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1. Introduction

In this paper we are concerned with the development of a weak Galerkin (WG) finite element method for the quad-curl
problem in three dimensions which seeks u such that

(Vx)*u =f,
V -u =0,
uxn=0,

V x u x n =0,

in £,
in £,
on 052,
on 052,

(1.1)

for a given f defined on a bounded domain 2 C R>.
The quad-curl problems arise in inverse electromagnetic scattering theory for nonhomogeneous media [1] and
magneto-hydrodynamics equations [2]. Recently, some contributions have been made on the finite element methods for
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the quad-curl problems. The conforming finite element spaces for the quad-curl problem have been recently constructed
in two dimensions (e.g. [3,4]) and in three dimensions (e.g. [5-7]). [2,8] proposed the nonconforming and low order
finite element spaces for the quad-curl problems. [9-11] proposed the mixed methods for the quad-curl problems. [12]
introduced a formulation using the Hodge decomposition for the quad-curl problems. [13] introduced a discontinuous
Galerkin scheme. [14] proposed a novel weak Galerkin formulation using the conforming space for curl-curl problem as
a nonconforming space for the quad-curl problem. [15] analyzed a posteriori error analysis for the quad-curl problems in
two dimensions. [ 16] introduced a virtual element method for the quad-curl problems in two dimensions. [17] introduced
a decoupled formulation for the quad-curl problems where the a priori and a posteriori error were analyzed.

In the literature, the existing WG methods for quad-curl problems proposed in [14] were curl-conforming and based
on tetrahedral partitions. However, our WG method is not necessary to be curl-conforming and is based on any polyhedral
partitions. Our WG numerical method (4.7)-(4.8) has provided an accurate and reliable numerical solution for the quad-
curl system (1.1) in an optimal order of error estimates in discrete norms and in an optimal order of L? error estimates
except the lowest order k = 2. In addition, we have observed some superconvergence phenomena from numerical
experiments.

The paper is organized as follows. Section 2 is devoted to the derivation of a weak formulation for the quad-curl system
(1.1). Section 3 briefly introduces the discrete weak gradient operator and the discrete weak curl-curl operator. Section 4
is dedicated to the presentation of the weak Galerkin algorithm for the quad-curl problem and a discussion of the solution
existence and uniqueness for the WG scheme. In Section 5, the error equations are derived for the WG scheme. Section 6
establishes an optimal order of error estimates in discrete norms for the WG approximation. In Section 7, the [? error
estimate for the WG solution is established in an optimal order except the lowest order k = 2 under some regularity
assumptions. Section 8 demonstrates the numerical performance of the WG algorithm through some test examples.

We follow the standard notations for Sobolev spaces and norms defined on a given open and bounded domain D C R3
with Lipschitz continuous boundary. Denote by || - [lsp, | - |s.,p and (-, -)s p the norm, seminorm and inner product in the
Sobolev space H¥(D) for any s > 0. The space H°(D) coincides with L?(D) (i.e., the space of square integrable functions), for
which the norm and the inner product are denoted by || - ||p and (-, -)p. When D = §2 or when the domain of integration
is clear from the context, we shall drop the subscript D in the norm and the inner product notation. C denotes a generic
constant independent of the meshsize and other physical or functional parameters.

2. A weak formulation

Let s > 0 be an integer. We first introduce
H(curl; 2)={u e [IX(2)P : (VxVue [X(2)3.j=1,....s)

with the associated inner product (U, V)yurs.) = (u,V) + Zj:1((Vx)fu,(Vx)7v) and the norm |[u|lgur.2) =
3
H(curl®;$2)"

Ho(curl; £2) := {u € H(curl; 2) : n x u = 0 on 082},

(u,u) We further introduce

Ho(curl?; 2) :={u e H(cur?; 2):nxu=0and V x u x n = 0 on 9£2}.
We introduce

H(div; 2)={u e [I2(2)]? : V-u € [3(2))},

1
with the associated inner product (u, V)ygiy:2) = (0, V)+(V-u, V-v) and the norm ||ul|ygiv:2) = (u, u),_z,(dm;m. We further
introduce
H(div’; 2) = {u € H(div; 2): V-u =0 in £2}.

