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a b s t r a c t

This paper presents a new Lp-primal–dual weak Galerkin (PDWG) finite element method

for the div–curl system with the normal boundary condition for p > 1. Two crucial

features for the proposed Lp-PDWG finite element scheme are as follows: (1) it offers

an accurate and reliable numerical solution to the div–curl system under the low

Wα,p-regularity (α > 0) assumption for the exact solution; (2) it offers an effective

approximation of the normal harmonic vector fields on domains with complex topology.

An optimal order error estimate is established in the Lq-norm for the primal variable

where 1
p

+ 1
q

= 1. A series of numerical experiments are presented to demonstrate the

performance of the proposed Lp-PDWG algorithm.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we shall develop a new Lp-primal–dual weak Galerkin (PDWG) methods for the div–curl system with the

normal boundary condition. To this end, we consider the model problem: Find a vector field u = u(x) such that

∇ · (εu) = f , in Ω, (1.1a)

∇ × u = g, in Ω, (1.1b)

εu · n = φ1, on Γ , (1.1c)

where Ω ⊂ R3 is an open, bounded and connected polyhedral domain, and Γ = ∂Ω is the boundary of Ω . Assume

that Γ is the union of a finite number of disjoint surfaces Γ =
⋃L

i=0 Γi with Γ0 being the exterior boundary of Ω and

Γi (i = 1, . . . , L) being the other connected components with finite surface areas. Note that L is equal to the number of

holes in the domain Ω geometrically which is known as the second Betti number of Ω or the dimension of the second de
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Rham cohomology group of Ω . Assume the coefficient matrix ε = {εij(x)}3×3 is symmetric and uniformly positive definite

in Ω with εij (i, j = 1, 2, 3) being in L∞(Ω).

The solution uniqueness for the div–curl system (1.1a)–(1.1c) depends on the topology of the domain Ω . It is well-

known that the solution uniqueness holds true for simply connected Ω , while the solution is unique up to a normal

ε-harmonic function in W
εn,p

0 (Ω) defined in (2.1) for the case that the domain Ω is not simply connected. The dimension

of W
εn,p

0 (Ω) is the first Betti number of Ω which is the rank of the first homology group of Ω .

The div–curl system (1.1a)–(1.1b) arises in many applications in science and engineering such as electromagnetic fields

and fluid mechanics. Computational electro-magnetics plays an important role in many areas such as radar, satellite,

antenna design, waveguides, optical fibers, medical imaging and design of invisible cloaking devices [1]. In linear magnetic

fields, the function f (x) vanishes, u represents the magnetic field intensity and ε(x) is the inverse of the magnetic

permeability tensor. In fluid mechanics fields, the coefficient matrix ε(x) is diagonal with diagonal entries being the local

mass density. In electrostatics fields, ε(x) is the permittivity matrix.

There have been several numerical methods proposed and analyzed for the div–curl system (1.1a)–(1.1b). A covolume

method was developed by the employment of the Voronoi–Delaunay mesh pairs in three dimensional space [2]. [3]

developed a least-squares finite element method for two types of boundary value problems. The least-squares method

was proposed in [4] for the div–curl problem based on discontinuous elements on nonconvex polyhedral domains. In [5],

a classical numerical method was introduced for solving the magnetostatic problem by employing a scalar or vector

potential. The control volume method [6] was proposed directly for planar div–curl problems. [7] proposed a discrete

duality finite volume method for div–curl problems on almost arbitrary polygonal meshes. A mixed finite element method

was introduced in [8] for three dimensional axisymmetric div–curl systems through a dimension reduction technique

based on the cylindrical coordinates in simply connected and axisymmetric domains. The mimetic finite difference

scheme [9,10] was introduced for the magneto-static problems on general polyhedral partitions. The numerical algorithm

was designed to construct a finite element basis for the first de Rham cohomology group of the computational domain,

which was further used for a numerical approximation of the magnetostatic problem. [11] proposed a weak Galerkin finite

element method for the div–curl system with either normal or tangential boundary conditions. Another weak Galerkin

scheme was introduced in [12] by using a least-squares approach for the div–curl problem. [13,14] developed primal–dual

weak Galerkin finite element methods for the div–curl system with tangential boundary condition and normal boundary

condition respectively and proved that the schemes work well for the exact solution with low-regularity assumptions. The

primal–dual weak Galerkin finite element methods have been developed for many challenging PDEs (see an incomplete

list [11,15–22])

There are two main challenges in the approximation of the div–curl system (1.1a)–(1.1c): (1) the low-regularity of

the exact solution u limiting the stability and accuracy of the numerical solutions, and (2) the non-uniqueness of the

solution u on domains with complex topology. The later one can be relaxed to certain extent by seeking a particular

solution orthogonal to the space of normal ε-harmonic vector space W
εn,p

0 (Ω), but with an immediate obstacle lying in

the determination of the space W
εn,p

0 (Ω) or an effective approximation of this space. To address these challenges, we

shall devise a new Lp primal–dual weak Galerkin (PDWG) scheme for (1.1a)–(1.1c) by following the framework developed

in [14]. It should be noted that the Lp-PDWG framework was originated in [23] for convection–diffusion equations. Our

Lp-PDWG numerical method for (1.1a)–(1.1c) has two prominent features over the existing numerical methods: (1) it

offers an effective approximation for the normal ε-harmonic vector space W
εn,p

0 (Ω) regardless of the topology of the

domain Ω; and (2) it provides an accurate and reliable numerical solution for the div–curl system (1.1a)–(1.1c) with low

Wα,p-regularity (α > 0) assumption for the exact solution u.

The paper is organized as follows. In Section 2, we introduce the notation and derive the weak formulation for

the div–curl system (1.1a)–(1.1c). In Section 3 a Lp-PDWG algorithm for both the div–curl problem and the discrete

normal ε-harmonic vector fields is proposed. The solution existence and uniqueness for the Lp-PDWG scheme is discussed

in Section 4. The convergence theory for the Lp-PDWG approximation is established in Section 5. Finally, several test

examples are demonstrated to illustrate the performance of the Lp-PDWG algorithm in Section 6.

2. Weak formulations

2.1. Notations

We follow the usual notations for Sobolev spaces and norms [24,25]. Let D ⊂ R3 be an open bounded domain with

Lipschitz continuous boundary. Denote by W divε ,p(D) the closed subspace of [Lp(D)]3 such that ∇ · (εv) ∈ Lp(D). Denote

W divε ,p(D) by W div,p(D) when ε = I . Analogously, we use W curl,p(D) to denote the closed subspace of [Lp(D)]3 so that

∇ × v ∈ [Lp(D)]3. Denote by W
curl,p

0 (D) the closed subspace with vanishing tangential boundary values, i.e.,

W
curl,p

0 (D) := {v ∈ W curl,p(D), v× n = 0 on ∂D}.

Denote by ⟨·, ·⟩Γi
the inner product in L2(Γi). We introduce the following Sobolev space

Wε(Ω) = {v ∈ W
curl,p

0 (Ω) ∩ W divε ,p(Ω), ∇ · (εv) = 0, ⟨εv · ni, 1⟩Γi
= 0, i = 1, . . . , L}.

2



W. Cao, C. Wang and J. Wang Journal of Computational and Applied Mathematics 422 (2023) 114881

A vector field v ∈ [Lp(Ω)]3 is defined to be ε-harmonic in Ω if it is ε-solenoidal and irrotational in Ω . Denoted by

W
εn,p

0 (Ω) the space of normal ε-harmonic vector fields that consists of all ε-harmonic vector fields satisfying vanishing

normal boundary condition, i.e.,

W
εn,p

0 (Ω) = {v ∈ [Lp(Ω)]3 : ∇×v = 0, ∇ · (εv) = 0, εv · n = 0 on Γ }. (2.1)

Denote W
εn,p

0 (Ω) by W
n,p

0 (Ω) for ε = I . Similarly, denoted by W
ετ ,p

0 (Ω) the space of tangential ε-harmonic vector fields

that consists of all ε-harmonic vector fields satisfying vanishing tangential boundary condition, i.e.,

W
ετ ,p

0 (Ω) = {v ∈ [Lp(Ω)]3 : ∇×v = 0, ∇ · (εv) = 0, v× n = 0 on Γ }.

