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1. Introduction
1.1. Problem statement

Nonlinear differential equations are ubiquitous in various important physical models such as fluid dynamics, plasma
physics, solid mechanics, and quantum field theory [30,17,22,49], as well as chemical and biological models [76,18]. Solving
nonlinear differential equations has been a very challenging problem especially when it is important to find multiple distinct
solutions. The nonlinearity of the differential equation may cause traditional iterative solvers to stop at a spurious solution
if the initial guess is not close to a physically meaningful solution. When multiple distinct solutions are of interest, a naive
strategy is to try different initial guesses as many as possible so that iterative solvers can return distinct solutions as many
as possible. However, most of the initial guesses would lead to either spurious solutions or repeated solutions, making this
approach usually time-consuming and inefficient unless a priori estimate of the solutions is available.

Neural network-based optimization has become a powerful tool for solving nonlinear differential equations, dating back
to 1980s [67] and 1990s [52,33,23,51], and recently revisited in high-dimensional spaces [38,7,46,12,83,37,71,48,47,81,68].
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As a form of nonlinear parametrization through compositions of simple functions [34], deep neural networks (DNNs) can
efficiently approximate various useful classes of functions without or lessening the curse of dimensionality [6,60,62,70,
80,57,61,44] and achieve exponential approximation rates [79,62,57,54,27,66]. Therefore, applying DNNs to parametrize the
solution space of differential equations (including boundary value problems, initial value problems, and eigenvalue problems)
and seeking a solution via energy minimization from variational formulation have become a popular choice, e.g., the least-
square method [7,46,43] as a special case of variational formulation, the Ritz method [28], the Nitsche method [56].

However, neural network-based optimization usually can only find the smoothest solution with the fastest decay in the
frequency domain due to the implicit regularization of network structures and the stochastic gradient descent (SGD) for
solving the minimization problem, no matter how the initial guess is randomly selected. It was shown through the fre-
quency principle of neural networks [84,85,58] and the neural tangent kernel [13] that neural networks have an implicit
bias towards functions that decay fast in the Fourier domain and the gradient descent method tends to fit a low-frequency
function better than a high-frequency function. Through the analysis of the optimization energy landscape of SGD, it was
shown that SGD with small batches tends to converge to the flattest minimum [63,53,20]. Though the above optimiza-
tion and generalization analysis work only for regression problems, they can be generalized to PDE problems. Recently in
[59], the optimization convergence and generalization analysis of two-layer neural networks for general second-order linear
PDEs with variable coefficients on a bounded domain in an arbitrary dimension has been investigated. Global convergence
of the gradient descent optimization in the over-parametrization regime is proved using neural tangent kernels and the
generalization error with a regularized loss using a Barron-norm is analyzed. Later in [73], the neural tangent kernel of
network-based PDE solvers using two-layer neural networks for one-dimensional Poisson equation is also discussed includ-
ing the analog of the spectral bias for regression problems proprosed in [13]. Therefore, designing an efficient algorithm for
neural network-based optimization to find distinct solutions as many as possible is a challenging problem.

To tackle the challenging problem just above and find distinct solutions as many as possible, we propose a network-
based structure probing deflation method in this paper. The key idea of the deflation method is to introduce deflation
operators built with known solutions to regularize deep learning optimization, making known solutions no longer local
minimizers of the optimization energy landscape while preserving unknown solutions as local minimizers. In particular, we
introduce a deflation functional mapping known solutions to infinity. We multiply this deflation functional to the original
optimization loss function, then the known solutions will be removed from consideration and unknown solutions can be
found by optimizing the regularized loss function via SGD. Furthermore, to facilitate the convergence of SGD, we propose
special network structures incorporating boundary conditions of differential equations to simplify the optimization loss
function. Finally, a novel structure-probing algorithm is proposed to initialize the deflation optimization making it more
powerful to identify distinct solutions with desired structures.

As a general framework, the deflation method can be applied to all neural network-based optimization methods for dif-
ferential equations. In this paper, we will take the example of boundary value problem (BVP) and the least-square method
without loss of generality. The generalization to other problems and methods is similar. Consider the boundary value prob-
lem (BVP)

Du(x) = f(u(x),x), in Q,

(1.1)
Bu(x) = g(x), on 9L,

where D : Q — Q is a differential operator that is either linear or nonlinear, f(u(x),x) can be a nonlinear function in u,
Q is a bounded domain in RY, and Bu = g characterizes the boundary condition. Other types of problems like initial value
problems can also be formulated as a BVP as discussed in [37]. Then least-square method seeks a solution u(x; @) as a
neural network with a parameter set # via the following optimization problem

min Lis = [|Du(x; ) - f (u, X172 gy + MIBu®; 0) — g®)7: g (12)

where Lis is the loss function measuring the L? norms of the differential equation residual Du(x;#) — f(u,x) and the
boundary residual Bu(x; #) — g(x), and A > 0 is a regularization parameter.

As we shall see, the neural network deflation method enjoys four main advantages compared to traditional deflation
methods not based on deep learning:

e Numerical examples show that the network-based method can identify more solutions than other existing methods,
e.g., see Test Case 5 in Section 5.

e The network-based method can be applied to solve high-dimensional nonlinear differential equations with multiple so-
lutions while existing methods are only applicable to low-dimensional problems. For example, there is a 6-dimensional
Yamabe’s equation in Test Case 6 in Section 5.

e The network-based method can be applied to problems with complex domains due to the flexibility of neural network
parameterization, e.g., see Test Cases 5 & 6 in Section 5.

e As we shall discuss in Section 3.4, the network-based method admits lower computational complexity in each iteration
compared to existing methods like the original deflation method in [29].
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1.2. Related work

The deflation technique is traced back to the last century for identifying distinct roots of scalar polynomials [75]. This
technique was extended to find roots of systems of nonlinear algebraic equations by Brown and Gearhart in [9], where
deflation matrices were constructed with old roots to transform the residual of a system of nonlinear algebraic equations
so that iterative methods applied to the new residual will only converge to a new root. In [29], Ferrell et al. extended
the theoretical framework of Brown and Gearhart [9] to the case of infinite-dimensional Banach spaces with new classes
of deflation operators, enabling the Newton-Kantorovitch iteration to converge to several distinct solutions of nonlinear
differential equations even with the same initial guess.

Another well-established method for distinct solutions of differential equations is based on the numerical continuation
[5,4,14,16], where the basic idea of which is to transform the known solutions of a simple start system gradually to the
desired solutions of a difficult target system. For example, [1] proposed coefficient-parameter polynomial continuation for
computing all geometrically isolated solutions to polynomial systems. [39] put forward a bootstrapping approach for com-
puting multiple solutions of differential equations using a homotopy continuation method with domain decomposition to
speed up computation. For more examples of homotopy-based methods and theory in the literature, the reader is referred
to [55].

The third kind of methods to identify distinct solutions of nonlinear systems is the numerical integration of the Davi-
denko differential equation associated with the original nonlinear problem [8,21]. The basic idea is to introduce an artificial
time parameter s such that solving the original nonlinear equation F(u(x)) =0 to identify a solution ug(x) is equivalent to
finding a steady state solution of a time-dependent nonlinear equation ‘W + F(u(s, x)) = 0, which provides a gradient
flow of u(s, x). The gradient flow forms an ordinary differential equation with a solution converging to a solution to the
original problem, i.e., limg_, oo u(s, X) = ug(x). This method is indeed a broad framework containing the Newton’s method as
a special example.

