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1. Introduction

In this paper we shall develop a new [P-primal-dual weak Galerkin (PDWG) methods for the div-curl system with the
normal boundary condition. To this end, we consider the model problem: Find a vector field u = u(x) such that

V- (eu)=f, in £2, (1.1a)
Vxu=g, in £2, (1.1b)
eu-n = ¢, on I, (1.1¢)

where £2 C R3 is an open, bounded and connected polyhedral domain, and I" = 82 is the boundary of £2. Assume
that I" is the union of a finite number of disjoint surfaces I" = | Ji_, I3 with IG being the exterior boundary of £2 and
I; (i=1,...,L) being the other connected components with finite surface areas. Note that L is equal to the number of
holes in the domain §2 geometrically which is known as the second Betti number of £2 or the dimension of the second de
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Rham cohomology group of §2. Assume the coefficient matrix ¢ = {g;(X)}3x3 is symmetric and uniformly positive definite
in £2 with ; (i,j = 1, 2, 3) being in L*°(£2).

The solution uniqueness for the div-curl system (1.1a)-(1.1c) depends on the topology of the domain £2. It is well-
known that the solution uniqueness holds true for simply connected 2, while the solution is unique up to a normal
g-harmonic function in WB”"’(.Q) defined in (2.1) for the case that the domain £2 is not simply connected. The dimension
of Wy"P(£2) is the first Betti number of 2 which is the rank of the first homology group of £2.

The div-curl system (1.1a)-(1.1b) arises in many applications in science and engineering such as electromagnetic fields
and fluid mechanics. Computational electro-magnetics plays an important role in many areas such as radar, satellite,
antenna design, waveguides, optical fibers, medical imaging and design of invisible cloaking devices [1]. In linear magnetic
fields, the function f(x) vanishes, u represents the magnetic field intensity and &(x) is the inverse of the magnetic
permeability tensor. In fluid mechanics fields, the coefficient matrix (x) is diagonal with diagonal entries being the local
mass density. In electrostatics fields, ¢(x) is the permittivity matrix.

There have been several numerical methods proposed and analyzed for the div-curl system (1.1a)-(1.1b). A covolume
method was developed by the employment of the Voronoi-Delaunay mesh pairs in three dimensional space [2]. [3]
developed a least-squares finite element method for two types of boundary value problems. The least-squares method
was proposed in [4] for the div-curl problem based on discontinuous elements on nonconvex polyhedral domains. In [5],
a classical numerical method was introduced for solving the magnetostatic problem by employing a scalar or vector
potential. The control volume method [6] was proposed directly for planar div-curl problems. [7] proposed a discrete
duality finite volume method for div-curl problems on almost arbitrary polygonal meshes. A mixed finite element method
was introduced in [8] for three dimensional axisymmetric div-curl systems through a dimension reduction technique
based on the cylindrical coordinates in simply connected and axisymmetric domains. The mimetic finite difference
scheme [9,10] was introduced for the magneto-static problems on general polyhedral partitions. The numerical algorithm
was designed to construct a finite element basis for the first de Rham cohomology group of the computational domain,
which was further used for a numerical approximation of the magnetostatic problem. [11] proposed a weak Galerkin finite
element method for the div-curl system with either normal or tangential boundary conditions. Another weak Galerkin
scheme was introduced in [ 12] by using a least-squares approach for the div—curl problem. [13,14] developed primal-dual
weak Galerkin finite element methods for the div—curl system with tangential boundary condition and normal boundary
condition respectively and proved that the schemes work well for the exact solution with low-regularity assumptions. The
primal-dual weak Galerkin finite element methods have been developed for many challenging PDEs (see an incomplete
list [11,15-22])

There are two main challenges in the approximation of the div-curl system (1.1a)-(1.1c): (1) the low-regularity of
the exact solution u limiting the stability and accuracy of the numerical solutions, and (2) the non-uniqueness of the
solution u on domains with complex topology. The later one can be relaxed to certain extent by seeking a particular
solution orthogonal to the space of normal e-harmonic vector space Wgn’p (£2), but with an immediate obstacle lying in
the determination of the space wg"’P (£2) or an effective approximation of this space. To address these challenges, we
shall devise a new [P primal-dual weak Galerkin (PDWG) scheme for (1.1a)-(1.1c) by following the framework developed
in [14]. It should be noted that the [P-PDWG framework was originated in [23] for convection-diffusion equations. Our
[P-PDWG numerical method for (1.1a)-(1.1c) has two prominent features over the existing numerical methods: (1) it
offers an effective approximation for the normal e-harmonic vector space Wg"’p (£2) regardless of the topology of the
domain £2; and (2) it provides an accurate and reliable numerical solution for the div-curl system (1.1a)-(1.1c) with low
W*P-regularity (« > 0) assumption for the exact solution u.

The paper is organized as follows. In Section 2, we introduce the notation and derive the weak formulation for
the div-curl system (1.1a)-(1.1c). In Section 3 a [P-PDWG algorithm for both the div-curl problem and the discrete
normal e-harmonic vector fields is proposed. The solution existence and uniqueness for the [’~-PDWG scheme is discussed
in Section 4. The convergence theory for the [P-PDWG approximation is established in Section 5. Finally, several test
examples are demonstrated to illustrate the performance of the [P-PDWG algorithm in Section 6.

2. Weak formulations
2.1. Notations

We follow the usual notations for Sobolev spaces and norms [24,25]. Let D C R* be an open bounded domain with
Lipschitz continuous boundary. Denote by W% P(D) the closed subspace of [LP(D)]® such that V - (sv) € LP(D). Denote
Wdive.p(DY by WAvP(D) when ¢ = I. Analogously, we use WP(D) to denote the closed subspace of [[’(D)]® so that
V x v € [IP(D)]%. Denote by WS""*(D) the closed subspace with vanishing tangential boundary values, i.e.,

W™ P(D) := (v € WUP(D), v x n =0 on 8D).
Denote by (-, ) ; the inner product in L(I7). We introduce the following Sobolev space
W (R2)={ve Wg“”’P(Q) NWH=P(Q2), V. (sv) =0, (ev-m;, )p=0,i=1,...,L}.
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A vector field v € [[P(2))? is defined to be e-harmonic in £ if it is e-solenoidal and irrotational in £2. Denoted by
W;"‘p (£2) the space of normal e-harmonic vector fields that consists of all e-harmonic vector fields satisfying vanishing
normal boundary condition, i.e.,

Wy P(2)={ve[l’(2)P: Vxv=0, V-(¢v)=0, ev-n=0onTI}. (2.1)

Denote Wy"P(£2) by WyP(£2) for & = I. Similarly, denoted by Wy *(2) the space of tangential e-harmonic vector fields
that consists of all e-harmonic vector fields satisfying vanishing tangential boundary condition, i.e.,

Wy P(2)={ve[[’(2)P: Vxv=0, V-(ev)=0, vxn=0onTI}.
2.2. A weak formulation

Testing (1.1a) by any ¢ € W1P(£2) and using the normal boundary condition (1.1c) yields
(1, eVp) = (p1.9) = (f.9), Yo e WH(2). (2.2)
Testing (1.1b) by any w € Wé”rl’p(.Q) gives
u,Vxw) =(g,w), YweW () (2.3)

