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a b s t r a c t

This article introduces a weak Galerkin (WG) finite element method for quad-curl

problems in three dimensions. It is proved that the proposed WG method is stable and

accurate in an optimal order of error estimates for the exact solution in discrete norms.

In addition, an L2 error estimate in an optimal order except the lowest order k = 2

is derived for the WG solution. Some numerical experiments are conducted to verify

the efficiency and accuracy of our WG method and furthermore a superconvergence has

been observed from the numerical results.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we are concerned with the development of a weak Galerkin (WG) finite element method for the quad-curl
problem in three dimensions which seeks u such that

(∇×)4u =f, in Ω,

∇ · u =0, in Ω,

u × n =0, on ∂Ω,

∇ × u × n =0, on ∂Ω,

(1.1)

for a given f defined on a bounded domain Ω ⊂ R
3.

The quad-curl problems arise in inverse electromagnetic scattering theory for nonhomogeneous media [1] and
magneto-hydrodynamics equations [2]. Recently, some contributions have been made on the finite element methods for
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the quad-curl problems. The conforming finite element spaces for the quad-curl problem have been recently constructed

in two dimensions (e.g. [3,4]) and in three dimensions (e.g. [5–7]). [2,8] proposed the nonconforming and low order

finite element spaces for the quad-curl problems. [9–11] proposed the mixed methods for the quad-curl problems. [12]

introduced a formulation using the Hodge decomposition for the quad-curl problems. [13] introduced a discontinuous

Galerkin scheme. [14] proposed a novel weak Galerkin formulation using the conforming space for curl-curl problem as

a nonconforming space for the quad-curl problem. [15] analyzed a posteriori error analysis for the quad-curl problems in

two dimensions. [16] introduced a virtual element method for the quad-curl problems in two dimensions. [17] introduced

a decoupled formulation for the quad-curl problems where the a priori and a posteriori error were analyzed.

In the literature, the existing WG methods for quad-curl problems proposed in [14] were curl-conforming and based

on tetrahedral partitions. However, our WG method is not necessary to be curl-conforming and is based on any polyhedral

partitions. Our WG numerical method (4.7)–(4.8) has provided an accurate and reliable numerical solution for the quad-

curl system (1.1) in an optimal order of error estimates in discrete norms and in an optimal order of L2 error estimates

except the lowest order k = 2. In addition, we have observed some superconvergence phenomena from numerical

experiments.

The paper is organized as follows. Section 2 is devoted to the derivation of a weak formulation for the quad-curl system

(1.1). Section 3 briefly introduces the discrete weak gradient operator and the discrete weak curl-curl operator. Section 4

is dedicated to the presentation of the weak Galerkin algorithm for the quad-curl problem and a discussion of the solution

existence and uniqueness for the WG scheme. In Section 5, the error equations are derived for the WG scheme. Section 6

establishes an optimal order of error estimates in discrete norms for the WG approximation. In Section 7, the L2 error

estimate for the WG solution is established in an optimal order except the lowest order k = 2 under some regularity

assumptions. Section 8 demonstrates the numerical performance of the WG algorithm through some test examples.

We follow the standard notations for Sobolev spaces and norms defined on a given open and bounded domain D ⊂ R
3

with Lipschitz continuous boundary. Denote by ∥ · ∥s,D, | · |s,D and (·, ·)s,D the norm, seminorm and inner product in the

Sobolev space Hs(D) for any s ≥ 0. The space H0(D) coincides with L2(D) (i.e., the space of square integrable functions), for

which the norm and the inner product are denoted by ∥ · ∥D and (·, ·)D. When D = Ω or when the domain of integration

is clear from the context, we shall drop the subscript D in the norm and the inner product notation. C denotes a generic

constant independent of the meshsize and other physical or functional parameters.

2. A weak formulation

Let s > 0 be an integer. We first introduce

H(curls;Ω) = {u ∈ [L2(Ω)]3 : (∇×)ju ∈ [L2(Ω)]3, j = 1, . . . , s}

with the associated inner product (u, v)H(curls;Ω) = (u, v) +
∑s

j=1((∇×)ju, (∇×)jv) and the norm ∥u∥H(curls;Ω) =

(u,u)
1
2

H(curls;Ω)
. We further introduce

H0(curl;Ω) := {u ∈ H(curl;Ω) : n × u = 0 on ∂Ω},

H0(curl
2;Ω) := {u ∈ H(curl2;Ω) : n × u = 0 and ∇ × u × n = 0 on ∂Ω}.

We introduce

H(div;Ω) = {u ∈ [L2(Ω)]3 : ∇ · u ∈ L2(Ω)},

with the associated inner product (u, v)H(div;Ω) = (u, v)+(∇ ·u,∇ ·v) and the norm ∥u∥H(div;Ω) = (u,u)
1
2

H(div;Ω). We further

introduce

H(div0;Ω) = {u ∈ H(div;Ω) : ∇ · u = 0 in Ω}.

Using the usual integration by parts, we are ready to propose the weak formulation of the quad-curl problem (1.1) as

follows: Given f ∈ H(div0;Ω), find (u; p) ∈ H0(curl
2;Ω) × H1

0 (Ω) such that

((∇×)2u, (∇×)2v) + (v,∇p) =(f, v), v ∈ H0(curl
2;Ω),

−(u,∇q) =0, ∀q ∈ H1
0 (Ω).