2.2. A weak formulation

Testing (1.1a) by any ϕ ∈ W 1,p(Ω) and using the normal boundary condition (1.1c) yields

(u, ε∇ϕ) = ⟨φ1, ϕ⟩ − (f , ϕ), ∀ϕ ∈ W 1,p(Ω). (2.2)

Testing (1.1b) by any w ∈ W
curl,p

0 (Ω) gives

(u, ∇ × w) = (g,w), ∀w ∈ W
curl,p

0 (Ω). (2.3)

Combining with Eqs. (2.2) and (2.3), we obtain a weak solution u ∈ [Lq(Ω)]3 ( 1
p

+ 1
q

= 1) of the div–curl system with

normal boundary condition (1.1a)–(1.1c) satisfying

(u, ε∇ϕ + ∇ × ψ) = (g,ψ) − (f , ϕ) + ⟨φ1, ϕ⟩, (2.4)

for all ϕ ∈ W 1,p(Ω) and ψ ∈ W
curl,p

0 (Ω).

As discussed in [14], the solution to the variational problem (2.4) is non-unique in general. The homogeneous version

of (2.4) is to seek a u ∈ [Lq(Ω)]3( 1
p

+ 1
q

= 1) satisfying

(u, ε∇ϕ + ∇ × ψ) = 0 ∀ϕ ∈ W 1,p(Ω), ∀ψ ∈ W
curl,p

0 (Ω). (2.5)

Note that the solution could be any ε-harmonic function in W
εn,p

0 (Ω) which is non-unique provided that the ε-harmonic

space W
εn,p

0 (Ω) has a positive dimension. The solution to the div–curl system (1.1a)–(1.1c) is unique provided that the

solution is ε-weighted L2 orthogonal to W
εn,p

0 (Ω).

2.3. An extended weak formulation

In this subsection, we slightly modify the weak formulation (2.5) to ensure that the solution to the homogeneous

version of (2.4) is unique.

We first denote by W
1,p

0c (Ω) the subspace of W 1,p(Ω) with vanishing value on Γ0 and constant values on other

connected components of the boundary; i.e.,

W
1,p

0c (Ω) = {φ ∈ W 1,p(Ω) : φ|Γ0
= 0, φ|Γi

= αi, i = 1, . . . , L}.

Define the following bilinear form:

B(u, s; ϕ,ψ) := (u, ε∇ϕ + ∇ × ψ) + (ψ, ε∇s). (2.6)

Now the extended weak formulation for the div–curl system (1.1a)–(1.1c) seeks (u, s) ∈ [Lq(Ω)]3 ×W
1,p

0c (Ω) satisfying

B(u, s; ϕ,ψ) = F (ϕ,ψ), ∀ϕ ∈ W 1,p(Ω), ∀ψ ∈ W
curl,p

0 (Ω), (2.7)

where

F (ϕ,ψ) = (g,ψ) − (f , ϕ) + ⟨φ1, ϕ⟩. (2.8)

The homogeneous dual problem of (2.7) seeks (λ, q) ∈ W 1,p(Ω)/R × W
curl,p

0 (Ω) such that

B(v, r; λ, q) = 0, ∀v ∈ [Lq(Ω)]3, ∀r ∈ W
1,p

0c (Ω). (2.9)

It has been proved in [14] that the solution to the homogeneous dual problem (2.9) is unique.

3. Lp-PDWG scheme

To design a Lp-PDWG scheme for the div–curl system (1.1a)–(1.1c), we first briefly review the definitions of discrete

weak gradient and discrete weak curl [14] and then introduce some finite element spaces, which shall be used in our

later algorithm.
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Denote by Th a finite element partition of the domain Ω that consists of shape-regular polyhedra [26]. Denote by Eh

and E
0
h = Eh \ ∂Ω the set of all faces and the set of all interior faces in Th respectively. Let hT be the diameter of the

element T ∈ Th and h = maxT∈Th
hT be the meshsize of the partition Th.

Let T ∈ Th be a polyhedral domain with boundary ∂T . We define the space of scalar-valued weak functions on T as

follows

W (T ) = {v = {v0, vb} : v0 ∈ Lp(T ), vb ∈ Lp(∂T )},

where v0 and vb represent the values of v in the interior and on the boundary of T respectively. Similarly, the space of

vector-valued weak functions on T is defined by

V (T ) = {v = {v0, vb} : v0 ∈ [Lp(T )]3, vb ∈ [Lp(∂T )]3}.

Let Pj(T ) be the polynomial space on T with total degree no more than j. Denote by n an unit outward normal direction

on ∂T . For any v ∈ W (T ), the discrete weak gradient ∇w,j,Tv is defined as the unique vector-valued polynomial in [Pj(T )]
3

such that

(∇w,j,Tv,ϕ)T = −(v0, ∇ · ϕ)T + ⟨vb,ϕ · n⟩∂T , ∀ ϕ ∈ [Pj(T )]
3. (3.1)

Similarly, for any v ∈ V (T ), the discrete weak curl ∇w,j,T × v is defined as the unique vector-valued polynomial in [Pj(T )]
3

such that

(∇w,j,T × v,ϕ)T = (v0, ∇ × ϕ)T − ⟨vb × n,ϕ⟩∂T , ∀ ϕ ∈ [Pj(T )]
3. (3.2)

For a given non-negative integer k, the finite element spaces are defined as follows

Vh ={v : v|T ∈ [Pk(T )]
3, ∀T ∈ Th},

Sh ={{s0, sb} : s0|T ∈ Pk(T ), sb|∂T ∈ Pk(∂T ), ∀T ∈ Th, sb|Γ0
= 0, sb|Γi

is a constant},

Mh ={{ϕ0, ϕb} : ϕ0|T ∈ Pk(T ), ϕb|∂T ∈ Pk(∂T ), ∀T ∈ Th,

∫

Ω

ϕ0 = 0},

Wh ={ψ = {ψ0,ψb} : ψ0|T ∈ [Pk(T )]
3,ψb|∂T ∈ Gk(∂T ), ∀T ∈ Th,ψb|Γ = 0},

where Gk(∂T ) := [Pk(τ )]
3 ×nτ is the space of polynomials of degree k in the tangent space of ∂T , and nτ denotes the unit

outward normal vector on τ with τ ∈ ∂T .

For simplicity of notation and without confusion, for any σ ∈ Sh or σ ∈ Mh, denote by ∇wσ the discrete weak gradient

∇w,k,Tσ computed by (3.1) on T , i.e.,

(∇wσ )|T = ∇w,k,T (σ |T ), ∀σ ∈ Sh or σ ∈ Mh.

Similarly, for any q ∈ Wh, denote by ∇w × q the discrete weak curl ∇w,k,T × q computed by (3.2) on T , i.e.,

(∇w × q)|T = ∇w,k,T × (q|T ), ∀q ∈ Wh.

With the discrete weak gradient and discrete weak curl, an approximation of the bilinear form B(·; ·) is thus given by

Bh(v, r; ϕ,ψ) = (v, ε∇wϕ + ∇w × ψ) + (ψ0, ε∇wr), ∀(v, r, ϕ,ψ) ∈ Vh × Sh × Mh × Wh. (3.3)

Now we are ready to present the Lp-PDWG finite element method for the div–curl system (1.1a)–(1.1c).

Algorithm 1 (Lp-PDWG Algorithm). The Lp-PDWG finite element method for the div–curl system (1.1a)–(1.1c) seeks a

uh ∈ Vh, together with three auxiliary variables sh ∈ Sh, λh ∈ Mh, qh ∈ Wh, such that
{

s1(λh, qh; ϕ,ψ) + Bh(uh, sh; ϕ,ψ) = F (ϕ,ψ), ∀ϕ ∈ Mh, ψ ∈ Wh,

−s2(sh, r) + Bh(v, r; λh, qh) = 0, ∀v ∈ Vh, r ∈ Sh.
(3.4)

Here F (·, ·) is given in Eq. (2.8), and the Lp stabilizer s1 is defined by

s1(λh, qh; ϕ,ψ) = ρ1

∑

T∈Th

∫

∂T

h
1−p

T |λ0 − λb|
p−1sgn(λ0 − λb)(ϕ0 − ϕb)ds

+ ρ2

∑

T∈Th

h
1−p

T

∫

∂T

|q0 × n − qb × n|p−1sgn(q0 × n − qb × n)(ψ0 × n − ψb × n)ds,

and the Lq stabilizer s2 is defined accordingly in the space Mh as follows

s2(sh; r) = ρ3

∑

T∈Th

h
1−q

T

∫

∂T

|s0 − sb|
q−1sgn(s0 − sb)(r0 − rb)ds,

where p > 1, q > 1 such that 1
p

+ 1
q

= 1, ρi > 0 for i = 1, 2, 3 are parameters with values at user’s discretion.
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The above Lp-PDWG scheme (3.4) also offers an approximation of the normal ε-harmonic vector fields W
εn,p

0 . Our later
theoretical result (see Theorem 5.2) demonstrates that the difference ηh = Qhu− uh is sufficiently close to a true normal
ε-harmonic vector field η. Here Qh denote the L2 projection operator onto the finite element space Vh, and uh is the
solution of (3.4) for the div–curl system (1.1a)–(1.1c). Consequently, a vector field ηh ∈ Vh is said to be a discrete normal
ε-harmonic function if there exists a vector field u ∈ W divε ,p(Ω) ∩ W curl,p(Ω) satisfying ηh = Qhu − uh.

