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a b s t r a c t

A superconvergence error estimate for the gradient approximation of the second order
elliptic problem in three dimensions is analyzed by using weak Galerkin finite element
scheme on the uniform and non-uniform cubic partitions. Due to the loss of the
symmetric property from two dimensions to three dimensions, this superconvergence
result in three dimensions is not a trivial extension of the recent superconvergence result
in two dimensions Li et al. (0000) from rectangular partitions to cubic partitions. The
error estimate for the numerical gradient in the L2-norm arrives at a superconvergence
order of O(hr )(1.5 ≤ r ≤ 2) when the lowest order weak Galerkin finite elements
consisting of piecewise linear polynomials in the interior of the elements and piecewise
constants on the faces of the elements are employed. A series of numerical experiments
are illustrated to confirm the established superconvergence theory in three dimensions.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Superconvergence is a phenomenon where the numerical solution converges to the exact solution at a rate faster
than generally expected. Superconvergence has been widely used in post-processing techniques to yield a more accurate
approximation [1]. Superconvergence has also been employed by the mesh refinement and adaptivity [2,3] to yield a
posterior error estimator [4–8]. There has been a variety of research work in superconvergence based on finite difference
methods [9,10], finite element methods [5,11–17], discontinuous Galerkin methods [18], hybridized discontinuous
Galerkin methods [19], smoothed finite element methods [20], and weak Galerkin finite element methods [21–26].

In this paper, we are concerned with new developments of superconvergence of weak Galerkin finite element method
for second order elliptic boundary value problem (BVP) in three dimensions. To this end, we consider the second order
elliptic problem in three dimensions: Find u = u(x, y, z) satisfying

−∇ · (A∇u) =f , in Ω,

u =g, on ∂Ω,
(1.1)
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where Ω is an open bounded domain in R3 with Lipschitz continuous boundary ∂Ω; f = f (x, y, z) ∈ H−1(Ω) and

g = g(x, y, z) ∈ H
1
2 (∂Ω) are given functions defined on Ω and the boundary ∂Ω , respectively. We assume that the

diffusive coefficient tensor A = {aij}3×3 is uniformly bounded, symmetric, and positive definite in Ω .
The weak formulation of the second order elliptic model problem (1.1) using the usual integration by parts is as follows:

Find u ∈ H1(Ω) satisfying u = g on ∂Ω , such that

(A∇u,∇v) = (f , v), ∀v ∈ V , (1.2)

where V = {v ∈ H1(Ω) : v = 0 on ∂Ω}.
Superconvergence for the gradient of the finite element approximation for the second order elliptic boundary value

problem has been an active research topic for many years [12,27–31]. There have been various numerical methods
for solving the second order elliptic equations (1.1), such as finite element methods, finite volume methods, and finite
difference methods etc. We shall focus on a newly-developed numerical method named ‘‘weak Galerkin finite element
method (WG-FEM)’’ which is a natural extension of the classical Galerkin finite element methods. WG-FEM has several
advantages over the classical Galerkin finite element methods: (1) WG-FEM is flexible to use discontinuous functions
with interior information and boundary information; (2) WG-FEM is flexible to use polygons in two dimensions or
polyhedra in three dimensions in mesh generation; (3) WG-FEM is stable and preserves the physical properties. WG-FEM
has been widely applied to solve various partial differential equations such as elliptic interface problem [32], Maxwell’s
equations [33–35], the Helmholtz equation [36], wave equation [37], Stokes equations [23,38], the div–curl system [39],
the biharmonic problem [40,41], the Cahn–Hilliard equation [42], the singularly perturbed convection–diffusion–reaction
problems [43] etc. Recently, the primal–dual weak Galerkin finite element method has been successfully developed to
solve challenging problems such as the second order elliptic equation in non-divergence form [44], the Fokker–Planck
equation [45] and the elliptic Cauchy problems [46,47].

