Journal of Computational Physics 470 (2022) 111538

Contents lists available at ScienceDirect m‘slilmml
CS,

Journal of Computational Physics

www.elsevier.com/locate/jcp

A new primal-dual weak Galerkin method for elliptic interface @)
problems with low regularity assumptions

b2 Junping Wang 3

Waixiang Cao®!, Chunmei Wang
4 School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

b Department of Mathematics, University of Florida, Gainesville, FL 32611, USA

¢ Division of Mathematical Sciences, National Science Foundation, Alexandria, VA 22314, USA

ARTICLE INFO ABSTRACT
Article history: This article introduces a new primal-dual weak Galerkin (PDWG) finite element method
Received 23 October 2020 for second order elliptic interface problems with ultra-low regularity assumptions on the

Received in revised form 17 July 2022
Accepted 10 August 2022
Available online 28 August 2022

exact solution and the interface and boundary data. It is proved that the PDWG method is
stable and accurate with optimal order of error estimates in discrete and Sobolev norms.
In particular, the error estimates are derived under the low regularity assumption of u €

Keywords: H%() for 6 > % for the exact solution u. Extensive numerical experiments are conducted
Primal-dual weak Galerkin to provide numerical solutions that verify the efficiency and accuracy of the new PDWG
PDWG method.

Finite element methods © 2022 Elsevier Inc. All rights reserved.

Elliptic interface problems
Low regularity
Polygonal or polyhedral partition

1. Introduction

In this paper we are concerned with the development of a new primal-dual weak Galerkin (PDWG) finite element
method for second order elliptic interface problems with low regularity assumptions on the exact solution and the interface
and boundary data. To this end, let N and M be two positive integers and © ¢ R%(d =2, 3) is an open bounded domain
with piecewise smooth Lipschitz boundary 9€2. The domain €2 is partitioned into a set of subdomains {Q,-},N 1 With piecewise

smooth Lipschitz boundary 92; fori=1,--- ,N; I' = Uf; Q2 \ 99 is the interface between the subdomains in the sense

that
M
r=J .
m=1

where there exist i, j € {1,---, N} such that I'; = 9Q; N 3dQ; for m=1,---, M. The elliptic interface problem seeks an
unknown function u satisfying
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=V - (aix)Vuy) + V- (bj0u;) + ciu; =fi, inQj,i=1,---,N, (11)
uj =g, ondQ;Ni,i=1,---,N, (1.2)

[ulr,, =¢m. on I'yym=1,--- M, (1.3)

[(@Vu —bu) -n]r,, =¥m, on I'ym=1,--- M, (1.4)

where u; = ulg;, a; =alg;, bi=blg,, ci=clg, and [(@Vu —bu) - n]r, = (@;Vu; — bju;) - n; + (a;Vu; —bju;) - nj with
n; and n; being the unit outward normal directions to 9Q; N 'y, and d$2; N Ty, and [u]r, = uilr,, — ujlr,. Assume the
elliptic coefficients a, b and c are piecewise smooth with respect to the partition 2 = U,Nlezh We further assume that a(x)
is symmetric and positive definite matrices uniformly in €.

Elliptic interface problems arise in many applications of mathematical modeling and simulation of practical problems
in science and engineering. These applications include computational electromagnetic [18,23,54,53], fluid mechanics [30],
materials science [24,28], and biological science [52,14,7], to mention just a few. The physical solution to interface problems
often possesses discontinuity and/or non-smoothness across the interfaces so that the standard numerical methods will not
work at their full capacity. To address this challenge, many finite element methods (FEMs) [38,4,9,12,42] and finite difference
methods based on Cartesian grids [41,40,31,33,1] have been developed for effective solving of the elliptic interface problem
in the last several decades. In the classical FEMs, unstructured partitions were employed to deal with the irregularity
of the domain geometry, particularly around the interface and domain boundary. The interface-fitted FEMs are based on
proper formulations of the interface problem combined with finite element partitions that align well with the interface.
The penalty methods or Lagrangian multiplier approaches were developed in [16,6] by imposing the interface condition
in the weak formulation. Incorporating the interface conditions into the numerical formulation has the potential of not
only increasing the accuracy of the approximate solutions near the interface, but also the flexibility of allowing the use of
computational grids that do not align with the physical interfaces. The discontinuous Galerkin (DG) methods [11,17,21,29]
were developed by using Galerkin projections and properly defined numerical fluxes to enforce the interface conditions in a
weak sense. Weak Galerkin (WG) FEMs have been developed in [37,38] by using discrete weak differential operators in the
usual variational form of the elliptic interface problem together with a treatment of the interface condition via the boundary
unknowns associated with the weak finite element approximations. The embedded or immersed FEMs [12,19,25,45,20,26,
35,27,47,48] were devised to allow the interface to cut through finite elements for problems with moving interfaces and
complex topology. Consequently, structured Cartesian meshes could be used to avoid the time-consuming mesh generation
process in the immersed FEMs. Recently, a Hybrid High-Order (HHO) method on unfitted meshes was designed and analyzed
in [5] for elliptic interface problems by means of a consistent penalty method in which the curved interface is allowed to
cut through the mesh cells in a general fashion.

Numerical methods in the context of finite differences for the elliptic interface problem include the ghost fluid method
[13], maximum principle preserving and explicit jump immersed interface method (IIM) [32,46,3,33], coupling interface
method [10], piecewise-polynomial interface method [8], and matched interface and boundary (MIB) method [54,55,50]. For
problems with non-smooth interfaces, some second order finite difference schemes have been devised in the context of
the MIB framework in 2D and 3D [51,52,47,48]. Other algorithms based on various mathematical techniques for the elliptic
interface problem include the integral equation method [36,49], the finite volume method [39], and the virtual node method
[2,22].

Even though successes have been achieved in the endeavor of solving elliptic interface problems, challenges remain in
the search of new and efficient numerical algorithms for problems with very complicated interface geometries, and for
problems with low-regularity solutions. The low-regularity of the solution is often caused by the geometric singularities of
the interfaces and/or the non-smoothness of the interface data [37,26].

The goal of this paper is to develop a new numerical method for the elliptic interface problem (1.1)-(1.4) which is appli-
cable to solutions with low-regularity assumptions. This new method is devised by coupling a weak formulation of (1.1)-(1.4)
that is derivative-free on the exact solution u with its dual equation, yielding a new primal-dual weak Galerkin finite ele-
ment method (PDWG). Compared with the WG methods [37,38], the proposed PDWG results in a symmetric formulation for
a non-symmetric interface problem. More importantly, the new PDWG method is applicable to the model problem (1.1)-(1.4)
with rough boundary and interface data on g;, ¢m, and ¥,;. The new method thus provides an efficient numerical algorithm
for elliptic interface problems under low regularity assumptions for the exact solution.