Using the usual integration by parts, we are ready to propose the weak formulation of the quad-curl problem (1.1) as
follows: Given f € H(div’; £2), find (u; p) € Ho(curl?; £2) x H}(£2) such that

((Vx)u, (Vx)*V) + (v, Vp) =(f, v), v € Ho(cur?; 2),

1 (2.1)
—(u, Vq) =0, ¥q € Hy($2).

Theorem 2.1 ([14]). Given f € H(div°; §2), the problem (2.1) has a unique solution (u; p) € Ho(curl?; $2)xHg(2). Furthermore,
p = 0 and u satisfies

Il cure; 2y < CIIE-
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3. Weak differential operators

The principal differential operators in the weak formulation (2.1) for the quad-curl problem (1.1) are the gradient
operator V and the curl-curl operator (V x)?. We shall briefly review the discrete weak gradient operator [18,19] and
define the discrete weak curl-curl operator.

Let T be a polyhedral domain with boundary 9T. A scalar-valued weak function on T refers to o = {09, 0} with
oo € [%(T) and o, € L[*(3T). Here oy and o}, are used to represent the value of ¢ in the interior and on the boundary of T.
Note that 0, may not necessarily be the trace of oy on dT. Denote by W(T) the space of scalar-valued weak functions on
T:

W(T) = {o = {09, o3} : 00 € L*(T), 0} € L>(3T)). (3.1)

A vector-valued weak function on T refers to a triplet v = {vg, v, v,} where vy and v, are used to represent the values
of v in the interior and on the boundary of T and v, represents the value of V x v on dT. Note that v, and v, may not
necessarily be the traces of vo and V x vg on 9T respectively. Denote by V(T) the space of vector-valued weak functions
onT:

V(T) = {v = {Vo, Vb, Vi) : Vo € [LP(T)P’, vy € [L*(BT)P, vy € [LP(T)P%}. (3.2)
The weak gradient of o € W(T), denoted by V,,0, is defined as a linear functional on [H!(T)]? such that
(Vwo, ¥)r = —(00, V- ¥)r + (0p, ¥ - Myr,

for all ¥ € [HY(T)]°.
The weak curl-curl operator of any v € V(T), denoted by (Vx)zwv is defined in the dual space of H(curl?; T), whose
action on q € H(curl?; T) is given by

(VX2 v, q)r = (Vo, (VX )q)r — (Vp x 0, V X @)a7 — (V4 X I, Q)p7.

Denote by P.(T) the space of polynomials on T with degree no more than r.
A discrete version of V,,o for o € W(T), denoted by V,, , ro, is defined as a unique polynomial vector in [P:(T)]?
satisfying

(Vur1o, ¥)r = —(00. V- ¥)r + (0, ¥ - My, V9 € [P(T)P, (3.3)
which, from the usual integration by parts, gives
(Var10, ¥)r = (Voo, ¥)r — (00 — 0p, ¥ - M)y, V¥ € [P(T)P, (3.4)

provided that oy € H'(T).
A discrete version of (V x )zwv for v e V(T), denoted by (V x )Zw_r’Tv, is defined as a unique polynomial vector in [P.(T)]?
satisfying

(VXD 1V @)r = (Vo, (VXP@Qr — (Vp X 0, V X Qa7 — (Vp X N, Qor, (3.5)
for any q € [P(T)]>.

4. Weak Galerkin algorithm

Let 75, be a finite element partition of the domain £2 C R? consisting of polyhedra that are shape-regular [19]. Denote
by &, the set of all faces in 7, and S,? = &, \ 052 the set of all interior faces. Denote by hy the meshsize of T € 7, and
h = maxre7;, hr the meshsize for the partition 7.

For any given integer k > 2, denote by W,(T) the local discrete space of the scalar-valued weak functions given by

Wi(T) = {{00, 0} : 00 € Pi(T), ob € Pi(e), e C dT}.
Furthermore, denote by Vi(T) the local discrete space of the vector-valued weak functions given by
Vi(T) = {{Vo, Vi, Va} : Vo € [Pl(T)I?, v € [Pi(e)’, Vi € [Prs(e)]’, e C OT}.