(2.1)

Theorem 2.1 ([14]). Given f ∈ H(div0;Ω), the problem (2.1) has a unique solution (u; p) ∈ H0(curl
2;Ω)×H1

0 (Ω). Furthermore,

p = 0 and u satisfies

∥u∥H(curl2;Ω) ≤ C∥f∥.
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3. Weak differential operators

The principal differential operators in the weak formulation (2.1) for the quad-curl problem (1.1) are the gradient

operator ∇ and the curl-curl operator (∇×)2. We shall briefly review the discrete weak gradient operator [18,19] and

define the discrete weak curl-curl operator.

Let T be a polyhedral domain with boundary ∂T . A scalar-valued weak function on T refers to σ = {σ0, σb} with

σ0 ∈ L2(T ) and σb ∈ L2(∂T ). Here σ0 and σb are used to represent the value of σ in the interior and on the boundary of T .

Note that σb may not necessarily be the trace of σ0 on ∂T . Denote by W(T ) the space of scalar-valued weak functions on

T :

W(T ) = {σ = {σ0, σb} : σ0 ∈ L2(T ), σb ∈ L2(∂T )}. (3.1)

A vector-valued weak function on T refers to a triplet v = {v0, vb, vn} where v0 and vb are used to represent the values

of v in the interior and on the boundary of T and vn represents the value of ∇ × v on ∂T . Note that vb and vn may not

necessarily be the traces of v0 and ∇ × v0 on ∂T respectively. Denote by V (T ) the space of vector-valued weak functions

on T :

V (T ) = {v = {v0, vb, vn} : v0 ∈ [L2(T )]3, vb ∈ [L2(∂T )]3, vn ∈ [L2(∂T )]3}. (3.2)

The weak gradient of σ ∈ W(T ), denoted by ∇wσ , is defined as a linear functional on [H1(T )]3 such that

(∇wσ ,ψ)T = −(σ0,∇ · ψ)T + ⟨σb,ψ · n⟩∂T ,

for all ψ ∈ [H1(T )]3.

The weak curl-curl operator of any v ∈ V (T ), denoted by (∇×)2wv is defined in the dual space of H(curl2; T ), whose

action on q ∈ H(curl2; T ) is given by

((∇×)2wv, q)T = (v0, (∇×)2q)T − ⟨vb × n,∇ × q⟩∂T − ⟨vn × n, q⟩∂T .

Denote by Pr (T ) the space of polynomials on T with degree no more than r .

A discrete version of ∇wσ for σ ∈ W(T ), denoted by ∇w,r,Tσ , is defined as a unique polynomial vector in [Pr (T )]
3

satisfying

(∇w,r,Tσ ,ψ)T = −(σ0,∇ · ψ)T + ⟨σb,ψ · n⟩∂T , ∀ψ ∈ [Pr (T )]
3, (3.3)

which, from the usual integration by parts, gives

(∇w,r,Tσ ,ψ)T = (∇σ0,ψ)T − ⟨σ0 − σb,ψ · n⟩∂T , ∀ψ ∈ [Pr (T )]
3, (3.4)

provided that σ0 ∈ H1(T ).

A discrete version of (∇×)2wv for v ∈ V (T ), denoted by (∇×)2w,r,Tv, is defined as a unique polynomial vector in [Pr (T )]
3

satisfying

((∇×)2w,r,Tv, q)T = (v0, (∇×)2q)T − ⟨vb × n,∇ × q⟩∂T − ⟨vn × n, q⟩∂T , (3.5)

for any q ∈ [Pr (T )]
3.

4. Weak Galerkin algorithm

Let Th be a finite element partition of the domain Ω ⊂ R
3 consisting of polyhedra that are shape-regular [19]. Denote

by Eh the set of all faces in Th and E
0
h = Eh \ ∂Ω the set of all interior faces. Denote by hT the meshsize of T ∈ Th and

h = maxT∈Th
hT the meshsize for the partition Th.

For any given integer k ≥ 2, denote by Wk(T ) the local discrete space of the scalar-valued weak functions given by

Wk(T ) = {{σ0, σb} : σ0 ∈ Pk(T ), σb ∈ Pk(e), e ⊂ ∂T }.

Furthermore, denote by Vk(T ) the local discrete space of the vector-valued weak functions given by

Vk(T ) = {{v0, vb, vn} : v0 ∈ [Pk(T )]
3, vb ∈ [Pk(e)]

3, vn ∈ [Pk−1(e)]
3, e ⊂ ∂T }.

Patching Wk(T ) over all the elements T ∈ Th through a common value σb on the interior interface E
0
h , we arrive at the

following scalar-valued weak finite element space, denoted by Wh; i.e.,

Wh =
{

{σ0, σb} : {σ0, σb}|T ∈ Wk(T ),∀T ∈ Th

}

,

and the subspace of Wh with vanishing boundary values on ∂Ω , denoted by W 0
h ; i.e.,

W 0
h = {{σ0, σb} ∈ Wh : σb = 0 on ∂Ω}. (4.1)

3
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Similarly, patching Vk(T ) over all the elements T ∈ Th through a common value vb on the interior interface E
0
h , we arrive

at the following vector-valued weak finite element space, denoted by Vh; i.e.,

Vh =
{

{v0, vb, vn} : {v0, vb, vn}|T ∈ Vk(T ),∀T ∈ Th

}

,

and the subspace of Vh with vanishing boundary values on ∂Ω , denoted by V 0
h ; i.e.,

V 0
h =

{

{v0, vb, vn} ∈ Vh : vb × n = 0 and vn × n = 0 on ∂Ω
}

. (4.2)

For simplicity of notation and without confusion, for any σ ∈ Wh and v ∈ Vh, denote by ∇wσ and (∇×)2wv the discrete

weak actions ∇w,k,Tσ and (∇×)2w,k−2,Tv computed by using (3.3) and (3.5) on each element T ; i.e.,

(∇wσ )|T = ∇w,k,T (σ |T ), σ ∈ Wh,

(∇×2)wv|T = (∇×2)w,k−2,T (v|T ), v ∈ Vh.