4. Solution existence and uniqueness

This section is dedicated to the study of solution existence and uniqueness of the Lp-PDWG scheme (3.4). For simplicity,
we assume that ε is piecewise constant with respect to the partition Th respectively. Note that all the results can be
generalized to piecewise smooth ε without any difficulty.

We define the following two semi-norms; i.e.,

|||(λh, qh)||| =
(

s1(λh, qh; λh, qh)

)
1
p
, λh ∈ Mh, qh ∈ Wh, (4.1)

|||sh||| =
(

s2(sh; sh)
)

1
q
, sh ∈ Sh. (4.2)

Let Qh be the projection operator onto the weak finite element space Sh or Mh such that

(Qhw)|T = {Q0w|T ,Qbw|∂T },

where Q0 and Qb are the L2 projection operators onto Pk(T ) and Pk(τ ) on each face τ ∈ ∂T . Similarly, denote by Q0, Qb

and Qh the L2 projection operators onto [Pk(T )]
3, Gk(τ ) = [Pk(τ )]

3 × nτ , and Wh, respectively.

Lemma 4.1 ([26]). The L2 projections Qh and Qh satisfy the commutative property

∇w(Qhw) = Qh(∇w), ∀w ∈ W 1,p(T ), (4.3)

∇w × (Qhψ) = Qh(∇ × ψ), ∀ψ ∈ W curl,p(T ). (4.4)

Theorem 4.2 ([14]). (Helmholtz Decomposition) For any vector-valued function u ∈ [Lp(Ω)]3, there exists a unique ψ ∈

W
curl,p

0 (Ω), φ ∈ W 1,p(Ω)/R, and η ∈ W
εn,p

0 (Ω) such that

u = ε−1∇ × ψ + ∇φ + η, (4.5)

∇ · (εψ) = 0, ⟨εψ · ni, 1⟩Γi
= 0, i = 1, . . . , L. (4.6)

In addition, there holds

∥ψ∥W curl,p(Ω) + ∥∇φ∥Lp(Ω) ≲ ∥ε
1
p u∥Lp(Ω). (4.7)

Theorem 4.3. The kernel of the matrix of the Lp-PDWG method (3.4) is given by

Kh = {(vh, sh = 0, λh = 0, qh = 0) : vh ∈ Vh ∩ W
εn,p

0 (Ω)}.

In other words, the kernel of the matrix of the Lp-PDWG scheme (3.4) is isomorphic to the subspace of W
εn,p

0 (Ω) consisting of
harmonic functions that are piecewise polynomial of degree k.

Proof. Let (u
(1)

h , s
(1)

h , λ
(1)

h , q
(1)

h ) and (u
(2)

h , s
(2)

h , λ
(2)

h , q
(2)

h ) be two different solutions of (3.4). This gives, for i = 1, 2,

s1(λ
(i)

h , q
(i)

h ; ϕ,ψ) + Bh(u
(i)

h , s
(i)

h ; ϕ,ψ) = F (ϕ,ψ), ∀ϕ ∈ Mh, ψ ∈ Wh, (4.8)

−s2(s
(i)

h , r) + Bh(v, r; λ
(i)

h , q
(i)

h ) = 0, ∀v ∈ Vh, r ∈ Sh. (4.9)

Given any j = 1, 2, taking (ϕ,ψ) = (λ
(j)

h , q
(j)

h ) in (4.8) and using (4.9), we easily get

s1(λ
(i)

h , q
(i)

h ; λ
(j)

h , q
(j)

h ) + s2(s
(j)

h , s
(i)

h ) = F (λ
(j)

h , q
(j)

h ), ∀i, j = 1, 2. (4.10)

Consequently, for j = 1, 2,

s1(λ
(1)

h , q
(1)

h ; λ
(j)

h , q
(j)

h ) + s2(s
(j)

h , s
(1)

h ) = s1(λ
(2)

h , q
(2)

h ; λ
(j)

h , q
(j)

h ) + s2(s
(j)

h , s
(2)

h ). (4.11)

Choosing j = 1 in (4.11) and using the Young’s inequality |AB| ≤
|A|p

p
+

|B|q

q
yields that

s1(λ
(1)

h , q
(1)

h ; λ
(1)

h , q
(1)

h ) + s2(s
(1)

h , s
(1)

h ) ≤
s1(λ

(2)

h , q
(2)

h ; λ
(2)

h , q
(2)

h )

p

+
s1(λ

(1)

h , q
(1)

h ; λ
(1)

h , q
(1)

h )

q
+

s2(s
(1)

h , s
(1)

h )

q
+

s2(s
(2)

h , s
(2)

h )

p
,

5
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which leads to

s1(λ
(1)

h , q
(1)

h ; λ
(1)

h , q
(1)

h ) + s2(s
(1)

h , s
(1)

h ) ≤ s1(λ
(2)

h , q
(2)

h ; λ
(2)

h , q
(2)

h ) + s2(s
(2)

h , s
(2)

h ).

Similarly, we take j = 2 in (4.11) and use the Young’s inequality again to derive

s1(λ
(2)

h , q
(2)

h ; λ
(2)

h , q
(2)

h ) + s2(s
(2)

h , s
(2)

h ) ≤ s1(λ
(1)

h , q
(1)

h ; λ
(1)

h , q
(1)

h ) + s2(s
(1)

h , s
(1)

h ).

Combining the last two inequality leads to

s1(λ
(1)

h , q
(1)

h ; λ
(1)

h , q
(1)

h ) + s2(s
(1)

h , s
(1)

h ) = s1(λ
(2)

h , q
(2)

h ; λ
(2)

h , q
(2)

h ) + s2(s
(2)

h , s
(2)

h ). (4.12)

Note that for any two real numbers A and B, there holds

⏐

⏐

⏐

A + B

2

⏐

⏐

⏐

p

≤
|A|p + |B|p

2
,

and the equality holds true if and only if A = B. This follows that

s1(
λ
(1)

h + λ
(2)

h

2
,
q
(1)

h + q
(2)

h

2
;
λ
(1)

h + λ
(2)

h

2
,
q
(1)

h + q
(2)

h

2
) + s2(

s
(1)

h + s
(2)

h

2
,
s
(1)

h + s
(2)

h

2
)

≤
1

2

(

s1(λ
(1)

h , q
(1)

h ; λ
(1)

h , q
(1)

h ) + s1(λ
(2)

h , q
(2)

h ; λ
(2)

h , q
(2)

h )

)

+
1

2

(

s2(s
(1)

h , s
(1)

h ) + s2(s
(2)

h , s
(2)

h )

)

.

(4.13)

On the other hand, a direct calculation from (4.11)–(4.12) yields

s1(λ
(1)

h , q
(1)

h ; λ
(1)

h , q
(1)

h ) + s2(s
(1)

h , s
(1)

h )

=
1

2

(

s1(λ
(1)

h , q
(1)

h ; λ
(1)

h , q
(1)

h ) + s2(s
(1)

h , s
(1)

h ) + s1(λ
(2)

h , q
(2)

h ; λ
(1)

h , q
(1)

h ) + s2(s
(1)

h , s
(2)

h )

)

=s1(
λ
(1)

h + λ
(2)

h

2
,
q
(1)

h + q
(2)

h

2
; λ

(1)

h , q
(1)

h ) + s2(s
(1)

h ,
s
(1)

h + s
(2)

h

2
).

Using the Young’s inequality again, we get

s1(λ
(1)

h , q
(1)

h ; λ
(1)

h , q
(1)

h ) + s2(s
(1)

h , s
(1)

h )

≤s1(
λ
(1)

h + λ
(2)

h

2
,
q
(1)

h + q
(2)

h

2
;
λ
(1)

h + λ
(2)

h

2
,
q
(1)

h + q
(2)

h

2
) + s2(

s
(1)

h + s
(2)

h

2
,
s
(1)

h + s
(2)

h

2
).

Then we conclude from (4.13) and (4.12)

s1(
λ
(1)

h + λ
(2)

h

2
,
q
(1)

h + q
(2)

h

2
;
λ
(1)

h + λ
(2)

h

2
,
q
(1)

h + q
(2)

h

2
) + s2(

s
(1)

h + s
(2)

h

2
,
s
(1)

h + s
(2)

h

2
)

=s1(λ
(1)

h , q
(1)

h ; λ
(1)

h , q
(1)

h ) + s2(s
(1)

h , s
(1)

h ) = s1(λ
(2)

h , q
(2)

h ; λ
(2)

h , q
(2)

h ) + s2(s
(2)

h , s
(2)

h ).