1.3. Organization

This paper is organized as follows. In Section 2, we will review the fully connected feed-forward neural network, intro-
duce the formulation of the least-square method for BVP, and design special network structures for four types of boundary
conditions. In Section 3, the detailed formulation and implementation of the proposed method will be presented. In Sec-
tion 4, the structure probing initialization is introduced. Various numerical experiments are provided in Section 5 to verify
the efficiency of the proposed method. Finally, we conclude this paper in Section 6.

2. Network-based methods for differential equations

In this section, we introduce the network-based least-square method based on fully connected feed-forward neural
networks and (1.2) for solving the BVP (1.1). Moreover, special network structures for common boundary conditions are
introduced to simplify the loss function in (1.2) to facilitate the convergence to the desired PDE solution. Vectors are written
in bold font to distinguish from scalars in our presentation.

2.1. Fully connected feed-forward neural network (FNN)

FNNs are one of the most popular DNNs and are widely applied to network-based methods for differential equations.
Mathematically speaking, for a fixed nonlinear activation function o, FNN is the composition of L simple nonlinear functions,
called hidden layer functions, in the following formulation:

¢x;0):=a’h oh,_j0---ohi(x) forxeR

where a € RNL; hy(xp) := o (Wx, + by) with W, € RNexNe-1 and by e RN for ¢ =1, ..., L. With the abuse of notations,
o (x) means that o is applied entry-wise to a vector x to obtain another vector of the same size. Usual choices of o include
the rectified linear unit (ReLU) function o (x) = max{x, 0}, its cubic polynomial o (x) = max{x3, 0}, a hyperbolic tangent
function o (x) = tanh(x), etc. Ny is the width of the ¢-th layer and L is the depth of the FNN. 6 :={a, W,, b, : 1 <¢ <L} is
the set of all parameters in ¢ to determine the underlying neural network. Other kinds of neural networks are also suitable
in our proposed methods, but we will adopt FNNs for simplicity.

2.2. Least-square method

The least-square method is an optimization approach to solve general differential equations. Specifically, let u(x; #) be a
neural network to approximate the solution u(x) of BVP (1.1), then the least-square method is formulated as

min Lis(6) := [|Du(; 0) = f X172 g, + HIBu®; ) = 2@ 72 g (21)
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where Lis is the loss function measuring the weighted magnitude of the differential equation residual Du(x; ) — f(x) and
the boundary residual Bu(x; #) — g(x) in the sense of L2-norm with a weight parameter A > 0.

The goal of (2.1) is to find an appropriate set of parameters 6 such that the network u(x; #) minimizes the loss Lis. If
the loss Lis is minimized to zero with some #, then u(x; @) satisfies Du(x;0) — f(x) =0 in Q and Bu(x;0) — g(x) =0 on
0%, implying that u(x; @) is exactly a solution of (1.1). If Lis is minimized to a nonzero but small positive number, u(x; 8)
is close to the true solution as long as (1.1) is well-posed (e.g. the elliptic PDE with Neumann boundary condition, see
Theorem 4.1 in [37]).

In general, the optimization problem (2.1) is solved by stochastic gradient descent (SGD) method or its variants (e.g.
Adagrad [25], Adam [50] and AMSGrad [72]) in the deep-learning framework. The optimization and mesh-free setting of
the least-square method with neural networks admit several advantageous features that led to its great success and popu-
larity including but not limited to 1) the capacity to solve high-dimensional problems; 2) the flexibility to solve equations
of various forms on complicated problem domains; 3) the simple and high-performance implementation with automatic
differential programming in existing open-source software.

2.3. Special network structures for boundary conditions

In numerical implementations, the least-square loss function in (2.1) relies on the selection of a suitable weight param-
eter A and a suitable initial guess. If A is not appropriate, it may be difficult to identify a reasonably good minimizer of
(2.1). For instance, in the BVP (1.1) with g =0, if we solve (2.1) by SGD with an initial guess 0° such that u(x; 0°) ~ 0,
SGD might converge to a local minimizer corresponding to a solution neural network close to a constant zero, which is
far away from the desired solution, especially when the differential operator D is highly nonlinear or A is too large. The
undesired local minimizer is due to the fact that the boundary residual ||Bu(x; #) — g(x)|| overwhelms the equation residual
Du(x; @) — f(x)|| in the loss function.

The idea just above motivates us to design special networks u(x; #) that satisfy the boundary condition Bu(x; 0) = g(x)
automatically and hence we can simplify the least-square loss function from (2.1) to

min Lis(6) := [|Du(; 0) — f X172 g (22)

As we shall see in the numerical section, our numerical tests show that such simplification can help SGD to converge
to desired solutions rather than spurious solutions. The design of these special neural networks depends on the type of
boundary conditions. We will discuss four common types of boundary conditions by taking one-dimensional problems
defined in the domain Q = [a, b] as an example. Network structures for more complicated boundary conditions in high-
dimensional domains can be constructed similarly. In what follows, denote by ii(x; ) a generic deep neural network with
trainable parameters #. We will augment i(x; #) with several specially designed functions to obtain a final network u(x; 8)
that satisfies Bu(x; #) = g(x) automatically.

Case 1. Dirichlet boundary condition u(a) = ag, u(b) = bo.
In this case, we can introduce two special functions hq(x) and l;(x) to augment ii(x; @) to obtain the final network
u(x; 0):

ux;0) =h1(X)ux; 0) +11(x). (2.3)

Note hq(x) and l1(x) are chosen such that u(x; #) automatically satisfies the Dirichlet u(a; ) = ap, u(b; @) = bo no matter
what 6 is. Then u(x; #) is used to approximate the true solution of the differential equation and is trained through (2.2).

For the purpose, l1(x) is set as a lifting function which satisfies the given Dirichlet boundary condition, i.e. l;(a) = ao,
l1(b) = bg; h1(x) is set as a special function which satisfies the homogeneous Dirichlet boundary condition, i.e. hq(a) =0,
hq(b) = 0. A straightforward choice of [ (x) is the linear function given by

l1(x) = (bo — ap)(x — a) /(b — a) + ao.

For hi(x), we can set it as a (possibly fractional) polynomial with roots a and b, namely,

hi1(x) = (x —a)P*(x — b)P*,

with 0 < pg, pp < 1. To obtain an accurate approximation, p, and p, should be chosen to be consistent with the orders of
a and b of the true solution, hence no singularity will be brought into the network structure. For regular solutions, we take
pa = pp = 1; for singular solutions, p, and p, would take fractional values. For instance, in the case of a fractional Laplace
equation (—A)Su = f for 0 <s <1 on the domain Q = [—1, 1] with boundary conditions u(£1) = 0, the true solution u(x)
has the property that u(x) = (x — 1)5(x + 1)*v(x) with v(x) as a smooth function [2,26]. Then in the construction of u(x; @),
it is reasonable to choose hi(x) = (x — 1)S(x — 1)® and [ (x) = 0.

Case 2. One-sided condition u(a) = ag, u'(a) =a;.
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Similarly to Case 1, the special network is constructed by u(x; 8) = hy(x)ii(x; @) + I (x), where the lifting function I (x) is
given by
(%) = a1(x — a) + ao,

and hj(x) is set as

ha(x) = (x — )P, (24)
with 1 < pg < 2. Such p, guarantees h;(x)ii(x; @) and its first derivative both vanish at x =a.
Case 3. Mixed boundary condition u’(a) = ag, u(b) = by.