For any σ , λ ∈ Wh and u, v ∈ Vh, we introduce the following bilinear forms

a(u, v) =
∑

T∈Th

a(u, v), (4.3)

b(u, λ) =
∑

T∈Th

bT (u, λ), (4.4)

s1(u, v) =
∑

T∈Th

s1,T (u, v), (4.5)

s2(σ , λ) =
∑

T∈Th

s2,T (σ , λ), (4.6)

where

aT (u, v) = ((∇×)2wu, (∇×)2wv)T ,

bT (u, λ) = (u0,∇wλ)T ,

s1,T (u, v) = h−3
T ⟨u0 × n − ub × n, v0 × n − vb × n⟩∂T

+ h−1
T ⟨∇ × u0 × n − un × n,∇ × v0 × n − vn × n⟩∂T ,

s2,T (σ , λ) = h3
T ⟨σ0 − σb, λ0 − λb⟩∂T .

The following is the weak Galerkin scheme for the quad-curl problem (1.1) based on the variational formulation (2.1).

Weak Galerkin Algorithm 4.1. Given f ∈ H(div0;Ω), find (uh; ph) ∈ V 0
h × W 0

h , such that

s1(uh, vh) + a(uh, vh) + b(vh, ph) = (f, v0), ∀vh ∈ V 0
h , (4.7)

s2(ph, qh) − b(uh, qh) = 0, ∀qh ∈ W 0
h . (4.8)

Theorem 4.1. The weak Galerkin finite element scheme (4.7)–(4.8) has a unique solution.

Proof. It suffices to prove that f = 0 implies that uh = 0 and ph = 0 in Ω . To this end, taking vh = uh in (4.7) and

qh = ph in (4.8) gives

((∇×)2wuh, (∇×)2wuh) + s1(uh,uh) + s2(ph, ph) = 0.

This yields

(∇×)2wuh = 0, in each T , (4.9)

∇ × u0 × n = un × n, on each ∂T , (4.10)

u0 × n = ub × n, on each ∂T , (4.11)

p0 = pb, on each ∂T . (4.12)

Using (4.9), (3.5), (4.10)–(4.11), and the integration by parts, we obtain

0 = ((∇×)2wuh,w)T

= ((∇×)2u0,w)T − ⟨w, (un − ∇ × u0) × n⟩∂T + ⟨∇ × w, (u0 − ub) × n⟩∂T

= ((∇×)2u0,w)T ,

4
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for any w ∈ [Pk−2(T )]
3. This gives (∇×)2u0 = 0 in each T ∈ Th. It follows from (4.10)–(4.11) that u0 × n and ∇ × u0 × n

are continuous across the interior interface E
0
h . Thus, u0 ∈ H(curl2;Ω) and (∇×)2u0 = 0 in Ω . Therefore, there exists a

potential function φ such that ∇ × u0 = ∇φ in Ω . This gives

(∇φ,∇φ) =
∑

T∈Th

(∇ × u0,∇φ)T

=
∑

T∈Th

(u0,∇ × ∇φ)T + ⟨∇φ,n × u0⟩∂T

=
∑

T∈Th

⟨∇φ,n × ub⟩∂T

= ⟨∇φ,n × ub⟩∂Ω

= 0,

(4.13)

where we used the usual integration by parts, (4.11) and n×ub = 0 on ∂Ω . This leads to φ = C inΩ , and thus ∇×u0 = 0

in Ω . Furthermore, there exists a potential function ψ such that u0 = ∇ψ in Ω .

From (4.12), (3.3) and (4.8), we have

0 =
∑

T∈Th

(∇wqh,u0)T

=
∑

T∈Th

−(q0,∇ · u0)T + ⟨qb,u0 · n⟩∂T

=
∑

T∈Th

−(q0,∇ · u0)T +
∑

e∈E0
h

⟨qb, [[u0 · n]]⟩e,

(4.14)

where [[u0 · n]] is the jump of u0 ·n on edge e ∈ E
0
h and we used qb = 0 on ∂Ω . Letting q0 = 0 and qb = [[u0 · n]] in (4.14)

yields that [[u0 · n]] = 0 on e ∈ E
0
h which means u0 · n is continuous along the interior interface e ∈ E

0
h . This follows that

u0 ∈ H(div;Ω). Taking q0 = ∇ · u0 and qb = 0 in (4.14) gives ∇ · u0 = 0 on each T and further ∇ · u0 = 0 in Ω due

to u0 ∈ H(div;Ω). Recall that there exists a potential function ψ such that u0 = ∇ψ in Ω . Hence, ∇ · u0 = ∆ψ = 0

strongly holds true in Ω with the boundary condition ∇ψ × n = u0 × n = 0 on ∂Ω . This implies that ψ = C in Ω . Thus,

u0 = ∇ψ = 0 in Ω . Using (4.10)–(4.11) gives ub = 0 and un = 0 in Ω . Therefore, we obtain uh = 0 in Ω .