Combining with Egs. (2.2) and (2.3), we obtain a weak solution u € [L9(£2)]® (2 + 1 = 1) of the div-curl system with

normal boundary condition (1.1a)-(1.1c) satisfying

(u»8V(ﬂ+VX¢):(gv W)_(f5(p)+(¢l’¢)v (24)

for all o € W'P(2) and ¢ € WS"P(22).
As discussed in [14], the solution to the variational problem (2.4) is non-unique in general. The homogeneous version
of (2.4) is to seekau € [Lq(.Q)]3(% + % = 1) satisfying

141
P q

,eVo+V xP)=0 Vo e W'(RQ), V¥ e WP (). (2.5)

Note that the solution could be any e-harmonic function in Wgn’p (£2) which is non-unique provided that the e-harmonic

space WE"”’(.Q) has a positive dimension. The solution to the div-curl system (1.1a)-(1.1c) is unique provided that the
solution is e-weighted L? orthogonal to Wy "(£2).

2.3. An extended weak formulation

In this subsection, we slightly modify the weak formulation (2.5) to ensure that the solution to the homogeneous
version of (2.4) is unique.

We first denote by Wolc”’ (£2) the subspace of W'P(£2) with vanishing value on Iy and constant values on other
connected components of the boundary; i.e.,

Wo(2)={¢p e W'P(2): ¢lr, =0, ¢l =a;, i=1,....L}.
Define the following bilinear form:
B(u,s; o, ¥) :=(u,eVo+V X ¢¥)+ (¥, eVs). (2.6)
Now the extended weak formulation for the div-curl system (1.1a)-(1.1c) seeks (u, s) € [L1(£2)]? x Wolc’p(Q) satisfying
Blu,s: 0. ¥)=F(p.¥). Vo € W'P(2), V¥ € W""P(£2), (2.7)
where
Flo.¥)=(&. ¥)— (. ¢)+ (91, 9). (2.8)
The homogeneous dual problem of (2.7) seeks (A, ) € WIP(22)/R x WOC'”I"’(.Q) such that
B(v,r; 1, q)=0, Vve[lYR2)P, Vr e W, (). (2.9)
It has been proved in [14] that the solution to the homogeneous dual problem (2.9) is unique.
3. LP-PDWG scheme
To design a [P-PDWG scheme for the div-curl system (1.1a)-(1.1c), we first briefly review the definitions of discrete

weak gradient and discrete weak curl [14] and then introduce some finite element spaces, which shall be used in our
later algorithm.



W. Cao, C. Wang and J. Wang Journal of Computational and Applied Mathematics 422 (2023) 114881

Denote by 73 a finite element partition of the domain §2 that consists of shape-regular polyhedra [26]. Denote by &,
and 8{3 = &, \ 052 the set of all faces and the set of all interior faces in 7, respectively. Let hy be the diameter of the
element T € 7, and h = maxre7;, hy be the meshsize of the partition 7.

Let T € T, be a polyhedral domain with boundary aT. We define the space of scalar-valued weak functions on T as
follows

W(T) = {v = {vo, vp} : vg € [’(T), vy € [P(3T)},

where vy and v, represent the values of v in the interior and on the boundary of T respectively. Similarly, the space of
vector-valued weak functions on T is defined by

V(T) = {v = {vo, v} : vg € [LP(T)I°, vy € [LP(AT)I*}.

Let P;(T) be the polynomial space on T with total degree no more than j. Denote by n an unit outward normal direction
on dT. For any v € W(T), the discrete weak gradient V,, ; rv is defined as the unique vector-valued polynomial in [P]-(T)]3
such that

(Vujrv, @)r = —(v0. V- @)1 + (vp, @ - Mo, ¥ @ € [P(T)P. (3.1)

Similarly, for any v € V(T), the discrete weak curl V,, j x v is defined as the unique vector-valued polynomial in [P]-(T)]3
such that

(Vuir X v, @)r = (v0, V x @)r — (v x 1, @)yr, ¥ ¢ € [P(T)]. (32)
For a given non-negative integer k, the finite element spaces are defined as follows
Vi ={v: vy € [P(T)P, VT € Ty},
Sh ={{s0, s} : Solr € Pi(T), splar € Pe(dT), VT € Ty, Splry = 0, splr; is a constant},

My ={{po, @b} : @olr € Pu(T), wplor € Pr(dT), VT € Ty, / ¢o = 0},
2

Wy =(¥ = (¥, ¥} © Yolr € [PT)P, ¥plor € Gu(AT), VT € Ty, ¥l = 0},

where G(8T) := [Pi(7)]® x n, is the space of polynomials of degree k in the tangent space of 3T, and n, denotes the unit
outward normal vector on t with 7 € 9T.

For simplicity of notation and without confusion, for any o € S, or 0 € M}, denote by V,,o the discrete weak gradient
Vuw.kro computed by (3.1) on T, ie.,

(Vwo)lr = Vyirlolr), Vo € S, or o € M.
Similarly, for any q € W}, denote by V,, x q the discrete weak curl V,, .t x g computed by (3.2) on T, i.e,,
(Vw x @It = Vyir x(ql7), Vg e W,
With the discrete weak gradient and discrete weak curl, an approximation of the bilinear form B(-; -) is thus given by
Bu(v,1; 0, %) = (v, eV + Vy X ¥) 4+ (¥, eVyr), Y(v, 1, 0, ¥) € Vi X Sp X My x W, (3.3)
Now we are ready to present the [P-PDWG finite element method for the div-curl system (1.1a)-(1.1c).
Algorithm 1 (IP-PDWG Algorithm). The [P-PDWG finite element method for the div-curl system (1.1a)-(1.1c) seeks a
uy € Vy, together with three auxiliary variables s, € Sy, Ay € My, qn, € Wh, such that

S1(Ans Qns @, ¥) + Bu(tn, sn; 0, ) = F(p, ¥), VYo € My, ¥ € Wh, (3.4)
—S2(sp, 1)+ Bp(v, 15 Ap, qn) =0, Yv eV, 1 €Sy, '

Here F(-, -) is given in Eq. (2.8), and the I? stabilizer s; is defined by

1001 0 9) = 1 3 [ WP 1h0 = 2P st — 2 — gods
aT
TeTy

1— —
+p2 )t pf g0 x 1 — gy x nP~'sgn(g x n — g, x M)Wy x N — Py, x n)ds,
TeTh T
h

and the LY stabilizer s, is defined accordingly in the space M, as follows

saswr)=p3 y_ by " f 150 — 561" "sgn(s0 — $5)(ro — 1)ds,

TeTy T

where p > 1, ¢ > 1 such that % + % =1, p; > 0fori=1,2,3 are parameters with values at user’s discretion.
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The above [P-PDWG scheme (3.4) also offers an approximation of the normal e-harmonic vector fields Wy"”. Our later
theoretical result (see Theorem 5.2) demonstrates that the difference 5, = Qnu — uy, is sufficiently close to a true normal
e-harmonic vector field 5. Here Q) denote the L? projection operator onto the finite element space V;, and uy is the
solution of (3.4) for the div-curl system (1.1a)-(1.1c). Consequently, a vector field », € V}, is said to be a discrete normal
e-harmonic function if there exists a vector field u € W%P(2) N W P($2) satisfying 5, = Qnut — .