Patching Wy (T) over all the elements T € 7, through a common value o, on the interior interface 5,?, we arrive at the
following scalar-valued weak finite element space, denoted by Wy; i.e.,

Wi = {{o0. ob} : {00, ob}Ir € Wi(T), VT € T},
and the subspace of W, with vanishing boundary values on 352, denoted by W?; i.e.,

Wy = {{00, 0p} € Wy : 0, = 0 on 082). (4.1)
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Similarly, patching Vi(T) over all the elements T € 7, through a common value v on the interior interface £, we arrive
at the following vector-valued weak finite element space, denoted by Vj,; i.e.,

Vi = {{V0. Vb, Va} : {V0, Vi, Vu}|r € Vi(T), VT € Tp},
and the subspace of V}; with vanishing boundary values on 952, denoted by V,? ;e
Vi = {{vo, Vo, Va} € Vs vy xn=0and v, xn=0 on 082} (4.2)

For simplicity of notation and without confusion, for any o € W), and v € Vj, denote by V,,0 and (Vx )2 v the discrete

weak actions V,, x ro and (Vx)zw.k_”v computed by using (3.3) and (3.5) on each element T; i.e.,

(Vwo)lr = Vyrrlolr), o €W,

(VXZ)wa = (sz)w,k—Z.T(WT)v Ve Vh-

For any o, A € Wj, and u, v € V};, we introduce the following bilinear forms

a(u,v) =) a(u,v), (4.3)
TeTh

b(u, 1) =) br(u, 1), (4.4)
TeTy

si(u,v) = Z s1.r(u, v), (4.5)
TeTy

s2(0.2) =Y sar(o, 1), (4.6)
TeTh

where
ar(u,v) = (VxRu (VX)L V),
br(u, 1) = (uo, Vy,A)r,
sir(u,v) = h;3(u0 XN—Uy XN, Vg X N—Vy X N)yr
+ h; 'V xugxn—u, xn,V X Vg X0 —V, X 0)yr,
s2.1(0, A) = h}{o0 — 03, ko — Ap)ar-

The following is the weak Galerkin scheme for the quad-curl problem (1.1) based on the variational formulation (2.1).

Weak Galerkin Algorithm 4.1. Given f € H(div’; ), find (uy; py) € VY x W2, such that

sy(up, vy) + a(uy, vi) + b(vy, pr) = (£, vo), Vv, € VY, (4.7)
$2(Ph» qn) — b(up, qn) = 0, Yan € Wp.

Theorem 4.1. The weak Galerkin finite element scheme (4.7)-(4.8) has a unique solution.

Proof. It suffices to prove that f = 0 implies that u, = 0 and p, = 0 in £2. To this end, taking v, = wuy in (4.7) and
qn = pyp in (4.8) gives

(V)2 up, (VX2 uy) + s1(up, ) + S2(ph, pn) = 0.

This yields
(Vx)2u, =0, ineachT, (4.9)
Vxu xn=u, xn, oneachaT, (4.10)
Ug XN =u, xn, oneachdT, (4.11)
)

Do = pp, on each dT. (412
Using (4.9), (3.5), (4.10)-(4.11), and the integration by parts, we obtain
0= ((Vx),un, W)y
= ((
= ((

VX )ug, W)r — (W, (1, — V X Ug) x M)sr + (V X W, (U — up) X N)ar
VX)ZUO,W)T,
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for any w € [Py_»(T)]°. This gives (V x)?uy = 0 in each T € 7;. It follows from (4.10)-(4.11) that ug x nand V x uy x n
are continuous across the interior interface 8,?. Thus, ug € H(curl?; £2) and (Vx)*uy = 0 in £2. Therefore, there exists a
potential function ¢ such that V x ug = V¢ in £2. This gives

(V$,Vp) =D (V x to, V$)r

TeTh

= Z(uo, V x Vé)r +(Vé,n x ug)yr
TeTh

= Z(Vfl), n x Up)yr
TeTh

=(Vo,n x up)ye

= 0,

(4.13)

where we used the usual integration by parts, (4.11) and n x u, = 0 on 942. This leads to ¢ = C in £2, and thus V xug = 0
in £2. Furthermore, there exists a potential function v such that up = Vv in £2.
From (4.12), (3.3) and (4.8), we have

0= (Vudn tolr

TeTh

= Z —(qo, V - uo)r + (s, up - M)y7
TeTy

=Y —(0. V-uo)r + Y (g, [uo - nl)e,

TeTh eeé’,?