In this case, the special network is constructed by u(x; ) = ii(x; 6) + [3(x) with a lifting function I3(x) chosen as a linear
function satisfying the mixed boundary conditions, e.g.,

I3(x) = apx + bo — agb,

and ii(x; @) satisfying the homogeneous mixed boundary conditions. In the construction of ii(x; @), it is inappropriate to
naively take ii(x; ) = (x — a)P*(x — b)P» with 1 < p, <2 and 0 < p, < 1, following the approaches in the preceding two
cases, because such ii(x; #) satisfies a redundant condition ii(a; #) = 0. Instead, we assume

0(x;0) = (x —a)Pl(x; 0) +c, (2.5)

where 1 < p; <2 and c is a network-related constant to be determined. Clearly, (2.5) implies ii’(a; #) = 0, whereas ii(a; 0)
has not been specified. Next, the constraint ii(b; #) = 0 gives ¢ = —(b — a)Peii(b; §). Therefore, the special network for mixed
boundary conditions is constructed via

ux;0) = x—a)Plx; 0) — (b —a)Pui(b; 0) + 13(x). (2.6)

Case 4. Neumann boundary condition u’(a) = ag, u’(b) = by.
Similarly to Case 3, we construct the network by u(x;0) = ii(x; 0) + l4(x) with a lifting function Il4(x) satisfying the
Neumann boundary condition given by

_(bo—ao)
I4(x) = 72@ ) (x —a)” + apx.

And ii(x; @) satisfying the homogeneous Neumann boundary condition is assumed to be
i(x;0) = (x — a)Paii(x; 0) +c1, (2.7)

where 1 < pg < 2, U(x; é) is an intermediate network to be determined later, and c; is a network parameter to be traineq to-
gether with 6. It is easy to check that i’ (a; @) = 0. Next, by the constraint ii’(b; 8) = pq(b—a)Pe=11i(b; 8) + (b—a)Paii/ (b; 0) =
0, we have

Pail(b: 6) + (b — a)it'(b: §) =0,

which can be reformulated as
PaX .. 2\
exp(—)u(x; 0 ) =0.

(exp(=)ix )
Therefore, we have
DaX
b—a

exp(-——)ii(x; 8) = (x — b)P*ii(x; ) + ¢, (2.8)
where 1 < pp <2 and c; is another network parameter to be trained together with 6. Finally, by combining (2.7) and (2.8),
we obtain the following special network satisfying the given Neumann condition, i.e.

ux; 0) = exp(%)(x —a)Pe((x — b)Prii(x; 0) + 2) +c1 +la(x), (2.9)

where 6 = {@, c1,C2}.

Finally, we would like to remark that it is difficult to construct special neural networks to automatically satisfy boundary
conditions when the PDE domain is irregular. In this case, the conventional penalty method in (2.1) is more preferable.
Though we will show in our numerical experiments that special neural networks satisfying boundary conditions are better
than penalty methods to identify distinct solutions. This does not exclude the possibility that penalty methods, or other
advanced optimization algorithms for constrained optimization, can also work well with well-tuned parameters.
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3. Neural network deflation

In this section, we propose the general formulation, the detailed implementation, and the computational complexity of
the proposed method. As we shall see, our method is easy to implement on high-dimensional and complex domains with a
lower computational cost per iteration than other traditional deflation methods.

3.1. Formulation

A nonlinear BVP (1.1) might have multiple distinct solutions and each solution is a minimizer of the corresponding
network-based optimization, say

rnoin L(u(x;9)), (3.1)

where L is a generic loss function for solving differential equations. One example of L is the residual loss in (2.2), and L
can also be other loss functions. Due to the implicit regularization of SGD and neural networks, only local minimizers in
flat energy basins are likely to be found. Hence, no matter how to initialize the SGD and how to choose hyper-parameters,
usually, only a few solutions can be found by minimizing (3.1) directly.

The neural network deflation is therefore introduced, the main idea of which is to construct a modified loss function Lnp
with two properties: First, a candidate minimizer of Lyp is also a minimizer of L. Second, the minimizers that are already
found by the network-based optimization (3.1) will not be minimizers of Lyp again. Following this idea, Lnp is constructed
by multiplying L with a deflation term introduced in [29] such that the energy landscape of L is modified. Specifically,
suppose the minimum value of L is zero. Let uy(x) (k=1,---, K) be the solutions already found by (3.1), then the neural
network deflation is formulated as the following optimization problem,

K
min Lyp := (Y lu(x: ) — ue@l 1% +o ) L(u(x:0)). (3.2)

k=1
where pj are positive powers for k=1,---,K, and o > 0 is a shift constant. Here, we name uy(x) (k=1,---,K) as
deflation sources. Indeed, the modified loss function Lyp satisfies the two properties discussed above. First, any minimizer
of Lyp such that Lyp = 0 also ensure L =0 and, hence, is also a minimizer of L. Second, for all k=1, ---, K, the term

lu(x; 0) — uk(x)||zz%) acts a penalty term that excludes u, as a minimizer, since it approaches infinity as u goes to uy.
The introduction of a positive « is help to eliminate spurious solutions in practice. If @ =0, the modified loss function Lyp
would approach zero when u is far from all uy’s, which leads to many spurious solutions. For a more detailed discussion of

the deflation term, the reader can refer to [29].
3.2. Deflation with a varying shift

The original deflation operator introduced in [29] fixes the shift « in (3.2) as a constant. In this paper, we propose a new
variant of deflation operators with a varying shift « along with the SGD iteration. Note that when « is equal or close to O,
the deflation term Z,’le lu(x; 0) — uk(x)||L_2’Z’§2) dominates the loss and hence gradient descent tends to converge to what
is far away from the known solutions. When « is moderately large, the original loss function L(u(x; #)) dominates the loss
and the gradient descent process tends to converge to a solution with a smaller residual. Therefore, @ in this paper is set
to be a monotonically increasing function of the SGD iteration. In the early stage, o is chosen to be close to 0 such that
the current solution will be pushed away from known solutions. During this stage, a large learning rate is preferable. In the
latter stage when the current solution is roughly stable, « is set to be large and a small learning rate is used to obtain a
small residual loss.

In practice, one heuristic choice is to increase o exponentially with a linearly growing power when the iteration in-

creases. For example, in the n-th iteration, o is set as o, defined below
oty = 10Po+1(P1=P0)/Ni (3.3)

where pg and p; are two prescribed powers with pg < p1, and Nj is the total number of iterations. Note that the exponen-
tially varying formula is also widely used in setting the learning rates of SGD.

3.3. Discretization
In the implementation, the continuous loss functions in (2.2) and (3.2) are approximately evaluated by stochastic sam-

pling. The L?-norm can be interpreted as an expectation of a function of a random variable x in a certain domain. Hence,
the expectation is approximated by sampling x several times and computing the average function value as an approximant.
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Let us take [|u(X)]l;2(q) as an example. We generate N random samples ;, i =1, ---, Np, which are uniformly distributed

in . Denote X := {x; Np

i=1» then [u(®)||;2(q) is evaluated as the discrete L?-norm denoted as lu@)ll2x, via

@l 2x, = ( Z|u(xl>| ) (3.4)

x,eX

The discretization technique above is applied to discretize the L2-norms in all loss functions in this paper. In the n-th
iteration of gradient descent, assuming that the shift « is set to be «;, and the set of random samples is denoted as X, the
discrete deflation loss function is calculated by

B0 —(Znu(x 6) — uc I+ )L 0)),
k=

where f(u(x; #)) is a discrete approximation to L(u(x; #)) using the same set of samples, e.g.,

L(u; 0) = [Du; 0) — f@®I} 5,
when the least-square loss in (2.2) is applied. Then the network parameter # is updated by

00—, VyL32(0),

where 1, > 0 is the learning rate in the n-th iteration. In our implementation, X, is renewed in every iteration. Note that
the gradient of the loss function can be evaluated using PyTorch built-in function autograd that essentially computes the
gradient using a sequence of chain rules, since the network is the composition of several simple functions with explicit
formulas.

