψ‖γ −1

≥βh1−γ ‖v‖ ,
1−γ

6
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for some constant β independent of the meshsize h. This completes the proof of the lemma. �
We are now in a position to state the main result on the solution existence and uniqueness for the primal-dual weak 

Galerkin finite element method (4.3)-(4.4).

Theorem 5.4. Under the assumption of (5.6), the primal-dual weak Galerkin finite element scheme (4.3)-(4.4) has one and only one 
solution.

Proof. It is sufficient to show that the homogeneous case of (4.3)-(4.4) has only the trivial solution. To this end, assume 
f = 0, gi = 0 for i = 1, · · · , N , φm = 0 and ψm = 0 for m = 1, · · · , M in (4.3)-(4.4). This implies φh(σ ) = 0 for all σ ∈ W 0

h . By 
choosing σ = λh and w = uh in (4.3)-(4.4), we have

s(λh, λh) = 0,

which gives λh ≡ 0 from Lemma 5.2. The equation (4.3) can then be rewritten as

b(uh,σ ) = 0, ∀σ ∈ W 0
h , (5.13)

which, together with Lemma 5.3, implies

0 = sup
0 �=σ∈W 0

h

b(uh,σ )

|||σ |||w
≥ βh1−γ ‖uh‖1−γ ,

so that uh ≡ 0 in �. This completes the proof of the theorem. �
6. Error equations

The goal of this section is to derive some error equations for the primal-dual weak Galerkin method (4.3)-(4.4). The error 
equations shall play a critical role in the forthcoming convergence analysis.

Let u and (uh; λh) ∈ Mh × W 0
h be the exact solution of the elliptic interface problem (1.1)-(1.4) and its numerical solution 

arising from the PDWG scheme (4.3)-(4.4). Note that the exact Lagrangian multiplier λ = 0 is trivial. Denote the error 
functions by

eh = Qk−1
h u − uh, eu = Qk−1

h u − u, (6.1)

εh = Q hλ − λh = −λh. (6.2)

Lemma 6.1. Let u and (uh; λh) ∈ Mh × W 0
h be the exact solution of elliptic interface problem (1.1)-(1.4) and its numerical solution 

arising from the PDWG scheme (4.3)-(4.4). The error functions eh and εh defined in (6.1)-(6.2) satisfy the following equations:

s(εh,σ ) + b(eh,σ ) = �u(σ ), ∀σ ∈ W 0
h , (6.3)

b(w, εh) = 0, ∀w ∈ Mh. (6.4)

Here

�u(σ ) =
∑
T ∈Th

〈eu,a∇σ0 · n − σn〉∂T + (σ0, ceu)T + 〈σb − σ0, (a∇eu − beu) · n〉∂T . (6.5)

Proof. Recalling the definition of b(·, ·) in (4.2) and choosing w = Qk−1
h u in (3.2) and ψ = bQk−1

h u in (3.4), we get

b(Qk−1
h u,σ ) =

∑
T ∈Th

(Qk−1
h u,Lwσ − b · ∇wσ + cσ0)T

=
∑
T ∈Th

(σ0,L(Qk−1
h u))T + 〈σb,a∇Qk−1

h u · n〉∂T − 〈σn,Qk−1
h u〉∂T

+ (σ0,∇ · (bQk−1
h u))T − 〈σb,bQk−1

h u · n〉∂T + (Qk−1
h u, cσ0)T .

Observe that the exact Lagrangian multiplier λ = 0 is trivial, so that s(Q hλ, σ) = 0 for all σ ∈ W 0
h . It follows from (1.3) -(1.4)

and σb|∂� = 0 that
7
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s(Q hλ,σ ) + b(Qk−1
h u,σ )

=
∑
T ∈Th

(σ0,L(Qk−1
h u) + ∇ · (bQk−1

h u) + cQk−1
h u)T

+
∑
T ∈Th

(〈σb, (a∇(Qk−1
h u − u) − b(Qk−1

h u − u)) · n〉∂T − 〈σn,Qk−1
h u − u〉∂T )

−
N∑

i=1

〈gi,σn〉∂�i∩∂� −
M∑

m=1

〈φm,σn〉�m +
M∑

m=1

〈ψm,σb〉�m .

(6.6)

Denote

I =
∑

T ∈Th

(σ0,L(Qk−1
h u) + ∇ · (bQk−1

h u) + cQk−1
h u)T .

By the usual integration by parts, and (1.1)-(1.4), we have

I =
∑

T ∈Th

(σ0,Leu + ∇ · (beu) + ceu)T + ( f ,σ0)

=
∑

T ∈Th

((a∇eu − beu,∇σ0)T − 〈(a∇eu − beu) · n,σ0〉∂T ) + (σ0, ceu + f )

=
∑

T ∈Th

(eu,Lσ0)T + 〈eu,a∇σ0 · n〉∂T − (beu,∇σ0)T − 〈(a∇eu − beu) · n,σ0〉∂T

+(σ0, ceu + f )

=
∑

T ∈Th

〈eu,a∇σ0 · n〉∂T − 〈(a∇eu − beu) · n,σ0〉∂T + (σ0, ceu + f ),

where we have used (eu, ∇ · (a∇σ0))T = 0 and (∇σ0, beu)T = 0 due to the orthogonality property of the L2 projection 
operator Qk−1

h .
Substituting the above equation of I into (6.6) yields

s(Q hλ,σ ) + b(Qk−1
h u,σ )

=
∑
T ∈Th

〈eu,a∇σ0 · n − σn〉∂T + 〈σb − σ0, (a∇eu − beu) · n〉∂T + (σ0, ceu + f )T

−
N∑

i=1

〈gi,σn〉∂�i∩∂� −
M∑

m=1

〈φm,σn〉�m +
M∑

m=1

〈ψm,σb〉�m .