The paper is organized as follows. In Section 2, we derive a weak formulation for the elliptic interface problem (1.1)-(1.4)
that is derivative-free on the solution variable. In Section 3, we briefly review the weak differential operators and their
discrete analogies. In Section 4, we describe the PDWG method for the model problem (1.1) based on the weak formulation
(2.1) and its dual. In Section 5, we establish the solution existence, uniqueness, and stability. In Section 6, we provide an
error equation for the PDWG solutions. In Section 7, we derive some error estimates based on various regularity assumptions
on the exact solution. Finally, in Section 8 we report a couple of numerical results to illustrated and verify our convergence
theory.
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2. Preliminaries and notations

We follow the standard notations for Sobolev spaces and norms defined on a given open and bounded domain D ¢ R¢
with Lipschitz continuous boundary. As such, || - ||s,p and |- |s,p are used to denote the norm and seminorm in the Sobolev
space H%(D) for any s > 0. The inner product in H%(D) is denoted by (-,-)s,p for s > 0. The space HO(D) coincides with
L%(D) (i.e., the space of square integrable functions), for which the norm and the inner product are denoted as || - ||p and
(-,-)p. The space H%(D) for s < 0 is defined as the dual of Hgs(D) [15] through the usual L?(D) pairing. When D = Q or
when the domain of integration is clear from the context, we shall drop the subscript D in the norm and the inner product
notation.

We introduce the following space

N
V=1v: veHy@ N[ [H*Q). aVv e Hdiv; Q) .
i=1
For sufficiently smooth boundary and interface data gj, ¢m,, and v, the solution of the elliptic interface problem (1.1)-(1.4)
satisfies the following weak formulation:

(u, L(v) —b-Vv+4cv) =¢(v), VveV, (2.1)

where L(v)|q, =—V - (@;(X)VV|g,) and

N M M
) =(f,v) =D (g, GVV-M)sqirae — Y (bm, GV -, + Y (Ym, VIr,
i=1 m=1 m=1

Here f|g, = fi, m; in the term ZlNﬂ (gi,a; Vv -nj)s0,nsq is the unit outward normal direction to the boundary 9€2; N 92 for
i=1,---,N. The unit vector n,, is normal to the interface I';; and has a direction consistent with the interface condition
(1.4). The weak form (2.1) can be derived by testing (1.1) against any v € V followed by twice use of the divergence theorem.
For boundary and interface data that are not smooth (e.g., for ¢m, ¥m € L>(I'n) and g; € L2(3$2; N 9K2)), the elliptic interface
problem may not possess a strong solution satisfying (1.1)-(1.4) in the classical sense, but it may have a solution with
low-regularity that satisfies the weak form (2.1).

Definition 2.1. A function u € L?(2) is said to be a weak solution of the elliptic interface problem (1.1)-(1.4) if it satisfies
(2.1).

The dual or adjoint problem to (2.1) seeks an unknown function A € V such that

(w, LA) —b-VA+4cr)= x(w), Yw e H¢(Q), (2.2)

where x is a given functional in H¢(€2). In the rest of the paper, we assume that the dual or adjoint problem (2.2) has one
and only one solution in H2~€(§2) with the following regularity estimate

IAll2—e = Cllx ll—e- (2.3)

This regularity assumption implies that when x =0, the dual problem (2.2) has only the trivial solution A = 0. We point
out that the adjoint problem is a regular second order elliptic problem involving no interfaces at all.

The weak variational problem (or primal equation) (2.1) and its dual form (2.2) are seemingly unrelated to each other
in the continuous case. However, they are strongly connected and support each other in the context of the weak Galerkin
approach for each of them. The rest of the paper will reveal this connection and show how they support each other and
jointly provide an efficient numerical method for the elliptic interface problem (1.1)-(1.4).

3. Weak differential operators

The two principal differential operators in the weak formulation (2.1) for the second order elliptic interface problem (1.1)
are £ and the gradient operator V. The discrete weak version for £ and V has been introduced in [44,43]. For completeness,
we shall briefly review their definition in this section.

Let T be a polygonal or polyhedral domain with boundary dT. A weak function on T refers to a triplet o = {09, 0p, 05}
with oy € L2(T), oy € L%(dT) and oy, € L2(3T). Here o and o}, are used to represent the value of ¢ in the interior and on
the boundary of T and oy, is reserved for the value of aVo -n on dT. Note that o}, and o, may not necessarily be the trace
of 0p and aVoy - n on 9T, respectively. Denote by W(T) the space of weak functions on T:

W(T) = {o = {09, 0p, 0n} : 00 € L*(T), 0, € L>(T), 0 € L>(3T)}. (3.1)

3
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The weak action of £=—V - (aV) on o € W(T), denoted by £,,0, is defined as a linear functional on H2(T) such that

(Lwo, W)t = (00, LW)T + (0p, AVW - M)y — (O, W)sT,

for all w € H(T).
The weak gradient of o € W(T), denoted by V,,o, is defined as a linear functional on [H'(T)]¢ such that

(Vwo, ¥)1 =—(00, V- ¥)T + (0p, ¥ - M)pT,

for all ¥ e [H'(T)]“.
Denote by P,(T) the space of polynomials on T with degree no more than r. A discrete version of L, o for o € W(T),
denoted by Ly ; 10, is defined as the unique polynomial in P,(T) satisfying

(Lw,r, 1o, W)T = (00, LW)T + (0p, aVW - M)y — (00, W)sT, YW € Pr(T), (3.2)

which, from the usual integration by parts, gives

(Lw,r, 10, W)T = (LOo, W)T — (00 — Op, AVW - M)y + (aV0Op - N — Op, W)y, (3.3)
for all w € P,(T), provided that og € H3(T).
A discrete version of Vo for o € W(T), denoted by V70, is defined as a unique polynomial vector in [PT(T)]d
satisfying
(Vw70 ¥)1 = —(00, V- ¥)1 + (0, ¥ M)y, V¥ € [P(T)]", (34)

which, from the usual integration by parts, gives

(Vw,r,10,¥)1 = (YO0, ¥)1 — (00 — 0p, ¥ - a7, Y9 € [Pr(T)]Y, (3.5)
provided that og € H(T).

4. Primal-dual weak Galerkin algorithm

Let 7, be a finite element partition of the domain Q consisting of polygons or polyhedra that are shape-regular [43].
Assume that the edges/faces of the elements in 7, align with the interface I'. The partition 7, can be grouped into N
sets of elements denoted by 7, = 7, N Q;, so that each 7,' provides a finite element partition for the subdomain €; for
i=1,.--,N. The intersection of the partition 7} also introduces a finite element partition for the interface I', denoted by
I',. Denote by &, the set of all edges or flat faces in 7, and 8,? =&, \ 02 the set of all interior edges or flat faces. Denote
by hy the meshsize of T € 7, and h = maxyc7, ht the meshsize for the partition 7j.

For any given integer k > 1, denote by W (T) the local discrete space of the weak functions given by

Wi(T) = {{o0. 0, on} : 00 € Pr(T), 0 € Pi(e), 0n € Pr_1(e),e CIT}.
Patching W (T) over all the elements T € 7, through a common value o}, on the interior interface £, we arrive at the
following weak finite element space Wj,:

Wi = {{00, 0, on} : {00, O, On} T € Wi(T), VT € Th}.