Using uh = 0 gives s1(uh, vh) + a(uh, vh) = 0 for any vh ∈ V 0
h . It follows from the assumption f = 0 and (4.7) that

b(vh, ph) = 0, which, together with (3.3) and (4.12) and the usual integration by parts, gives

0 = b(vh, ph) = −
∑

T∈Th

(p0,∇ · v0)T + ⟨pb, v0 · n⟩∂T =
∑

T∈Th

(∇p0, v0)T .

Letting v0 = ∇p0 gives rise to ∇p0 = 0 on each T ∈ Th; i.e., p0 = C on each T ∈ Th. The facts that p0 = pb on each ∂T

and pb = 0 on ∂Ω give p0 = pb = 0 in Ω and further ph = 0 in Ω .

This completes the proof of the theorem. □

Let k ≥ 2. Let Q0 be the L2 projection operator onto [Pk(T )]
3. Analogously, for e ⊂ ∂T , denote by Qb and Qn the L2

projection operators onto [Pk(e)]
3 and [Pk−1(e)]

3, respectively. For w ∈ [H(curl;Ω)]3, define the L2 projection Qhw ∈ Vh

as follows

Qhw|T = {Q0w,Qbw,Qn(∇ × w)}.

For σ ∈ H1(Ω), the L2 projection Qhσ ∈ Wh is defined by

Qhσ |T = {Q0σ ,Qbσ },

where Q0 and Qb are the L2 projection operators onto Pk(T ) and Pk(e) respectively. Denote by Q
k−2
h and Q

k
h the L2 projection

operators onto Pk−2(T ) and Pk(T ), respectively.

Lemma 4.2. The operators Qh, Qh, Q
k
h and Q

k−2
h satisfy the following commutative properties:

(∇×)2w(Qhw) = Q
k−2
h ((∇×)2w), ∀w ∈ H(curl2; T ), (4.15)

∇w(Qhσ ) = Q
k
h(∇σ ), ∀σ ∈ H1(T ). (4.16)

5
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Proof. For any q ∈ [Pk−2(T )]
3, using (3.5) and the usual integration by parts gives

((∇×)2wQhw, q)T = (Q0w, (∇×)2q)T − ⟨Qbw × n,∇ × q⟩∂T − ⟨Qn(∇ × w) × n, q⟩∂T

= (w, (∇×)2q)T − ⟨w × n,∇ × q⟩∂T − ⟨∇ × w × n, q⟩∂T

= ((∇×)2w, q)T

= (Qk−2
h ((∇×)2w), q)T .

This completes the proof of (4.15).

The proof of (4.16) can be found in [18,19]. □

5. Error equations

The goal of this section is to derive the error equations for the weak Galerkin method (4.7)–(4.8) for solving the

quad-curl problem (1.1), which play a critical role in the forthcoming convergence analysis.

Let (u, p) be the solution of (2.1) and assume that u ∈ H(curl4;Ω). Then (u, p) satisfies

((∇×)4u, v) + (v,∇p) = (f, v), (5.1)

(∇ · u, q) = 0, (5.2)

for v ∈ [L2(Ω)]3 and q ∈ L2(Ω). Let (uh, ph) be the WG solutions of (4.7)–(4.8). Define the error functions eh and ϵh by

eh = {e0, eb, en} = {Q0u − u0,Qbu − ub,Qn(∇ × u) − un}, (5.3)

ϵh = {ϵ0, ϵb} = {Q0p − p0,Qbp − pb}. (5.4)

Lemma 5.1. Let u ∈ H(curl4;Ω) and (uh; ph) ∈ V 0
h × W 0

h be the exact solution of quad-curl model problem (1.1) and the

numerical solution arising from the WG scheme (4.7)–(4.8) respectively. The error functions eh and ϵh defined in (5.3)–(5.4)

satisfy the following error equations; i.e.,

s1(eh, vh) + a(eh, vh) + b(vh, ϵh) = s1(Qhu, vh) + ℓ1(u, vh), ∀vh ∈ V 0
h , (5.5)

−b(eh, qh) + s2(ϵh, qh) = s2(Qhp, qh) − ℓ2(u, qh), ∀qh ∈ W 0
h . (5.6)

Here

ℓ1(u, vh) =
∑

T∈Th

⟨(v0 − vb) × n,∇ × (Qk−2
h − I)((∇×)2u)⟩∂T

+ ⟨(∇ × v0 − vn) × n, (Qk−2
h − I)((∇×)2u)⟩∂T ,

ℓ2(u, qh) =
∑

T∈Th

⟨q0 − qb, (I − Q0)u · n⟩∂T .

Proof. Note that vh = {v0, vb, vn}. Using (4.15), (3.5) and the usual integration by parts, we have

((∇×)2wQhu, (∇×)2wvh)T

= (Qk−2
h ((∇×)2u), (∇×)2wvh)T

= (v0, (∇×)2Qk−2
h ((∇×)2u))T − ⟨vb × n,∇ × Q

k−2
h ((∇×)2u)⟩∂T

− ⟨vn × n,Qk−2
h ((∇×)2u)⟩∂T

= ((∇×)2v0,Q
k−2
h ((∇×)2u))T + ⟨(v0 − vb) × n,∇ × Q

k−2
h ((∇×)2u)⟩∂T

+ ⟨(∇ × v0 − vn) × n,Qk−2
h ((∇×)2u)⟩∂T

= ((∇×)2v0, ((∇×)2u))T + ⟨(v0 − vb) × n,∇ × Q
k−2
h ((∇×)2u)⟩∂T

+ ⟨(∇ × v0 − vn) × n,Qk−2
h ((∇×)2u)⟩∂T .