(6.7)

The difference of (6.7) and (4.3) gives (6.3).
From λ = 0, the equation (4.4) gives rise to

b(w, εh) = b(w, Q hλ − λh) = b(w,−λh) = 0, ∀w ∈ Mh,

which completes the derivation of (6.4). The proof is thus completed. �
The equations (6.3)-(6.4) are called error equations for the primal-dual WG finite element scheme (4.3)-(4.4).

Remark 6.1. For C0-WG elements (i.e., σ0 = σb on the boundary of each element), the second term in (6.5) vanishes so that 
lu(σ ) can be simplified as

�u(σ ) =
∑
T ∈Th

〈eu,a∇σ0 · n − σn〉∂T + (σ0, ceu)T , (6.8)

which involves no derivative for the exact solution u. The expression (6.8) permits an error estimate under ultra-low regu-
larity assumptions for the solution of the interface problem (1.1)-(1.4).
8
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7. Error estimates

As Th is a shape-regular finite element partition of the domain �, for any T ∈ Th and ϕ ∈ Hγ (T ) ( 1
2 < γ ≤ 1), the 

following trace inequality holds true [43]:

‖ϕ‖2
∂T ≤ C(h−1

T ‖ϕ‖2
T + h2γ −1

T ‖ϕ‖2
γ ,T ). (7.1)

Lemma 7.1. [43] Let Th be a finite element partition of � satisfying the shape regularity assumptions as specified in [43]. The following 
estimates hold true∑

T ∈Th

h2l
T ‖u −Qk−1

h u‖2
l,T ≤ Ch2m‖u‖2

m, (7.2)

∑
T ∈Th

h2l
T ‖u − Q 0u‖2

l,T ≤ Ch2(m+1)‖u‖2
m+1, (7.3)

where 0 ≤ l ≤ 2 and 0 ≤ m ≤ k.

The main convergence result can be stated as follows.

Theorem 7.2. Assume k ≥ 1. Let u and (uh; λh) ∈ Mh × W 0
h be the exact solution of the elliptic interface problem (1.1)-(1.4) and 

its numerical solution arising from the PDWG scheme (4.3)-(4.4). Assume that u is sufficiently regular such that u ∈ ∏N
i=1 Hk(�i) ∩

H1+γ (�i). The following error estimate holds true:

|||εh|||w + h1−γ ‖eh‖1−γ ≤ Chk

(
(1 + τ−1)

N∑
i=1

‖u‖2
k,�i

+ δk,1h2γ ‖u‖2
1+γ ,�i

) 1
2

, (7.4)

where 1
2 < γ ≤ 1 and δi, j is the Kronecker delta with value 1 when i = j and 0 otherwise. As a result, one has the following optimal 

order error estimate in the H1−γ -norm for uh

‖u − uh‖1−γ ≤ Chk+γ −1

(
(1 + τ−1)

N∑
i=1

‖u‖2
k,�i

+ δk,1h2γ ‖u‖2
1+γ ,�i

) 1
2

. (7.5)

Proof. Note that εh = −λh ∈ W 0
h . Choosing σ = εh and w = eh in (6.3) and (6.4) gives rise to

s(εh, εh) = �u(εh). (7.6)

For k ≥ 2, we use (7.6), the Cauchy-Schwarz inequality, the equation (6.5), the trace inequality (7.1), and the estimates 
(7.2) with m = k to obtain

|||εh|||2w = s(εh, εh) = |�u(εh)|

≤
( ∑

T ∈Th

h−3
T ‖ε0 − εb‖2

∂T

) 1
2
( ∑

T ∈Th

h3
T ‖(a∇eu − beu) · n‖2

∂T

) 1
2

+
( ∑

T ∈Th

h−1
T ‖a∇ε0 · n − εn‖2

∂T

) 1
2
( ∑

T ∈Th

hT ‖eu‖2
∂T

) 1
2

+
( ∑

T ∈Th

τ‖ε0‖2
T

) 1
2
( ∑

T ∈Th

τ−1‖ceu‖2
T

) 1
2

≤ C |||εh|||w

⎛
⎝ ∑

T ∈Th

h2
T ‖a∇eu − beu‖2

T + h2γ +2
T ‖a∇eu − beu‖2

γ ,T

+‖eu‖2
T + h2γ

T ‖eu‖2
γ ,T + τ−1‖ceu‖2

T

) 1
2
.

Therefore, for k ≥ 2, we have
9
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|||εh|||2w ≤ Chk

(
(1 + τ−1)

N∑
i=1

‖u‖2
k,�i

) 1
2

|||εh|||w .