3.4. Computational complexity

Let us estimate the computational complexity of the SGD algorithm for deflation optimization (3.2) with least-square loss
function (2.2). Recall that N denotes the number of random samples in each iteration. Assume that the FNN has L layers
and N neurons in each hidden layer. Note that evaluating the FNN or computing its derivative with respect to its parameters
or input x via the forward or backward propagation takes O(dN + LN?) FLOPS (floating point operations per second) for
each sample x. Moreover, as in most existing approaches, we assume f(x) in the BVP can be evaluated with O(d) FLOPS
for a single x. Therefore, L(u(x;6)) in (2.2) and its derivative VyL(u(x; #)) can be calculated with O (N, (dN + LN?)) FLOPS
using the discrete LZ-norm in (3.4), if the differential operator D is evaluated through finite difference approximation.
Similarly, assuming the number of known solutions K is O(1) and the known solutions {uk(x)}k , are stored as neural
networks of width N and depth L, then the deflation factor and its gradient with respect to @ can also be calculated with
O(Np(@dN + LN?)) FLOPS. Finally, the total complexity in each gradient descent iteration of the deflation optimization is
O (Np(dN + LN?)).

In existing methods [29,19,3], a given nonlinear differential equation is discretized via traditional discretization tech-
niques, e.g. FDM and FEM, resulting in a nonlinear system of algebraic equations. The solutions of the system of algebraic
equations provide numerical solutions to the original nonlinear differential equation. By multiplying different deflation terms
to the nonlinear system of algebraic equations, existing methods can identify distinct solutions via solving the deflated sys-
tem by Newton’s iteration. The number of algebraic equations N, derived by FDM is exactly the number of grid points; and
the number of equations derived by FEM is exactly the number of trial functions in the Galerkin formulation.

Now we compare neural network deflation with existing deflation methods in [29,19,3] in terms of the computational
complexity under the assumption that the degrees of freedom of these methods are equal, i.e., the number of grid points or
trial functions in existing methods is equal to the number of parameters in the neural network deflation, which guarantees
that these methods have almost the same accuracy to find a solution. Denote the degree of freedom of these methods
by W. Then by the above discussion, we have W = N, = O (dN + LN?). Therefore, the total computational complexity in
each iteration is O (N, W), where N, is usually chosen as a hyper-parameter much smaller than W. In existing methods,
the Jacobian matrix in each Newton’s iteration is a low-rank matrix plus a sparse matrix of size W by W. Typically, each
iteration of Newton’s method requires solving a linear system of the Jacobian matrix, which usually requires O (W?2) FLOPS.
If a good preconditioner exists or a sparse direct solver for inverting the Jacobian matrix exists, the operation count may be
reduced. Consequently, the total complexity in each iteration of existing methods would be more expensive than the neural
network deflation depending on the performance of preconditioners.

4. Structure probing initialization

The initialization of parameters plays a critical role in training neural networks and has a significant impact on the
ultimate performance. In the training of a general FNN, network parameters are usually randomly initialized using normal

7
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distributions with zero-mean. One popular technique is the Xavier initialization [32]: for each layer ¢, the weight matrix
W, € RNexNew1 is chosen randomly from a normal distribution with mean 0 and variance 1/N;_;; the bias vector b,
is initialized to be zero. As a variant of Xavier initialization, the He initialization [41] takes a slightly different variance
2/(N;_1 + Nj) for W, and 2/N;_; for b,. In general, FNNs initialized randomly have a smooth function configuration, and
hence their Fourier transform coefficients decay quickly.

The least-squares optimization problem, either for regression problems or solving linear partial differential equations,
with over-parameterized FNNs and random initialization admits global convergence by gradient descent with a linear con-
vergence rate [45,24,82,15,59]. However, the speed of convergence depends on the spectrum of the target function. The
training of a randomly initialized DNN tends to first capture the low-frequency components of a target solution quickly. The
high-frequency fitting error cannot be improved significantly until the low-frequency error has been eliminated, which is
referred to as F-principle [78]. Related works on the learning behavior of DNNs in the frequency domain is further investi-
gated in [58,85,84,13]. In the case of nonlinear differential equations where multiple solutions exist, these theoretical works
imply that deep learning-based solvers converge to solutions in the low-frequency domain unless the DNN is initialized
near a solution with high-frequency components.

The discussion just above motivates us to propose the structure probing initialization that helps the training converge
to multiple structured solutions. The structure probing initialization incorporates desired structures in the initialization
and training of DNNs. For example, to obtain oscillatory solutions of a differential equation, we initialize the DNN with
high-frequency components to make the initialization closer to the desired oscillatory solution. During the optimization
process, the magnitudes of these high-frequency components will be optimized to fit the desired solution. One choice
to probe an oscillatory solution is to take a linear combination of structure probing functions with various frequencies,
eg., (&) = elkix, |kjl=j,j=1,---, ]} with k; randomly selected. Then the following network u; with a set of random
parameters € can serve as an oscillatory initial guess:

J
Up:0)) =ux; 0)+ Y ciEj(x), (4.1)

j=1

where 0 := {6, {C]’}jj:l} is trainable after initialization. In the initialization, {c;} are set as random numbers or manually
determined hyper-parameters with large magnitudes. The idea of adding planewaves has been applied in [10,11] to obtain
high-frequency solutions. But the goal and detailed formulations are different. Instead of planewaves, radial basis functions
are also a popular structure in the solution of differential equations. In this case, we can choose {£;(x) = sin(j|x|), j =
1,---, J} for example. The idea of structure probing initialization is not limited to the above two types of structures and is
application dependent.

The above paragraph has sketched out the main idea of the structure probing initialization. Now we are ready to discuss
its special cases when we need to make the structure probing network u; in (4.1) satisfies the boundary condition Buj; =g
in the BVP (1.1), which is important for the convergence of deep learning-based solvers as discussed in Section 2.3. For this
purpose, we first construct a special network u(x; @) such that Bu(x;#) = g by the approaches described in Section 2.3.
Next, the structured probing functions {£;(x)} are specifically chosen to satisfy B&;j(x) =0 for each j. As an example, let us
take the one-dimensional mixed boundary condition on [a, b]:

u'(@) =ag, u(b)=ho (4.2)

for any constants ag and bo. Then a feasible choice of &j(x) is &j(x) = COS(W) Finally, it is easy to check that

Buj(x;0) =
5. Numerical examples

In this section, several numerical examples are provided to show the performance of network-based structure probing
deflation in solving BVP (1.1). We choose the least-square loss function as the general loss function L(u(x; #)) in (3.2), then
the neural network deflation is formulated as

2
min Lnp (8) := (Znu(x 0) — @)l Y, + a)uDu(x 0) = f®) g (5.1)
k=
where u(x; 0) is the neural network of the approximate solution to be determined. Remark that the optimization problem
can also be formulated by other optimization-based methods instead of least squares.
To verify the effectiveness of special networks that satisfy boundary conditions automatically, we use the deflation with-
out the special network for boundary conditions as a comparison, where the loss function of the deflation becomes

min Lyp(6) = (leu(x 6) — uc )% +a)-

k=1
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Table 5.1
Summary of numerical examples and goals. In this table, “1” represents an idea is used and “0”
means the idea is not used. “1/0” indicates that a comparison with/without the idea is tested.