4. Solution existence and uniqueness

This section is dedicated to the study of solution existence and uniqueness of the [P~-PDWG scheme (3.4). For simplicity,
we assume that ¢ is piecewise constant with respect to the partition 7, respectively. Note that all the results can be
generalized to piecewise smooth ¢ without any difficulty.

We define the following two semi-norms; i.e.,

HGr, @0 = (51Cuns @ 20 @) 7 2t € M, G € W, (4.1)

1
lsull = (5205 50)) "+ 1 € Si (42)
Let Qp be the projection operator onto the weak finite element space S, or My such that
(Quw)lr = {Qowl|r, Qwlar},

where Qy and Q, are the L? projection operators onto Pi(T) and P(t) on each face v € 9T. Similarly, denote by Qq, Qp
and Qj, the L? projection operators onto [Py(T)]?, Gi(t) = [P«(7)]® x n;, and W}, respectively.

Lemma 4.1 ([26]). The L? projections Q, and Qy, satisfy the commutative property
Vi(Quw) = Qp(Vw),  Yw € W(T), (43)

x (Qn¥) = Qn(V x ¥), V¥ € W¥H(T), (4.4)

Theorem 4.2 ([14]). (Helmholtz Decomposition) For any vector-valued function u € [LP(£2)]3, there exists a unique ¥ €
W™P(2), ¢ € WIP(2)/R, and n € WEP(L2) such that
U=¢e'Vxy+Ve+n, (4.5)
V-(ey)=0, (¥ -m;, 1) =0, i=1,...,L (4.6)
In addition, there holds

1V llweutpz) + IVOlp2) < le? ullpe (4.7)

Theorem 4.3. The kernel of the matrix of the [P-PDWG method (3.4) is given by
Kn = {(vh, sn = 0, Ay = 0, g, = 0): vy € Vy NWP(£2)}.

In other words, the kernel of the matrix of the [P-PDWG scheme (3.4) is isomorphic to the subspace of Wg”’p (£2) consisting of
harmonic functions that are piecewise polynomial of degree k.

Proof. Let (uh ,sh , khl), qh )y and (uh 75(2) Ah ,qf)) be two different solutions of (3.4). This gives, fori = 1, 2,

sy 4y 0. 9) + Ba(u) s}, i ,,,) = F(ga, ¥). Vo €My ¥ €W, (4.8)
—sz(sh , 1)+ By(v, 15 Ah ,qh ) YvoeV,, res.
Given any j = 1, 2, taking (¢, ¥) = (k(”, qh )Yin (4.8) and using (4.9), we easily get
sy g AL @) + sa(si sy)) = F(A q)), Vij=1,2. (4.10)
Consequently, forj=1,2,
s @y A0 g + o) s = 51087 4 A @) + sals) . ). (4.11)

Choosing j = 1 in (4.11) and using the Young’s inequality |AB| < % + % yields that
s a7 4y 4)

p

(1) (1), 4 (1) (1) (1) (1) (2) [(2)
A, )\. S2(Sy, S S$208, 7 S
+ ( h q q ) + 2( h h ) + ( h h )’
q q p

1 1 1 1
51087, g0, D) + s, sy < 3

5
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which leads to
518, a7 47, @) + 52587 51) < 1047, @75 07, a7 + sals, 510,
Similarly, we take j = 2 in (4.11) and use the Young's inequality again to derive
2) (2).,02) 2 2) (2 1) (1), (1) (1 1 .4
si087, a2 2D ) + a7, 57 < 51007, s Al a4 ol s,
Combining the last two inequality leads to
s a0 ay ) + a5, 510) = si007 a7 Y @) + il sy,
Note that for any two real numbers A and B, there holds
‘A +B‘P _ AP+ 1B
2 - 2 ’
and the equality holds true if and only if A = B. This follows that

1 2 1 2 1 2 1 2 1 2 1 2
w4y a4 +a) a4y qﬁl)+q§1))+s(s§1)+s§1) s;)—i-s;.l))
2 2 2 2 ) 2

1 1
<3 (smﬁ”, ) 14 a0y + 51002, g a7 qi,”)) +5 (sz(si,”, sh) + sa(sf, sf))).
On the other hand, a direct calculation from (4.11)-(4.12) yields

(1., 1) e
s, a5 24, @) + sa(sy”, )

s1(

) 3 }

1 1 1 1 1 1 1 2 2 1 1 1 2

—7<$]()\,( ),q( );)\.( ),q( ))~|—Sz(s(l),S(l))~|—S1()L(l),q(l),)»(1),q(l))~|—53($(h),5(1))>
1 2 1 2 1 2

)»(1)"‘)\(1) q(fl)+q(l) (1 (1) 5(])+s(1)

L (1) (1)

=s1( I 5 sAL )+ salsy 5 )-
Using the Young’s inequality again, we get
10 @ 2 a4y ) + a5y 51)

1 2 1 2 1 2 1 2 1 2) (1 2
<S(/\§1’+x§1) g’ +q” x"+2Y q2)+q§1)) sy 457 s 4 s
=91 5 ) ) +SZ( ) )'

2 2 2 2 2 2
Then we conclude from (4.13) and (4.12)
1 2 1 2 1 2 1 2 1 2 2
gt @’ e WA 4+ s 452 s 4 s
1( , ; , )+ sa( , )
2 2 2 2 2 2

=510 a5 2 )+ 5253 sy = 5107 a7 A a7 + a7 s,
The above equation holds true if and only if
A — A0 =D 3B on g,
qg” Xn— qg) Xn= qf)z) Xn— qf) X n, on dT,
sg) — sz]) = séz) — sf), on oT,

2)

Denoting e, = A" — A0 @ _ m_ @ _

= {€o, €v}, € = qﬁf) —q," ={eg, ey}, ep=s, —s, = {eog, e}, we have
€y = €p, on AT, epgxn=e, xn, ondT, ep = ep, on JT.

Since sE)” — sé” = 55)2) - sf) on JT, there holds

sz(sg), r)= sz(sf), r), Vr € S,

which, combined with (4.9), gives
By(v, 1; )Lﬁll), qﬁf)) = By(v, 1; kf), qf)), YveVy,res,

or equivalently,

By(v, 15 €n,€5) =0, Vv e Vp, 1 €Sy,

(eg, eVyr) + (v, eVyen + V,, x €,) =0, Vv e Vy,res,.