Some superconvergence results were observed in the numerical experiments of WG-FEM method on uniform meshes
for the gradient approximation for the elliptic equation in three dimensions (see ∥∇deh∥ in Table 4.11 [48]) and the wave
equation (see ∥∇w(eh)∥ in Table II [37]). The numerical results in [44] showed the superconvergence rate O(h4) in the
discrete L2-norm on uniform triangular partitions. Recently, the superconvergence theory based on WG scheme has been
developed and analyzed on non-uniform rectangular partitions for the second order elliptic problem [22] and stokes
equation [23], respectively. In [26], a superconvergence in L2-norm was proved between the L2 projection of the exact
solution and its numerical approximation. In [21], the authors studied the H1- superconvergence of the WG-FEM method
by L2 projections introduced in [49], and derived a superconvergence rate O(h1.5) or better by using the lowest order
weak Galerkin element approximations for the elliptic problem.

There are some superconvergence results in three-dimensions in the literature [10,11,29,50–53]. The difficulty in
the analysis of superconvergence for problems in three-dimensions lies in the loss of orthogonality and/or symmetry
compared with the analysis for problems in two dimensions. In this paper, we shall extend the superconvergence result
in [22] for the second order elliptic problem (1.1) from two dimensions to three dimensions. This is a non-trivial extension
of [22] in both the analysis and numerical experiments. The main difficulty in this paper compared with [22] lies in that
the symmetric property for the rectangular partitions in two dimensions is not available for the cubic partition in three
dimensions. The innovative contribution in this paper is to develop the superconvergence order O(hr )(1.5 ≤ r ≤ 2) for
the numerical gradient for the second order problem in three dimensions.

The rest of this paper is organized as follows. In Section 2, we simply review the weak gradient operator as well as
its discrete version. Section 3 is devoted to reviewing the WG-FEM finite element scheme for the second order elliptic
problem (1.1) in three dimensions. A simplified WG-FEM scheme is derived in Section 4. The error equation for the
simplified WG scheme is developed in Section 5. In Section 6, some technical results are provided which are useful in
the analysis of the superconvergence of WG method. Superconvergence theory is established in Section 7. In Section 8, a
variety of numerical experiments are demonstrated to verify the established superconvergence theory.

2. Weak gradient and discrete weak gradient

The classical gradient operator is the differential operator used in the weak formulation (1.2) of the second order
elliptic model problem (1.1). In this section, we will briefly review the weak gradient operator as well as its discrete
version which were first introduced in [26,54].

Let T be any polyhedral domain with boundary ∂T . Denote by v = {v0, vb} a weak function on T , where the first and
second components v0 and vb represent the information of v in the interior and on the boundary of T , respectively. Note
that vb may not necessarily be related to the trace of v0 on the boundary ∂T . However, it is feasible to take vb as the trace
of v0 on ∂T .

We introduce the space of the weak functions on T , denoted by W (T ); i.e.,

W (T ) = {v = {v0, vb} : v0 ∈ L2(T ), vb ∈ L2(∂T )}.

The weak gradient of v ∈ W (T ), denoted by ∇wv, is defined as a linear functional in the dual space of [H1(T )]3 satisfying

⟨∇wv,ψ⟩T = −(v0,∇ · ψ)T + ⟨vb,ψ · n⟩∂T , ∀ψ ∈ [H1(T )]3, (2.1)

where n is the unit outward normal direction to ∂T .
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Denote by Pr (T ) the set of polynomials on T with total degree no more than r . A discrete version of ∇wv for any
v ∈ W (T ), denoted by ∇w,r,Tv, is defined as the unique vector-valued polynomial in [Pr (T )]

3 satisfying

(∇w,r,Tv,ψ)T = −(v0,∇ · ψ)T + ⟨vb,ψ · n⟩∂T , ∀ψ ∈ [Pr (T )]
3. (2.2)

3. Weak Galerkin finite element scheme

Let Th be a cubic partition of the domain Ω ⊂ R3. Denote by Eh the set of all flat faces in Th, and E
0
h = Eh \ ∂Ω the set

of all interior flat faces. Denote by hT the size of the element T ∈ Th and h = maxT∈Th
hT the mesh size of the partition

Th.
Let k ≥ 1 be a given integer. We introduce the local discrete weak finite element space on each element T ∈ Th,

denoted by V (T , k); i.e.,

V (T , k) = {v = {v0, vb}, v0 ∈ Pk(T ), vb ∈ Pk−1(F ), F ⊂ ∂T }.