Test Case ND SP BC VS Justified Ideas
Case 1 1/0 0] 1/0 0 ND and BC
Case 2 1/0 0 1/0 0 ND and BC
Case 3 1/0 0 1/0 0 ND and BC
Case 4 1/0 1/0 1/0 0 ND, SP and BC
Case 5 1/0 1/0 1 1/0 ND, SP, and VS
Case 6 1/0 1/0 1 1/0 ND, SP, and VS
Case 7 1/0 0 1 1 ND

(IDux; 0) = £, 012 g+ AIBU: ) = 5@ Eq) ) - (52)

The overall setting for all examples is summarized as follows.

e Environment. The experiments are performed in Python 3.7 environment. We utilize the PyTorch library for neural
network implementation and CUDA 10.0 toolkit for GPU-based parallel computing. One-dimensional examples (Test
Case 1-4) are implemented on a laptop and high-dimensional examples (Test Case 5-7) are implemented on a scientific
workstation.

e Optimizer. In all examples, the optimization problems are solved by adam subroutine from PyTorch library with default
hyper parameters. This subroutine implements the Adam algorithm in [50].

e Learning rate. In each example, the learning rate is set to decay exponentially with linearly decreasing powers. Specifi-
cally, the learning rate in the n-th iteration is set as

T = 1090+1@1—q0)/Ni ,

where qg > q; are the initial and final powers, respectively, and N; denotes the total number of iterations.

e Network setting. In each example, we construct a special network that satisfies the given boundary condition as dis-
cussed in Section 2.3. The special network involves a generic FNN, denoted by . In all examples, we set the depth and
width of & as fixed numbers L =3 and N = 100. Unless specified particularly, all weights and biases of @ are initialized
by Wy, b; ~ U(—/N_1, /Ni_1). The activation function of ii is chosen as o (x) := max(0, x>).

o Varying shifts in deflation operators. In one-dimensional examples (Test Case 1-4), using constant shifts is sufficient to
find all solutions. In high-dimensional examples (Test Case 5-7), varying shifts will help to find more distinct solutions.
In these examples, we set varying shifts according to (3.3).

We also summarize the numerical examples in this section in Table 5.1, which could help the reader to better understand
how the extensive numerical examples demonstrate the advantages of our new ideas in this paper: 1) neural network
deflation (ND); 2) structure probing initialization (SP); 3) special network for boundary conditions (BC); 4) varying shifts in
deflation operators (VS).

In each example, necessary parameters to obtain each solution are listed in a table right next to the example. In these
tables, we use Np, Nj, and Ij; to denote the batch size, the number of iterations, and the range of learning rates (i.e.
[1091,10%]), respectively. In each iteration of the optimization, N, random samples will be renewed. The value of the shift
« for each solution found by the deflation is listed in the table as a constant for a fixed o or an interval [10P°, 10P1] for a
varying «.

5.1. Numerical tests in one-dimension

First of all, we will provide four numerical tests for problems in one-dimension. These numerical tests show that the
proposed neural network deflation works as well as existing methods [29,39].

Test Case 1. We consider second-order the Painlevé equation [42,31,65] that seeks u(x) satisfying

d?u 2 .

—— =100u®—1000x, inQ=(0,1), (5.3)
dx?

u(0)=0, u(l)=+10. (5.4)

It has been shown in [40] that the Painlevé equation (5.3)-(5.4) has exactly two solutions, denoted by u; and u;, which
satisfy u(0) > 0 and u}(0) < 0, respectively.
In our experiments, we take the following special network

ux; 0) = x(x — DHi(x; ) +10x (5.5)
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Table 5.2
Parameters for 1-D Painlevé equations (5.3)-(5.4). “/” means the corresponding item is not used (the same as
below).
uq up fl] L—lz
Ni 10000 10000 10000 10000
Np 1000 1000 1000 1000
I [1073,1072) [1073,1072] [1073,1072] [1073,1072)
deflation source / uy (p1=2) uy (p1=2) uy (p1=2)
o / 1 1 1
5 . . . .
4 F 1

3 . . . .
0 0.2 0.4 0.6 0.8 1

Fig. 5.1. Identified solutions of the 1-D Painlevé equations (5.3)-(5.4) by the least squares method and neural network deflation. All correct solutions, u; and
uy, are identified with special networks for boundary conditions. Spurious solutions, ii; and 5, are found if the special networks are not used. Another
solution, u3, is found when the deflation fails with an inappropriate power p1.

that automatically satisfies the boundary conditions and use parameters in Table 5.2. The initial guess of @ is randomly
initialized as mentioned previously. The first solution uq is easily found by the least-square method using (2.2), and the
second solution u; is found by deflation with uy as the deflation source and p; = 2. Other parameters associated with these
solutions are listed in Table 5.2. Fig. 5.1 visualizes the identified solutions u; and uy with the same function configurations
as in [29].

To verify the effectiveness of special networks that satisfy the boundary conditions (5.4), we use the deflation without
special networks for boundary conditions as a comparison. Hence, the loss function is given by (5.2) with a solution network
u(x; 0) as a generic FNN of the same structure as & in (5.5). To show that the results of (5.2) are quite independent of the
weight A, A =1 and A =100 are used and the corresponding solutions are denoted as u1 and uy, respectively. As listed in
Table 5.2, other parameters to identify these two solutions are the same as those for identifying u; for a fair comparison. It
is clear that these two solutions do not satisfy the boundary condition at the endpoint x = 0 (see Fig. 5.1). This verifies the
importance of using special networks that satisfy the boundary conditions automatically.

Moreover, we test the effectiveness of the deflation when smaller powers of deflation sources are used. We basically
repeat the same experiment as the previous one for computing u, in Fig. 5.1. The only difference is that we use a larger
power p1 =2 in the previous experiment, but now we use a smaller power p; = 1. The solution by nerual network deflation
with p; =1 is denoted as u3 and visualized in Fig. 5.1. Note that u3 is almost the same as the deflation source u by visual
inspection. This result is not surprising even if we have used u; as the deflation source. The loss function Lyp in (3.2) can
still be very small at u = u3 even if the deflation term is large, since the loss function L in (3.2) can be much smaller than
one over the deflation term at u = i3 close to uq. This example indicates that an appropriate power p; is necessary to
exclude spurious solutions close to uj.

Test Case 2. We consider a fourth-order nonlinear BVP that seeks u such that
4

d_’: —gx(1+ud) inQ=(0,1), (5.6)
dx
u@=u'M=u"1)=0, u"(0)—u"(y)=0, 5.7)

where B and y are two given constants. Graef et al. [36,35] have proven that the problem (5.6)-(5.7) has at least two
positive solutions when =10 and y =1/5.