6
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It follows from (4.17) that ¢y € C(£2), eg € C(£2) and ey € Hy(curl; £2), which indicates

Veg = Vyen, V X €=V, X e, (4.19)
Letting r = 0 and varying v in (4.18), we get

eVyén+Vy, xe, =0,
which, together with (4.19), gives

eVeg+V xeg=0. (4.20)
Using ey € Hyp(curl; £2), we have

(eVeg + V x €y, Veg) = (6Veg, Veg) + (V X e, Vep)

= (eVep, Veg) + (n x eg, €g) = (¢eVeg, Veg),

which, from (4.20), implies Veo = 0, and hence ¢y = 0 as a function with mean value 0. This further leads to ¢, = 0.
Thus, from (4.20) we have

V xe =0, in 2.
Note that ey satisfies
(€0, &eVyr) =0, Vr € Sp.
This leads to ey € H(div,; £2) and
V.(e€)=0, (e-m,1);=0,i=1,2,...,L

This, together with V x ey = 0 and eq € Hy(curl; £2), indicates that e; = 0, and further e, = n x (e, x n) =n x 0 = 0.
Using (4 14)-(4.16), we have

S ( h ’ q;—ll)’ v, '/,) = S]()"f)! q§12)a Y, '/,)7
which yields, together with (4.8),

By(u”, s\"; o, ,,,) Buu?, s ¢, ¥), Vo €My, ¥ € Wi

Denote e,, = uﬁf) - uh . The above equality is equivalent to

0 = By(ew,, en; ¢, ¥) = (e, eVyo + Vy X ¥) + (g, eVyen), Yo e My, ¥ € Wy (4.21)
Now we have, from the Helmholtz decomposition (4.5),
€u, = g7V x '7"" Vo + i,

where 7 € WE™(22) and ¢ € W"'P(2) satisfying V - (¢) = 0 and (¢ - m;, 1), =0fori=1,...,L It follows from
eo = e, on JT for each element T € 7, that ey € WP(£2). This leads to Ve, = Vey. If the dlmensmn of Wgy"P(£2) is 0,
we have § = 0. Letting the test functions ¢ and ¥ in (4.21) be the L? projections of the corresponding functlon in the
Helmholtz decomposition gives rise to

0 =(eu,. £V Qud + Vi x Qu¥) + (Qo¥. £Vien)
=(eu,. 2uEVP + OV x ¥) + (¥, eVep)
=(ew,. V@ + V x ¥) + (¥, £ Veo) (4.22)
=(cey,, eu, — )+ (¥, £Vep)
=(e(ey, — 1), €y, — 1),

which leads to e,, — i) = 0, i.e,, ey, is a harmonic function. As a harmonic function in the form of piecewise polynomial of
degree k, the first term on the right-hand side of (4.21) is zero for any test functions ¢ € M; and ¥ € W;, which further
implies that Ve, = 0. Using (4.17) gives Vey = V, ey = 0. Therefore we obtain e, = 0 and further e, = 0.

This completes the proof of the theorem. O

Our main result for the solution existence and uniqueness of the numerical scheme (3.4) is stated as follows.

Theorem 4.4. The [P-PDWG finite element scheme (3.4) has a unique solution for sp, A, and qy. The solution uy, is unique up
to a harmonic function n, € Wan "P(§2) which is a piecewise polynomial of degree k.

Remark 4.5. For the lowest order k = 0 of the [P-PDWG scheme (3.4), any 7, in the kernel K, of the matrix of the
[P-PDWG method is a piecewise constant vector field. n, is thus continuous across each interior element interface and
has vanishing value on the domain boundary along the normal direction. This leads to 5, = 0. Therefore, the [P-PDWG
finite element scheme (3.4) has a unique solution for u; in the case of the lowest order element.

7
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5. L9-Error analysis for the primal variable

In this section, we shall establish the L7 error estimates for primal variable u;, in the [P~-PDWG scheme (3.4). Denote
the error functions by

ey = Qnll — Up, e = Qus — s, ey = QuA — Ay, eq = Qnq — q.
We begin with the study of error equations for the [P-PDWG scheme (3.4) developed for the div-curl system (1.1a)-(1.1c).

5.1. Error equations

For the exact solution {u; s = 0} of the div-curl system, recalling the definition of Bp(-; -) in (3.3) and using (3.1) and
(3.2), we have

Bn(Qnut, Qus; @, ¥) = (Qnl, eVo + V X ¥g) + (Qntt, enlgp — @o) + (Yo — ¥p,) X Mg,
= (u,eVpo + V x ¥o) + (Qntt, en(gp — @o) + (Yo — ¥) X Mg,

By using the integration by parts and (1.1a)-(1.1c), we easily obtain

Br(Qnu, Qus; ¢, ¥)

= —(V - (eu), po) + (V x u, ¥o) + (U, en(po — ¢p) + (¥, — ¥o) X Mg,

+(Quu, en(@p — @o) + (Yo — ¥p) X Mg, + (D1, Pb)ae

= (1, ¥p)oe — (f, o) + (8, ¥o) + (U — Qnut, en(go — @) + (¥, — ¥o) X Mg,
Noticing that A = 0 and q = 0, then

si(ex, eq; @, ¥) + Bu(eu, es; @, ¥) = (U — Ot enlpo — ¢p) + (¥, — ¥p) X N)g,. (5.1)
Similarly, we conclude from the fact s =0, q = 0, A = 0 that
— Sa(es, 1) + Bn(v, 15 €3, 84) = 0. (5.2)

The above two Egs. (5.1)-(5.2) are the error equations for the [P-PDWG scheme (3.4), which will be frequently used
in our error estimates.

5.2. Error estimates for the dual variables

Recall that 73 is a shape-regular finite element partition of the domain 2. For any T € 7, and Vw € LYT) with ¢ > 1,
the following trace inequality holds true:

lwlar, = O (Il + BVl G- (53)
By using the Cauchy-Schwarz inequality and the trace inequality, we get

1 1
w, v)gy | < O Twifaar) T 107

TeTh TeTh

_1 1
< Ch i (Jwllary + RVl 10l ar)? -
TeTh

Now we are ready to present the error estimates for the dual variables.

Theorem 5.1. Assume the solution of the div—curl system (1.1a)-(1.1c) satisfies u € [W**%-4(£2)]? for 6 < (1/2, 1]. For the
numerical solution uy, sp, A, qy, arising from the [P-PDWG scheme (3.4), there holds

k+6)4 3
liCes e)ll < CH'*% |V ullfy o, (5.5)

llesll < Ch*F vk u] 0. (5.6)

Proof. First, we have, from the error Eqs. (5.1)-(5.2) that
s1(ex, eq; €x, eq) + S2(es, &) =(u — Quut, en(e; o — exp) + (eq b — €q0) X N)g,. (5.7)
In light of (5.4) and using the approximation property of Q;, we get

[(u— Quu, en(e, o — €,.p) + (€qp — €q,0) X Mg, |

T

k+o—1
<Ch t0-g ||Vk+8u||L‘1(Z(”8n(eA,0 - ek,b)”ip(;ﬂ) + ”(eq,b - eq,O) X n”ip(gr))) (5.8)
TeTh

k+0 k+6
<CH IV ulal (s, eq)Il-
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Substituting the above inequality into (5.7) and using the Cauchy-Schwarz inequality yields
liCex.. e)lIP + llesll® < Crh®+ ) v * ufy . (5.9)

Then (5.5)-(5.6) follow directly. O

5.3. L9 Error estimates for the primal variable uy
To derive the L7-estimate for the error function e,, we need employ the Helmholtz decomposition (4.5) for any function
v, such that
v=¢'V XY+ Vd+1i, (5.10)

where ¢ € WI'P(R2), ¥ € Wé”rl’p(Q), and § € W;"?(£2). We assume the W*P-regularity holds true for some fixed
o€ (1/2,1]:

1P llap + IDllep < Cllv = llop- (5.11)

The main convergence result of this paper is stated as follows.