Patching V (T , k) over all the elements T ∈ Th through a common value vb on the interior interface E
0
h gives rise to a global

weak finite element space Vh; i.e.,

Vh = {{v0, vb} : {v0, vb}|T∈ V (T , k), vb is single-valued on Eh}.

We further introduce the subspace of Vh with vanishing boundary values, denoted by V 0
h ; i.e.,

V 0
h = {{v0, vb} ∈ Vh, vb|F= 0, F ⊂ ∂Ω}.

For any v ∈ Vh, denote by ∇wv the discrete weak gradient ∇w,k−1,Tv computed by using (2.2) on each element T ; i.e.,

(∇w,k−1v)|T= ∇w,k−1,T (v|T ).

For simplicity of notation and without confusion, we shall use ∇d to denote ∇w,k−1; i.e.,

∇dv = ∇w,k−1v, ∀v ∈ Vh.

For any u = {u0, ub} and v = {v0, vb} in Vh, we introduce the following two bilinear forms; i.e.,

(A∇du,∇dv)h =
∑

T∈Th

(A∇du,∇dv)T ,

s(u, v) = ρh−1
∑

T∈Th

⟨Qbu0 − ub,Qbv0 − vb⟩∂T ,

where ρ > 0 is a parameter, and Qb is the usual L2 projection operator from L2(F ) onto Pk−1(F ).
We are in a position to review the weak Galerkin finite element method for the second order elliptic model problem

(1.1) based on the weak formulation (1.2) [22,26,55].

Weak Galerkin algorithm 1. Find uh = {u0, ub} ∈ Vh satisfying ub = Q̃bg on ∂Ω such that

(A∇duh,∇dvh)h + s(uh, vh) = (f , v0), ∀vh ∈ V 0
h , (3.1)

where Q̃bg is a suitably-chosen projection operator of the Dirichlet boundary data g onto the space of polynomials of
degree k − 1.

The approximate boundary data Q̃bg may be chosen as

Q̃bg := Qbg + εb, (3.2)

where εb is a small perturbation of the L2 projection Qbg . A special example of the perturbation term is given by εb = 0
such that Q̃bg = Qbg . However, a non-zero perturbation εb is necessary in the analysis of the superconvergence of the
weak gradient approximation.

Note that the coefficient matrix of (3.1) is symmetric and positive definite for any ρ > 0. Thus, the system (3.1) is
solvable.

4. Simplified weak Galerkin algorithm

In what follows of this paper, we shall focus on the lowest order of WG finite element, i.e., k = 1. More precisely,
the WG finite element uh is a piecewise linear polynomial in the interior and a piecewise constant on the boundary. The
discrete weak gradient ∇duh is a piecewise vector-valued constant.

A weak function v = {v0, vb} ∈ Vh can be rewritten as

v = {v0, 0} + {0, vb},
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which, for simplicity of notation and without confusion, will be denoted by v = v0+vb. Denote by V0 = {v0 = {v0, 0} ∈ Vh}
the interior space, and Vb = {vb = {0, vb} ∈ Vh} the boundary space, respectively. It is easy to check that ∇dv0 = 0 from
the definition of discrete weak gradient (2.2). Thus, the weak Galerkin algorithm (3.1) can be simplified as follows: Find
uh = {u0, ub} ∈ Vh satisfying ub = Q̃bg on ∂Ω such that

(A∇dub,∇dvb)h + s(uh, vh) = (f , v0), ∀vh ∈ V 0
h . (4.1)