The three-point boundary condition (5.7) is more complicated than usual. Accordingly, we construct the following special
network for it,

ux; 0) = (x — 1)>(x; 0) +0(0; 0) + ¢, x(x — 1)°, (5.8)

10
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Table 5.3
Parameters for the equation (5.6)-(5.7).
uq up fl] I:lz
N 5000 5000 5000 5000
Np 1000 1000 1000 1000
Iir [1073,1072) [1072,1071] [1072,1071] [1072,1071)
deflation source / up (p1=1) up (p1=1) up (p1=1)
o / 1 1 1

0 0.2 0.4 0.6 0.8 1

Fig. 5.2. Identified solutions of the equation (5.6)-(5.7) by least square or neural network deflation. All correct solutions, u; and uy, are identified with
special networks for boundary conditions. Spurious solutions, i1 and iy, are found if the special networks are not used.

where

1 d? R d? .
¢y = m@“" — D206 0)) ey — 75 (0= 1% 0) o) (5.9)
It can be verified that (5.8) indeed satisfies the boundary condition (5.7) independent of 6.

In our experiment, we find the first solution, denoted by u1, by applying the least-square method (2.2). With deflation
source uj (p; =1), we find the second solution, denoted by u,, by using the deflation (5.1). The parameters and solutions
are demonstrated in Table 5.3 and Fig. 5.2.

Similarly, we test the deflation without special networks for boundary conditions as a comparison under the same setting
as Test Case 1. We find two solutions, denoted by u; and uy, from A =1 and A = 100, respectively (see Fig. 5.2). It is clear
that both solutions are spurious since their configurations do not take the prescribed boundary value 0 at x =0 (see Fig. 5.2),
which implies the effectiveness of using special networks for boundary conditions.

Test Case 3. We consider the fourth-order nonlinear equation describing the steady laminar flow of a viscous incompressible
fluid in a porous channel [77]. For simplicity, we consider the one-dimensional problem that seeks u such that

PN TP U YL B U SO (510)
ad TV e T e e dxad’ T T '
u(©0)=0, u'(©)=0, ul)=1, u'(1)=0, (511)

where R is the cross-flow Reynolds number and y is a physical constant related to the wall expansion ratio. Xu et al. [77]
have proven that the problem (5.10)-(5.11) admits multiple solutions by analytic approaches. Three solutions were found by
homotopy analysis method (HAM) in [55] for the setting R=—11 and y =1.5.

In our experiments, we take the same R and y as in [55]. The special network for the boundary condition (5.11) is
chosen as

ux; 0,c) =x(x — 1)2(x*i(x; 0) + c)e* + sin(wx/2), (5.12)

where ¢ is a network parameter to be trained together with 6. In this case, we initialize the bias of the third layer b3 =
0 and ¢ ~ U[-5, 0]. Other network parameters are initialized as mentioned above. Firstly, one solution u; is found by
the least-square method (2.2). Next, the second solution u; is obtained by the deflation (5.1) with deflation source u4
(p1 = 2). Moreover, the third solution us3 is obtained by the deflation (5.1) with deflation sources uq and uy (p1 = p2 = 2).
Corresponding parameters are shown in Table 5.4. The three found solutions and their first derivatives are plotted in Fig. 5.3,
which are the same solutions found in [55].

11
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Table 5.4
Parameters for the channel flows equation (5.10)-(5.11).
uy u u3 iy iip
N; 20000 10000 20000 10000 10000
Np 1000 1000 1000 1000 1000
Iie [1073,1072) [1073,1072) [1073,1072] [1073,1072) [1073,1072)
deflation source / uy (p1=2) uq, u (p1=p2=2) uy (p1=2) uy (p1=2)
a / 1 1 1 1
0.25 . . . .
0.2 Uy
—— =
0.15 | Uy
——— -
0.1¢
0.05
0 fffffff P
005f ——~ Tt~
= ~
0.1t S
N
_015 L L L L
0 0.2 0.4 0.6 0.8 1

Fig. 5.3. Identified solutions and their derivatives of the channel flows equation (5.10)-(5.11) by least square or neural network deflation. All correct solu-
tions, u1, u and us, are identified with special networks for boundary conditions. Spurious solutions, i1 and i, are found if the special networks are not
used.

Table 5.5
Parameters for the nonlinear problem (5.13)~(5.14) with f(u) = A(1 + u*).
uq uz fl] ﬁz
N 10000 10000 10000 10000
Np 1000 1000 1000 1000
Iy [1073,1072] [1073,1072] [1073,1072] [1073,1072]
deflation source / uj (p1=2) uj (p1=2) uj (p1=2)
o / 1 1 1

Also, a comparison test is performed to seek u, by the deflation (5.2) with the same setting as above, except for using a
generic solution network without special structures for boundary conditions. We find two solutions, denoted by 7 and iy,
using A =1 and A = 100. Neither of them takes the prescribed boundary value 0 at x=0 or 1 at x =1 and, hence, they are
spurious solutions (see Fig. 5.3).

Test Case 4. We consider the following second-order problem that seeks u such that

2
%:f(u), 0<x<1, (5.13)
u(0)=0, u(1)=0, (5.14)

where f(u) is a polynomial function of u. The existence of multiple solutions for the problem (5.13) has been studied by
the bootstrapping method [39].

First, we set the right-hand side of the problem (5.13) as f(u) = A(1 4+ u®). It is shown in [39] that there are two
solutions for 0 < A < A* = 1.30107. In our experiments, we take A = 1.2. The special network for the boundary condition
(5.14) is given by

u(x; 0) =x*0(x; 0) —(1; 9). (5.15)

The first solution uq is found by the least-square method (2.2) and the second solution u; is found by the deflation (5.1)
with deflation source u; (p1 = 2). Similarly to preceding cases, we perform a comparison test without the special network
structure for boundary conditions and two spurious solutions i1 (for A =1) and i, (for A = 100) are found by the deflation
(5.2). The parameters for all these solutions are shown in Table 5.5 and all solutions are plotted in Fig. 5.4.

Second, we repeat the test by choosing f(u) = —”Tzuz(u2 — 10). [39] has proved that there exist eight solutions in total.
Note that ug =0 is a trivial solution. In this case, we start from the deflation (5.1) with the special network (5.15) and

12
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Fig. 5.4. Identified solutions of the nonlinear problem (5.13)-(5.14) with f(u) = A(1 4+ u*) by least square or neural network deflation. All correct solutions,
up and uy, are identified with special networks for boundary conditions. Spurious solutions, i and uy, are found if the special networks are not used.

Table 5.6 )
Parameters for the nonlinear problem (5.13)-(5.14) with f(u) = 7”7u2(u2 —10).
uq up us Ug
Ni 5000 5000 10000 20000
Np 1000 1000 1000 1000
Iir [1073,1072] [1073,1072) [1074,1073] [1074,1073)
J / 1 1 2
initial c; / —3.48 4.61 —3.67
deflation source ug (po=2) up (po=2) up (po=2) up (po=2)
us Ug uz
Ni 20000 20000 20000
Np 1000 1000 1000
Iir [1074,1073) [1074,1073] [1074,1073)
] 2 2 2
initial ¢ —4.12 3.64 3.44
deflation source ug (pa=2) up (po=2) ug (pg =2)

the deflation source ugp (pg =2) to find the first solution uq, which is quite close to ug. We would like to emphasize that
it is sufficient to use the deflation without structure probing initializations to identify uo and ui. However, we were not
able to identify any other solutions without the structure probing initialization even if we tried our best to tune parameters
and use different random initialization. To perform a wider search for other solutions, we employ the following structure
probing initialization

J
us(x;0,c;) =x*0(x;0) —1(1;0) + ch cos((2j — V)mx/2), (5.16)
j=1
with initial setting ¢j =0 for j=1,---,] —1 and ¢j ~ U(=5,5). Two solutions, denoted by u and us, are found by

the deflation (5.1) with source ug (po = 2) and the structure probing network (5.16) with | = 1. Another two solutions,
denoted by u4 and ug, are found by the deflation (5.1) with source ug (po =2) and the network (5.16) with J =2. Two
more solutions, denoted by us and uy, are found by the deflation (5.1) with deflation sources uy4 (pg4 =2) and ug (pg =
2), respectively, and the network (5.16) with ] = 2. Corresponding parameters, including the initial value of c; actually
randomized for each solution, are listed in Table 5.6. All the 7 nontrivial solutions are plotted in Fig. 5.5.