The above equation holds true if and only if

λ
(1)

0 − λ
(1)

b = λ
(2)

0 − λ
(2)

b , on ∂T , (4.14)

q
(1)

0 × n − q
(1)

b × n = q
(2)

0 × n − q
(2)

b × n, on ∂T , (4.15)

s
(1)

0 − s
(1)

b = s
(2)

0 − s
(2)

b , on ∂T , (4.16)

Denoting ϵh = λ
(1)

h − λ
(2)

h = {ϵ0, ϵb}, eh = q
(1)

h − q
(2)

h = {e0, eb}, eh = s
(1)

h − s
(2)

h = {e0, eb}, we have

ϵ0 = ϵb, on ∂T , e0 × n = eb × n, on ∂T , e0 = eb, on ∂T . (4.17)

Since s
(1)

0 − s
(1)

b = s
(2)

0 − s
(2)

b on ∂T , there holds

s2(s
(1)

h , r) = s2(s
(2)

h , r), ∀r ∈ Sh,

which, combined with (4.9), gives

Bh(v, r; λ
(1)

h , q
(1)

h ) = Bh(v, r; λ
(2)

h , q
(2)

h ), ∀v ∈ Vh, r ∈ Sh,

or equivalently,

Bh(v, r; ϵh, eh) = 0, ∀v ∈ Vh, r ∈ Sh,

i.e.,

(e0, ε∇wr) + (v, ε∇wϵh + ∇w × eh) = 0, ∀v ∈ Vh, r ∈ Sh. (4.18)

6
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It follows from (4.17) that ϵ0 ∈ C(Ω), e0 ∈ C(Ω) and e0 ∈ H0(curl; Ω), which indicates

∇ϵ0 = ∇wϵh, ∇ × e0 = ∇w × eh. (4.19)

Letting r = 0 and varying v in (4.18), we get

ε∇wϵh + ∇w × eh = 0,

which, together with (4.19), gives

ε∇ϵ0 + ∇ × e0 = 0. (4.20)

Using e0 ∈ H0(curl; Ω), we have

(ε∇ϵ0 + ∇ × e0, ∇ϵ0) = (ε∇ϵ0, ∇ϵ0) + (∇ × e0, ∇ϵ0)

= (ε∇ϵ0, ∇ϵ0) + ⟨n × e0, ϵ0⟩ = (ε∇ϵ0, ∇ϵ0),

which, from (4.20), implies ∇ϵ0 = 0, and hence ϵ0 ≡ 0 as a function with mean value 0. This further leads to ϵb ≡ 0.
Thus, from (4.20) we have

∇ × e0 = 0, in Ω.

Note that e0 satisfies

(e0, ε∇wr) = 0, ∀r ∈ Sh.

This leads to e0 ∈ H(divε; Ω) and

∇ · (εe0) = 0, ⟨e0 · ni, 1⟩Γi
= 0, i = 1, 2, . . . , L.

This, together with ∇ × e0 = 0 and e0 ∈ H0(curl; Ω), indicates that e0 ≡ 0, and further eb = n × (eb × n) = n × 0 = 0.
Using (4.14)–(4.16), we have

s1(λ
(1)

h , q
(1)

h ; ϕ,ψ) = s1(λ
(2)

h , q
(2)

h ; ϕ,ψ),

which yields, together with (4.8),

Bh(u
(1)

h , s
(1)

h ; ϕ,ψ) = Bh(u
(2)

h , s
(2)

h ; ϕ,ψ), ∀ϕ ∈ Mh, ψ ∈ Wh.

Denote euh = u
(1)

h − u
(2)

h . The above equality is equivalent to

0 = Bh(euh , eh; ϕ,ψ) = (euh , ε∇wϕ + ∇w × ψ) + (ψ0, ε∇weh), ∀ϕ ∈ Mh, ψ ∈ Wh. (4.21)

Now we have, from the Helmholtz decomposition (4.5),

euh = ε−1∇ × ψ̃ + ∇φ̃ + η̃,

where η̃ ∈ W
εn,p

0 (Ω) and ψ̃ ∈ W
curl,p

0 (Ω) satisfying ∇ · (εψ̃) = 0 and ⟨εψ̃ · ni, 1⟩Γi
= 0 for i = 1, . . . , L. It follows from

e0 = eb on ∂T for each element T ∈ Th that e0 ∈ W 1,p(Ω). This leads to ∇weh = ∇e0. If the dimension of W
εn,p

0 (Ω) is 0,

we have η̃ = 0. Letting the test functions φ and ψ in (4.21) be the L2 projections of the corresponding function in the
Helmholtz decomposition gives rise to

0 =(euh , ε∇wQhϕ̃ + ∇w × Qhψ̃) + (Q0ψ̃, ε∇weh)

=(euh ,Qhε∇ϕ̃ + Qh∇ × ψ̃) + (ψ̃, ε∇e0)

=(euh , ε∇ϕ̃ + ∇ × ψ̃) + (ψ̃, ε∇e0)

=(εeuh , euh − η̃) + (ψ̃, ε∇e0)

=(ε(euh − η̃), euh − η̃),

(4.22)

which leads to euh − η̃ = 0, i.e., euh is a harmonic function. As a harmonic function in the form of piecewise polynomial of
degree k, the first term on the right-hand side of (4.21) is zero for any test functions ϕ ∈ Mh and ψ ∈ Wh, which further
implies that ∇weh = 0. Using (4.17) gives ∇e0 = ∇weh = 0. Therefore we obtain e0 ≡ 0 and further eb ≡ 0.

This completes the proof of the theorem. □

Our main result for the solution existence and uniqueness of the numerical scheme (3.4) is stated as follows.

Theorem 4.4. The Lp-PDWG finite element scheme (3.4) has a unique solution for sh, λh and qh. The solution uh is unique up
to a harmonic function ηh ∈ W

εn,p

0 (Ω) which is a piecewise polynomial of degree k.

Remark 4.5. For the lowest order k = 0 of the Lp-PDWG scheme (3.4), any ηh in the kernel Kh of the matrix of the
Lp-PDWG method is a piecewise constant vector field. ηh is thus continuous across each interior element interface and
has vanishing value on the domain boundary along the normal direction. This leads to ηh ≡ 0. Therefore, the Lp-PDWG
finite element scheme (3.4) has a unique solution for uh in the case of the lowest order element.

7
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5. Lq-Error analysis for the primal variable

In this section, we shall establish the Lq error estimates for primal variable uh in the Lp-PDWG scheme (3.4). Denote
the error functions by

eu = Qhu − uh, es = Qhs − sh, eλ = Qhλ − λh, eq = Qhq − qh.

We begin with the study of error equations for the Lp-PDWG scheme (3.4) developed for the div–curl system (1.1a)–(1.1c).

5.1. Error equations

For the exact solution {u; s = 0} of the div–curl system, recalling the definition of Bh(·; ·) in (3.3) and using (3.1) and
(3.2), we have

Bh(Qhu,Qhs; ϕ,ψ) = (Qhu, ε∇ϕ0 + ∇ × ψ0) + ⟨Qhu, εn(ϕb − ϕ0) + (ψ0 − ψb) × n⟩Eh

= (u, ε∇ϕ0 + ∇ × ψ0) + ⟨Qhu, εn(ϕb − ϕ0) + (ψ0 − ψb) × n⟩Eh
.

By using the integration by parts and (1.1a)–(1.1c), we easily obtain

Bh(Qhu,Qhs; ϕ,ψ)

= −(∇ · (εu), ϕ0) + (∇ × u,ψ0) + ⟨u, εn(ϕ0 − ϕb) + (ψb − ψ0) × n⟩Eh

+ ⟨Qhu, εn(ϕb − ϕ0) + (ψ0 − ψb) × n⟩Eh
+ ⟨φ1, ϕb⟩∂Ω

= ⟨φ1, ϕb⟩∂Ω − (f , ϕ0) + (g,ψ0) + ⟨u − Qhu, εn(ϕ0 − ϕb) + (ψb − ψ0) × n⟩Eh
.

Noticing that λ = 0 and q = 0, then

s1(eλ, eq; ϕ,ψ) + Bh(eu, es; ϕ,ψ) = ⟨u − Qhu, εn(ϕ0 − ϕb) + (ψb − ψ0) × n⟩Eh
. (5.1)

Similarly, we conclude from the fact s = 0, q = 0, λ = 0 that

− s2(es, r) + Bh(v, r; eλ, eq) = 0. (5.2)

The above two Eqs. (5.1)–(5.2) are the error equations for the Lp-PDWG scheme (3.4), which will be frequently used
in our error estimates.