Note that o, has two values o} and o} satisfying ;' + 0,f =0 on each interior interface e =T, N 3Tk € £ as seen from

the two elements T; and Tg. Denote by W,? the subspace of Wy with homogeneous boundary values; i.e.,
W} = {00, 0p, on} € Wy, : 0plag = 0.

Denote by Mj the finite element space consisting of piecewise polynomials of degree k — 1; i.e.,
Mp ={w:w|r € Px_1(T),VT € Tp}.

For simplicity of notation and without confusion, for any o € Wy, denote by £, 6 and V,,o the discrete weak actions
Ly k—1,70 and Vy, _1 7o computed by using (3.2) and (3.4) on each element T; i.e.,

(Lwo)lt =Lwk-1,710OI71), o € Wy,

(Vwo)lr =Vyk-1,1(@0]r), o € Wh.
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For any o, A € Wy and u € My, we introduce the following bilinear forms

s(@, 1))=Y s1(0,1), (4.1)
TeTh
b(u,2)= Y br(u,x), (4.2)
TeTh
where

s7(0, 1) =h7> (00 — 0p, ko — Ap)ar 4+ h7 1 (aV00 - N — G, aVAo - I — An)yT
+ 17 (00, 20)T,
br(u,x)=u, Lwr —b-Vyi+cro)T,

with 7 > 0 being a parameter.
The following is the primal-dual weak Galerkin scheme for the second order elliptic interface problem (1.1) based on the
variational formulation (2.1).

Primal-Dual Weak Galerkin Algorithm 4.1. Find (up; A,) € My x W2, such that
s(ih,0) +b(up, o) =gp(0), Yo e Wy, (4.3)
b(w, Ap) =0, Yw € My,. (4.4)
Here ¢ (0) = (f,00) — Y01 (8, On)ounoe — Yom1 (Bims On) T + Sy (Yims Ob) -

5. Stability analysis

Let Qg be the L2 projection operator onto Py(T), k > 1. Analogously, denote by Q; and Q, the L? projection operators
onto Pi(e) and Pi_(e), respectively, for e C 9T. For w € H'(2), define the L? projection Q,w € W}, as follows

Qnw|r ={Qow, Qpw, Qn(@Vw -n)}.

The L? projection operator onto the finite element space M is denoted as Q’,‘l’l.

For simplicity, we assume the coefficient coefficients a(x), b(x) and c(x) are piecewise constants with respect to the
finite element partition 7. The analysis can be extended to piecewise smooth coefficients a(x), b(x) and c(x) without any
difficulty.

Lemma 5.1. [44,43] The operators Qp and Qﬁq satisfy the following commutative properties:
Lw(Quw) = 1(Lw),  Yw e HA(T), (5.1)
Vw(Qw) = Q5 (Vw),  Ywe H'(D). (5.2)
The stabilizer s(-, -) given in (4.1) naturally induces the following semi-norm in the weak finite element space Wy,
ol =5(0. )7, pEWn, (53)

Lemma 5.2. The semi-norm || - ||,, given in (5.3) defines a norm in the linear space W,?.

Proof. It suffices to verify the positivity property for || - ||,,. Assume [|po]l,, =0 for some p € W,?. It follows that pp =0 on
each element T, po = pp and aVpg -n = p, on each 3T. We thus obtain pp € C°(€2) and further po =0 in Q. Using pg = pp
and aVpg - n = p, on each T gives p, =0, pp =0, and further p =0 in Q. This completes the proof of the lemma. O

Consider the auxiliary problem of seeking & such that

L(®)—Db - VO +cD =1, in , (5.4)
=0, on 9£2,

where € L?(Q) is a given function. Assume that the problem (5.4)-(5.5) has a solution ® € HlN=1 H117 () satisfying

5
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N 2
(Z ||<1>||%+y,9,.) < ClI¥lly-1. (5.6)
i=1

with some parameter y € (%, 1].

Lemma 5.3. (inf-sup condition) Under the assumption of (5.6), there exists a constant B > 0 independent of the meshsize h such that
b(v,o)

> Bh' Y |ih—y,  VveEMy. (5.7)
O#GGW,? |||U|||W

Proof. Let ® be the solution of (5.4)-(5.5) satisfying (5.6). By letting 0 = Q,®, we have from Lemma 5.1 and (5.4) that
b(v,0) =Y (v, Lw(Qp®) —b- Vi Qy® +cQo®)1

TeTh

=Y v, QN (LD) —b- QT (V) +cQo®)r (58)
TeTy

=D (Lo —b-VO+cd)r=) (V.97
TeTh TeTh

for all v € My. From the trace inequality (7.1), the estimate (7.3) with m =y, and the estimate (5.6), there holds

Z h;3/|00 — opl?ds = Z h;3/|Q0¢‘ — Qp®[%ds

TeTy 3T TeTy aT
= Yo [ 100 - oitds
TeTh aT

_ 2y—4
<> Cthr*1Qo® — @17 +h7" Y 1Qo® — @[3 1)
TeTy

(5.9)

N
2y -2 2 2y -2 2
<CRY 23 ||@)3,, o < CRY 2|2 .
i=1
A similar analysis can be applied to yield the following estimate:

> hi' [ 1aVoo - n—an’ds <ChY 2|yl . (5.10)
T€Th gt

Furthermore, by letting 0 = Q;® and using (5.6), we arrive at

> t/|00|2dT= > r/|Qoq>|2dT

TeThw T TeTh T
N

<CY NI, o <CllvIE_,.
i=1

Combining the estimates (5.9)-(5.11) and then using the definition of [|o||,,, we obtain

(5.11)

lloll, < Ch?Y 2y |13, (512)
Thus, it follows from (5.8) and (5.12) that
b(v,0) b(v,0)
0£0 €W llo il 0£0=QyPeW)? llollw
ZTeﬁ (V, 1)[/)T
> sup ——+——
ozyerz NQn®lly
sup (v, ¥)
04y el2(Q) ChY=11¥lly -1

1—
=BV vi—y,
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for some constant B independent of the meshsize h. This completes the proof of the lemma. 0O

We are now in a position to state the main result on the solution existence and uniqueness for the primal-dual weak
Galerkin finite element method (4.3)-(4.4).

Theorem 5.4. Under the assumption of (5.6), the primal-dual weak Galerkin finite element scheme (4.3)-(4.4) has one and only one
solution.

Proof. It is sufficient to show that the homogeneous case of (4.3)-(4.4) has only the trivial solution. To this end, assume
f=0,g=0fori=1,---,N,¢pp=0and ¥, =0 form=1,---, M in (4.3)-(4.4). This implies ¢,(c) =0 for all o € W,?. By
choosing 0 = A, and w = uy, in (4.3)-(4.4), we have

S(Ap, Ap) =0,

which gives A, =0 from Lemma 5.2. The equation (4.3) can then be rewritten as

b(up,0)=0, VYo eWy, (5.13)
which, together with Lemma 5.3, implies

b(uy,0)

0= > Bh'Y luplli—y,

00 EW,? llolllw

so that up =0 in Q. This completes the proof of the theorem. O

6. Error equations

The goal of this section is to derive some error equations for the primal-dual weak Galerkin method (4.3)-(4.4). The error
equations shall play a critical role in the forthcoming convergence analysis.