As to the case k = 1, we have ∇Qk−1
h u = 0 and thus

|||εh|||2w ≤ C
( ∑

T ∈Th

h2
T ‖a∇u − beu‖2

T + h2γ +2
T ‖a∇u − beu‖2

γ ,T

+‖eu‖2
T + h2γ

T ‖eu‖2
γ ,T + τ−1‖ceu‖2

T

) 1
2
,

≤ Ch

(
(1 + τ−1)

N∑
i=1

‖u‖2
1,�i

+ h2γ ‖u‖2
1+γ ,�i

) 1
2

.

Consequently, there holds for all k ≥ 1

|||εh|||w ≤ Chk

(
(1 + τ−1)

N∑
i=1

‖u‖2
k,�i

+ δk,1h2γ ‖u‖2
1+γ ,�i

) 1
2

. (7.7)

As to the estimate for the error function eh , we use the error equation (6.3), (7.7), the Cauchy-Schwarz inequality, and the 
triangle inequality to obtain

|b(eh,σ )| = |�u(σ ) − s(εh,σ )| ≤ |�u(σ )| + |||εh|||w |||σ |||w

≤ Chk

(
(1 + τ−1)

N∑
i=1

‖u‖2
k,�i

+ δk,1h2γ ‖u‖2
1+γ ,�i

) 1
2

|||σ |||w ,

which, combined with the inf-sup condition (5.7), yields the following error estimate

βh1−γ ‖eh‖1−γ ≤ Chk

(
(1 + τ−1)

N∑
i=1

‖u‖2
k,�i

+ δk,1h2γ ‖u‖2
1+γ ,�i

) 1
2

. (7.8)

Then the desired error estimate (7.4) follows from (7.7) and (7.8). Finally, the estimate (7.5) is a direct result of (7.4) and the 
triangle inequality. This completes the proof of the theorem. �
Corollary 7.3. Assume k ≥ 1. Let u and (uh; λh) ∈ Mh × W 0

h be the exact solution of the elliptic interface problem (1.1)-(1.4) and 
its numerical solution arising from the PDWG scheme (4.3)-(4.4). Assume that the exact solution u has the “low” regularity of u ∈∏N

i=1 Hδ(�i) for some 1
2 < δ ≤ k. Then, for C0-WG elements, the following error estimate holds true:

|||εh|||w + h1−γ ‖eh‖1−γ ≤ Chδ(1 + τ−1)
1
2

(
N∑

i=1

‖u‖2
δ,�i

) 1
2

, (7.9)

where 1
2 < γ ≤ 1 is related to the regularity estimate (5.6). Consequently, one has the following error estimate

‖u − uh‖1−γ ≤ Chδ+γ −1(1 + τ−1)
1
2

(
N∑

i=1

‖u‖2
δ,�i

) 1
2

. (7.10)

Proof. It is easy to see εh ∈ W 0
h . By letting σ = εh and w = eh in (6.3) and (6.4) we arrive at

s(εh, εh) = �u(εh). (7.11)

Now, we use (7.11), the Cauchy-Schwarz inequality, the equation (6.8), the trace inequality (7.1), and the estimates (7.2) with 
m = δ to obtain

|||εh|||2w = s(εh, εh) = |�u(εh)|
≤

( ∑
h−1

T ‖a∇ε0 · n − εn‖2
∂T

) 1
2
( ∑

hT ‖eu‖2
∂T

) 1
2

T ∈Th T ∈Th

10
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+
( ∑

T ∈Th

τ‖ε0‖2
) 1

2
( ∑

T ∈Th

τ−1‖ceu‖2
T

) 1
2

≤ C |||εh|||w

( ∑
T ∈Th

‖eu‖2
T + h2γ

T ‖eu‖2
γ ,T + τ−1‖ceu‖2

T

) 1
2

≤ C |||εh|||whδ(1 + τ−1)
1
2

(
N∑

i=1

‖u‖2
δ,�i

) 1
2

.

Hence,

|||εh|||w ≤ Chδ(1 + τ−1)
1
2

(
N∑

i=1

‖u‖2
δ,�i

) 1
2

. (7.12)

As to the estimate for eh , we use the error equation (6.3), (7.12), the Cauchy-Schwarz inequality, and the triangle in-
equality to obtain

|b(eh,σ )| = |�u(σ ) − s(εh,σ )| ≤ |�u(σ )| + |||εh|||w |||σ |||w

≤ Chδ(1 + τ−1)
1
2 |||σ |||w

(
N∑

i=1

‖u‖2
δ,�i

) 1
2

,

which, combined with the inf-sup condition (5.7), gives rise to the following error estimate

βh1−γ ‖eh‖1−γ ≤ Chδ(1 + τ−1)
1
2

(
N∑

i=1

‖u‖2
δ,�i

) 1
2

. (7.13)

The desired error estimate (7.9) then follows from (7.12) and (7.13). Finally, (7.10) is a direct consequence of (7.9) and the 
triangle inequality. This completes the proof of the theorem. �
8. Numerical experiments