(4.14)

where [[ug - n] is the jump of up - n on edge e € 8,? and we used q, = 0 on 9£2. Letting gy = 0 and q, = [ug - n] in (4.14)
yields that [up-n] =0one € 5,? which means uy - n is continuous along the interior interface e € 5}?- This follows that
uy € H(div; £2). Taking go = V - ug and q, = 0 in (4.14) gives V - up = 0 on each T and further V - up = 0 in £2 due
to ug € H(div; §2). Recall that there exists a potential function ¢ such that up = Vv in £2. Hence, V- uy = Ay = 0
strongly holds true in §2 with the boundary condition Vi x n = ug x n = 0 on 9£2. This implies that ¢ = C in £2. Thus,
Uy = V¢ = 0in £2. Using (4.10)-(4.11) gives up, = 0 and u, = 0 in £2. Therefore, we obtain u, = 0 in £2.

Using u, = 0 gives s1(uy, vi,) + a(uy, vy) = 0 for any v, € V,?. It follows from the assumption f = 0 and (4.7) that
b(vy, pr) = 0, which, together with (3.3) and (4.12) and the usual integration by parts, gives

0 = b(vy, pr) = — Z(po, V - Vo)r + (pp, Vo - M)yr = Z(Vpo, Vo)r.
TeTh TeTh

Letting vo = Vpg gives rise to Vpg = 0 on each T € Ty; i.e,, po = C on each T € 7. The facts that pg = p, on each 9T
and p, = 0 on 952 give po = pp, = 0 in £2 and further p, = 0 in £2.
This completes the proof of the theorem. O

Let k > 2. Let Qy be the L? projection operator onto [Pi(T)]>. Analogously, for e C 9T, denote by Q, and Q, the [?
projection operators onto [P(e)]?> and [Px_1(e)]?, respectively. For w e [H(curl; £2)]%, define the L? projection Q,w € Vj,
as follows

Qw(r = {Qow, Qyw, Q,y(V x W)}
For 0 € H'(2), the L? projection Quo € W is defined by
Qnolr = {Qoo, Qo},

where Qp and Q, are the L? projection operators onto P(T) and Py(e) respectively. Denote by Q’,j‘z and Qﬁ the L? projection
operators onto Py_,(T) and Py(T), respectively.

Lemma 4.2. The operators Qp, Q, Q’,j and Q’,j‘z satisfy the following commutative properties:

(V)2 (Quw) = Of 2((Vx)*w),  Yw e H(cur’; T), (4.15)
V,(Quo) = Of(Vo), Yo € HY(T). (4.16)



C. Wang, J. Wang and S. Zhang Journal of Computational and Applied Mathematics 428 (2023) 115186

Proof. For any q € [Py_»(T)]?, using (3.5) and the usual integration by parts gives

(VX QW @)r = (QW, (VXP@)r — (QW x 0, V x @)yr — (Qu(V X W) X 1, Q)7
(W, (VxP@)r — (W x 0, V X q)sr — (V X WX 0, q)or
(Vx)Yw, q)r
= (94 (Vx)’w), @)r.

This completes the proof of (4.15).
The proof of (4.16) can be found in [18,19]. O

5. Error equations

The goal of this section is to derive the error equations for the weak Galerkin method (4.7)-(4.8) for solving the
quad-curl problem (1.1), which play a critical role in the forthcoming convergence analysis.
Let (u, p) be the solution of (2.1) and assume that u € H(curl*; 2). Then (u, p) satisfies

(Vx)*u,v) + (v, Vp) = (£, v), (5.1
(V-u,q) =0, (5.2)

for v € [L%(£2)]® and q € 1?(£2). Let (uy, py) be the WG solutions of (4.7)-(4.8). Define the error functions e, and e, by
e, = {eo, &, e} = {Qou —up, Qu — uy, Qu(V x u) —u,}, (53)
€n = {€o, €p} = {Qop — po, QP — Pp}- (5.4)

Lemma 5.1. Let u € H(curl*; £2) and (uy; pn) € VP x W) be the exact solution of quad-curl model problem (1.1) and the
numerical solution arising from the WG scheme (4.7)-(4.8) respectively. The error functions e, and ey, defined in (5.3)-(5.4)
satisfy the following error equations; i.e.,

si(en, Vi) + a(en, Vi) + b(Vy, €1) = s1(Quu, Vi) + £1(u, v), Vv, € V), (5.5)
—b(en. qn) + s2(€n. Gn) = 2(Qup. qn) — L2(W, qu),  ¥an € Wy,. (5.6)
Here
4(u,v) = ) (Vo — V) x 1, V x (Qf72 = IX(VxVu))or
TeTh