Let u and (up; Ap) € My x W,? be the exact solution of the elliptic interface problem (1.1)-(1.4) and its numerical solution
arising from the PDWG scheme (4.3)-(4.4). Note that the exact Lagrangian multiplier A = 0 is trivial. Denote the error
functions by

k—1 k—1
en=Qp u—up, ey;=9Q; u-—u, (6.1)

€n = QpA — Ap = —Ap. (6.2)

Lemma 6.1. Let u and (up; Ap) € Mp X W,? be the exact solution of elliptic interface problem (1.1)-(1.4) and its numerical solution
arising from the PDWG scheme (4.3)-(4.4). The error functions e, and €, defined in (6.1)-(6.2) satisfy the following equations:

s(en, 0) +blen, 0) =Lu(0), Vo e Wy, (6.3)
b(w,ep) =0, Yw € My,. (6.4)
Here
u(0) =) (eu.aVoo - m—on)sr + (00, ceu)T + (0 — 00, (aVey — bey) - n)yr. (6.5)
TeTh

Proof. Recalling the definition of b(-,-) in (4.2) and choosing w = Ql};’lu in (3.2) and ¥ = bQ'ff]u in (3.4), we get
b(Qy u,0) =Y (9 'u, Lwo —b- Vo +coo)r
TeTh

= Z (00, L(Q )1 + (0. aV QL UMyt — (00, O 'u)ar
TeTy

+ (00, V- (bQf ")) 1 — (0, bOF - m)yr + (QF M, coo)r-

Observe that the exact Lagrangian multiplier A = 0 is trivial, so that s(QyA,0) =0 for all o € W,?. It follows from (1.3) -(1.4)
and oy |3 = 0 that
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5(Qnx. 0) +b(Qy"u, 0)
= (00, L(Qf W) + V- Q™ w) + O wyr

TeTy

+ ) (op. @V(Q 'u—u) —=b(Qf u—w) Myt — (0w, Q"1 — u)ar) (6.6)
TeTh
N M M

- Z(giﬁn)asz,ﬂm - Z((l)mﬁn)rm + Z(lﬂmﬁb)rm-
i=1 m=1 m=1

Denote
1= (00, L(Q} 'u) + V- (bQ'u) +cQ} " u)r.
TeTy
By the usual integration by parts, and (1.1)-(1.4), we have

I=") (00, Ley+ V- (bey) +ce)r + (£ 00)
TeTh

= Y ((aVey —bey, Voo)r — ((@Vey —bey) -1, 00)ar1) + (90, cey + f)
TeTh

=Y (ew, LOO)T + {eu, aVop - m)y7 — (bey, Vao)r — ((@Vey — bey) -0, 00)sr
TeTy

+(00, cey + f)

= Y (ew,aVoo - m)yr — ((@Vey —bey) -1, ao)a1 + (00, cey + f),
TeTy

where we have used (ey, V - (aVog))r =0 and (Vop, bey)r = 0 due to the orthogonality property of the L2 projection

operator Q’,ﬁ’l.
Substituting the above equation of I into (6.6) yields

s(Qrh, ) +b(Q) 'u, 0)
=) (eu,aVoo -0 — on)a1 + (0 — 00, (aVey — bey) - a7 + (00, cey + )1

TeTh (6.7)
N M M

- Z(giﬂn)mmag - Z((l)mﬁn)rm + Z(llfm,%)rm-
i=1 m=1 m=1

The difference of (6.7) and (4.3) gives (6.3).
From A =0, the equation (4.4) gives rise to

b(w, €p) =b(w, QpA — Ap) =b(w, —Ap) =0, Yw € Mp,

which completes the derivation of (6.4). The proof is thus completed. O
The equations (6.3)-(6.4) are called error equations for the primal-dual WG finite element scheme (4.3)-(4.4).

Remark 6.1. For CO-WG elements (i.e., 69 = 0}, on the boundary of each element), the second term in (6.5) vanishes so that
I, (o) can be simplified as

£u(0) =) (ey,aVop - 0 —on)y7 + (90, Ceu)T, (6.8)
TeTh

which involves no derivative for the exact solution u. The expression (6.8) permits an error estimate under ultra-low regu-
larity assumptions for the solution of the interface problem (1.1)-(1.4).

8
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7. Error estimates
As Ty is a shape-regular finite element partition of the domain €, for any T € 7, and ¢ € HY(T) (% <y <1), the
following trace inequality holds true [43]:

_ 2y —
iy < Chr el +hy" gl o). (71)

Lemma 7.1. [43] Let T, be a finite element partition of Q2 satisfying the shape regularity assumptions as specified in [43]. The following
estimates hold true

> hF = Qf ulfy < ChPMflulz,. (7.2)
TeTy
> b llu— Qoullfy < CR2™ iz, 4, (7.3)
TeTh

where0<Il<2and0<m<k.
The main convergence result can be stated as follows.

Theorem 7.2. Assume k > 1. Let u and (up; Ap) € Mp, X W,? be the exact solution of the elliptic interface problem (1.1)-(1.4) and

its numerical solution arising from the PDWG scheme (4.3)-(4.4). Assume that u is sufficiently regular such that u € I—[,N:1 H*YQpH N
HY (). The following error estimate holds true:

N 2
lenllw +h'"7 llenlli—y < Ch* ((1 +T Y llullg g, + 8k 1h*” ||u||%+y,gi> : (7.4)
i=1

where % <y < 1and §; j is the Kronecker delta with value 1 when i = j and 0 otherwise. As a result, one has the following optimal
order error estimate in the H'~Y -norm for uy,

N 2

lu—upll—y < CHHY! ((1 +1H) ulf g, +ak,1h2V||u||%+y,g,.> : (7.5)
i=1

Proof. Note that ¢, = —Ap € W,?. Choosing 0 =€, and w =ey, in (6.3) and (6.4) gives rise to

s(en, €p) = Ly (€p). (7.6)

For k > 2, we use (7.6), the Cauchy-Schwarz inequality, the equation (6.5), the trace inequality (7.1), and the estimates
(7.2) with m =k to obtain

llenll?, = sen, €n) = |€u(en)|

1
= (X nleo—eldr)” (X hhli@Ve, —bew) -mid;)

[NE

TeTh TeTh
1 1
-1 2 \2 2 \2
+ (X h'Iaveo m—enl3r)” (3 hrlleuly )
TeTh TeTh
1 1
2)?2 -1 2)?2
+( D Theol})” (X 7 lleeul?)
TeTy TeTh