(5.7)

Taking v = v0 in (5.1) where vh = {v0, vb, vn} ∈ V 0
h and using the usual integration by parts, we get

∑

T∈Th

((∇×)2u, (∇×)2v0)T + ⟨(∇×)3u, (v0 − vb) × n⟩∂T

+ ⟨(∇×)2u,∇ × v0 × n − vn × n⟩∂T + (∇p, v0)T =
∑

T∈Th

(f, v0)T ,
(5.8)

6
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where we used the facts that
∑

T∈Th

⟨(∇×)2u, vn × n⟩∂T = ⟨(∇×)2u, vn × n⟩∂Ω = 0,

∑

T∈Th

⟨(∇×)3u, vb × n⟩∂T = ⟨(∇×)3u, vb × n⟩∂Ω = 0.

Substituting (5.8) into (5.7) gives

((∇×)2wQhu, (∇×)2wvh)

= (f − ∇p, v0) + ⟨(v0 − vb) × n,∇ × (Qk−2
h − I)((∇×)2u)⟩∂T

+ ⟨(∇ × v0 − vn) × n, (Qk−2
h − I)((∇×)2u)⟩∂T .

(5.9)

It follows from (4.16) that

b(vh,Qhp) = (∇w(Qhp), v0) = (Qk
h(∇p), v0) = (∇p, v0). (5.10)

Combining (5.9)–(5.10) gives

s1(Qhu, vh) + a(Qhu, vh) + b(vh,Qhp)

= (f, v0) + ⟨(v0 − vb) × n,∇ × (Qk−2
h − I)((∇×)2u)⟩∂T

+ ⟨(∇ × v0 − vn) × n, (Qk−2
h − I)((∇×)2u)⟩∂T + s1(Qhu, vh).

Subtracting (4.7) from the above equation gives (5.5).

Note that qh = {q0, qb}. To derive (5.6), taking q = q0 in (5.2) and using the usual integration by parts, we have

0 = −
∑

T∈Th

(u,∇q0) +
∑

T∈Th

⟨u · n, q0 − qb⟩∂T , (5.11)

where we used
∑

T∈Th
⟨u · n, qb⟩∂T = 0. Using (3.3) and the usual integration by parts gives

−b(Qhu, qh) = −
∑

T∈Th

(Q0u,∇wqh)T

=
∑

T∈Th

(q0,∇ · (Q0u))T − ⟨qb,Q0u · n⟩∂T

=
∑

T∈Th

−(∇q0,Q0u)T + ⟨q0 − qb,Q0u · n⟩∂T

=
∑

T∈Th

−(∇q0,u)T + ⟨q0 − qb,Q0u · n⟩∂T

=
∑

T∈Th

⟨q0 − qb, (Q0 − I)u · n⟩∂T ,

(5.12)

where we used (5.11) on the last line.

Subtracting (4.8) from the above equation completes the proof of (5.6).

This completes the proof of the lemma. □

6. Error estimates

For any v ∈ V 0
h , we define the energy norm |||v||| as follows

|||v|||2 =
∑

T∈Th

∥(∇×)2wv∥
2
T + s1(v, v). (6.1)

It is easy to check that ||| · ||| is a semi-norm in V 0
h . We further introduce a norm in V 0

h ; i.e.,

|||v|||1 = |||v||| +

(

∑

T∈Th

∥∇ · v0∥
2
T

)
1
2

+

(

∑

e∈E0
h

h−1
T ∥ [[v0 · n]] ∥2

e

)
1
2
. (6.2)

For any q ∈ W 0
h , we define the following norm

|||q|||0 = (s2(q, q))
1
2 .

7
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Recall that Th is a shape-regular finite element partition of the domain Ω . For any T ∈ Th and ϕ ∈ H1(T ), the following

trace inequality holds true [19]:

∥ϕ∥2
∂T ≤ C(h−1

T ∥ϕ∥2
T + hT∥ϕ∥2

1,T ). (6.3)

Furthermore, if ϕ is a polynomial on T , the standard inverse inequality yields

∥ϕ∥2
∂T ≤ Ch−1

T ∥ϕ∥2
T . (6.4)

Lemma 6.1. Let k ≥ 2, and s ∈ [1, k]. Suppose u ∈ [Hk+1(Ω)]3 and (∇×)2u ∈ [Hk(Ω)]3. Then, for (v, q) ∈ V 0
h × W 0

h , the

following estimates hold true; i.e.,

|s1(Qhu, v)| ≤ Chs−1∥u∥s+1s1(v, v)
1
2 , (6.5)

|ℓ1(u, v)| ≤ Chs−1∥(∇×)2u∥s−1s1(v, v)
1
2 , (6.6)

|ℓ2(u, q)| ≤ Chs−1∥u∥s+1|||q|||0, (6.7)

|s2(Qhp, q)| = 0. (6.8)