Theorem 5.2. Let u be a solution of the div-curl system (1.1a)-(1.1c) such that u € [W**%9(22)]3 for 6 € (1/2, 1]. Assume
that the Helmholtz decomposition (5.10) has the W P-regularity estimate (5.11). For a numerical solution uy, Sp, An, q
arising from [P-PDWG scheme (3.4), there exists a harmonic function 3§ € Wg""’ (£2) such that

1
le 7 (u + 7 — Qn)llaey < CHH 1 VE u g ). (5.12)
Proof. Given any function v, let ¢ € W'P(2), ¥ € WS"P(2), and 7 € W"P(£2) satisfy (5.10). Taking ¢ = Qu¢ and
¥ = Qu¥ in By(ey, es; ¢, ¥) and using Lemma 4.1 gives
Bi(eu e5; ¢, ¥) =(eu, £V, Qup + Vi x Qu¥) + (Qo¥, £Vyves)
=(eu, £V + OV X ¥) + (Qo¥, £Vies)
=(eu, 6VP + V x ¥) + (Qo¥, £V, e5).
By using the Helmholtz decomposition (5.10), we have

B(eu, e5; ¢, ¥) = (ceu, v — i) + (¢Qo¥, Vi)

~ (5.13)
= (e(ew — 1), v — 1) + (¢Qo¥, Vyes).
From the definition of the weak gradient, we have
(eQo¥, Viwes) =(eQo¥, Veso) + (eQoi - 1, €5 — es0)e,
=(e¥, Veso) + (eQo¥ - 1, €5 — €s0),
=—(V-(e¥), e50) + (¥ -, es0)e, + (eQo¥ - m, €5 — es.0) e,
=(e¥ -, e50 — esp)g, + (6Qo¥ - 1, €5 — €50,
=(e(¥ — Qo¥) - m, €50 — €s.b) -
Substituting the above into 5.2 yields
(e(eu — 7). v — ) =Blew, €5t 9. ¥) — (e(¥ — Qo¥) - 1, €0 — esi)e,
=(u— o, en(@o — @) + (¥, — ¥o) x Mg, — s1(ex, eq; @, ¥) (5.14)
— (e(¥ — Qo¥) -, e50 — €sp)e,
=h+hL+1s,
where we used the first error Eq. (5.1), (i = 1, ..., 3) are defined accordingly.
As to I, using the same argument as what we did for (5.8), we get
1] < CH IV ull iy i, W) (5.15)
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As to I, recalling the definition of s; and using the Cauchy-Schwarz inequality, we have

1 1
|2 SC(Z h;_p/ lexo — ex,blqw_l)‘ﬁ) ’ (Z / hy P lgo — fﬂblpf15>lJ
or T

TeT, TeT;, Y ?
1
+ C(Z h}”’/ lego X 1 —egqp X n|q(p‘])ds> !
TeTy aT (5.16)
1
(Z / WPl x 1 — ¥, X n|pds>p
TeTy ¢ 0T

p
=<Cli(es, el ll(e, ¥l
Similarly, we use (5.4) and the approximation property of Qg to get that

-1 a a1 o a
3] <Ch* P [IV*Pllpyh T llesll = Ch* [V Pl llesll- (5.17)

It is easy to check

e I < CB (U @llap + ¥ llap)- (5.18)
Substituting (5.15)-(5.17) into (5.14), and using (5.5), (5.6), (5.11) and (5.18), this gives

I(e(ew — ), v — )| <CH V¥ Pu]la o) ll(o, YOIl + ChE VP llp (s sl
<CHHT =1 Ry 100 |0 — Lo, p-

It follows that

1 . _
led(ew — Mlliaey < CRHEH1 V0w g0,

which gives rise to the error estimate (5.12). This completes the proof of the theorem. O

6. Numerical experiments

In this section, we present some numerical examples to test the performance and accuracy of the PDWG method
proposed in (3.4). In our numerical experiments, the computation domain is first partitioned into cubes, and then each
cube is divided into 6 tetrahedra of equi-volume. We choose the discontinuous piecewise constant vector fields to
approximate the exact solution u. That is, the finite element spaces are given as follows:

Vi ={v: vlr € [Po(T)P, ¥T € Ta},

S =f{s : slr = {0, Sp} € {Po(T), [T Po(F)}, VT € Ty, F; € 8T},
My ={g : ¢lr = {90, ¢v} € (Po(T), ITL Po(F;)}, VT € Th, F; € 0T},
Wi ={¥ : ¥Ir = (Yo, ¥} € {[Po(T)P, To(3T)}, VT € Th},

where Ty(aT) is the tangent space of dT given by
To(dT) = {¥ : ¥;; € [Po(F)I’ x mp, FedT,i=1,2,3,4,j=1,2}.

Here ng, denotes the outer unit normal vector to face F;.

To solve the system of nonlinear Eq. (3.4), we adopt an iterative scheme similar to that for the L' minimization problem
in [27]. Specifically, given an approximation (uy', A}, si', ;') € Vi x My, x Sy x W, at step m, the scheme shall compute
a new approximate solution (u "', AT s gt 1) € Wy x My x Sy x Wy such that

S1(An, Gn; @, ¥) + Bp(un, sn; @, ¥)  =Flp, ¥), Vo € My, ¥ € Wy, (6.1)
—So(sp, 1)+ Bp(v, 15 Ap, qn) =0, Yv eV, 1 €Sy '
where
10, @i 0, ) =p1 ) By " / (A5 = Al + €l 25" = A7) w0 — @y)ds
TeTy aT
h
+ 0 Z h;_pf (g5 x n— g x n| +eP2(q)" xn— g x n) (Y, x n— P, x n)ds,
aT

TeTh

10
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Table 1
Numerical error and rate of convergence for the [P-PDWG method for Example 6.1.
1

p 1/h lle 7 enlla rate I(ex., el rate Isnl rate
2 1.52e—01 - 3.27e—02 - 1.52e—03 -

2 4 7.67e—02 0.99 1.82e—02 0.84 3.05e—04 2.32
8 3.82e—02 1.00 9.37e—03 0.96 5.10e—05 2.58
16 1.91e—02 1.00 4.72e—03 0.99 9.29e—06 2.46
2 1.73e—01 - 2.84e—01 - 2.47e—03 -

3 4 8.65e—02 1.00 1.99e—-01 0.52 3.20e—04 2.95
8 4.27e—02 1.02 1.30e—01 0.61 3.78e—05 3.08
16 2.17e—02 0.98 8.01e—02 0.70 5.03e—06 291
2 1.97e—-01 - 4.26e—01 - 2.30e—03 -

4 4 1.02e—01 0.95 3.05e—01 0.48 2.31e—04 331
8 5.51e—02 0.88 2.07e—01 0.56 1.80e—05 3.68
16 2.92e—02 0.92 1.41e—-01 0.55 1.59e—06 3.50
2 2.13e—01 - 4.16e—01 - 5.79e—04 -

5 4 1.21e—01 0.82 3.02e—01 0.46 4.29e—05 3.76
8 6.38e—02 0.92 2.25e—01 0.43 2.89e—06 3.89
16 3.20e—02 1.00 1.70e—01 0.40 3.11e—07 3.22

Isgr — si| + €0)"2(sg ! — sP ) (ro — 1b)ds.