In this section, we will present some numerical results to verify the efficiency and accuracy of the proposed primal-dual 
weak Galerkin method (4.3)-(4.4) for solving the elliptic interface problem (1.1)-(1.4). In our experiments, we shall imple-
ment the algorithm with k = 1, 2 in the finite element spaces Mh and W 0

h . We shall compute various approximation errors 
for uh and λh , including the L2 error ‖u − uh‖0 and ‖λ0‖0, the H1 error ‖λ0‖1 for λh , and the discrete error ‖λh‖w as 
defined by (5.3). If not otherwise stated, the parameter τ in the PDWG numerical scheme will be τ = 1. The finite element 
partition Th is obtained through a successive refinement of a coarse triangulation of the domain in aligning with the in-
terface, by dividing each coarse element into four congruent sub-elements by connecting the mid-points of the three edges 
of the triangle. When the curved interface segments are involved, we use the straight-line to approximate curved interface 
segments. To diminish this approximation error and ensure the accuracy of the numerical solution, the computational inter-
face of the initial mesh should be carefully taken. For example, for higher-order polynomial approximation, we may choose 
a higher-order straight-line approximation (e.g., a finer mesh near the curved interface). The right-hand side functions, the 
boundary and interface conditions are all derived from the exact solution.

Example 1: We consider the interface problem (1.1)-(1.4) on the domain � = (0, 1)2 with an interface given by �1 =
[0.25, 0.75]2 and �2 = �\�1. The coefficients in the model equations are taken as

a1 = a2 = 1, b1 = b2 = (1,1), c1 = c2 = 1.

The analytical solution to the elliptic equation is given as

u =
{

10 − x2 − y2 if (x, y) ∈ �1,

sin(πx) sin(π y) if (x, y) ∈ �2.

The initial mesh is shown in Fig. 8.1 (left one). The mesh refinement of the previous level is done by connecting the mid-
points of the edges. The mesh at the next level is illustrated in Fig. 8.1 (right one). The surface plot of the PDWG solution 
uh on the finest mesh (i.e., after the fifth refinement of the initial mesh) is depicted in Fig. 8.2.

Table 8.1 shows the numerical results and the rate of convergence for k = 1, 2. We observe that, for both linear (k = 1) 
and quadratic (k = 2) PDWG methods, the convergence rate for the errors ‖u − uh‖0 and ‖λh‖w is of O(hk), which is 
consistent with the theoretical estimate (7.4) in Theorem 7.2. As to the approximation error for λ0, we observe a convergence 
11
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Fig. 8.1. The initial mesh (left) and the next level refinement (right).

Fig. 8.2. Surface plot of the numerical solution uh calculated by the PDWG method of Example 1.

Table 8.1
Errors and convergence rates of the linear and quadratic PDWG methods for Example 1.

h ‖λh‖w rate ‖λ0‖1 rate ‖λ0‖0 rate ‖u − uh‖0 rate

2.50e-1 1.15e-0 – 2.56e-1 – 1.21e-1 – 1.74e-1 –
1.25e-1 6.32e-1 0.87 9.52e-2 1.43 3.56e-2 1.77 7.78e-2 1.16

k = 1 6.25e-2 3.34e-1 0.92 3.01e-2 1.66 9.73e-3 1.87 3.51e-2 1.15
3.13e-2 1.72e-1 0.96 8.49e-3 1.82 2.54e-3 1.94 1.66e-2 1.09
1.56e-2 8.73e-2 0.98 2.26e-3 1.92 6.47e-4 1.97 8.06e-3 1.04

h ‖λh‖w rate ‖λ0‖1 rate ‖λ0‖0 rate ‖u − uh‖0 rate

2.50e-1 2.00e-1 – 1.88e-2 – 5.71e-3 – 2.80e-2 –
2.50e-1 5.12e-2 1.97 1.59e-3 3.56 3.61e-4 3.98 6.66e-3 2.07

k = 2 6.25e-2 1.28e-2 2.00 1.54e-4 3.37 2.25e-5 4.00 1.64e-3 2.02
3.13e-2 3.19e-3 2.00 1.67e-5 3.20 1.40e-6 4.01 4.08e-4 2.01
1.56e-2 7.97e-4 2.00 1.94e-6 3.10 8.72e-8 4.00 1.02e-4 2.00

rate of O(hk+1) for ‖λ0‖1 from this numerical experiment, which suggests a superconvergence for the dual variable λ0 in 
the H1-norm. We further observe a convergence of order O(hk+1) for k = 1 and of hk+2 for k = 2 for λ0 in the L2 norm. 
Again, the (k + 2)-th order of convergence for ‖λ0‖0 indicates a pleasant superconvergence phenomenon of the PDWG 
method.

To test the condition number of the PDWG scheme and its dependency on the coefficient contrast, we consider different 
choices of coefficient contrasts in five cases:

• Case 1: a1 = a2 = 1, b1 = b2 = (1, 1), c1 = c2 = 1.
• Case 2: a1 = 100, a2 = 1, b1 = b2 = (1, 1), c1 = c2 = 1.
• Case 3: a1 = 1000, a2 = 1, b1 = b2 = (1, 1), c1 = c2 = 1.
12
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Table 8.2
Condition numbers and growth rates of the matrix calculated from the linear PDWG in different choices 
of parameters with a rectangular interface.