+{(V x Vo — V) x 0, (Qf % — D((Vx)Yu))ar,
(U, qn) = ) (G0 — b, (I — Qo) - M)y

TeTh

Proof. Note that v, = {vg, V3, v;}. Using (4.15), (3.5) and the usual integration by parts, we have
(VX )2,Quu, (VX )2 h)r
= (QF((VX)w), (VX)L vi)r
= (Vo, (VX P Qi (VX P))r — (v x n, V x Qi 2((Vx)*))r

— (v x m, QF2((VX)*u))ar

= (Vx)Vo, Qi (VX W) + (Vo — V) x 0, V x Q4 2((Vx w))or )
+ (V% Vo = Va) x 1, Q4 (VX)) or

= (Vx)PWo, (VX PW)r + (Vo = Vb) x 1, V x Qi *((Vx)t))ar
+ ((V x Vo — V) x m, OF 2((Vx )2u))ar.

Taking v = vg in (5.1) where v, = {vg, v, vV} € V,? and using the usual integration by parts, we get

Y (VXY (VxP¥o)r + (VxPu, (Vo — V) x m)ar

rem (5.8)

+ {(VXPU, V X Vo X 11— Vo x 0)y7 + (Y, Volr = ) (F, Vo)r,

TeTh

6
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where we used the facts that

D UVXPu vy x m)or = (VX)W vy x 0)y =0,
TeTy

D AUVXPu, vy x m)yr = (VX)W, ¥y x M)yo = 0.
TeTy
Substituting (5.8) into (5.7) gives
(Vx);Quu, (V) Vh)
= (f— Vp. Vo) + (Vo — Vp) x m, V x (Qf > = I)((Vx)*w))ar (5.9)
+((V x Vo = V) x 1, (Q7% = (VX Pu))ar.
It follows from (4.16) that
b(Vi, Qup) = (Vuy(Qup). Vo) = (Q4(VD). Vo) = (V. Vo). (5.10)
Combining (5.9)-(5.10) gives
$1(Quu, Vi) + a(Quu, Vi) + b(Vs, Qup)
= (£, Vo) + (Vo — V) x 1, V x (@42 = (V> )*u))yr
+ ((V x Vo — V) x 0, (Qf 2 — I)((Vx)20))ar + 51(Quu, V).

Subtracting (4.7) from the above equation gives (5.5).
Note that g, = {qo, q»}. To derive (5.6), taking q = qo in (5.2) and using the usual integration by parts, we have

0=—> (u,Vqgo)+ ) _(u-n, go—gor, (5.11)
TeTh TeTh

where we used ZTeTh (u-n,gp)sr = 0. Using (3.3) and the usual integration by parts gives

—b(Quu, gn) = — ) (Qou, Vyun)r

TeTh

=Y (40, V- (Qu))r — (g5, Qout - M)y

TeTh

=Y —(Yq0. Qou)r + (qo — qb. Qout - M)y (5.12)

TeTh

=>" ~(Vqo. w)r + (g0 — . Qou - M)y
TeTh

= {do — b (Qo — Iu - m)yr,
TeTh

where we used (5.11) on the last line.
Subtracting (4.8) from the above equation completes the proof of (5.6).
This completes the proof of the lemma. O

6. Error estimates

For any v € V,?, we define the energy norm ||v|| as follows

IVIZ =" IV X VT + s1(v, v). (6.1)
TeTy
It is easy to check that || - || is a semi-norm in V,?. We further introduce a norm in V,? ;Le.,
1 1
2 _ 2
Vil = v+ (32 0V - voll?)” + (30 w7 Tvo - ml 1) (62)
TeTh ecg)

For any q € W?, we define the following norm

llgllo = (s2(q. q))2.
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Recall that 7y, is a shape-regular finite element partition of the domain £2. For any T € 7; and ¢ € H!(T), the following
trace inequality holds true [19]:

lell3r < Cthr'llel? + hrllel 7). (6.3)
Furthermore, if ¢ is a polynomial on T, the standard inverse inequality yields

loll3r < Ch iz (6.4)

Lemma 6.1. Let k > 2, and s € [1,k]. Suppose u € [H*"1(2)]> and (V x)*u € [HX(2)%. Then, for (v, q) € V) x W), the
following estimates hold true; i.e.,