5.2. Error estimates for the dual variables

Recall that Th is a shape-regular finite element partition of the domain Ω . For any T ∈ Th and ∇w ∈ Lq(T ) with q > 1,
the following trace inequality holds true:

∥w∥
q

Lq(∂T )
≤ Ch−1

T

(

∥w∥
q

Lq(T )
+ h

q

T∥∇w∥
q

Lq(T )

)

. (5.3)

By using the Cauchy–Schwarz inequality and the trace inequality, we get

|⟨w, v⟩Eh
| ≤ (

∑

T∈Th

∥w∥
q

Lq(∂T )
)
1
q (
∑

T∈Th

∥v∥
p

Lp(∂T )
)
1
p

≤ Ch
− 1

q (∥w∥Lq(T ) + h∥∇w∥Lq(T ))(
∑

T∈Th

∥v∥
p

Lp(∂T )
)
1
p .

(5.4)

Now we are ready to present the error estimates for the dual variables.

Theorem 5.1. Assume the solution of the div–curl system (1.1a)–(1.1c) satisfies u ∈ [W k+θ,q(Ω)]3 for θ ∈ (1/2, 1]. For the
numerical solution uh, sh, λh, qh arising from the Lp-PDWG scheme (3.4), there holds

|||(eλ, eq)||| ≤ Ch
(k+θ )

q
p ∥∇k+θu∥

q
p

Lq(Ω)
, (5.5)

|||es||| ≤ Ch(k+θ )∥∇k+θu∥Lq(Ω). (5.6)

Proof. First, we have, from the error Eqs. (5.1)–(5.2) that

s1(eλ, eq; eλ, eq) + s2(es, es) =⟨u − Qhu, εn(eλ,0 − eλ,b) + (eq,b − eq,0) × n⟩Eh
. (5.7)

In light of (5.4) and using the approximation property of Qh, we get

|⟨u − Qhu, εn(eλ,0 − eλ,b) + (eq,b − eq,0) × n⟩Eh
|

≤Ch
k+θ− 1

q ∥∇k+θu∥Lq

(

∑

T∈Th

(∥εn(eλ,0 − eλ,b)∥
p

Lp(∂T )
+ ∥(eq,b − eq,0) × n∥

p

Lp(∂T )
)

)
1
p

≤Chk+θ∥∇k+θu∥Lq |||(eλ, eq)|||.

(5.8)

8
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Substituting the above inequality into (5.7) and using the Cauchy–Schwarz inequality yields

|||(eλ, eq)|||
p + |||es|||

q ≤ C1h
(k+θ )q∥∇k+θu∥

q

Lq(Ω)
. (5.9)

Then (5.5)–(5.6) follow directly. □

5.3. Lq Error estimates for the primal variable uh

To derive the Lq-estimate for the error function eu, we need employ the Helmholtz decomposition (4.5) for any function

v, such that

v = ε−1∇ × ψ̃ + ∇φ̃ + η̃, (5.10)

where φ̃ ∈ W 1,p(Ω), ψ̃ ∈ W
curl,p

0 (Ω), and η̃ ∈ W
εn,p

0 (Ω). We assume the Wα,p-regularity holds true for some fixed

α ∈ (1/2, 1]:

∥ψ̃∥α,p + ∥φ̃∥α,p ≤ C∥v− η̃∥0,p. (5.11)

The main convergence result of this paper is stated as follows.

Theorem 5.2. Let u be a solution of the div–curl system (1.1a)–(1.1c) such that u ∈ [W k+θ,q(Ω)]3 for θ ∈ (1/2, 1]. Assume

that the Helmholtz decomposition (5.10) has the Wα,p-regularity estimate (5.11). For a numerical solution uh, sh, λh, qh

arising from Lp-PDWG scheme (3.4), there exists a harmonic function η̃ ∈ W
εn,p

0 (Ω) such that

∥ε
1
q (uh + η̃− Qhu)∥Lq(Ω) ≤ Chk+θ+α−1∥∇k+θu∥Lq(Ω). (5.12)

Proof. Given any function v, let φ̃ ∈ W 1,p(Ω), ψ̃ ∈ W
curl,p

0 (Ω), and η̃ ∈ W
εn,p

0 (Ω) satisfy (5.10). Taking ϕ = Qhφ̃ and

ψ = Qhψ̃ in Bh(eu, es; ϕ,ψ) and using Lemma 4.1 gives

Bh(eu, es; ϕ,ψ) =(eu, ε∇wQhφ̃ + ∇w × Qhψ̃) + (Q0ψ̃, ε∇wes)

=(eu, εQh∇wφ̃ + Qh∇w × ψ̃) + (Q0ψ̃, ε∇wes)

=(eu, ε∇φ̃ + ∇ × ψ̃) + (Q0ψ̃, ε∇wes).

By using the Helmholtz decomposition (5.10), we have

Bh(eu, es; ϕ,ψ) = (εeu, v− η̃) + (εQ0ψ̃, ∇wes)

= (ε(eu − η̃), v− η̃) + (εQ0ψ̃, ∇wes).
(5.13)

From the definition of the weak gradient, we have

(εQ0ψ̃, ∇wes) =(εQ0ψ̃, ∇es,0) + ⟨εQ0ψ̃ · n, es,b − es,0⟩Eh

=(εψ̃, ∇es,0) + ⟨εQ0ψ̃ · n, es,b − es,0⟩Eh

= − (∇ · (εψ̃), es,0) + ⟨εψ̃ · n, es,0⟩Eh
+ ⟨εQ0ψ̃ · n, es,b − es,0⟩Eh

=⟨εψ̃ · n, es,0 − es,b⟩Eh
+ ⟨εQ0ψ̃ · n, es,b − es,0⟩Eh

=⟨ε(ψ̃ − Q0ψ̃) · n, es,0 − es,b⟩Eh
.

Substituting the above into 5.2 yields

(ε(eu − η̃), v− η̃) =B(eu, es; ϕ,ψ) − ⟨ε(ψ̃ − Q0ψ̃) · n, es,0 − es,b⟩Eh

=⟨u − Qhu, εn(ϕ0 − ϕb) + (ψb − ψ0) × n⟩Eh
− s1(eλ, eq; ϕ,ψ)

− ⟨ε(ψ̃ − Q0ψ̃) · n, es,0 − es,b⟩Eh

=I1 + I2 + I3,

(5.14)

where we used the first error Eq. (5.1), Ii(i = 1, . . . , 3) are defined accordingly.

As to I1, using the same argument as what we did for (5.8), we get

|I1| ≤ Chk+θ∥∇k+θu∥Lq(Ω)|||(ϕ,ψ)|||. (5.15)

9
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As to I2, recalling the definition of s1 and using the Cauchy–Schwarz inequality, we have

|I2| ≤C

(

∑

T∈Th

h
1−p

T

∫

∂T

|eλ,0 − eλ,b|
q(p−1)ds

)
1
q
(

∑

T∈Th

∫

∂T

h
1−p

T |ϕ0 − ϕb|
pds

)
1
p

+ C

(

∑

T∈Th

h
1−p

T

∫

∂T

|eq,0 × n − eq,b × n|q(p−1)ds

)
1
q

·
(

∑

T∈Th

∫

∂T

h
1−p

T |ψ0 × n − ψb × n|pds
)

1
p

≤C |||(eλ, eq)|||
p
q |||(ϕ,ψ)|||.

(5.16)

Similarly, we use (5.4) and the approximation property of Q0 to get that

|I3| ≤Ch
α− 1

p ∥∇αψ̃∥Lp(Ω)h
q−1
q |||es||| = Chα∥∇αψ̃∥Lp(Ω)|||es|||. (5.17)

It is easy to check

|||(ϕ,ψ)||| ≤ Chα−1(∥φ̃∥α,p + ∥ψ̃∥α,p). (5.18)

Substituting (5.15)–(5.17) into (5.14), and using (5.5), (5.6), (5.11) and (5.18), this gives

|(ε(eu − η̃), v− η̃)| ≤Chk+θ∥∇k+θu∥Lq(Ω)|||(ϕ,ψ)||| + Chα∥∇αψ̃∥Lp(Ω)|||es|||

≤Chk+θ+α−1∥∇k+θu∥Lq(Ω)∥v− η̃∥0,p.