case 1 h−p case 2 h−p case 3 h−p case 4 h−p case 5 h−p

1.92e+4 – 4.14e+6 – 4.07e+8 – 2.05e+4 – 1.86e+5 –
2.97e+5 3.95 6.26e+6 0.60 6.06e+8 0.57 1.02e+5 2.31 3.16e+5 0.77
5.33e+6 4.17 3.85e+7 2.62 3.50e+9 2.53 2.90e+6 4.83 4.18e+6 3.73
9.61e+7 4.17 2.56e+8 2.73 1.85e+10 2.40 5.18e+7 4.16 8.45e+7 4.34
1.60e+9 4.06 2.11e+9 3.04 8.38e+10 2.18 9.05e+8 4.13 1.87e+9 4.47

Table 8.3
Condition numbers and growth rates of the matrix calculated from the linear PDWG in different choices of 
parameters with a circular interface.

case 1 h−p case 2 h−p case 3 h−p case 4 h−p case 5 h−p

3.63e+5 – 1.70e+7 – 1.67e+9 – 3.34e+5 – 5.13e+5 –
2.58e+6 2.83 2.57e+7 0.60 2.47e+9 0.57 1.88e+6 2.50 3.20e+6 2.64
4.70e+7 4.19 1.30e+8 2.33 1.13e+10 2.19 3.50e+7 4.22 6.55e+7 4.36
7.48e+8 3.99 1.16e+9 3.16 5.65e+10 2.33 6.32e+8 4.17 1.41e+9 4.43
1.25e+10 4.07 1.51e+10 3.71 2.48e+11 2.13 1.06e+10 4.07 3.54e+10 4.65

Fig. 8.3. The interface and subdomains (left) and the initial mesh (middle) and the refined mesh from the twice refinement of the initial mesh (right).

• Case 4: a1 = 1, a2 = 1, b1 = b2 = (1, 1), c1 = 1, c2 = 1000.
• Case 5: a1 = 1, a2 = 1, b1 = (1000, 1000), b2 = (1, 1), c1 = 1, c2 = 1.

Listed in Tables 8.2 and 8.3 are the condition numbers and their growth rates of the matrix calculated from the linear 
PDWG under a rectangular interface and a circular interface, respectively. Here the circular interface and the mesh are the 
same as these in Example 2. One can see that the condition number grows like O(h−p) for some positive value p, 2 ≤ p < 5
as the mesh size h decreases, which is similar to that of the mixed finite element method for elliptic equations, see, e.g., 
[34], while is different from the standard finite element method, whose condition number grows like O(h−2). Moreover, it 
seems that the coefficient contrast has effect on the condition number. As the ratio a1

a2
increases (case 2 and case 3), we 

see a larger condition number while a smaller growth rate. As the ratio c1
c2

increases (case 4), the condition number and 
its growth rate change little and the growth rate remains O(h−4). While we observe a slightly larger growth rate when the 
coefficient contrast b1

b2
increases (case 5). In other words, it seems that the convection coefficient contrast and the diffusion 

coefficient contrast may have different (positive or negative) impacts on the growth rate of the condition number.
Example 2: We consider a circular interface problem on the domain � = (0, 1)2. Here �1 is the disc centered at the point 

(0.5, 0.5) with radius r = 0.25, and �2 = �\�1. The coefficients are taken as

a1 = a2 = 2 + sin(x + y), b1 = b2 = (x, y), c1 = c2 = 4 + x.

The analytical solution to the interface problem is

u =
{

sin(x + y) + cos(x + y) + 5, if (x, y) ∈ �1,

x + y + 1, if (x, y) ∈ �2.

We plot in Fig. 8.3 the interface and subdomains (left), the initial mesh (middle), and the refined mesh generated from 
twice refinement of the initial mesh (right), respectively. The surface plot of the approximate solution uh calculated by the 
PDWG method with k = 1 on the finest mesh is shown in Fig. 8.4.

We present in Table 8.4 the approximation errors and corresponding convergence rates for the primal variable uh and 
dual variable λh , from which we observe a convergence rate of O(hk) for both ‖u − uh‖0 and ‖λh‖w . In other words, the 
13
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Fig. 8.4. Surface plot of the numerical solution uh calculated by the PDWG method of Example 2.

Table 8.4
Errors and convergence rates of the linear and quadratic PDWG methods for Example 2.

h ‖λh‖w rate ‖λ0‖1 rate ‖λ0‖0 rate ‖u − uh‖0 rate

1.29e-1 6.43e-1 – 3.02e-1 – 2.15e-2 – 7.50e-2 –
6.47e-2 3.55e-1 0.86 9.31e-2 1.70 5.17e-3 2.06 3.75e-2 0.99

k = 1 3.24e-2 1.98e-1 0.84 2.97e-2 1.65 1.42e-3 1.87 1.77e-2 1.09
1.62e-2 1.07e-1 0.89 8.85e-3 1.75 3.80e-4 1.90 8.35e-3 1.09
8.09e-3 5.59e-2 0.94 2.43e-3 1.87 9.98e-5 1.93 4.04e-3 1.05

h ‖λh‖w rate ‖λ0‖1 rate ‖λ0‖0 rate ‖u − uh‖0 rate

1.29e-1 4.51e-2 – 6.20e-4 – 5.44e-4 – 3.28e-3 –
6.47e-2 1.14e-2 1.99 5.48e-5 3.50 3.43e-5 4.00 8.30e-4 1.98

k = 2 3.24e-2 2.94e-3 1.95 5.20e-6 3.40 2.15e-6 4.00 2.08e-4 2.00
1.62e-2 7.24e-4 2.02 5.38e-7 3.27 1.35e-7 4.00 5.17e-5 2.01
8.09e-3 1.84e-4 1.97 6.20e-8 3.12 8.49e-9 3.99 1.30e-5 2.00

error bound given in (7.4) is sharp. Analogous to Example 1, we see the error ‖λ0‖1 converges to zero with an order of k + 1
for both linear and quadratic PDWG methods. Table 8.4 also shows a convergence of λ0 with order (k + 1) for k = 1 and 
(k + 2) for k = 2 in L2 norm.