2 2 2y 42 2
< Cllénllw | D hillaVey —bey |1 +h7" " |avVe, —bey | ;
TeTy

(ST

2 2 2 -1 2
+lealld +h7 leul?  + 7 iceull})

Therefore, for k > 2, we have
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N 2
llenll?, < Ch ((1 +rhH) ||u||,%,9i) ll€nll -

i=1

As to the case k =1, we have VQﬁ_lu =0 and thus

2y+2
llenll, < C( > hilavVu —bey ||} +hi’ " laVu —bey|2 ¢
TeTh

N—=

2 2y 2 -1 2
el +h3 lleul? ¢+t ceul})

1
N 2
<Ch ((1+r1>Z||u||%,gi+h2y||u||%+y,g,,> :

i=1
Consequently, there holds for all k> 1

N 2
llenll < Ch* ((1 +THY ulf g, + Skah® ||u||%+y,g,.) : (7.7)
i=1

As to the estimate for the error function ey, we use the error equation (6.3), (7.7), the Cauchy-Schwarz inequality, and the
triangle inequality to obtain

Ib(en, o) = [€y(0) = s(en, )| < |y ()| + ll€nllwllo v
1

N 2
<Ch* ((1 +1H) ulf g, +8k.1h2V||u||%+y,9,.) ol
i=1

which, combined with the inf-sup condition (5.7), yields the following error estimate

N 2

Bh'Y llenll—y < Ch ((1 +17H)) ulf g, +8k,1h2V||u||%+y,9,.> : (7.8)
i=1

Then the desired error estimate (7.4) follows from (7.7) and (7.8). Finally, the estimate (7.5) is a direct result of (7.4) and the

triangle inequality. This completes the proof of the theorem. O

Corollary 7.3. Assume k > 1. Let u and (up; Ap) € M x W,? be the exact solution of the elliptic interface problem (1.1)-(1.4) and
its numerical solution arising from the PDWG scheme (4.3)-(4.4). Assume that the exact solution u has the “low” regularity of u €
I—[f\’:1 H?¥($;) for some % < 8 < k. Then, for CO-WG elements, the following error estimate holds true:

N 2

1

lenllw +h""" llenlli—y < Ch(A+171)2 <§ j ||u||§,9,,> : (7.9)
i=1

where % < y < 1lisrelated to the regularity estimate (5.6). Consequently, one has the following error estimate

N 2
_ 1.1
lu —uplli—y < CHTY 1147712 (Znunigi) : (7.10)

i=1
Proof. It is easy to see €, € W,?. By letting 0 =€, and w =ey, in (6.3) and (6.4) we arrive at

S(€n, €n) = Ly (€p). (711)

Now, we use (7.11), the Cauchy-Schwarz inequality, the equation (6.8), the trace inequality (7.1), and the estimates (7.2) with
m =4 to obtain

llenll, = s(en, €n) = |€u(en)|

1 1
— 2 2
<( X hr'llaveo - m—enldr)” (3 hrlleuly)

TeTh TeTh

10
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H(X wleol?) (X e eeai?)’

TeTy TeTh

(S

2 2 2 -1 2
= Cllenll (- lleul +h7” leull? 1+ llceull})
TeTh

1 N %
< Cllenll he(1 + 1712 (Z ||u||§,9i) :

i=1
Hence,

N 2
_1.1
lenllw < CR° (1 + 7712 (Z ||u||§,9i) : (7.12)
i=1
As to the estimate for ey, we use the error equation (6.3), (7.12), the Cauchy-Schwarz inequality, and the triangle in-
equality to obtain

Ib(en, o) = [€u(0) — s(€n, 0)| < [€u (@) + ll€nllwllollw
1

N 2
1.1
<Ch’(1+t 1)2|||0'|||w (Z ”u”§91) ’

i=1
which, combined with the inf-sup condition (5.7), gives rise to the following error estimate

N 2

_ 1,1

BR' Y llenlli—y < CH* (1477 1)2 (Z ||u||§,gi) : (7.13)
i=1

The desired error estimate (7.9) then follows from (7.12) and (7.13). Finally, (7.10) is a direct consequence of (7.9) and the

triangle inequality. This completes the proof of the theorem. O

8. Numerical experiments

In this section, we will present some numerical results to verify the efficiency and accuracy of the proposed primal-dual
weak Galerkin method (4.3)-(4.4) for solving the elliptic interface problem (1.1)-(1.4). In our experiments, we shall imple-
ment the algorithm with k=1, 2 in the finite element spaces M; and W,?. We shall compute various approximation errors
for up and Ap, including the L2 error |[u — upllo and [Aollo, the H! error |[Agll1 for A, and the discrete error ||Ayllw as
defined by (5.3). If not otherwise stated, the parameter 7 in the PDWG numerical scheme will be T = 1. The finite element
partition 7 is obtained through a successive refinement of a coarse triangulation of the domain in aligning with the in-
terface, by dividing each coarse element into four congruent sub-elements by connecting the mid-points of the three edges
of the triangle. When the curved interface segments are involved, we use the straight-line to approximate curved interface
segments. To diminish this approximation error and ensure the accuracy of the numerical solution, the computational inter-
face of the initial mesh should be carefully taken. For example, for higher-order polynomial approximation, we may choose
a higher-order straight-line approximation (e.g., a finer mesh near the curved interface). The right-hand side functions, the
boundary and interface conditions are all derived from the exact solution.

Example 1: We consider the interface problem (1.1)-(1.4) on the domain = (0, 1)? with an interface given by ©; =
[0.25,0.75]% and Q; = Q\Q;. The coefficients in the model equations are taken as

ag=a=1, by=by=(,1), c;=c;=1.
The analytical solution to the elliptic equation is given as
_[1o-x—y* ifxy) e,
~ | sin(wx) sin(wy) if (x, y) € Q5.

The initial mesh is shown in Fig. 8.1 (left one). The mesh refinement of the previous level is done by connecting the mid-
points of the edges. The mesh at the next level is illustrated in Fig. 8.1 (right one). The surface plot of the PDWG solution
up on the finest mesh (i.e., after the fifth refinement of the initial mesh) is depicted in Fig. 8.2.

Table 8.1 shows the numerical results and the rate of convergence for k = 1, 2. We observe that, for both linear (k =1)
and quadratic (k = 2) PDWG methods, the convergence rate for the errors ||u — upllo and ||Apllw is of O(h¥), which is
consistent with the theoretical estimate (7.4) in Theorem 7.2. As to the approximation error for Ao, we observe a convergence

11
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Fig. 8.1. The initial mesh (left) and the next level refinement (right).

0.5

Fig. 8.2. Surface plot of the numerical solution uj calculated by the PDWG method of Example 1.