Proof. Using the Cauchy–Schwarz inequality, the trace inequality (6.3), gives

|s1(Qhu, v)| =

⏐

⏐

⏐

∑

T∈Th

h−3
T ⟨(Q0u − Qbu) × n, (v0 − vb) × n⟩∂T

+ h−1
T ⟨∇ × Q0u × n − Qn(∇ × u) × n,∇ × v0 × n − vn × n⟩∂T

⏐

⏐

⏐

≤ {
(

∑

T∈Th

h−3
T ∥Q0u − u∥2

∂T

)
1
2 +

(

∑

T∈Th

h−1
T ∥∇ × (Q0u − u)∥2

∂T

)
1
2 }s1(v, v)

1
2

≤ {
(

∑

T∈Th

h−4
T ∥Q0u − u∥2

T + h−2
T ∥Q0u − u∥2

1,T

)
1
2

+
(

∑

T∈Th

h−2
T ∥∇ × (Q0u − u)∥2

T + ∥∇ × (Q0u − u)∥2
1,T

)
1
2 }s1(v, v)

1
2

≤ Chs−1∥u∥s+1s1(v, v)
1
2 .

Using the Cauchy–Schwarz inequality, the trace inequality (6.3), gives

ℓ1(u, v)

=
∑

T∈Th

⟨(v0 − vb) × n,∇ × (Qk−2
h − I)((∇×)2u)⟩∂T

+ ⟨(∇ × v0 − vn) × n, (Qk−2
h − I)((∇×)2u)⟩∂T

≤ {
(

∑

T∈Th

h3
T∥∇ × (Qk−2

h − I)((∇×)2u)∥2
∂T

)
1
2

+
(

∑

T∈Th

hT∥(Q
k−2
h − I)((∇×)2u)∥2

∂T

)
1
2 }s1(v, v)

1
2

≤ {
(

∑

T∈Th

h2
T∥∇ × (Qk−2

h − I)((∇×)2u)∥2
T + h4

T∥∇ × (Qk−2
h − I)((∇×)2u)∥2

1,T

)
1
2

+
(

∑

T∈Th

∥(Qk−2
h − I)((∇×)2u)∥2

T + h2
T∥(Q

k−2
h − I)((∇×)2u)∥2

1,T

)
1
2 }s1(v, v)

1
2

≤ Chs−1∥(∇×)2u∥s−1s1(v, v)
1
2 .

Similarly, using the Cauchy–Schwarz inequality, the trace inequality (6.3) gives

ℓ2(u, q) =
∑

T∈Th

⟨q0 − qb, (I − Q0)u · n⟩∂T

≤

(

∑

T∈Th

h3
T∥q0 − qb∥

2
∂T

)
1
2
(

∑

T∈Th

h−3
T ∥(I − Q0)u · n∥2

∂T

)
1
2

8
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≤

(

∑

T∈Th

h−4
T ∥(I − Q0)u · n∥2

T + h−2
T ∥(I − Q0)u · n∥2

1,T

)
1
2
|||q|||0

≤ Chs−1∥u∥s+1|||q|||0.

Since p = 0, it is easy to obtain s2(Qhp, q) = 0. □

Theorem 6.2. Let k ≥ 2. Suppose that u ∈ [Hk+1(Ω)]3. The following error estimate holds

|||eh||| + |||ϵh|||0 ≤ Chk−1(∥u∥k+1 + ∥(∇×)2u∥k−1). (6.9)

Proof. Letting vh = eh in (5.5) and qh = ϵh in (5.6) and adding the two equations, we have

|||eh|||
2 + |||ϵh|||

2
0 = s1(Qhu, eh) + s2(Qhp, ϵh) + ℓ1(u, eh) − ℓ2(u, ϵh).

Using Lemma 6.1 completes the proof of the theorem. □

7. L
2 error estimates

We consider an auxiliary problem of finding (φ; ξ ) such that

(∇×)4φ + ∇ξ = e0, in Ω,

∇ · φ = 0, in Ω,

φ × n = 0, on ∂Ω,

∇ × φ = 0, on ∂Ω,

ξ = 0, on ∂Ω.

(7.1)

Let t0 = min{k, 3}. We assume the regularity property holds true in the sense that φ and ξ satisfy

∥φ∥t0+1 + ∥(∇×)2φ∥t0−1 + ∥ξ∥1 ≤ C∥e0∥. (7.2)

Theorem 7.1. Let k ≥ 2 and t0 = min{k, 3}. Suppose that u ∈ [Hk+1(Ω)]3. The following estimate holds

∥e0∥ ≤ Cht0+k−2(∥u∥k+1 + ∥(∇×)2u∥k−1). (7.3)

In other words, we have a sub-optimal order of convergence for k = 2 and an optimal order of convergence for k ≥ 3.

Proof. Using the usual integration by parts, letting u = φ and vh = eh in (5.7), letting vh = Qhφ in (5.5), letting u = φ

and qh = ϵh in (5.12), letting qh = Qhξ in (4.16) and (5.6), we have

∥e0∥
2

=
∑

T∈Th

((∇×)4φ + ∇ξ, e0)T

=
∑

T∈Th

((∇×)2φ, (∇×)2e0)T + ⟨∇ × e0,n × (∇×)2φ⟩∂T

+ ⟨e0,n × (∇×)3φ⟩∂T + (e0,Q
k
h∇ξ )T

=
∑

T∈Th

((∇×)2wQhφ, (∇×)2weh)T − ⟨(e0 − eb) × n,∇ × Q
k−1
h ((∇×)2φ)⟩∂T

− ⟨(∇ × e0 − en) × n,Qk−1
h ((∇×)2φ)⟩∂T

+ ⟨∇ × e0,n × (∇×)2φ⟩∂T + ⟨e0,n × (∇×)3φ⟩∂T + (∇wQhξ, e0)T

= − s1(eh,Qhφ) − b(Qhφ, ϵh) + s1(Qhu,Qhφ) + ℓ1(u,Qhφ)