5.2. Numerical tests in high-dimension

In this subsection, we will provide numerical tests in high-dimensional domains (d > 2).

Test Case 5. We consider 2-D Yamabe’s equation that seeks u such that

5
u
—8Au—-01u+— =0, inQ= XcR%:r<|x R},
+|x|3 { <lal <R} (517)
u=1, onad<2,

13
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Fig. 5.5. Identified solutions of the nonlinear equation (5.13)-(5.14) with f(u) =— ”Tzuz(uz — 10) by the deflation.

where r and R are set as 1 and 100. Nine solutions were found by using non-network deflation techniques and various
initial guesses in [29].
In our experiments, the solutions are approximated by the following special network

~ . X| —
uj(x;0) =u(x;0)sin (n |R|

r) 1 (5.18)
-

if the random initialization without the structure probing technique is used, or the following network

uj(x;0,c;)=1u(x;0)sin n|x|—r +X]:c-sin('n|x|_r)+l (5.19)
ST R = EAE R—r j—]l TR '
with the structure probing initialization, where the initial values are cj=0 for j=1,---,J —1 and c; ~U(-1,1). Note

that both (5.18) and (5.19) satisfy the given boundary condition automatically.

In our proposed framework of the network-based structure probing deflation with a varying shift, we always follow the
four steps: 1) use the least-square method (2.2) to find the first few solutions; 2) use neural network deflation without
structure probing and varying shifts to find other solutions; 3) use structure probing deflation without varying shifts to find
more distinct solutions; 4) finally, use structure probing deflation with varying shifts to find extra distinct solutions. Fol-
lowing these procedures, we find 14 solutions in total for the 2-D Yamabe’s equation as plotted in Fig. 5.6 with parameters
specified in Table 5.7.

More precisely, u; and uq1 are found by the least-square method (2.2) and the others are found by the deflation (5.1)
with previously found solutions as deflation sources (p, = 2 for all k). In deflation, we employ the technique of varying shifts
in deflation operators, which helps to find more distinct solutions. All solutions are found by using networks (5.18) or (5.19)
(specified in Table 5.7) with their corresponding initialization as mentioned previously, except that we take the network
(5.18) with 2 — ug as the initial guess to find u19. We would like to remark that both the structure probing initialization
and the varying shifts are key techniques to find more distinct solutions for high-dimensional problems. Without any of
them, we cannot find 14 distinct solutions even if we have tried our best to tune parameters with commonly used random
initialization in the literature.

Test Case 6. The high-dimensional Yamabe’s equation seeks u such that

d+2

4A=D 01250+ Y —0. inQ={1 < |x| <100}
————Au-0. — =0, ={1<|x < ,
d-2) |x|3 (5.20)

u=1, ono,

where d > 3 is the dimension of the problem.

We continue applying the network (5.18) without structure probing initialization and the network (5.19) with the
structure probing initialization as solution networks to solve Yamabe’s equation when d = 3 and d = 6. The initialization
parameters are the same as in the 2-D case.

Again, in our proposed framework of the network-based structure probing deflation with a varying shift, we follow
the four steps: 1) use the least-square method (2.2) to find the first few solutions; 2) use the deflation without structure
probing and varying shifts to find other solutions; 3) use structure probing deflation without varying shifts to find more
distinct solutions; 4) finally, use structure probing deflation with varying shifts to find extra distinct solutions. Following

14
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Table 5.7
Parameters for the 2-D Yamabe's equation (5.17) (px = 2 for all deflation sources for the solutions obtained by the deflation).
uq uy us Uy Us
Ny 2000 2000 2000 5000 2000
Np 10000 10000 10000 10000 10000
Iie [1073,1071] [1072,107 1] [1072,107 1] [1072,1071) [1072,1071)
network (5.18) (5.18) (5.18) (5.18) (5.18)
o / 1 1 [0.01, 100] [0.01, 100]
deflation source / uq Uy us uq
us uz us ug uio
Ny 5000 10000 20000 20000 10000
Np 10000 10000 10000 20000 10000
Iir [1072,1071] [1072,1071] [1072,1071] [1072,1071) [1072,1071)
network (5.18) (5.18) (5.18) (5.18) (5.18)
o [0.01, 10] [0.01, 10] [0.01, 10] [0.01, 10] [0.01,10]
deflation source Uq,Ug uq,Uy ui,uy uq,uz Uug
U1 ui2 ui3 U14
Ny 2000 10000 10000 10000
Np 10000 10000 10000 10000
Iy [1073,1071] [1072,1071] 1072 [1072,1071]
network (5.19) (J =4) (5.19) (J =4) (5.19) (J =4) (5.18)
o / 0.01 [0.01, 10] 1
deflation source / uqq usg,u1q ui
U1 us Uy
-100 -100 -100 -100
) . . . ) @
100 100 100
-100 0 100 -100 O —100 0 100 -100 0 100
Us uy
-100 -100 -100
) . ) ) .
100 100 100
-100 0 100 -100 0 100 -100 0 100 -100 0 100
Ug U1l U12
-100 -100 -100 -100
) . . )
100 100 100
-100 0 100 -100 0 10 —100 0 100 -100 0 100
U3
-100
0
100 -
-100 0 100 -100 0 100

Fig. 5.6. Identified solutions of the 2-D Yamabe’s equation (5.17).

these procedures, we obtain 11 solutions when d =3 and 9 solutions when d = 6. The corresponding parameters are shown
in Tables 5.8 and 5.9 for d =3 and d = 6, respectively. The solutions are visualized in Figs. 5.7 and 5.8 for d =3 and
d = 6, respectively. We would like to remark that both the structure probing initialization and the varying shifts are key
techniques to find more distinct solutions for high-dimensional problems. Without any of them, we cannot find several
distinct solutions even if we have tried our best to tune parameters with commonly used random initialization in the
literature.

In these tests, the deflation powers pj are set as 2 for all k whenever deflation is used. In the case of d =3, most
networks are initialized using (5.18) or (5.19), except for ug, ug and uj9, which are found by using initial guesses 2 — uy4,
2 —us3 and 2 — us, respectively. In the case of d =6, we also try the initialization with a constant minus a known solution.
However, this initialization method does not lead to new solutions.
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Table 5.8
Parameters for the 3-D Yamabe's equation (5.20) (py = 2 for all deflation sources for the solutions obtained by the deflation).

uq up us Ug us
Ny 20000 20000 20000 20000 20000
Np 10000 10000 10000 10000 10000
Iie [1072,1071] [1072,107 1] [1072,107 1] [1072,1071) [1072,1071)
network (5.18) (5.18) (5.18) (5.18) (5.18)
o / [0.01,10] 1 0.1 0.01
deflation source / uq uq,uy uq,uy uq,uUy

ue uy ug ug uio
Ny 20000 20000 20000 20000 20000
Np 10000 10000 10000 10000 10000
Iir [1072,1071] [1072,107 1] [1072,1071] [1072,107 1] [1072,1071)
network (5.19) (J =4) (5.19) (J =6) (5.19) (J =4) (5.18) (5.18)
o 0.01 0.1 [0.01, 10] [0.01, 10] [0.01, 10]
deflation source u,Up uq,up U1,ug uq,Uz,us ujg,Uz,Us

u1
N 100
Ny 20000
Np 10000
I [1072,107']
network (5.19) (J =4)
o [0.01,10]
deflation source uq,Uz,Ug

Ul U9
-100 -100 -100
100 100 100

100 -
-100 0 100 -100 0 100 -100 0 100 -100 O 100

Us
-100 -100 -100 -100
O . .
100
%00 0 100 Yoo 100 300 100 -100 0 100
U9
-100
o . .
100
-100 0 100 -100 100 -100

Fig. 5.7. Identified solutions of the 3-D Yamabe's equation (5.20). We visualize these solutions by projecting them in the first two coordinates.