Table 8.1
Errors and convergence rates of the linear and quadratic PDWG methods for Example 1.
h 12 Nl w rate 2ol rate 2ol rate. flu—upllo  rate
2.50e-1 1.15e-0 - 2.56e-1 - 1.21e-1 - 1.74e-1 -
1.25e-1 6.32e-1 0.87  9.52e-2 143 3.56e-2 1.77 7.78e-2 116
k=1 6.25e-2  3.34e-1 092  3.0le-2 1.66 9.73e-3 1.87 3.51e-2 115
3.13e-2 1.72e-1 096  8.49e-3 1.82 2.54e-3 1.94 1.66e-2 1.09
1.56e-2 8.73e-2 098  2.26e-3 1.92 6.47e-4 1.97 8.06e-3 1.04
h 125 Nl w rate Aol rate I2ollo rate lu—upllo  rate
2.50e-1 2.00e-1 - 1.88e-2 - 5.71e-3 - 2.80e-2 -
2.50e-1 5.12e-2 197 1.59e-3 356 3.6le-4 398  6.66e-3 2.07
k=2  6.25e-2 1.28e-2 2.00 1.54e-4 337  2.25e-5 4.00 1.64e-3 2.02
3.13e-2 3.19e-3 2.00 1.67e-5 3.20 1.40e-6 4.01 4.08e-4 2.01
1.56e-2 7.97e-4 2.00 1.94e-6 3.10 8.72e-8 400  1.02e-4 2.00

rate of O(h¥t1) for ||Agll1 from this numerical experiment, which suggests a superconvergence for the dual variable A in
the H!-norm. We further observe a convergence of order O(h**1) for k =1 and of h¥*2 for k =2 for A in the L2 norm.
Again, the (k + 2)-th order of convergence for |Ag]lo indicates a pleasant superconvergence phenomenon of the PDWG

method.

To test the condition number of the PDWG scheme and its dependency on the coefficient contrast, we consider different
choices of coefficient contrasts in five cases:

e Case 1: a1 =ay =1,
e Case 2: a; =100,a; =1,
e Case 3: a1 =1000,a; =1,

bi=by=(1,1), ci=c=1.
b] =b2=(1,1), C1=C2=1.
bi=by=(1,1), ca=c2=1

12
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Table 8.2
Condition numbers and growth rates of the matrix calculated from the linear PDWG in different choices
of parameters with a rectangular interface.

case 1 h=P case 2 h=P case 3 h=P case 4 h=P case 5 h~—P

1.92e+4 - 4.14e+6 - 4.07e+8 - 2.05e+4 - 1.86e+5 -

2.97e+5 3.95 6.26e+6 0.60 6.06e+8 0.57 1.02e+5 2.31 3.16e+5 0.77
5.33e+6 4.17 3.85e+7 2.62 3.50e+9 2,53 2.90e+6 4.83 4.18e+6 3.73
9.61e+7 4.17 2.56e+8 2.73 1.85e+10 240 5.18e+7 4.16 8.45e+7 4.34
1.60e+9 4.06 211e+9 3.04 8.38e+10 218 9.05e+8 413 1.87e+9 4.47

Table 8.3
Condition numbers and growth rates of the matrix calculated from the linear PDWG in different choices of
parameters with a circular interface.

case 1 h=P case 2 h~P case 3 h—P case 4 h=P case 5 h~P

3.63e+5 - 1.70e+7 - 1.67e+9 - 3.34et5 - 5.13e+5 -

2.58e+6 2.83 2.57e+7 0.60 2.47e+9 0.57 1.88e+6 2.50 3.20e+6 2.64
4.70e+7 4.19 1.30e+8 233 1.13e+10 219 3.50e+7 4.22 6.55e+7 4.36
7.48e+8 3.99 1.16e+9 3.16 5.65e+10 233 6.32e+8 417 1.41e+9 443
1.25e+10 4.07 1.51e+10 3.71 2.48e+11 213 1.06e+10 4.07 3.54e+10 4.65

Fig. 8.3. The interface and subdomains (left) and the initial mesh (middle) and the refined mesh from the twice refinement of the initial mesh (right).

e Case4:a1=1,a=1, byj=by=(,1), c;1=1,cy =1000.
e Case 5: ay =1,a =1, b;=(1000,1000),b, =(1,1), c1=1,co=1.

Listed in Tables 8.2 and 8.3 are the condition numbers and their growth rates of the matrix calculated from the linear
PDWG under a rectangular interface and a circular interface, respectively. Here the circular interface and the mesh are the
same as these in Example 2. One can see that the condition number grows like O(h~P) for some positive value p,2 <p <5
as the mesh size h decreases, which is similar to that of the mixed finite element method for elliptic equations, see, e.g.,
[34], while is different from the standard finite element method, whose condition number grows like ®(h~2). Moreover, it
seems that the coefficient contrast has effect on the condition number. As the ratio g—; increases (case 2 and case 3), we
see a larger condition number while a smaller growth rate. As the ratio % increases (case 4), the condition number and
its growth rate change little and the growth rate remains (h—*). While we observe a slightly larger growth rate when the
coefficient contrast z—; increases (case 5). In other words, it seems that the convection coefficient contrast and the diffusion
coefficient contrast may have different (positive or negative) impacts on the growth rate of the condition number.

Example 2: We consider a circular interface problem on the domain Q = (0, 1)2. Here €2 is the disc centered at the point
(0.5, 0.5) with radius r = 0.25, and Q; = Q\1. The coefficients are taken as

am=a=2+sinx+y), bi=by=kxy), ci=c2=4+x

The analytical solution to the interface problem is

| sin(x4+y)+cos(x+y)+5, if (x, y) € 21,
T lx+y+1, if (x, y) € Q.

We plot in Fig. 8.3 the interface and subdomains (left), the initial mesh (middle), and the refined mesh generated from
twice refinement of the initial mesh (right), respectively. The surface plot of the approximate solution uj calculated by the
PDWG method with k=1 on the finest mesh is shown in Fig. 8.4.

We present in Table 8.4 the approximation errors and corresponding convergence rates for the primal variable u, and
dual variable Ay, from which we observe a convergence rate of O (h¥) for both |lu — up|lo and [|An|lw. In other words, the

13
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Fig. 8.4. Surface plot of the numerical solution uj calculated by the PDWG method of Example 2.

Table 8.4
Errors and convergence rates of the linear and quadratic PDWG methods for Example 2.
h [12h Nl w rate [I%oll1 rate I2ollo rate lu—upllo  rate
1.29e-1 6.43e-1 - 3.02e-1 - 2.15e-2 - 7.50e-2 -
6.47e-2  3.55e-1 086 931e-2 170 517e-3 206  3.75e-2 0.99
k=1 3.24e-2  198e-1 0.84 297e-2 165 1.42e-3 1.87 1.77e-2 1.09
1.62e-2 1.07e-1 0.89 885e-3 175 3.80e-4 190  8.35e-3 1.09
8.09e-3  5.59%-2 094 243e-3 187 9.98e-5 193  4.04e-3 1.05
h 12k llw rate  [|Aolls rate  |lAollo rate  flu—upllo rate
1.29e-1 451e-2 - 6.20e-4 - 544e-4 - 3.28e-3 -
6.47e-2  114e-2 199 548e-5 350 343e-5 400 8.30e-4 1.98
k=2 324e-2 294e-3 195 520e-6 340 215e-6 4.00  2.08e-4 2.00
1.62e-2 724e-4 202 538e-7 327 135e-7 400 517e-5 2.01
8.09e-3  184e-4 197 6.20e-8  3.12 849e-9 399  1.30e-5 2.00

error bound given in (7.4) is sharp. Analogous to Example 1, we see the error ||Ag|l; converges to zero with an order of k+1
for both linear and quadratic PDWG methods. Table 8.4 also shows a convergence of Ag with order (k + 1) for k=1 and
(k+2) for k=2 in L% norm.