I51(Quut, V)| < CH* ! [lulls151(v, V)2, (6.5)
6(u,v)| < CH (VX Pulls_151(v, V)2, (6.6)
6(u, )| < Ch* " [[ullss1 llgllo, (6.7)

[s2(Qnp, )| = (6.8)

Proof. Using the Cauchy-Schwarz inequality, the trace inequality (6.3), gives

s1(Qu V)l = | 3 K ((Qou — Qo) x m, (Vo — v5) x Moy

TeTy

—i—h’](VxQDuxn—Qn(qu)xn vaoxn—vnxn)ar'

< (3 h?1Qou—ulZ)? + (3 hr IV x (Qou— wii3) ?Jsi(v, v
TeTh TeTy
< {(Q_ hr*1Qou — ulff + hy?IQou — w3 ;)?
TeTh
(3" A2V x Qo — w2 + 1 x Qo — w2 1) Jsy(v, v)}
TeTy

1 1
Ch* luls4151(v, v)2.

IA

Using the Cauchy-Schwarz inequality, the trace inequality (6.3), gives

E](ll, V)
=Y (Vo —Vp) x 0,V x (% = )(Vx)u))yr
TeTh
+ {(V x Vo — vn) xm, (Q2 = (VXY u)ar
= (X IV x (&7 = (v PwlE,)
TeTh
(> i@l - 1)((VX)2u)||§T)%}s1(v, v
TeTy
< (O RIV x (@7 = (Vw2 + KV x (0 = (VX W) ?
TeTh
(32 109k = DUV x P2 + R2I(Qk — (VX Pw)2 ) s (v, v)3
TeTh
< O (VX Puloisi(v. V)2

Similarly, using the Cauchy-Schwarz inequality, the trace inequality (6.3) gives

€5(u,9) =Y (o — b, (I — Qo)u - M)yr

TeTy
1 1
2 _ 2
= (D" a0 — aslir)” (D2 AN — Qo mi,)
TeTy TeTh

8
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= (D2 B0 — Qo) miE + A0 — Qo) mi ) lallo

TeTy
—1
< " allstligllo-

Since p = 0, it is easy to obtain s;(Qxp,q) = 0. O

Theorem 6.2. Let k > 2. Suppose that u € [H**1(£2)]°. The following error estimate holds
llenll + llenllo < CH " (lullicer + 10V x ) ulli—1). (6.9)

Proof. Letting v; = e, in (5.5) and g, = ¢, in (5.6) and adding the two equations, we have

llenll® + llenll§ = s1(Quu, en) + 52(Qup, €n) + £1(u, @n) — £2(u, €).

Using Lemma 6.1 completes the proof of the theorem. O

7. L? error estimates

We consider an auxiliary problem of finding (¢; &) such that
(Vx)'¢+VE= e, ingQ,
V.-¢=0, ing2,
¢xn= 0, on d52, (7.1)
Vx¢=0, on 052,
E=0, on 052.

Let to = min{k, 3}. We assume the regularity property holds true in the sense that ¢ and & satisfy

Iplleg+1 + IV X Bllg—1 + 15111 < Clieo]l. (7.2)

Theorem 7.1. Let k > 2 and t; = min{k, 3}. Suppose that u € [H**1(§2)]°. The following estimate holds

leoll < CR*™>(Jluflir + (V) ulles). (7.3)
In other words, we have a sub-optimal order of convergence for k = 2 and an optimal order of convergence for k > 3.
Proof. Using the usual integration by parts, letting u = ¢ and v, = ey, in (5.7), letting v, = Qu¢ in (5.5), letting u = ¢
and gy = €, in (5.12), letting g, = Qx& in (4.16) and (5.6), we have

2
lleoll

=Y (VX)'¢+ VE, eo)r

TeTh

=Y ((Vx)$, (Vx)eo)r + (V x e, 0 x (Vx)’)yr
TeTh

+ (€0, 0 x (Vx)’@)ar + (€0, O} VE)r

= S (VX2 Qu (Vxenr — (€ — &) x 1,V x QL (Vx)2))ar
TeTh

— {(V x e —e) x m, Q7 (VX))o

+ (V xeg, n X (VXY )ar + (0, 0 X (VXP@)ar + (Vi Qi €0)r
= — si(en. Qup) — BQug, en) +51(Qutt, Qub) + €1(w, Qi)