Example 3: The interface problem (1.1)-(1.4) is defined on the domain � = (0, 1)2 with a closed interface � parameterized 
as follows

r = 0.5 + 3 sin(3θ)

4
.

The subdomain �1 is given by the region bounded by the curve � and �2 = �\�1 is the portion of the domain outside �. 
The PDE coefficients are given by

a1 = 1 + x + y, a2 = 1, b1 = b2 = (1,1 + y), c1 = c2 = 2.

The exact solution to the elliptic problem is given as

u =
{

ex cos(y) + 10, if (x, y) ∈ �1,

5e−x2−y2
, if (x, y) ∈ �2.

The interface and subdomains, the initial mesh, and the refined mesh after two successive refinements of the initial 
mesh are shown in Fig. 8.5. The numerical solution uh calculated by the PDWG method with k = 2 on the refined mesh are 
depicted in Fig. 8.6. The numerical errors of the linear and quadratic PDWG methods are reported in Table 8.5. It can be seen 
that the theoretical convergence (i.e., O(hk) for both ‖u − uh‖0 and ‖λh‖w ) is achieved in this numerical test. Moreover, 
a convergence of O(hk+1) for ‖λ0‖1, and O(hk+1) and O(hk+2) for the error ‖λ0‖0 is observed for the case of k = 1 and 
k = 2, respectively.

Example 4: The interface � on the domain � = (0, 1)2 is characterized by the following equation in the polar coordinates:

x(θ) = (1/2 + 1/2 cos(mθ) sin(nθ)) cos(θ),

y(θ) = (1/2 + 1/2 cos(mθ) sin(nθ)) sin(θ),

where m = 2 and n = 6. The subdomain �1 is the region inside � and �2 = �\�1. The coefficients in the elliptic interface 
problem are given by
14
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Fig. 8.5. The interface and subdomains (left) and the initial mesh (middle) and the refined mesh (right).

Fig. 8.6. Surface plot of the numerical solution uh calculated by the PDWG method of Example 3.

Table 8.5
Errors and convergence rates of the linear and quadratic PDWG methods for Example 3.

h ‖λh‖w rate ‖λ0‖1 rate ‖λ0‖0 rate ‖u − uh‖0 rate

3.54e-1 1.35e-0 – 3.77e-1 – 6.52e-2 – 2.38e-1 –
1.77e-1 7.32e-1 0.81 1.26e-1 1.58 1.65e-2 1.98 1.25e-1 0.93

k = 1 8.84e-2 4.01e-1 0.87 4.14e-2 1.61 4.37e-3 1.92 6.63e-2 0.92
4.42e-2 2.16e-1 0.89 1.29e-2 1.68 1.17e-3 1.90 3.54e-2 0.91
2.21e-2 1.14e-1 0.92 3.75e-3 1.78 3.07e-4 1.93 1.90e-2 0.90

h ‖λh‖w rate ‖λ0‖1 rate ‖λ0‖0 rate ‖u − uh‖0 rate

3.54e-1 2.01e-1 – 1.09e-2 – 5.82e-3 – 1.66e-2 –
1.77e-1 5.12e-2 1.97 9.70e-4 3.50 3.76e-4 3.95 4.13e-3 2.01

k = 2 8.84e-2 1.28e-2 2.00 9.04e-5 3.42 2.37e-5 3.99 1.02e-3 2.02
4.42e-2 3.21e-3 2.00 9.70e-6 3.22 1.48e-6 4.00 2.53e-4 2.01
2.21e-2 8.02e-4 2.00 1.14e-6 3.01 9.28e-8 4.00 6.30e-5 2.00

a1 = (xy + 2)/5, a2 = (x2 − y2 + 3)/7, b1 = (0,1), b2 = (1,0), c1 = 2, c2 = 1.

The exact solution to the interface problem is

u =
{

x + y + 2, if (x, y) ∈ �1,

0.5 sin(x + y) + 0.5 cos(x + y) + 0.3, if (x, y) ∈ �2.

The interface and subdomains are shown in the left of Fig. 8.7. To approximate the curved interface, we consider two 
types of computational interface in our numerical experiment. The first one is obtained by equally dividing the interval 
[0, 2π ] with 20 subintervals, and the corresponding mesh is referred as to Mesh 1. While the second one is derived by 
using 40 uniformly distributed points and the corresponding mesh is referred as to Mesh 2. The two types of computational 
interface are shown in the middle and right of Fig. 8.7. We use the Matlab delaunay to get the initial mesh. The PDWG 
solution uh on the finest mesh are depicted in Fig. 8.8.