We introduce an extension operator S mapping vb ∈ P0(∂T ) to a function in P1(T ) such that

⟨S(vb),Qbψ⟩∂T = ⟨vb, ψ⟩∂T , ∀ψ ∈ P1(T ). (4.2)

This implies

⟨Qbu0 − ub,QbS(vb) − vb⟩∂T =⟨−ub,QbS(vb) − vb⟩∂T

=⟨QbS(ub) − ub,QbS(vb) − vb⟩∂T .
(4.3)

Letting vh = {S(vb), vb} ∈ V 0
h in (4.1), and using (4.3), we obtain a simplified weak Galerkin finite element scheme.

Simplified weak Galerkin algorithm 1. Find ub ∈ V
g

b satisfying

(A∇dub,∇dvb)h + ρh−1
∑

T∈Th

⟨QbS(ub) − ub,QbS(vb) − vb⟩∂T = (f , S(vb)), (4.4)

for any vb ∈ V 0
b . Here, V

0
b = {vb ∈ Vb : vb|∂Ω= 0}, and V

g

b = {vb ∈ Vb : vb|∂Ω= Q̃bg}.

5. Error equations

In this section, we will derive an error equation for the simplified weak Galerkin finite element algorithm (4.4), which
will play an important role in the analysis of the superconvergence error estimates in Section 7. For the convenience of
analysis, we assume the coefficient tensor A in the model problem (1.1) is a piecewise matrix-valued constant with respect
to the finite element partition Th. However, the results can be generalized to the variable coefficient tensor A without any
difficulty, provided that the coefficient tensor A is piecewise smooth.

On each element T ∈ Th, denote by Q0 and Qb the usual L2 projection operators onto P1(T ) and P0(F ), respectively.
Denote by Qh the usual L2 projection operator onto [P0(T )]

3. The L2 projection operators Qb and Qh satisfy the commutative
property [22,26]:

∇dQbw = Qh∇w, ∀w ∈ H1(T ). (5.1)

Denote by eb = Qbu − ub the error function between the WG solution and the L2 projection of the exact solution of
the model problem (1.1). For the convenience of analysis, we introduce the flux variable q = A∇u.

Lemma 5.1. The error function eb satisfies the following error equation

(A∇deb,∇dvb)h + ρh−1
∑

T∈Th

⟨QbS(eb) − eb,QbS(vb) − vb⟩∂T = ζu(vb), (5.2)

for any vb ∈ V 0
b , where

ζu(vb) =
∑

T∈Th

⟨(q − Qhq) · n, S(vb) − vb⟩∂T

+ ρh−1
∑

T∈Th

⟨QbS(Qbu) − Qbu,QbS(vb) − vb⟩∂T
(5.3)

is a linear functional on Vb.

Proof. The proof is similar to the proof of Lemma 5.1 in [22], and therefore the details are omitted here. □

6. Technical estimates

We consider the second order elliptic model problem (1.1) on the unit cubic domain Ω = (0, 1)3. Let the domain Ω
be partitioned into cubic elements as the Cartesian product of three partitions ∆x, ∆y and ∆z on the unit interval (0, 1):

∆x : 0 = x0 < x1 < x2 · · · < xi < · · · < xn−1 < xn = 1,

∆y : 0 = y0 < y1 < y2 · · · < yj < · · · < ym−1 < ym = 1,

∆z : 0 = z0 < z1 < z2 · · · < zs < · · · < zq−1 < zq = 1.
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Fig. 6.1. A cubic element T ∈ Th .