It follows that

∥ε
1
q (eu − η̃)∥Lq(Ω) ≤ Chk+θ+α−1∥∇k+θu∥Lq(Ω),

which gives rise to the error estimate (5.12). This completes the proof of the theorem. □

6. Numerical experiments

In this section, we present some numerical examples to test the performance and accuracy of the PDWG method

proposed in (3.4). In our numerical experiments, the computation domain is first partitioned into cubes, and then each

cube is divided into 6 tetrahedra of equi-volume. We choose the discontinuous piecewise constant vector fields to

approximate the exact solution u. That is, the finite element spaces are given as follows:

Vh ={v : v|T ∈ [P0(T )]
3, ∀T ∈ Th},

Sh ={s : s|T = {s0, sb} ∈ {P0(T ), Π4
i=1P0(Fi)}, ∀T ∈ Th, Fi ∈ ∂T },

Mh ={ϕ : ϕ|T = {ϕ0, ϕb} ∈ {P0(T ), Π4
i=1P0(Fi)}, ∀T ∈ Th, Fi ∈ ∂T },

Wh ={ψ : ψ|T = {ψ0,ψb} ∈ {[P0(T )]
3, T0(∂T )}, ∀T ∈ Th},

where T0(∂T ) is the tangent space of ∂T given by

T0(∂T ) = {ψ : ψi,j ∈ [P0(Fi)]
3 × nFi , Fi ∈ ∂T , i = 1, 2, 3, 4, j = 1, 2}.

Here nFi denotes the outer unit normal vector to face Fi.

To solve the system of nonlinear Eq. (3.4), we adopt an iterative scheme similar to that for the L1 minimization problem

in [27]. Specifically, given an approximation (um
h , λm

h , smh , qm
h ) ∈ Vh × Mh × Sh × Wh at step m, the scheme shall compute

a new approximate solution (um+1
h , λm+1

h , sm+1
h , qm+1

h ) ∈ Vh × Mh × Sh × Wh such that
{

s1(λh, qh; ϕ,ψ) + Bh(uh, sh; ϕ,ψ) = F (ϕ,ψ), ∀ϕ ∈ Mh, ψ ∈ Wh,

−s2(sh, r) + Bh(v, r; λh, qh) = 0, ∀v ∈ Vh, r ∈ Sh.
(6.1)

where

s1(λh, qh; ϕ,ψ) = ρ1

∑

T∈Th

h
1−p

T

∫

∂T

(|λm
0 − λm

b | + ϵ0)
p−2(λm+1

0 − λm+1
b )(ϕ0 − ϕb)ds

+ ρ2

∑

T∈Th

h
1−p

T

∫

∂T

(|qm
0 × n − qm

b × n| + ϵ0)
p−2(qm+1

0 × n − qm+1
b × n)(ψ0 × n − ψb × n)ds,

10
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Table 1

Numerical error and rate of convergence for the Lp-PDWG method for Example 6.1.

p 1/h ∥ε
1
q eh∥Lq rate |||(eλ, eq)||| rate |||sh||| rate

2 1.52e−01 – 3.27e−02 – 1.52e−03 –

2 4 7.67e−02 0.99 1.82e−02 0.84 3.05e−04 2.32

8 3.82e−02 1.00 9.37e−03 0.96 5.10e−05 2.58

16 1.91e−02 1.00 4.72e−03 0.99 9.29e−06 2.46

2 1.73e−01 – 2.84e−01 – 2.47e−03 –

3 4 8.65e−02 1.00 1.99e−01 0.52 3.20e−04 2.95

8 4.27e−02 1.02 1.30e−01 0.61 3.78e−05 3.08

16 2.17e−02 0.98 8.01e−02 0.70 5.03e−06 2.91

2 1.97e−01 – 4.26e−01 – 2.30e−03 –

4 4 1.02e−01 0.95 3.05e−01 0.48 2.31e−04 3.31

8 5.51e−02 0.88 2.07e−01 0.56 1.80e−05 3.68

16 2.92e−02 0.92 1.41e−01 0.55 1.59e−06 3.50

2 2.13e−01 – 4.16e−01 – 5.79e−04 –

5 4 1.21e−01 0.82 3.02e−01 0.46 4.29e−05 3.76

8 6.38e−02 0.92 2.25e−01 0.43 2.89e−06 3.89

16 3.20e−02 1.00 1.70e−01 0.40 3.11e−07 3.22

s2(sh; r) = ρ3

∑

T∈Th

h
1−q

T

∫

∂T

(|sm0 − smb | + ϵ0)
q−2(sm+1

0 − sm+1
b )(r0 − rb)ds.

Here ϵ0 is a small, but positive constant, and ρi, i ≤ 3 are some positive stabilization parameters.

We would like to point out that although ρi, i ≤ 3 in the algorithm (3.4) could be arbitrary, the iterative scheme (6.1)

is not convergent for any positive ρi, i ≤ 3. Our numerical experiments indicate that ρi, i = 1, 2 should be taken large

enough to ensure the convergence of the iterative scheme.

In our experiments, we test various problems in which the exact solution u has different regularities and the

computational domain includes convex, non-convex polyhedral regions and cavities. We shall evaluate the errors for both

uh and the auxiliary variables λh, sh, qh, including the Lq error for eh := u−uh and ηh := Qhu−uh , and the errors |||(eλ, eq)|||
and |||sh||| defined in (4.1) and (4.2). We test different values of p > 1 with p = 2, 3, 4, 5. The right-hand side function, the

boundary condition are calculated from the exact solution. The coefficient ϵ0 in (6.1) is taken as ϵ = 10−6/(p−1), ρ3 = 1,

and ρi, i = 1, 2 are carefully taken according to different problems. We stop our iterative procedure when the maximum

error between the mth step and the (m + 1)-th step reaches the accuracy 10−5.

Example 6.1. In this test, we consider the model problem (1.1) in the domain Ω = (0, 1)3 with ε = diag(3, 2, 1). The

right-hand side function and the boundary condition are chosen such that the exact solution to this problem is

u(x, y, z) =

(

sin(πx) cos(πy)

− sin(πy) cos(πx)

0

)

+

(

x

y

z

)

.

It is easy to see that u ∈ [H1(Ω)]3.

The problem is solved by (6.1) with the coefficients ρ1 = ρ2 = 1 for p = 2 and ρ1 = ρ2 = 9× 10p−1 for p ≥ 2. Table 1

illustrates the approximation error and the rate of convergence for the primal variable uh and the auxiliary variables

λh, sh, qh with p = 2, . . . , 5. We observe a convergence rate of O(h) for the error ∥ε
1
q eh∥Lq . For the dual variables λh, qh,

the table suggests a p-dependence rate of the convergence, i.e., O(h) for p = 2, O(h0.6) for p = 3, O(h0.55) for p = 4 and

O(h0.4) for p = 5. Note that the convergence rate of |||(eλ, eq)||| is slightly higher than the theoretical result O(h
q
p ) in (5.5).

As for the dual variable sh, we observe a better convergence rate than the theoretical finding O(h) given in (5.6), which

indicates a superconvergence result.

Example 6.2. The domain in this test case is the L-shape domain, which is given by Ω = (0, 1)3\Ω1 with Ω1 =
[0, 1] × [−1, 0] × [0, 1]. We take the coefficient ϵ = diag(1, 1, 1) and the singular solution in [H2/3−δ(Ω)]3:

u = ∇ × (0, 0, r2/3 sin(
2

3
θ )).

Here r =
√

x2 + y2 and θ = arctan(y/x) + c are the cylindrical coordinates. We take c such that u ∈ H(div) ∩ H(curl).

We take the iterative scheme (6.1) to solve this paper with the same coefficient choice of ρ1, ρ2 as Example 6.1.

Numerical error and rate of convergence for the Lp-PDWG method are listed in Table 2, from which we observe an optimal

11
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Table 2

Numerical error and rate of convergence for the Lp-PDWG method for Example 6.2.

p 1/h ∥ε
1
q eh∥Lq rate |||(eλ, eq)||| rate |||sh||| rate

2 1.28e−01 – 3.70e−02 – 1.02e−03 –

2 4 8.25e−02 0.64 2.42e−02 0.61 3.18e−04 1.69

8 5.28e−02 0.64 1.55e−02 0.64 9.66e−05 1.72

16 3.35e−02 0.65 9.92e−03 0.65 2.96e−05 1.71

2 1.69e−01 – 1.96e−01 – 1.37e−04 –

3 4 9.82e−02 0.78 1.44e−01 0.44 3.10e−05 2.15

8 5.77e−02 0.77 1.01e−01 0.52 6.29e−06 2.30

16 3.39e−02 0.77 6.66e−02 0.59 1.05e−06 2.58

2 2.00e−01 – 3.54e−01 – 2.19e−04 –

4 4 1.18e−01 0.76 2.63e−01 0.43 2.77e−05 2.98

8 6.81e−02 0.79 1.67e−01 0.65 1.79e−06 3.95

16 3.65e−02 0.90 9.79e−02 0.77 6.91e−08 4.70

2 2.18e−01 – 3.75e−01 – 5.47e−05 –

5 4 1.34e−01 0.70 2.30e−01 0.71 1.16e−06 5.56

8 7.12e−02 0.91 1.29e−01 0.83 1.15e−08 6.66

16 3.61e−02 0.98 7.15e−02 0.85 1.00e−10 6.84

Table 3

Numerical error and rate of convergence for the Lp-PDWG method for Example 6.3.