Test Case 7. In the last example, we consider the following reaction-diffusion system applied in the modeling of the chemical
reaction with two components [64] and irregular patterns [69],

Di(u,v):=¢eyAu—uvi+F(1 —u)=0

) ing, (521)
Dy(u,v):=¢eyAv+uve—(F+k)v=0
with Dirichlet boundary conditions
u=1andv=00n9d%. (5.22)

In this case, Q is set as a more complicated domain in R3 formulated by

16



Y. Gu, C. Wang and H. Yang Journal of Computational Physics 434 (2021) 110231

Table 5.9
Parameters for the 6-D Yamabe's equation (5.20) (py = 2 for all deflation sources for the solutions obtained by the deflation).
uq up us Ug us
Ny 20000 20000 20000 20000 20000
Np 10000 10000 10000 10000 10000
Iie [1072,1071] [1072,107 1] [1072,1071) [1073,107 1) [1073,10™ 1)
network (5.18) (5.18) (5.18) (5.18) (5.18)
o / [0.01,10] 0.1 10 [0.01,10]
deflation source / uq uq uq uq,uy
Us uz us ug
Ny 20000 20000 20000 20000
Np 10000 10000 10000 10000
I [1073,1072) [1073,1072) [1072,1071) [1072,1071]
network (5.18) (5.19) (J =6) (5.19) (J =6) (5.19) (J =6)
o [0.1,1] / [0.01, 10] 1
deflation source Uq,uUz / uz uz
usg Uy
-100 -100 -100 -100
. . 0
100 100 100
-100 100 —100 100 -100 0 100 -100 0 100
uz Uus
-100 -100 -100 -100
. @ 0 @ 0 @
100 100 100
-100 100 -100 100 -100 0 100 -100 0 100
Ug
-100
{ (O
100

-100 0 100

Fig. 5.8. Identified solutions of the 6-D Yamabe’s equation (5.20). We visualize these solutions by projecting them in the first two coordinates.

Fig. 5.9. The problem domain of the 3-D reaction-diffusion system.

Q={xeR>:|x| < p(x) :=1+0.1sin(50 (x1 + ix2))}, (5.23)

where 6(z) means the argument of a complex number z. See Fig. 5.9 for the visualization of 2. Note the system (5.21) has
a pair of trivial solutions ug =1 and vo =0.

In [74], the authors solve the problem (5.21) in a 2-D square by a spectral collocation method, obtaining a vast number
of solutions with residuals less than 10~2. However, it is quite challenging to solve the problem (5.21) in a 3-D complicated
domain by most conventional approaches (e.g., FDM and spectral methods).

Our network-based strategy is to construct two special networks u(x; 6,) and v(x;#,) to approximate u and v, respec-
tively. Specifically, we let
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Ui U1
-1 - \ ] - \
0 0 *
1 b 1 -
-1 0 1 -1 0 1
us3 U3
-1 -1
0 0
1 | J/
1 D 1 N
-1 0 1 -1 0 1
Us Us
-1 -1
0 [ O 0
1 1
-1 0 1 -1 0 1

Fig. 5.10. Selected solution pairs (u, v) of the 3-D reaction-diffusion system (5.21). We visualize these solutions by projecting them in the first two coordi-
nates.

o

o

(=]

1

-1 0 1

ux; 0,) = U(x;0,) (x> — p*(*) +1, (5.24)
v(x;0,) = V(x;0,)(1x]° — p*(x)), (5.25)

which automatically satisfy u(x;6,) =1 and v(x;6,) =0 on 9L2. If we use the original least squares method in (2.1), only
the trivial solutions can be found. Therefore, we train the networks by the following deflation

K

H o . -bp . -p
min Lo (@, 6y) := (IX]: (Ilu(x, 0u) — U ®)[l 26 + IV 0y) — vk(X)IILz(EZ)) + 06)
k=

(1D @ 80), v 81 ) + D2 0, v 0 s ) . (5:26)

where {uy(x), vk(}«t)},’f:1 are K pairs of solutions that have already been obtained. We start the search by taking the trivial
solutions ug and vq as deflation sources, and then take identified solutions as new deflation sources for the next search.
Hyper-parameters are set as Ny = 10000, N, = 10000, and I}, = [1075,1072]. Besides, we use a varying « with a range
[1072,1]. Deflation powers are set as py = 2 for all sources. Finally, we find more than 100 distinct solutions, some of
which are shown in Fig. 5.10. The residual errors of all identified solutions for Equation (5.21) are below 1.0 x 10~3 and the
corresponding values of the loss function in (5.26) are below 0.5 x 1073,

6. Conclusion

In this paper, we proposed the structure probing neural network deflation to find distinct solutions to nonlinear differ-
ential equations. The original optimization energy landscape of network-based methods is regularized by neural network
deflation so that known solutions are no longer local minimizers while preserving unknown solutions as local minimizers.
To obtain a new solution with the desired features, a structure probing algorithm is applied to obtain an initial guess that is
close to the desired solution. Finally, special network structures that satisfy various boundary conditions automatically are
introduced to simplify the objective function of network-based methods. These techniques form a new framework for iden-
tifying distinct solutions of nonlinear differential equations. Compared to existing methods, the proposed neural network
deflation is capable of solving high-dimensional problems on complex domains with a lower computational cost and can
identify more distinct solutions. As a neural network-based PDE solver, structure probing neural network deflation may not
provide highly accurate solutions. But these solutions are usually accurate enough for industrial applications and serve as a
good initial guess for conventional methods as in [43] to obtain highly accurate solutions efficiently.

Structure probing neural network deflation relies on the deflation operator proposed in [29] based on conventional dis-
cretization methods. Although the application of neural networks has conquered some disadvantages of the conventional
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deflation method, e.g., we can solve high-dimensional problems on complex domains and identify more solutions, the pro-
posed method in this paper still inherits some disadvantages of the conventional deflation method. For example, when
two solutions are very close to each other, the optimization landscape of the deflated loss using one solution as the de-
flation source becomes very steep at the other solution, making it very challenging to identify another solution. As in the
conventional deflation method, it is crucial to choose appropriate powers pj for deflation sources as shown in our numer-
ical tests. However, the parameter selection is still heuristic and problem-dependent. Learning how to choose parameters
automatically is an important future direction. Network-based methods in general might need extra effort to deal with
boundary conditions, which is not an issue of conventional methods. Designing more advanced optimization algorithms for
constrained optimization in network-based methods would also be interesting in the future.
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