Let T = [xi−1, xi]×[yj−1, yj]×[zs−1, zs] ∈ Th be a cubic element for i = 1, . . . , n, j = 1, . . . ,m and s = 1, . . . , q (see Fig. 6.1
for reference). Denote by |ex|, |ey| and |ez | the length of the edge of the cubic element T in the x-, y- and z-direction,
respectively. Denote by |T | the volume of the element T . Denote by |Fp| the area of the flat face Fp for p = 1, . . . , 6
such that |F1| = |F2|, |F3| = |F4| and |F5| = |F6|. Denote by Mc = (xc, yc, zc) the center of the cubic element T , and
Mp = (x∗

p, y
∗
p, z

∗
p ) the center of the flat face Fp for p = 1, . . . , 6, respectively. The unit outward normal directions to the

flat faces Fp for p = 1, . . . , 6 are given by n1 = (−1, 0, 0)′, n2 = (1, 0, 0)′, n3 = (0,−1, 0)′, n4 = (0, 1, 0)′, n5 = (0, 0,−1)′,
and n6 = (0, 0, 1)′, respectively.

On the element T , denote by vbp the value of vb on the face Fp, p = 1, . . . , 6. Using (2.2), we have

(∇dvb,ψ)T = ⟨vb,ψ · n⟩∂T , ∀ψ ∈ [P0(T )]
3,

which gives

∇dvb =

(
vb2 − vb1

|ex|
,
vb4 − vb3

|ey|
,
vb6 − vb5

|ez |

)′

. (6.1)

For any linear function ψ ∈ P1(T ), it is easy to see that Qbψ = ψ(Mp) on each face Fp. It thus follows from (4.2) that

6∑

p=1

|Fp| S(vb)(Mp)ψ(Mp) =

6∑

p=1

|Fp| vbp ψ(Mp), ∀ψ ∈ P1(T ). (6.2)

Lemma 6.1. Assume a cubic element T = [xi−1, xi] × [yj−1, yj] × [zs−1, zs] ∈ Th. Let the extension function S(vb) ∈ P1(T ) be
defined in (6.2). There holds

(S(vb) − vb)(M1) =(S(vb) − vb)(M2)

=
|F3|(vb3 + vb4) + |F5|(vb5 + vb6) − (|F3| + |F5|)(vb1 + vb2)

2(|F1| + |F3| + |F5|)
,

(6.3)

(S(vb) − vb)(M3) =(S(vb) − vb)(M4)

=
|F1|(vb1 + vb2) + |F5|(vb5 + vb6) − (|F1| + |F5|)(vb3 + vb4)

2(|F1| + |F3| + |F5|)
,

(6.4)

(S(vb) − vb)(M5) =(S(vb) − vb)(M6)

=
|F1|(vb1 + vb2) + |F3|(vb3 + vb4) − (|F1| + |F3|)(vb5 + vb6)

2(|F1| + |F3| + |F5|)
.

(6.5)

Furthermore, there holds

|F1|(S(vb) − vb)(M1) + |F3|(S(vb) − vb)(M3) + |F5|(S(vb) − vb)(M5) = 0. (6.6)

Proof. From the definition of the extension function S(vb), we have

S(vb) = c1 + c2(x − xc) + c3(y − yc) + c4(z − zc). (6.7)
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Letting ψ = 1 in (6.2) gives

6∑

p=1

| Fp |
(
c1 + c2(x

∗
p − xc) + c3(y

∗
p − yc) + c4(z

∗
p − zc)

)
=

6∑

p=1

| Fp | vbp,

which leads to

c1 =
|F1|(vb1 + vb2) + |F3|(vb3 + vb4) + |F5|(vb5 + vb6)

2(|F1| + |F3| + |F5|)
.

Similarly, setting ψ = x − xc , ψ = y − yc , and ψ = z − zc in (6.2) yields

c2 =
vb2 − vb1

|ex|
, c3 =

vb4 − vb3

|ey|
, c4 =

vb6 − vb5

|ez |
.

Therefore, (6.7) can be rewritten as follows

S(vb) =
|F1|(vb1 + vb2) + |F3|(vb3 + vb4) + |F5|(vb5 + vb6)

2(|F1| + |F3| + |F5|)
+
vb2 − vb1

|ex|
(x − xc)

+
vb4 − vb3

|ey|
(y − yc) +

vb6 − vb5

|ez |
(z − zc).