The numerical errors of the linear and quadratic PDWG method in two different meshes are reported in Tables 8.6 and 
8.7. As we may observe, the errors calculated from Mesh 1 are larger than those from Mesh 2, due to the fact that Mesh 2 
provides a better approximation to the curved interface. While the convergence rates for both meshes are almost the same. 
To be more precise, the numerical convergence rate for ‖λh‖w , ‖u − uh‖0, and ‖λ0‖1 are seen to be O(hk), O(hk), O(hk+1), 
15
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Fig. 8.7. The interface and subdomains (left) and the computational interface at the first stage of Mesh 1 (middle) and Mesh 2 (right).

Fig. 8.8. Surface plot of the numerical solution uh calculated by the PDWG method of Example 4.

Table 8.6
Errors and convergence rates of the linear PDWG methods for Example 4 in two different meshes.

h ‖λh‖w rate ‖λ0‖1 rate ‖λ0‖0 rate ‖u − uh‖0 rate

3.54e-1 1.58e-1 – 2.94e-2 – 7.35e-3 – 4.02e-2 –
1.77e-1 8.12e-2 0.96 9.08e-3 1.70 1.79e-3 2.04 1.94e-2 1.05

Mesh 1 8.84e-2 4.15e-2 0.97 2.93e-3 1.63 4.59e-4 1.97 9.55e-3 1.03
4.42e-2 2.14e-2 0.96 8.58e-4 1.77 1.20e-4 1.93 4.77e-3 1.00
2.21e-2 1.09e-2 0.97 2.35e-4 1.87 3.06e-5 1.98 2.51e-3 0.93

3.54e-1 1.24e-1 – 1.96e-2 – 5.72e-3 – 3.15e-2 –
1.77e-1 6.54e-2 0.92 6.55e-3 1.58 1.44e-3 1.99 1.55e-2 1.03

Mesh 2 8.84e-2 3.48e-2 0.91 2.11e-3 1.64 3.85e-4 1.90 7.77e-3 0.99
4.42e-2 1.82e-2 0.94 6.23e-4 1.76 1.02e-4 1.91 3.88e-3 1.00
2.21e-2 9.32e-3 0.96 1.69e-4 1.88 2.62e-5 1.96 1.94e-3 1.00

respectively. Once again, the numerical experiment suggests a convergence at the optimal order of O(hk+1) for ‖λ0‖0 for 
the linear PDWG method and a superconvergence of O(hk+2) for the quadratic PDWG method. As indicated from Tables 8.6
and 8.7, the computation interface of Mesh 1 seems enough to ensure the desired convergence rates for k = 1, 2 in this 
case. See also Fig. 8.8.

Example 5: We consider an interface problem on the domain � = (0, 1)2 with an interface � parameterized in the polar 
angle θ as follows

r = 0.5 + sin(5θ)

7
.

The subdomain �1 is the part inside � and �2 = �\�1 is the part outside �. The coefficients in the PDE are given by

a1 = 0.01, a2 = 0.1, b1 = b2 = (0,0), c1 = c2 = 0.

The exact solution to the elliptic interface problem is

u =
{

e(2x−1)2+(2y−1)2
, if (x, y) ∈ �1,

0.1(x2 + y2)2 − 0.01ln(2
√

x2 + y2), if (x, y) ∈ �2.
16
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Table 8.7
Errors and convergence rates of the quadratic PDWG methods for Example 4 in two different meshes.

h ‖λh‖w rate ‖λ0‖1 rate ‖λ0‖0 rate ‖u − uh‖0 rate

3.54e-1 1.42e-2 – 1.78e-3 – 3.11e-4 – 2.25e-3 –
1.77e-1 3.59e-3 1.99 1.93e-4 3.21 1.97e-5 3.98 5.53e-4 2.02

Mesh 1 8.84e-2 8.97e-4 2.00 2.23e-5 3.11 1.24e-6 3.99 1.36e-4 2.02
4.42e-2 2.24e-4 2.00 2.70e-6 3.05 7.76e-8 4.00 3.39e-5 2.01

h ‖λh‖w rate ‖λ0‖1 rate ‖λ0‖0 rate ‖u − uh‖0 rate

3.54e-1 1.26e-2 – 1.61e-3 – 2.50e-4 – 1.93e-3 –
1.77e-1 3.13e-3 2.01 1.67e-4 3.27 1.58e-5 3.98 4.85e-4 1.99

Mesh 2 8.84e-2 7.80e-4 2.00 1.86e-5 3.17 9.96e-7 3.99 1.20e-4 2.02
4.42e-2 1.94e-4 2.00 2.20e-6 3.08 6.24e-8 4.00 2.97e-5 2.01

Fig. 8.9. The interface and subdomains (left) and the computation interface at the first stage (middle) and the initial mesh (right).

Fig. 8.10. Surface plot of the numerical solution uh calculated by the PDWG method of Example 5.