Sa(sn; 1) = o3 Z h;iq/

(
TeTh aT

Here ¢q is a small, but positive constant, and p;, i < 3 are some positive stabilization parameters.

We would like to point out that although p;, i < 3 in the algorithm (3.4) could be arbitrary, the iterative scheme (6.1)
is not convergent for any positive p;, i < 3. Our numerical experiments indicate that p;,i = 1, 2 should be taken large
enough to ensure the convergence of the iterative scheme.

In our experiments, we test various problems in which the exact solution u has different regularities and the
computational domain includes convex, non-convex polyhedral regions and cavities. We shall evaluate the errors for both
uy, and the auxiliary variables Ay, sy, qy, including the LY error for e, := u—u, and 5, := Quu—uy , and the errors ||(ey, eg)ll
and ||sp|| defined in (4.1) and (4.2). We test different values of p > 1 with p = 2, 3, 4, 5. The right-hand side function, the
boundary condition are calculated from the exact solution. The coefficient € in (6.1) is taken as € = 10~-8/?P—1 p; = 1,
and p;, i = 1, 2 are carefully taken according to different problems. We stop our iterative procedure when the maximum
error between the mth step and the (m + 1)-th step reaches the accuracy 107>,

Example 6.1. In this test, we consider the model problem (1.1) in the domain £2 = (0, 1)> with ¢ = diag(3, 2, 1). The
right-hand side function and the boundary condition are chosen such that the exact solution to this problem is

sin(zrx) cos(my) X
u(x,y,z) = < — sin(ry) cos(mx) ) + ( y ) )
0 z

It is easy to see that u € [H'(2)]°.

The problem is solved by (6.1) with the coefficients p; = p, = 1forp =2 and p; = p, = 9 x 10°~! for p > 2. Table 1
illustrates the approximation error and the rate of convergence for the primal variable u, and the auxiliary variables

1
Ah, Sh, Qn With p = 2, ..., 5. We observe a convergence rate of O(h) for the error ||e7e||s. For the dual variables Ay, qy,
the table suggests a p-dependence rate of the convergence, i.e., O(h) for p = 2, ©(h®®) for p = 3, ©(h®>) for p = 4 and

O(h%4) for p = 5. Note that the convergence rate of [|(ey, eq)l| is slightly higher than the theoretical result O(h?) in (5.5).
As for the dual variable s;, we observe a better convergence rate than the theoretical finding O(h) given in (5.6), which
indicates a superconvergence result.

Example 6.2. The domain in this test case is the L-shape domain, which is given by 2 = (0, 1)\ £2; with £2; =
[0, 1] x [—1, 0] x [0, 1]. We take the coefficient ¢ = diag(1, 1, 1) and the singular solution in [H?/3~%(£2)]?:

2
u=V x(0,0,r*? sin(ge)).

Here r = /x? + y? and 6 = arctan(y/x) + c are the cylindrical coordinates. We take ¢ such that u € H(div) N H(curl).

We take the iterative scheme (6.1) to solve this paper with the same coefficient choice of pq, p, as Example 6.1.
Numerical error and rate of convergence for the IP~-PDWG method are listed in Table 2, from which we observe an optimal

11
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Table 2
Numerical error and rate of convergence for the [P-PDWG method for Example 6.2.
1
P 1/h llevenlia rate (e, el rate Isnl rate
2 1.28e—01 - 3.70e—02 - 1.02e—03 -
2 4 8.25e—02 0.64 2.42e—02 0.61 3.18e—04 1.69
8 5.28e—02 0.64 1.55e—02 0.64 9.66e—05 1.72
16 3.35e—02 0.65 9.92e—03 0.65 2.96e—05 1.71
2 1.69e—01 - 1.96e—01 - 1.37e—04 -
3 4 9.82e—02 0.78 1.44e—01 0.44 3.10e—05 2.15
8 5.77e—02 0.77 1.01e—01 0.52 6.29e—06 2.30
16 3.39e—02 0.77 6.66e—02 0.59 1.05e—06 2.58
2 2.00e—01 - 3.54e—01 - 2.19e—04 -
4 4 1.18e—01 0.76 2.63e—01 0.43 2.77e—05 2.98
8 6.81e—02 0.79 1.67e—01 0.65 1.79e—06 3.95
16 3.65e—02 0.90 9.79e—02 0.77 6.91e—08 4.70
2 2.18e—01 - 3.75e—01 - 5.47e—05 -
5 4 1.34e—01 0.70 2.30e—01 0.71 1.16e—06 5.56
8 7.12e—02 091 1.29e—01 0.83 1.15e—08 6.66
16 3.61e—02 0.98 7.15e—02 0.85 1.00e—10 6.84
Table 3
Numerical error and rate of convergence for the [P-PDWG method for Example 6.3.
1
p 1/h lle 7 enlla rate I(es.. el rate Isnl rate
2 1.49e—00 - 3.48e—00 - 5.16e—01 -
2 4 1.02e—00 0.55 2.60e—00 0.42 2.66e—01 0.96
8 6.84e—01 0.57 1.86e—00 0.48 1.01e—01 1.39
16 4.69e—01 0.55 1.30e—00 0.51 3.49e—02 1.54
2 1.79e—00 - 6.45e—01 - 3.75e—04 -
3 4 1.21e—00 0.57 5.14e—01 0.33 1.24e—04 1.60
8 8.12e—01 0.57 4.02e—01 0.35 4.14e—05 1.59
16 5.70e—01 0.51 3.12e—01 0.37 1.28e—05 1.69
2 2.07e—00 - 1.22e—00 - 5.38e—03 -
4 4 1.41e—00 0.55 1.03e—00 0.25 1.50e—03 1.84
8 9.77e—01 0.53 8.60e—01 0.26 4.30e—04 1.80
16 6.78e—01 0.53 7.17e—01 0.26 1.24e—04 1.80
2 2.18e—00 - 9.54e—01 - 9.98e—04 -
5 4 1.57e—00 0.47 8.30e—01 0.20 2.77e—04 1.82
8 1.06e—00 0.56 7.19e—01 0.21 7.67e—05 1.85
16 7.33e—01 0.53 6.22e—01 0.21 2.12e—05 1.86

1
convergence rate O(h%) for the errors |[e9eyll;a and [|(ex, eq)ll for p = 2. While, as p increases, the convergence rate for
2
u;, is improved from O(h3) to O(h) (for p = 5). Like in Example 6.1, the numerical convergence for the dual variables is
faster than the theory predicted in Theorem 5.1.