Example 3: The interface problem (1.1)-(1.4) is defined on the domain € = (0, 1)? with a closed interface I' parameterized
as follows

3sin(36)
r=054+ ——-.

The subdomain €27 is given by the region bounded by the curve I and Q; = Q\2; is the portion of the domain outside T.
The PDE coefficients are given by

a=1+x+y, aa=1, bi=by=(1,1+y), c1=c2=2.
The exact solution to the elliptic problem is given as

e*cos(y) + 10, if (x, y) € 1,
u=
Se MV if(x,y) € Q.

The interface and subdomains, the initial mesh, and the refined mesh after two successive refinements of the initial
mesh are shown in Fig. 8.5. The numerical solution uy calculated by the PDWG method with k =2 on the refined mesh are
depicted in Fig. 8.6. The numerical errors of the linear and quadratic PDWG methods are reported in Table 8.5. It can be seen
that the theoretical convergence (i.e., O(h¥) for both |u — upllo and ||An]lw) is achieved in this numerical test. Moreover,
a convergence of O(h¥t1) for ||Aoll1, and Oty and O(hk+2) for the error ||Agllo is observed for the case of k=1 and
k =2, respectively.

Example 4: The interface T' on the domain € = (0, 1)? is characterized by the following equation in the polar coordinates:

x(0) = (1/2 + 1/2 cos(m#) sin(nd)) cos(6),
y(@) = (1/2 4 1/2cos(mé) sin(nh)) sin(h),

where m =2 and n = 6. The subdomain €7 is the region inside I and €, = Q\;. The coefficients in the elliptic interface
problem are given by

14
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Fig. 8.5. The interface and subdomains (left) and the initial mesh (middle) and the refined mesh (right).

Fig. 8.6. Surface plot of the numerical solution u calculated by the PDWG method of Example 3.

Table 8.5
Errors and convergence rates of the linear and quadratic PDWG methods for Example 3.
h 125 Nl w rate 2ol rate I2ollo rate lu—upllo  rate
3.54e-1 1.35e-0 - 3.77e-1 - 6.52e-2 - 2.38e-1 -
1.77e-1 7.32e-1 0.81 1.26e-1 1.58 1.65e-2 1.98 1.25e-1 0.93
k=1 8.84e-2 4.01e-1 0.87 4.14e-2 1.61 4.37e-3 1.92 6.63e-2 0.92
4.42e-2 2.16e-1 0.89 1.29e-2 1.68 117e-3 1.90 3.54e-2 0.91
2.21e-2 1.14e-1 0.92 3.75e-3 178 3.07e-4 193 1.90e-2 0.90
h 12 Nl w rate 120 ll1 rate I2ollo rate lu—upllo  rate
354e-1  20le-1 - 109-2 - 582-3 - 1.66e-2 -
177e-1 51282 197 970e-4 350 3.76e-4 395  413e-3 2.01
k=2 884e-2 128e-2 200 9.04e-5 342 237e-5 399 1023 2.02
442e-2  321e-3  2.00 9.70e-6 322  148e-6 4.00 2.53e-4 2.01
221e2  8.02-4 200 114e-6 301 928e-8 400 6.30e-5 2.00

a1 =(xy+2)/5 =0 —y*+3)/7, b1=(0,1), b=(1,0), c1=2, a=1.
The exact solution to the interface problem is

po[xry+2, if (x, y) € @1,
1 0.5sin(x+ y) +0.5cos(x+ y) + 0.3, if (x, y) € Q.

The interface and subdomains are shown in the left of Fig. 8.7. To approximate the curved interface, we consider two
types of computational interface in our numerical experiment. The first one is obtained by equally dividing the interval
[0, 27r] with 20 subintervals, and the corresponding mesh is referred as to Mesh 1. While the second one is derived by
using 40 uniformly distributed points and the corresponding mesh is referred as to Mesh 2. The two types of computational
interface are shown in the middle and right of Fig. 8.7. We use the Matlab delaunay to get the initial mesh. The PDWG
solution uy on the finest mesh are depicted in Fig. 8.8.

The numerical errors of the linear and quadratic PDWG method in two different meshes are reported in Tables 8.6 and
8.7. As we may observe, the errors calculated from Mesh 1 are larger than those from Mesh 2, due to the fact that Mesh 2
provides a better approximation to the curved interface. While the convergence rates for both meshes are almost the same.
To be more precise, the numerical convergence rate for ||Ap|lw, lu — uxllo, and ||Ag]l; are seen to be O(hX), O(h¥), O(hk+1),
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Fig. 8.7. The interface and subdomains (left) and the computational interface at the first stage of Mesh 1 (middle) and Mesh 2 (right).

Fig. 8.8. Surface plot of the numerical solution uj calculated by the PDWG method of Example 4.

Table 8.6
Errors and convergence rates of the linear PDWG methods for Example 4 in two different meshes.
h 12h llw rate I2oll1 rate. [lAollo rate lu—upllo  rate
3.54e-1 1.58e-1 - 2.94e-2 - 7.35e-3 - 4.02e-2 -
1.77e-1 8.12e-2 0.96 9.08e-3 170 1.79e-3 2.04 1.94e-2 1.05
Mesh 1 8.84e-2 4.15e-2 0.97 2.93e-3 1.63 4.59e-4 1.97 9.55e-3 1.03
4.42e-2 2.14e-2 0.96 8.58e-4 177 1.20e-4 1.93 4.77e-3 1.00
2.21e-2 1.09e-2 0.97 2.35e-4 1.87 3.06e-5 1.98 2.51e-3 0.93
3.54e-1 1.24e-1 - 1.96e-2 - 5.72e-3 - 3.15e-2 -
1.77e-1 6.54e-2 0.92 6.55e-3 1.58 1.44e-3 1.99 1.55e-2 1.03
Mesh 2 8.84e-2 3.48e-2 0.91 211e-3 1.64 3.85e-4 1.90 7.77e-3 0.99
4.42e-2 1.82e-2 0.94 6.23e-4 176 1.02e-4 1.91 3.88e-3 1.00
2.21e-2 9.32e-3 0.96 1.69e-4 1.88 2.62e-5 1.96 1.94e-3 1.00

respectively. Once again, the numerical experiment suggests a convergence at the optimal order of O (h**1) for ||xqllo for
the linear PDWG method and a superconvergence of O (h¥*2) for the quadratic PDWG method. As indicated from Tables 8.6
and 8.7, the computation interface of Mesh 1 seems enough to ensure the desired convergence rates for k = 1,2 in this
case. See also Fig. 8.8.