p 1/h ∥ε
1
q eh∥Lq rate |||(eλ, eq)||| rate |||sh||| rate

2 1.49e−00 – 3.48e−00 – 5.16e−01 –

2 4 1.02e−00 0.55 2.60e−00 0.42 2.66e−01 0.96

8 6.84e−01 0.57 1.86e−00 0.48 1.01e−01 1.39

16 4.69e−01 0.55 1.30e−00 0.51 3.49e−02 1.54

2 1.79e−00 – 6.45e−01 – 3.75e−04 –

3 4 1.21e−00 0.57 5.14e−01 0.33 1.24e−04 1.60

8 8.12e−01 0.57 4.02e−01 0.35 4.14e−05 1.59

16 5.70e−01 0.51 3.12e−01 0.37 1.28e−05 1.69

2 2.07e−00 – 1.22e−00 – 5.38e−03 –

4 4 1.41e−00 0.55 1.03e−00 0.25 1.50e−03 1.84

8 9.77e−01 0.53 8.60e−01 0.26 4.30e−04 1.80

16 6.78e−01 0.53 7.17e−01 0.26 1.24e−04 1.80

2 2.18e−00 – 9.54e−01 – 9.98e−04 –

5 4 1.57e−00 0.47 8.30e−01 0.20 2.77e−04 1.82

8 1.06e−00 0.56 7.19e−01 0.21 7.67e−05 1.85

16 7.33e−01 0.53 6.22e−01 0.21 2.12e−05 1.86

convergence rate O(h
2
3 ) for the errors ∥ε

1
q eh∥Lq and |||(eλ, eq)||| for p = 2. While, as p increases, the convergence rate for

uh is improved from O(h
2
3 ) to O(h) (for p = 5). Like in Example 6.1, the numerical convergence for the dual variables is

faster than the theory predicted in Theorem 5.1.

Example 6.3. In this example, we test a singular solution in the following vector potential form on a toroidal domain

with 2 holes: Ω = [(−1, 3
2
)]2\{Ω1 ∪ Ω2} with Ω1 = [− 1

2
, 0]2 × [0, 1

2
] and Ω2 = [ 1

2
, 1] × [− 1

2
, 0] × [0, 1

2
]. We take

ϵ = diag(1, 1, 1) and

u = ∇ × (0, 0, r
γ1
1 sin(2θ1) + r

γ2
2 sin(2θ2)),

where (ri, θi), i = 1, 2 are the cylindrical coordinates centered at a nonconvex corner of the ith hole. That is,

r1 =
√

x2 + y2, θ1 = arctan(y/x) + c1, r2 =
√

(x − 1)2 + y2, θ2 = arctan(y/x) + c2.

In our numerical experiments, we choose γ1 = 1/2, γ2 = 2/3 such that the vector field is singular near the nonconvex

corners of both holes. Note that u ∈ H
1
2
−δ in a neighborhood of the edge {x = 0, y = 0}, and u ∈ H

2
3
−δ in a neighborhood

of the edge {x = 1, y = 0}.

From Table 3, we observe a convergence rate of O(h
1
2 ) for the error ∥ε

1
q eh∥Lq , and O(h

1
p ) for the error |||(eλ, eq)||| with

p = 2, . . . , 5. Again, it seems that the convergence rate for |||sh||| is better than the theory predicted in Theorem 5.1.

12
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Table 4

Numerical error and rate of convergence for the Lp-PDWG method with γ = 5/4 for Example 6.4.

p 1/h ∥ε
1
q eh∥Lq rate |||(eλ, eq)||| rate |||sh||| rate

2 3.96e−01 – 9.07e−01 – 6.51e−02 –

2 4 2.07e−01 0.93 5.01e−01 0.86 3.23e−02 1.01

8 1.06e−01 0.97 2.67e−01 0.91 9.48e−03 1.77

16 5.38e−02 0.98 1.39e−01 0.95 2.17e−03 2.12

2 4.61e−01 – 4.14e−01 – 4.17e−04 –

3 4 2.39e−01 0.95 2.88e−01 0.53 1.05e−04 1.99

8 1.27e−01 0.91 1.94e−01 0.57 2.20e−05 2.25

16 6.65e−02 0.94 1.25e−01 0.63 4.23e−06 2.38

2 4.92e−01 – 5.92e−01 – 5.23e−04 –

4 4 2.67e−01 0.88 4.29e−01 0.46 1.05e−04 2.31

8 1.41e−01 0.92 3.04e−01 0.50 1.78e−05 2.57

16 7.23e−02 0.97 2.16e−01 0.50 2.74e−06 2.70

2 5.33e−01 – 8.43e−01 – 3.56e−03 –

5 4 2.93e−01 0.86 6.50e−01 0.38 6.15e−04 2.53

8 1.50e−01 0.97 4.98e−01 0.39 1.04e−04 2.56

16 7.55e−02 0.99 3.80e−01 0.39 1.54e−05 2.75

Table 5

Numerical error and rate of convergence for the Lp-PDWG method with γ = 1 for Example 6.4.

p 1/h ∥ε
1
q eh∥Lq rate |||(eλ, eq)||| rate |||sh||| rate

2 5.33e−01 – 1.22e−00 – 1.14e−01 –

2 4 3.01e−01 0.83 7.27e−01 0.74 5.65e−02 1.01

8 1.63e−01 0.88 4.15e−01 0.81 1.79e−02 1.66

16 8.86e−02 0.88 2.30e−01 0.85 4.62e−03 1.96

2 6.02e−01 – 5.84e−01 – 1.22e−03 –

3 4 3.29e−01 0.87 3.98e−01 0.55 2.55e−04 2.26

8 1.87e−01 0.82 2.78e−01 0.52 5.63e−05 2.18

16 1.03e−01 0.86 1.88e−01 0.56 1.22e−05 2.21

2 6.50e−01 – 7.57e−01 – 1.26e−03 –

4 4 3.80e−01 0.77 5.68e−01 0.41 2.52e−04 2.32

8 2.14e−01 0.83 4.19e−01 0.44 4.91e−05 2.36

16 1.13e−01 0.93 3.07e−01 0.45 9.16e−06 2.42

2 6.88e−01 – 8.31e−01 – 1.60e−03 –

5 4 4.14e−01 0.73 6.57e−01 0.34 3.09e−04 2.38

8 2.26e−01 0.87 5.16e−01 0.35 5.79e−05 2.41

16 1.19e−01 0.93 4.04e−01 0.35 1.01e−05 2.52

Example 6.4. In this test, we consider a singular solution in the following vector potential form on a toroidal domain

with 1 holes: Ω = [(−1, 1
2
)]2 × [0, 1

2
]\Ω1 with Ω1 = [− 1

2
, 0] × [0, 1

2
]2. We take ϵ = diag(1, 1, 1) and

u = ∇ × (0, 0, rγ sin(2θ )).

We consider three cases: γ = 5/4, 1, 2/3, where the regularity of the exact solution ranges from smooth to singular.

The coefficients ρ1, ρ2 in (6.1) are chosen as following: ρ1 = ρ2 = 1 for p = 2, ρ1 = ρ2 = 3 × 103 for p = 3 and

ρ1 = ρ2 = 3 × 104 for p ≥ 4. Numerical error and rate of convergence for the Lp-PDWG method with different γ are

listed in Tables 4–6. We observe the following result:

• Regular solution, i.e., γ = 5/4, ∥ε
1
q eh∥Lq has optimal convergence rate O(h) for all p ≥ 2, |||(eλ, eq)||| has optimal

convergence rate O(h) for p = 2, and p-dependency rate when p ≥ 3, which is slightly better than the theoretical

rate O(h
q
p ). As for sh, a superconvergent order still observed in this cases.

• Singular case γ = 1, where u ∈ H1−δ and u /∈ H(curl). An asymptotical rate of O(h0.9) is observed for the error

∥ε
1
q eh∥Lq with all p ≥ 2. The convergence behavior for the auxiliary variable are the same as that for the regular

case γ = 5
4
.

• Singular case γ = 2/3, where u ∈ H
2
3
−δ and u /∈ H(curl). ∥ε

1
q eh∥Lq has an optimal convergence rate O(h

2
3 ) for all

p ≥ 2, and |||(eλ, eq)||| shows a rate of O(h0.6) for p = 2 and O(h
q
p ) for all p ≥ 3.