+ D —{eo —e) xm, V x (T = (VXY )ar

TeTh
— ((V xeg—ey) xm, (QF " — DI(VX)’)r
+ 52(€n, Qué) — 52(Qup, Qué) + La(u, Qut)
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= — s1(en, Q) + 51(Quut, Qu) + £1(u, Qup)
+ ) (€0 — €, (Qo — 1N Moy

TeTh
— (€0 —€) x 0, V x (QF " —I)(Vx)*$))ar
— ((V x eg—ey) x 0, (Qf " = IN(Vx)*)ar
+ sa(€n, Qué) — s2(Qup, Qné) + £2(u, Qué),

where we used e, xn=0and e, x n=0 on 952.
Next, we shall estimate the terms on the last line of (7.4) one by one.
Recall that t; = min{k, 3}. Using (6.5) with v = e, and u = ¢, we have

1
Is1(€n, Qud)l < Ch[|lliy+151(€n, €4)2 < CRO™"|@llo 41 llenll-
Using (6.5) with v = Q,¢, we have

151(Qutt, Qub)| < CH* s 151(Qup, Quep)?.
Note that
51(Qud, Qugp)?

<C Y h Qo x n— Q¢ x 0|3

TeTy
+ h7'[IV x Qo¢p x n — Qu(V x @) x |7,

< €Y h*IQud — BIIF + hy’ Qo — $IIF
TeTy
+ hi? Qe — i 1 + Qo — ll3
< Chto_]||¢||t0+1-
where we used trace inequality (6.3). Substituting (7.7) into (7.6) gives

I51(Qutt, Qu)| < CH* a1 K[|l g1
Using (6.6) with v = Q¢ and (7.7), we have

110w, Qup)l < CRE IOV x Pt 151(Qugb, Qu)? < CHE M I(V x Pulli1h V| @lliy 1.

Using (6.7) with u = ¢ and g, = €;, we have

| D" (e — €. (Qo — 1) - Myar| < O~ [y llenllo-

TeTy

Using (6.6) with u = ¢ and v = e;, we have

1Y (€0 —ep) x m, V x (O~ = DIV )’ $))r

TeTy
+ ((V xeg—ey) xm, (Qf " —I(Vx)*$))ar]

1
<ChO (VX )@llrg-151(en, )2 < ChRO™[[(Vx)?@llro—1llenll.

Using the Cauchy-Schwarz inequality and trace inequality (6.3), we have

sa(en, Qué) = ) hi(eo — €n, Qof — Qo or

TeTh
1
< Cllenllo( Y, Qg — £13,)*
TeTh
1
< cmehmo(z ht11Qos — 117 + hillQos — &1 1)
TeTy
< RN llenllo-

10

(7.5)

(7.6)

(7.7)

(7.9)

(7.10)

(7.11)

(7.12)



C. Wang, J. Wang and S. Zhang Journal of Computational and Applied Mathematics 428 (2023) 115186

Fig. 8.1. The first three levels of uniform cubic grids used in Table 8.1.

Using (6.8) with g = Qx&, we have

$2(Qnp, Q§) = 0. (7.13)
Using (6.7) with ¢ = Qn& and the trace inequality (6.3), we have

Ca(u, QuE) < CH T ull QE g
< Ol (Y h211QoE — QuEI13)

TeTh

[N

1
< O Mullsr (D i 1Qog — £115) (7.14)

TeTh

< Ml (D W 1IQoE — €117 + hillQok — &3 1)

TeTh
< CH Ml h? €11
Substituting (7.5)-(7.14) into (7.4) and using the regularity assumption (7.2) and the error estimate (6.9) gives
lleoll> <Ch~"[i@lleo1llenll + CH* "l th® i blley 1
+ CH MY X Pl th® 7 Bl 41 + CRO ([ Blleg-41llenll
+ ChO (VX Pl llenll + Ch2 (1€ 1 lenllo

+ Ch* Mlulli 1 h (1],
which yields
leoll® < ChO™*2(luflsr + (VX ) ulle—1)lleo]l.