+
∑

T∈Th

−⟨(e0 − eb) × n,∇ × (Qk−1
h − I)((∇×)2φ)⟩∂T

− ⟨(∇ × e0 − en) × n, (Qk−1
h − I)((∇×)2φ)⟩∂T

+ s2(ϵh,Qhξ ) − s2(Qhp,Qhξ ) + ℓ2(u,Qhξ )

9
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= − s1(eh,Qhφ) + s1(Qhu,Qhφ) + ℓ1(u,Qhφ)

+
∑

T∈Th

⟨ϵ0 − ϵb, (Q0 − I)φ · n⟩∂T

− ⟨(e0 − eb) × n,∇ × (Qk−1
h − I)((∇×)2φ)⟩∂T

− ⟨(∇ × e0 − en) × n, (Qk−1
h − I)((∇×)2φ)⟩∂T

+ s2(ϵh,Qhξ ) − s2(Qhp,Qhξ ) + ℓ2(u,Qhξ ),

(7.4)

where we used eb × n = 0 and en × n = 0 on ∂Ω .
Next, we shall estimate the terms on the last line of (7.4) one by one.
Recall that t0 = min{k, 3}. Using (6.5) with v = eh and u = φ, we have

|s1(eh,Qhφ)| ≤ Cht0−1∥φ∥t0+1s1(eh, eh)
1
2 ≤ Cht0−1∥φ∥t0+1|||eh|||. (7.5)

Using (6.5) with v = Qhφ, we have

|s1(Qhu,Qhφ)| ≤ Chk−1∥u∥k+1s1(Qhφ,Qhφ)
1
2 . (7.6)

Note that

s1(Qhφ,Qhφ)
1
2

≤C
∑

T∈Th

h−3
T ∥Q0φ × n − Qbφ × n∥2

∂T

+ h−1
T ∥∇ × Q0φ × n − Qn(∇ × φ) × n∥2

∂T

≤ C
∑

T∈Th

h−4
T ∥Q0φ − φ∥2

T + h−2
T ∥Q0φ − φ∥2

1,T

+ h−2
T ∥Q0φ − φ∥2

1,T + ∥Q0φ − φ∥2
2,T

≤ Cht0−1∥φ∥t0+1.

(7.7)

where we used trace inequality (6.3). Substituting (7.7) into (7.6) gives

|s1(Qhu,Qhφ)| ≤ Chk−1∥u∥k+1h
t0−1∥φ∥t0+1. (7.8)

Using (6.6) with v = Qhφ and (7.7), we have

|ℓ1(u,Qhφ)| ≤ Chk−1∥(∇×)2u∥k−1s1(Qhφ,Qhφ)
1
2 ≤ Chk−1∥(∇×)2u∥k−1h

t0−1∥φ∥t0+1. (7.9)

Using (6.7) with u = φ and qh = ϵh, we have

|
∑

T∈Th

⟨ϵ0 − ϵb, (Q0 − I)φ · n⟩∂T | ≤ Cht0−1∥φ∥t0+1|||ϵh|||0, (7.10)

Using (6.6) with u = φ and v = eh, we have

|
∑

T∈Th

⟨(e0 − eb) × n,∇ × (Qk−1
h − I)((∇×)2φ)⟩∂T

+ ⟨(∇ × e0 − en) × n, (Qk−1
h − I)((∇×)2φ)⟩∂T |

≤Cht0−1∥(∇×)2φ∥t0−1s1(eh, eh)
1
2 ≤ Cht0−1∥(∇×)2φ∥t0−1|||eh|||.

(7.11)

Using the Cauchy–Schwarz inequality and trace inequality (6.3), we have

s2(ϵh,Qhξ ) =
∑

T∈Th

h3
T ⟨ϵ0 − ϵb,Q0ξ − Qbξ⟩∂T

≤ C |||ϵh|||0

(

∑

T∈Th

h3
T∥Q0ξ − ξ∥2

∂T

)
1
2

≤ C |||ϵh|||0

(

∑

T∈Th

h2
T∥Q0ξ − ξ∥2

T + h4
T∥Q0ξ − ξ∥2

1,T

)
1
2

≤ Ch2∥ξ∥1|||ϵh|||0.

(7.12)

10
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Fig. 8.1. The first three levels of uniform cubic grids used in Table 8.1.

Using (6.8) with q = Qhξ , we have

s2(Qhp,Qhξ ) = 0. (7.13)

Using (6.7) with q = Qhξ and the trace inequality (6.3), we have

ℓ2(u,Qhξ ) ≤ Chk−1∥u∥k+1|||Qhξ |||0

≤ Chk−1∥u∥k+1

(

∑

T∈Th

h3
T∥Q0ξ − Qbξ∥

2
∂T

)
1
2

≤ Chk−1∥u∥k+1

(

∑

T∈Th

h3
T∥Q0ξ − ξ∥2

∂T

)
1
2

≤ Chk−1∥u∥k+1

(

∑

T∈Th

h2
T∥Q0ξ − ξ∥2

T + h4
T∥Q0ξ − ξ∥2

1,T

)
1
2

≤ Chk−1∥u∥k+1h
2∥ξ∥1.