Example 6.5. In this test, we reveal some computational results for a test problem where the existence of a harmonic

vector field has effect on convergence rate. We consider the problem on a toroidal domain with 2 holes, which is the

13
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Table 6

Numerical error and rate of convergence for the Lp-PDWG method with γ = 2/3 for Example 6.4.

p 1/h ∥ε
1
q eh∥Lq rate |||(eλ, eq)||| rate |||sh||| rate

2 8.87e−01 – 2.09e−00 – 2.77e−01 –

2 4 5.77e−01 0.62 1.45e−00 0.52 1.38e−01 1.01

8 3.62e−01 0.68 9.67e−01 0.59 4.92e−02 1.49

16 2.29e−01 0.66 6.26e−01 0.63 1.55e−02 1.67

2 1.02e−00 – 8.04e−01 – 2.07e−03 –

3 4 6.16e−01 0.73 5.77e−01 0.48 4.91e−04 2.08

8 3.94e−01 0.64 4.37e−01 0.40 1.39e−04 1.82

16 2.47e−01 0.67 3.28e−01 0.42 4.21e−05 1.73

2 1.07e−00 – 1.06e−00 – 4.46e−03 –

4 4 7.10e−01 0.59 8.64e−01 0.30 1.13e−03 1.98

8 4.63e−01 0.62 6.93e−01 0.32 2.86e−04 1.98

16 2.90e−01 0.67 5.53e−01 0.32 7.19e−05 1.99

2 1.11e−00 – 1.09e−00 – 5.79e−03 –

5 4 7.73e−01 0.52 9.19e−01 0.25 1.41e−03 2.04

8 4.94e−01 0.65 7.71e−01 0.25 3.44e−04 2.03

16 3.09e−01 0.68 6.45e−01 0.26 8.25e−05 2.06

Table 7

Numerical error and rate of convergence for the Lp-PDWG method for Example 6.5.

p 1/h ∥ε
1
q eh∥Lq rate ∥ε

1
q ηh∥Lq rate |||(eλ, eq)||| rate |||sh||| rate It.

2 2.60e−01 – 1.90e−01 – 3.79e−01 – 5.83e−02 – 1

2 4 2.03e−01 0.36 1.69e−01 0.17 2.55e−01 0.57 2.93e−02 0.99 1

8 1.70e−01 0.26 1.54e−01 0.13 1.67e−01 0.61 1.03e−02 1.51 1

16 1.53e−01 0.15 1.46e−01 0.08 1.07e−01 0.64 3.26e−03 1.66 1

2 2.78e−01 – 2.16e−01 – 1.35e−01 – 1.52e−05 – 14

3 4 2.28e−01 0.29 2.02e−01 0.09 9.93e−02 0.44 4.98e−06 1.60 15

8 1.98e−01 0.20 1.88e−01 0.11 7.11e−02 0.48 1.20e−06 2.06 18

16 1.80e−01 0.14 1.76e−01 0.09 5.06e−02 0.49 2.88e−07 2.06 19

2 3.12e−01 – 2.55e−01 – 3.98e−01 – 1.60e−04 0 18

4 4 2.62e−01 0.25 2.40e−01 0.09 3.12e−01 0.35 4.54e−05 1.82 28

8 2.25e−01 0.22 2.15e−01 0.15 2.45e−01 0.35 1.08e−05 2.07 28

16 1.99e−01 0.18 1.95e−01 0.14 1.93e−01 0.34 2.60e−06 2.05 26

2 3.42e−01 – 2.87e−01 – 6.12e−01 – 8.62e−04 – 29

5 4 2.84e−01 0.27 2.63e−01 0.13 5.05e−01 0.28 2.32e−04 1.89 23

8 2.37e−01 0.26 2.28e−01 0.20 4.19e−01 0.27 5.59e−05 2.06 24

16 2.08e−01 0.19 2.04e−01 0.16 3.48e−01 0.27 1.31e−05 2.09 30

same as that in Example 6.3. We take ϵ = diag(1, 1, 1) and

u = ∇ × (0, 0, r
γ1
1 sin(θ1) + r

γ2
2 sin(θ2)) + β

(

ey sin(z)

ex sin(z)

z

)

with (γ1, γ2, β) = ( 4
5
, 2

3
, 1

40
).

The coefficients ρ1, ρ2 in (6.1) are chosen as following: ρ1 = ρ2 = 1 for p = 2, ρ1 = ρ2 = 5 × 104 for p ≥ 3. The plot

of the vector field ηh is provided in Fig. 1, and the errors and rates of convergence of the Lp-PDWG method for the primal

variable and the dual variables are given in Table 7. As indicated by Theorem 5.2, the numerical solution uh approximates

the exact solution u, up to a harmonic field. As we may observe from Fig. 1, the vector field ηh is an approximate harmonic

field with normal boundary condition. Furthermore, due to the presence of the harmonic field vector, the error ηh or eh

may not exhibit a convergence. Our numerical result in Table 7 verifies this point. We do not observe any convergence for

the vector field u. It is noteworthy that although the vector field uh is not convergent to u while our iterative algorithm

is still convergent. We list in Table 7 that the iterative number used in the iterative procedure. As for the dual variable

λh, qh, we observe a rate of O(h
q
p ) for p ≥ 3. The numerical performance is in consistency with our theory as established

in Theorem 5.1 for the convergence of eλ, eq. The convergence rate for sh is still better than the one given in (5.6).

14
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Fig. 1. Plot of the vector fields ηh calculated by the Lp-PDWG method of Example 6.5 with different values of p.

Table 8

Numerical error and rate of convergence for the Lp-PDWG method for Example 6.6.

p 1/h ∥ε
1
q eh∥Lq rate ∥ε

1
q ηh∥Lq rate |||(eλ, eq)||| rate |||sh||| rate It.

2 2.18e−01 – 1.61e−01 – 2.98e−01 – 5.18e−02 – 1

2 4 1.75e−01 0.32 1.45e−01 0.15 2.16e−01 0.46 2.67e−02 0.95 1

8 1.47e−01 0.25 1.33e−01 0.13 1.47e−01 0.56 9.49e−03 1.50 1

16 1.33e−01 0.15 1.26e−01 0.07 9.61e−02 0.61 3.04e−03 1.64 1

2 2.14e−01 – 1.67e−01 – 1.14e−01 – 1.19e−05 – 14

3 4 1.81e−01 0.24 1.60e−01 0.06 8.85e−02 0.37 4.29e−06 1.48 16

8 1.58e−01 0.19 1.49e−01 0.10 6.51e−02 0.44 1.05e−06 2.03 18

16 1.45e−01 0.13 1.41e−01 0.08 4.72e−02 0.47 2.58e−07 2.03 19

2 2.28e−01 – 1.85e−01 – 3.56e−01 – 1.27e−04 – 18

4 4 1.99e−01 0.20 1.81e−01 0.03 2.89e−01 0.30 3.89e−05 1.7 30

8 1.73e−01 0.20 1.66e−01 0.13 2.30e−01 0.33 9.44e−06 2.04 28

16 1.54e−01 0.17 1.51e−01 0.13 1.84e−01 0.33 2.33e−06 2.02 26

2 2.42e−01 – 2.01e−01 – 5.63e−01 – 7.06e−04 – 18

5 4 2.11e−01 0.20 1.94e−01 0.05 4.75e−01 0.24 1.99e−04 1.83 24

8 1.79e−01 0.23 1.72e−01 0.17 3.99e−01 0.25 4.86e−05 2.03 24

16 1.58e−01 0.18 1.55e−01 0.15 3.35e−01 0.26 1.16e−05 2.06 31

Example 6.6. In this test, we consider the problem on a toroidal domain with 1 holes, which is the same as that in

Example 6.4. We take ϵ = diag(1, 1, 1) and

u = ∇ × (0, 0, rγ sin(θ )) + β

(

sin(πx) cos(πy) sin(πz)

cos(πx) sin(πy) sin(πz)

0

)

with (γ , β) = ( 2
3
, 1

8
).

15
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Fig. 2. Plot of the vector fields ηh calculated by the Lp-PDWG method of Example 6.6 with different values of p.

We take the iterative parameters as those in Example 6.5, and plot the vector field ηh in Fig. 2, and present in Table 8

the errors and rates of convergence for the primal variable and the dual variables approximation. Just the same as that

in Example 6.5, the numerical results do not demonstrate any convergence for the vector field u, while show a rate of

O(h
q
p ) for |||(eλ, eq)||| and a superconvergence rate O(h2) for |||sh||| when p ≥ 3. Again we observe that the iterative scheme

is still convergent and the vector field ηh is an approximate harmonic field with normal boundary condition.

Data availability

Data will be made available on request.
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