Example 6.3. In this example, we test a singular solution in the following vector potential form on a toroidal domain
with 2 holes: 2 = [(—1, 2)]°\{$2; U 2,} with 2; = [—3,0]* x [0, 3] and £, = [], 1] x [—3,0] x [0, 3]. We take
€ = diag(1, 1, 1) and

u=V x(0,0,r]" sin(26;) + r3? sin(26,)),
where (13, 6;), i = 1, 2 are the cylindrical coordinates centered at a nonconvex corner of the ith hole. That is,
r=+/x2+y% 0; =arctan(y/x)+ci, r=+/(x— 12 +y2, 6, = arctan(y/x) + c;.

In our numerical experiments, we cholose y1 = 1/2, ¥, = 2/3 such that the vector field is singulazr near the nonconvex
corners of both holes. Note that u € Hz 7% in a neighborhood of the edge {x = 0,y = 0}, and u € H3~? in a neighborhood
of the edge {x =1,y = 0}.

1 1
From Table 3, we observe a convergence rate of (’)(h%) for the error ||e7eyl/1a, and O(h?) for the error [|(e;, eq)|l with
p=2,...,5. Again, it seems that the convergence rate for ||s;|| is better than the theory predicted in Theorem 5.1.

12



W. Cao, C. Wang and J. Wang Journal of Computational and Applied Mathematics 422 (2023) 114881

Table 4
Numerical error and rate of convergence for the [P-PDWG method with y = 5/4 for Example 6.4.
1
p 1/h llevenlia rate ez eq)ll rate lIsnll rate
2 3.96e—01 - 9.07e—01 - 6.51e—02 -
2 4 2.07e—01 0.93 5.01e—01 0.86 3.23e—02 1.01
8 1.06e—01 0.97 2.67e—01 091 9.48e—03 1.77
16 5.38e—02 0.98 1.39e—01 0.95 2.17e—03 2.12
2 4.61e—01 - 4.14e—01 - 4.17e—04 -
3 4 2.39e—01 0.95 2.88e—01 0.53 1.05e—04 1.99
8 1.27e—01 091 1.94e—01 0.57 2.20e—05 2.25
16 6.65e—02 0.94 1.25e—01 0.63 4.23e—06 2.38
2 4.92e—01 - 5.92e—01 - 5.23e—04 -
4 4 2.67e—01 0.88 4.29e—01 0.46 1.05e—04 2.31
8 141e—-01 0.92 3.04e—01 0.50 1.78e—05 2.57
16 7.23e—02 0.97 2.16e—01 0.50 2.74e—06 2.70
2 5.33e—01 - 8.43e—01 - 3.56e—03 -
5 4 2.93e—01 0.86 6.50e—01 0.38 6.15e—04 2.53
8 1.50e—01 0.97 4.98e—01 0.39 1.04e—04 2.56
16 7.55e—02 0.99 3.80e—01 0.39 1.54e—05 2.75
Table 5
Numerical error and rate of convergence for the [P-PDWG method with y = 1 for Example 6.4.
1
P 1/h lle @ enlla rate I(ex eq)l rate lIsnll rate
2 5.33e—01 - 1.22e—00 - 1.14e—-01 -
2 4 3.01e—01 0.83 7.27e—01 0.74 5.65e—02 1.01
8 1.63e—01 0.88 4.15e—01 0.81 1.79e—02 1.66
16 8.86e—02 0.88 2.30e—01 0.85 4.62e—03 1.96
2 6.02e—01 - 5.84e—01 - 1.22e—03 -
3 4 3.29e—01 0.87 3.98e—01 0.55 2.55e—04 2.26
8 1.87e—01 0.82 2.78e—01 0.52 5.63e—05 2.18
16 1.03e—01 0.86 1.88e—01 0.56 1.22e—05 2.21
2 6.50e—01 - 7.57e—01 - 1.26e—03 -
4 4 3.80e—01 0.77 5.68e—01 0.41 2.52e—04 2.32
8 2.14e—01 0.83 4.19e—01 0.44 4.91e—05 2.36
16 1.13e—01 0.93 3.07e—01 0.45 9.16e—06 2.42
2 6.88e—01 - 8.31e—01 - 1.60e—03 -
5 4 4.14e—01 0.73 6.57e—01 0.34 3.09e—04 2.38
8 2.26e—01 0.87 5.16e—01 0.35 5.79e—05 2.41
16 1.19e—-01 0.93 4.04e—01 0.35 1.01e—05 2.52

Example 6.4. In this test, we consider a singular solution in the following vector potential form on a toroidal domain
with 1 holes: 2 = [(—1, 1)]* x [0, 5]\$2; with 2; = [—3, 0] x [0, 3]%. We take € = diag(1, 1, 1) and

u=V x(0,0,r” sin(20)).
We consider three cases: y = 5/4, 1, 2/3, where the regularity of the exact solution ranges from smooth to singular.

The coefficients pq, p, in (6.1) are chosen as following: p; = p; = 1forp = 2, p; = p = 3 x 10° for p = 3 and
p1 = p2 = 3 x 10* for p > 4. Numerical error and rate of convergence for the [’-PDWG method with different y are
listed in Tables 4-6. We observe the following result:

e Regular solution, i.e., y = 5/4, ||e%eh||Lq has optimal convergence rate O(h) for all p > 2, [|(e,, eq)ll has optimal
convergence rate O(h) for p = 2, and p-dependency rate when p > 3, which is slightly better than the theoretical
rate O(hr). As for s, a superconvergent order still observed in this cases.

e Singular case y = 1, where u € H'® and u ¢ H(curl). An asymptotical rate of ©(h®?) is observed for the error

1
llevep||ie with all p > 2. The convergence behavior for the auxiliary variable are the same as that for the regular
case y = 3.
1
e Singular case y = 2/3, where u € H3 % and u ¢ H(curl). ||85%h||Lq has an optimal convergence rate O(h%) for all
p > 2, and ||(e;, eq)ll shows a rate of ©(h®®) for p = 2 and O(h?) for all p > 3.

Example 6.5. In this test, we reveal some computational results for a test problem where the existence of a harmonic
vector field has effect on convergence rate. We consider the problem on a toroidal domain with 2 holes, which is the

13
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Table 6
Numerical error and rate of convergence for the [P-PDWG method with y = 2/3 for Example 6.4.
T

P 1/h llevenlia rate I(ex. eq)ll rate lIssll rate
2 8.87e—01 - 2.09e—00 - 2.77e—-01 -

2 4 5.77e—01 0.62 1.45e—00 0.52 1.38e—01 1.01
8 3.62e—01 0.68 9.67e—01 0.59 4.92e—02 1.49
16 2.29e—-01 0.66 6.26e—01 0.63 1.55e—02 1.67
2 1.02e—00 - 8.04e—01 - 2.07e—03 -

3 4 6.16e—01 0.73 5.77e—01 0.48 4.91e—04 2.08
8 3.94e—01 0.64 4.37e—01 0.40 1.39e—04 1.82
16 2.47e—01 0.67 3.28e—01 0.42 4.21e—05 173
2 1.07e—00 - 1.06e—00 - 4.46e—03 -

4 4 7.10e—01 0.59 8.64e—01 0.30 1.13e—03 1.98
8 4.63e—01 0.62 6.93e—01 0.32 2.86e—04 1.98
16 2.90e—01 0.67 5.53e—01 0.32 7.19e—05 1.99
2 1.11e—00 - 1.09e—00 - 5.79e—03 -