This completes the proof of the theorem. O

8. Numerical tests

In this section, we present some numerical results for the WG finite element method for solving the quad-curl problem
analyzed in the previous sections. To this end, we shall solve the following quad-curl problem with non-homogeneous
boundary conditions on an unit cube domain £2 = (0, 1)*: Find an known u such that

(Vx'u=f, in £,
V-u= 0, in $2,
uxn= g, on 89,
Vxuxn= g, on 052,
where f, g; and g, are calculated by the exact solution
—2x%y%z
u= 2x%y3z
—xy?z%(3x — 2)
11
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Fig. 8.2. The first three levels of uniform tetrahedral grids used in Table 8.2.

Table 8.1
Error profiles and convergence rates on uniform cubic grids shown in Fig. 8.1 for (8.1).
Level 1Quu — uy| Rate 1Quu — uy| Rate Ilpnll Rate
by the {P,, P, P} — P, with {P,, P,} — P, WG method
2 0.5263E+4-00 3.8 0.4078E+-01 1.7 0.1742E—01 3.9
3 0.3345E—-01 4.0 0.1237E+-01 1.7 0.1947E—02 3.2
4 0.2151E—-02 4.0 0.3739E+00 1.7 0.2231E-03 3.1
by the {P37 Ps, Pz} — P, with {P3, P3} — P3 WG method
2 0.8522E—-01 5.3 0.1512E+01 2.2 0.1117E-01 4.0
3 0.2190E—02 53 0.2365E+4-00 2.7 0.4298E—03 4.7
4 0.6360E—04 5.1 0.3444E—-01 2.8 0.1841E—04 4.5
by the {P4, P4, P3} — P3 with {P4, P4} — P, WG method
2 0.9472E—02 6.3 0.4145E+-00 3.4 0.1476E—02 4.2
3 0.1841E—-03 5.7 0.3102E—-01 3.7 0.1760E—04 6.4
4 0.2992E—05 5.9 0.2162E—02 3.8 0.3430E—06 5.7
by the {Ps, Ps, P4} — Py with {Ps, Ps} — Ps WG method
1 0.1010E—02 0.0 0.5724E—01 0.0 0.3493E—03 0.0
2 0.1684E—04 5.9 0.3565E—02 4.0 0.5073E—05 6.1
3 0.2580E—06 6.0 0.2204E—03 4.0 0.9438E—07 5.7
Table 8.2
Error profiles and convergence rates on tetrahedral grids shown in Fig. 8.2 for (8.1).
Level 1Quu — | Rate 1Quu — uyl Rate llpn I Rate
by the {Pz7 Py, P1} — Py with {Pz, Pz} — P, WG method
2 0.444E+4-00 3.9 0.357E+4-01 1.8 0.288E—01 3.8
3 0.279E-01 4.0 0.117E4-01 1.6 0.193E—02 3.9
4 0.172E—02 4.0 0.451E4-00 14 0.304E—03 2.7
by the {P3, P3, P,} — P, with {Ps, P;} — P; WG method
1 0.187E4-01 0.0 0.480E4-01 0.0 0.181E4-00 0.0
2 0.551E—-01 5.1 0.724E+-00 2.7 0.764E—02 4.6
3 0.163E—02 5.1 0.128E4-00 2.5 0.257E—03 49
by the {P4, Py, P3} —P3 with {P4, P4} — P4 WG method
1 0.265E+4-00 0.0 0.888E+4-00 0.0 0.308E—01 0.0
2 0.411E—-02 6.0 0.738E—01 3.6 0.632E—03 5.6
3 0.693E—04 5.9 0.721E—-02 34 0.139E—-04 55

We first compute the solution of (8.1) by the P, weak Galerkin finite element method (4.7)-(4.8) on uniform cubic grids
shown in Fig. 8.1. For simplicity of notations, we denote the WG finite element solution (ug; py) by {Py, Pk, Px_1} — Px_1
with {Py, P} — P. In Table 8.1, we list the errors in various norms and the computed orders of convergence for Py, P3, Py
and Ps finite element solutions on uniform cubic grids. It seems we do have one order superconvergence in most cases
in Table 8.1.

Next we compute the solution of (8.1) again by the P, weak Galerkin finite element method but on uniform tetrahedral
grids shown in Fig. 8.2. In Table 8.2, we list the errors in various norms and the computed orders of convergence for P,,
P; and P, finite element solutions on uniform tetrahedral grids. It seems we do have one order superconvergence in most
cases in Table 8.2.

12
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Data availability
Data will be made available on request.
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