Example 5: We consider an interface problem on the domain € = (0, 1) with an interface I' parameterized in the polar
angle 6 as follows

r=05+ sin6) .

The subdomain 21 is the part inside I and €, = Q\ Q7 is the part outside I". The coefficients in the PDE are given by
a =0.01, az =0.1, b] =b2 = (0, 0), C1=0C =0.
The exact solution to the elliptic interface problem is
e@ =D +Q2y—1? if (x, y) € Q1,

0.1(x2 4+ y3)2 — 0.01In(2/*% + y?), if (x, y) € Q.
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Table 8.7
Errors and convergence rates of the quadratic PDWG methods for Example 4 in two different meshes.
h 12n 11w rate I2oll1 rate I2ollo rate lu—upllo  rate
3.54e-1 1.42e-2 - 1.78e-3 - 311e-4 - 2.25e-3 -
1.77e-1 3.59e-3 1.99 1.93e-4 3.21 1.97e-5 3.98 5.53e-4 2.02
Mesh 1 8.84e-2  897e-4 2.00 223e-5 311 124e-6 399  136e-4 2.02
4.42e-2 2.24e-4 2.00 2.70e-6 3.05 7.76e-8 4.00 3.39e-5 2.01
h 12n 11w rate I2oll1 rate lI2ollo rate. flu—upllo  rate
3.54e-1 1.26e-2 - 1.61e-3 - 2.50e-4 - 1.93e-3 -
1.77e-1 313e-3 2,01 1.67e-4 327  158e-5 398  4.85e-4 1.99
Mesh 2 8.84e-2 7.80e-4 2.00 1.86e-5 317 9.96e-7 3.99 1.20e-4 2.02
4.42e-2 1.94e-4 2.00 2.20e-6 3.08 6.24e-8 4.00 2.97e-5 2.01

Fig. 8.9. The interface and subdomains (left) and the computation interface at the first stage (middle) and the initial mesh (right).

Fig. 8.10. Surface plot of the numerical solution uy calculated by the PDWG method of Example 5.

Plotted in Fig. 8.9 are the interface and the domain (left), the computational interface at the first stage (middle), and

the initial mesh (right). Fig. 8.10 shows the surface plot of the numerical solution uy calculated by the PDWG method with

k = 1. Table 8.8 reports the approximation error and the corresponding rate of convergence for u, and A;. An optimal order

of convergence of O(h*) for |lu — upllo and |Axllw is observed, which is in good consistency with our theoretical findings in

Theorem 7.2. Table 8.8 further suggests a convergence for |Ag|; at the rate of O(h¥t1), and a convergence for ||Ag|lo at the

rates of O(h¥t1) and O(h¥t?2) for the linear and quadratic PDWG methods, respectively.

Example 6: We consider the problem (1.1)-(1.4) on the domain Q = (0, 1)? with the same interface as that of Example 1;

ie., 21 =(0.25,0.75)2, Q = Q\Qq, and I" = 8Q4. The coefficients are set as

a1 =2+sin(x+y), aa=5, by=by=(0,0), c1=c2=04.

Define
Flz{(l,y):l<y<§}, Fzz{(i,y):l<y<§},
4 47774 4 47" 74
F3_{(x71):1<x<§}, F4={(X,§):1<X<§}.
4° 4~ — 4 4° 4~ — 4
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Table 8.8
Errors and convergence rates of the linear and quadratic PDWG methods for Example 5.
h 125 Nl w rate 1201 rate I2ollo rate lu —unllo rate
3.82e-1 4.77e-2 - 1.20e-1 - 113e-2 - 7.18e-2 -
191e-1 2.74e-2 0.80 5.66e-2 1.08 5.07e-3 116 3.35e-2 110
k=1 9.53e-2 1.54e-2 0.83 1.70e-2 174 1.55e-3 171 2.01e-2 0.74
4.77e-2 8.33e-3 0.89 4.85e-3 1.80 4.40e-4 1.81 9.26e-3 112
2.38e-2 4.26e-3 0.97 1.27e-3 1.94 1.15e-4 1.94 4.77e-3 0.96
h 12 Nl w rate 120 ll1 rate I2ollo rate lu —unllo rate
3.82e-1 1.69e-2 - 7.29e-2 - 5.63e-3 - 1.12e-2 -
191e-1 6.38e-3 141 2.47e-2 1.56 8.29e-4 2.76 2.97e-3 191
k=2 9.53e-2 1.79e-3 1.83 3.73e-3 2.73 6.17e-5 3.75 8.28e-4 1.85
4.77e-2 5.17e-4 1.80 5.17e-4 2.85 4.36e-6 3.82 2.33e-4 1.83
2.38e-2 1.58e-4 171 6.91e-5 2.90 2.92e-7 3.90 5.42e-5 211
103
3 5

Fig. 8.11. Surface plot of the numerical solution Aj (left) and uy (right) calculated by the PDWG method of Example 6 with f; = f, =0,k=1 and h = 1/40.

We choose the boundary condition u|yjg = %sin(x + y) +cos(x+ y) + 1, and the following interface data:
[ulr, =i, 1<i<4, [aVu—bu]r, =(4.0), [aVu—bu]r, = (2/eie*,0),
[aVu —bu]r, = (0,67 cos(2mwy)), [aVu —bu]r, =(1,0).

Fig. 8.11 shows the plots for the numerical solution Ap (left) and up (right) obtained from the PDWG numerical method
with k =1 for the interface problem when the right-hand side functions are taken as f; = f> = 0. It should be noted that
the exact solution to this interface problem is not known, and the interface data for the jump of u is piecewise constant

and, therefore, does not have the H 5 (I')-regularity needed in most other numerical methods.
Example 7: This example assumes the same interface I"' as in Example 6. Here, we take

ap=1, a=100, b1=by=Q2+y,1+Xx), ci=c2=0, fi=f2=0.
The boundary condition and the interface data are chosen as
Ulpo = %(x2 + y3)(% sin(x + y) + %cos(x +y) — %ln(x2 + %),
[ulr; =1, [ur,, =0, i=1,2,

1 1
[aVu —bu]r, = (T cos(27x),0), [aVu —bu]r, = (5 sin(x) + i cos(x) + y, 0),

1 3
[aVu —bufr; = ((y — ) — 7)(cos) + 2x), (sin(x) +xX)HRy—1), j=3.4

Fig. 8.12 shows the plots for the numerical solution Aj (left) and uj (right) obtained from the PDWG numerical method
for the interface problem with k = 2. For this test case, the exact solution to the interface problem is not known. Further-

more, the interface data for the jump of u is discontinuous by assuming 0 or 1 so that the H 3 (I')-regularity is not satisfied.
The PDWG method, however, is applicable and provides meaningful numerical solutions.
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Fig. 8.12. Surface plot of the numerical solution Ay (left) and uy (right) calculated by the PDWG method of Example 7 with f; = f, =0,k =2 and h = 1/40.
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