5 4 7.73e—01 0.52 9.19e—-01 0.25 1.41e—03 2.04
8 4.94e—01 0.65 7.71e—01 0.25 3.44e—-04 2.03
16 3.09e—-01 0.68 6.45e—01 0.26 8.25e—05 2.06

Table 7
Numerical error and rate of convergence for the [P-PDWG method for Example 6.5.
1 1

p 1/h lle @ enlla rate lle @y llia rate I(ex, eq)l rate Isul rate It.
2 2.60e—01 - 1.90e—01 - 3.79e—01 - 5.83e—02 - 1

2 4 2.03e—01 0.36 1.69e—01 0.17 2.55e—01 0.57 2.93e—02 0.99 1
8 1.70e—01 0.26 1.54e—01 0.13 1.67e—01 0.61 1.03e—02 1.51 1
16 1.53e—01 0.15 1.46e—01 0.08 1.07e—01 0.64 3.26e—03 1.66 1
2 2.78e—01 - 2.16e—01 - 1.35e—01 - 1.52e—05 - 14

3 4 2.28e—01 0.29 2.02e—01 0.09 9.93e—02 0.44 4.98e—06 1.60 15
8 1.98e—01 0.20 1.88e—01 0.11 7.11e—02 0.48 1.20e—06 2.06 18
16 1.80e—01 0.14 1.76e—01 0.09 5.06e—02 0.49 2.88e—07 2.06 19
2 3.12e—01 - 2.55e—01 - 3.98e—01 - 1.60e—04 0 18

4 4 2.62e—01 0.25 2.40e—01 0.09 3.12e—01 0.35 4.54e—05 1.82 28
8 2.25e—01 0.22 2.15e—01 0.15 2.45e—01 0.35 1.08e—05 2.07 28
16 1.99e—01 0.18 1.95e—01 0.14 1.93e—01 0.34 2.60e—06 2.05 26
2 3.42e—01 - 2.87e—01 - 6.12e—01 - 8.62e—04 - 29

5 4 2.84e—01 0.27 2.63e—01 0.13 5.05e—01 0.28 2.32e—04 1.89 23
8 2.37e—01 0.26 2.28e—01 0.20 4.19e—01 0.27 5.59e—05 2.06 24
16 2.08e—01 0.19 2.04e—01 0.16 3.48e—01 0.27 1.31e—05 2.09 30

same as that in Example 6.3. We take € = diag(1, 1, 1) and

e’ sin(z)
u=V x(0,0,r]" sin(61) + r}? sin(6,)) + B | €*sin(2)
z

with (y1, 72, 8) = (5. 5, 35)-

The coefficients p1, p, in (6.1) are chosen as following: p; = py = 1 for p =2, p; = py =5 x 10* for p > 3. The plot
of the vector field », is provided in Fig. 1, and the errors and rates of convergence of the [’~-PDWG method for the primal
variable and the dual variables are given in Table 7. As indicated by Theorem 5.2, the numerical solution u, approximates
the exact solution u, up to a harmonic field. As we may observe from Fig. 1, the vector field »,, is an approximate harmonic
field with normal boundary condition. Furthermore, due to the presence of the harmonic field vector, the error 5, or ey
may not exhibit a convergence. Our numerical result in Table 7 verifies this point. We do not observe any convergence for
the vector field u. It is noteworthy that although the vector field u, is not convergent to u while our iterative algorithm
is still convergent. We list in TaPle 7 that the iterative number used in the iterative procedure. As for the dual variable
An, qn, We observe a rate of O(h?) for p > 3. The numerical performance is in consistency with our theory as established
in Theorem 5.1 for the convergence of e;, eq. The convergence rate for s, is still better than the one given in (5.6).
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p=2 p=3

0.45 -

p=5

0.45 ‘
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0.1 ‘ /I" "
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Fig. 1. Plot of the vector fields », calculated by the [P-PDWG method of Example 6.5 with different values of p.

Table 8
Numerical error and rate of convergence for the [P-PDWG method for Example 6.6.
1 1

P 1/h llevenlia rate e @ m,llie rate I(ex. eq)l rate Isnl rate It.
2 2.18e—01 - 1.61e—01 - 2.98e—01 - 5.18e—02 - 1

2 4 1.75e—01 0.32 1.45e—01 0.15 2.16e—01 0.46 2.67e—02 0.95 1
8 1.47e—01 0.25 1.33e—01 0.13 1.47e—01 0.56 9.49e—03 1.50 1
16 1.33e—01 0.15 1.26e—01 0.07 9.61e—02 0.61 3.04e—03 1.64 1
2 2.14e—01 - 1.67e—01 - 1.14e—01 - 1.19e—05 - 14

3 4 1.81e—01 0.24 1.60e—01 0.06 8.85e—02 0.37 4.29e—06 1.48 16
8 1.58e—01 0.19 1.49e—01 0.10 6.51e—02 0.44 1.05e—06 2.03 18
16 1.45e—01 0.13 1.41e—01 0.08 4.72e—02 0.47 2.58e—07 2.03 19
2 2.28e—01 - 1.85e—01 - 3.56e—01 - 1.27e—04 - 18

4 4 1.99e—01 0.20 1.81e—01 0.03 2.89e—01 0.30 3.89e—05 1.7 30
8 1.73e—01 0.20 1.66e—01 0.13 2.30e—01 0.33 9.44e—06 2.04 28
16 1.54e—01 0.17 1.51e—01 0.13 1.84e—01 0.33 2.33e—06 2.02 26
2 2.42e—01 - 2.01e—01 - 5.63e—01 - 7.06e—04 - 18

5 4 2.11e—01 0.20 1.94e—01 0.05 4.75e—01 0.24 1.99e—04 1.83 24
8 1.79e—01 0.23 1.72e—01 0.17 3.99e—01 0.25 4.86e—05 2.03 24
16 1.58e—01 0.18 1.55e—01 0.15 3.35e—01 0.26 1.16e—05 2.06 31

Example 6.6. In this test, we consider the problem on a toroidal domain with 1 holes, which is the same as that in
Example 6.4. We take € = diag(1, 1, 1) and

sin(rx) cos(mry) sin(wz)
u=Vx(0,0,r"sin@))+ B | cos(zx)sin(wy)sin(rz)
0
with (v, ) = (2, ).
15
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p=2 p=3

0.45 J

0.4

Fig. 2. Plot of the vector fields », calculated by the [’-PDWG method of Example 6.6 with different values of p.

We take the iterative parameters as those in Example 6.5, and plot the vector field 5y in Fig. 2, and present in Table 8
the errors and rates of convergence for the primal variable and the dual variables approximation. Just the same as that
in Example 6.5, the numerical results do not demonstrate any convergence for the vector field u, while show a rate of

q . . .
O(hv) for [|(es, eq)ll and a superconvergence rate O(h?) for ||s,|| when p > 3. Again we observe that the iterative scheme
is still convergent and the vector field #,, is an approximate harmonic field with normal boundary condition.

Data availability
Data will be made available on request.
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