(7.14)

Substituting (7.5)–(7.14) into (7.4) and using the regularity assumption (7.2) and the error estimate (6.9) gives

∥e0∥
2 ≤Cht0−1∥φ∥t0+1|||eh||| + Chk−1∥u∥k+1h

t0−1∥φ∥t0+1

+ Chk−1∥(∇×)2u∥k−1h
t0−1∥φ∥t0+1 + Cht0−1∥φ∥t0+1|||ϵh|||0

+ Cht0−1∥(∇×)2φ∥t0−1|||eh||| + Ch2∥ξ∥1|||ϵh|||0

+ Chk−1∥u∥k+1h
2∥ξ∥1,

which yields

∥e0∥
2 ≤ Cht0+k−2(∥u∥k+1 + ∥(∇×)2u∥k−1)∥e0∥.

This completes the proof of the theorem. □

8. Numerical tests

In this section, we present some numerical results for the WG finite element method for solving the quad-curl problem

analyzed in the previous sections. To this end, we shall solve the following quad-curl problem with non-homogeneous

boundary conditions on an unit cube domain Ω = (0, 1)3: Find an known u such that

(∇×)4u = f, in Ω,

∇ · u = 0, in Ω,

u × n = g1, on ∂Ω,

∇ × u × n = g2, on ∂Ω,

(8.1)

where f, g1 and g2 are calculated by the exact solution

u =

⎛

⎝

−2x2y2z

2x2y3z

−xy2z2(3x − 2)

⎞

⎠ .
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Fig. 8.2. The first three levels of uniform tetrahedral grids used in Table 8.2.

Table 8.1

Error profiles and convergence rates on uniform cubic grids shown in Fig. 8.1 for (8.1).

Level ∥Qhu − uh∥ Rate |||Qhu − uh||| Rate ∥ph∥ Rate

by the {P2, P2, P1} − P1 with {P2, P2} − P2 WG method

2 0.5263E+00 3.8 0.4078E+01 1.7 0.1742E−01 3.9

3 0.3345E−01 4.0 0.1237E+01 1.7 0.1947E−02 3.2

4 0.2151E−02 4.0 0.3739E+00 1.7 0.2231E−03 3.1

by the {P3, P3, P2} − P2 with {P3, P3} − P3 WG method

2 0.8522E−01 5.3 0.1512E+01 2.2 0.1117E−01 4.0

3 0.2190E−02 5.3 0.2365E+00 2.7 0.4298E−03 4.7

4 0.6360E−04 5.1 0.3444E−01 2.8 0.1841E−04 4.5

by the {P4, P4, P3} − P3 with {P4, P4} − P4 WG method

2 0.9472E−02 6.3 0.4145E+00 3.4 0.1476E−02 4.2

3 0.1841E−03 5.7 0.3102E−01 3.7 0.1760E−04 6.4

4 0.2992E−05 5.9 0.2162E−02 3.8 0.3430E−06 5.7

by the {P5, P5, P4} − P4 with {P5, P5} − P5 WG method

1 0.1010E−02 0.0 0.5724E−01 0.0 0.3493E−03 0.0

2 0.1684E−04 5.9 0.3565E−02 4.0 0.5073E−05 6.1

3 0.2580E−06 6.0 0.2204E−03 4.0 0.9438E−07 5.7

Table 8.2

Error profiles and convergence rates on tetrahedral grids shown in Fig. 8.2 for (8.1).

Level ∥Qhu − uh∥ Rate |||Qhu − uh||| Rate ∥ph∥ Rate

by the {P2, P2, P1} − P1 with {P2, P2} − P2 WG method

2 0.444E+00 3.9 0.357E+01 1.8 0.288E−01 3.8

3 0.279E−01 4.0 0.117E+01 1.6 0.193E−02 3.9

4 0.172E−02 4.0 0.451E+00 1.4 0.304E−03 2.7

by the {P3, P3, P2} − P2 with {P3, P3} − P3 WG method

1 0.187E+01 0.0 0.480E+01 0.0 0.181E+00 0.0

2 0.551E−01 5.1 0.724E+00 2.7 0.764E−02 4.6

3 0.163E−02 5.1 0.128E+00 2.5 0.257E−03 4.9

by the {P4, P4, P3} − P3 with {P4, P4} − P4 WG method

1 0.265E+00 0.0 0.888E+00 0.0 0.308E−01 0.0

2 0.411E−02 6.0 0.738E−01 3.6 0.632E−03 5.6

3 0.693E−04 5.9 0.721E−02 3.4 0.139E−04 5.5

We first compute the solution of (8.1) by the Pk weak Galerkin finite element method (4.7)–(4.8) on uniform cubic grids

shown in Fig. 8.1. For simplicity of notations, we denote the WG finite element solution (uh; ph) by {Pk, Pk, Pk−1} − Pk−1

with {Pk, Pk} − Pk. In Table 8.1, we list the errors in various norms and the computed orders of convergence for P2, P3, P4
and P5 finite element solutions on uniform cubic grids. It seems we do have one order superconvergence in most cases

in Table 8.1.

Next we compute the solution of (8.1) again by the Pk weak Galerkin finite element method but on uniform tetrahedral

grids shown in Fig. 8.2. In Table 8.2, we list the errors in various norms and the computed orders of convergence for P2,

P3 and P4 finite element solutions on uniform tetrahedral grids. It seems we do have one order superconvergence in most

cases in Table 8.2.
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Data availability

Data will be made available on request.
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