Plotted in Fig. 8.9 are the interface and the domain (left), the computational interface at the first stage (middle), and 
the initial mesh (right). Fig. 8.10 shows the surface plot of the numerical solution uh calculated by the PDWG method with 
k = 1. Table 8.8 reports the approximation error and the corresponding rate of convergence for uh and λh . An optimal order 
of convergence of O(hk) for ‖u − uh‖0 and ‖λh‖w is observed, which is in good consistency with our theoretical findings in 
Theorem 7.2. Table 8.8 further suggests a convergence for ‖λ0‖1 at the rate of O(hk+1), and a convergence for ‖λ0‖0 at the 
rates of O(hk+1) and O(hk+2) for the linear and quadratic PDWG methods, respectively.

Example 6: We consider the problem (1.1)-(1.4) on the domain � = (0, 1)2 with the same interface as that of Example 1; 
i.e., �1 = (0.25, 0.75)2, �2 = �\�1, and � = ∂�1. The coefficients are set as

a1 = 2 + sin(x + y), a2 = 5, b1 = b2 = (0,0), c1 = c2 = 0.4.

Define

�1 = {(1

4
, y) : 1

4
≤ y ≤ 3

4
}, �2 = {(3

4
, y) : 1

4
≤ y ≤ 3

4
},

�3 = {(x,
1
) : 1 ≤ x ≤ 3 }, �4 = {(x,

3
) : 1 ≤ x ≤ 3 }.
4 4 4 4 4 4
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Table 8.8
Errors and convergence rates of the linear and quadratic PDWG methods for Example 5.

h ‖λh‖w rate ‖λ0‖1 rate ‖λ0‖0 rate ‖u − uh‖0 rate

3.82e-1 4.77e-2 – 1.20e-1 – 1.13e-2 – 7.18e-2 –
1.91e-1 2.74e-2 0.80 5.66e-2 1.08 5.07e-3 1.16 3.35e-2 1.10

k = 1 9.53e-2 1.54e-2 0.83 1.70e-2 1.74 1.55e-3 1.71 2.01e-2 0.74
4.77e-2 8.33e-3 0.89 4.85e-3 1.80 4.40e-4 1.81 9.26e-3 1.12
2.38e-2 4.26e-3 0.97 1.27e-3 1.94 1.15e-4 1.94 4.77e-3 0.96

h ‖λh‖w rate ‖λ0‖1 rate ‖λ0‖0 rate ‖u − uh‖0 rate

3.82e-1 1.69e-2 – 7.29e-2 – 5.63e-3 – 1.12e-2 –
1.91e-1 6.38e-3 1.41 2.47e-2 1.56 8.29e-4 2.76 2.97e-3 1.91

k = 2 9.53e-2 1.79e-3 1.83 3.73e-3 2.73 6.17e-5 3.75 8.28e-4 1.85
4.77e-2 5.17e-4 1.80 5.17e-4 2.85 4.36e-6 3.82 2.33e-4 1.83
2.38e-2 1.58e-4 1.71 6.91e-5 2.90 2.92e-7 3.90 5.42e-5 2.11

Fig. 8.11. Surface plot of the numerical solution λh (left) and uh (right) calculated by the PDWG method of Example 6 with f1 = f2 = 0, k = 1 and h = 1/40.

We choose the boundary condition u|∂� = 1
5 sin(x + y) + cos(x + y) + 1, and the following interface data:

�u��i = i, 1 ≤ i ≤ 4, �a∇u − bu��1 = (4,0), �a∇u − bu��2 = (2/e
3
4 ex,0),

�a∇u − bu��3 = (0,6π cos(2π y)), �a∇u − bu��4 = (1,0).

Fig. 8.11 shows the plots for the numerical solution λh (left) and uh (right) obtained from the PDWG numerical method 
with k = 1 for the interface problem when the right-hand side functions are taken as f1 = f2 = 0. It should be noted that 
the exact solution to this interface problem is not known, and the interface data for the jump of u is piecewise constant 
and, therefore, does not have the H

1
2 (�)-regularity needed in most other numerical methods.

Example 7: This example assumes the same interface � as in Example 6. Here, we take

a1 = 1, a2 = 100, b1 = b2 = (2 + y,1 + x), c1 = c2 = 0, f1 = f2 = 0.

The boundary condition and the interface data are chosen as

u|∂� = 1

2
(x2 + y3)(

1

2
sin(x + y) + 1

3
cos(x + y)) − 1

3
ln(x2 + y2),

�u��i = 1, �u��i+2 = 0, i = 1,2,

�a∇u − bu��1 = (π cos(2πx),0), �a∇u − bu��2 = (
1

2
sin(x) + 1

4
cos(x) + y,0),

�a∇u − bu�� j = ((y − 1

4
)(y − 3

4
)(cos(x) + 2x), (sin(x) + x2)(2y − 1)), j = 3,4.

Fig. 8.12 shows the plots for the numerical solution λh (left) and uh (right) obtained from the PDWG numerical method 
for the interface problem with k = 2. For this test case, the exact solution to the interface problem is not known. Further-
more, the interface data for the jump of u is discontinuous by assuming 0 or 1 so that the H

1
2 (�)-regularity is not satisfied. 

The PDWG method, however, is applicable and provides meaningful numerical solutions.
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Fig. 8.12. Surface plot of the numerical solution λh (left) and uh (right) calculated by the PDWG method of Example 7 with f1 = f2 = 0, k = 2 and h = 1/40.
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