Next, we compute S(vb)− vb at the center Mp of each flat face Fp for p = 1, . . . , 6. At the center M1 of the flat face F1,
we have

(S(vb) − vb)(M1) =
|F1|(vb1 + vb2) + |F3|(vb3 + vb4) + |F5|(vb5 + vb6)

2(|F1| + |F3| + |F5|)
−

(vb2 − vb1)

|ex|

|ex|

2
− vb1

=
|F3|(vb3 + vb4) + |F5|(vb5 + vb6) − (|F3| + |F5|)(vb1 + vb2)

2(|F1| + |F3| + |F5|)
.

Similarly, we obtain

(S(vb) − vb)(M2) =
|F3|(vb3 + vb4) + |F5|(vb5 + vb6) − (|F3| + |F5|)(vb1 + vb2)

2(|F1| + |F3| + |F5|)
,

(S(vb) − vb)(M3) =
|F1|(vb1 + vb2) + |F5|(vb5 + vb6) − (|F1| + |F5|)(vb3 + vb4)

2(|F1| + |F3| + |F5|)
,

(S(vb) − vb)(M4) =
|F1|(vb1 + vb2) + |F5|(vb5 + vb6) − (|F1| + |F5|)(vb3 + vb4)

2(|F1| + |F3| + |F5|)
,

(S(vb) − vb)(M5) =
|F1|(vb1 + vb2) + |F3|(vb3 + vb4) − (|F3| + |F1|)(vb5 + vb6)

2(|F1| + |F3| + |F5|)
,

(S(vb) − vb)(M6) =
|F1|(vb1 + vb2) + |F3|(vb3 + vb4) − (|F3| + |F1|)(vb5 + vb6)

2(|F1| + |F3| + |F5|)
.

This completes the proof of the Lemma. □

We now focus on the two terms on the right-hand side of the error Eq. (5.2), where the first term
∑

T∈Th
⟨(q − Qhq) ·

n, S(vb) − vb⟩∂T is critical in the analysis. Lemma 6.1 indicates that S(vb) − vb has the same value at the center of the
flat faces F1 and F2. Moreover, S(vb) − vb has the same directional derivative along the flat faces F1 and F2 which are
∂(S(vb)−vb)

∂y
= ∇dvb · n4 and

∂(S(vb)−vb)

∂z
= ∇dvb · n6, respectively. Hence, S(vb) − vb has the same value along the flat faces

F1 and F2 at the symmetric points (xi−1, y, z) and (xi, y, z). Likewise, S(vb) − vb has the same value along the flat faces
F3 and F4 at the symmetric points (x, yj−1, z) and (x, yj, z), and has the same value along the flat faces F5 and F6 at the
symmetric points (x, y, zs−1) and (x, y, zs), respectively. It thus follows that

⟨Qhq · n, S(vb) − vb⟩∂T = 0. (6.8)

Since S(vb) − vb has the same value at the symmetric points (xi−1, y, z) and (xi, y, z), this boundary function on the
flat faces F1 and F2 can be extended to the cubic element T by assigning the value (S(vb) − vb)(xi−1, y, z) along each face
parallel to the flat face F1 (or F2). Denote this extension by χ1; i.e.,

χ1(x, y, z) := (S(vb) − vb)(xi−1, y, z), (x, y, z) ∈ T . (6.9)

Similarly, denote by χ2 the extension function of S(vb) − vb to the cubic element T by assuming the value (S(vb) −

vb)(x, yj−1, z) along each face parallel to the flat face F3 (or F4); i.e.,

χ2(x, y, z) := (S(vb) − vb)(x, yj−1, z), (x, y, z) ∈ T . (6.10)
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Likewise, we define

χ3(x, y, z) := (S(vb) − vb)(x, y, zs−1), (x, y, z) ∈ T . (6.11)

It follows from Lemma 6.1 and (6.1) that

∂xχ1 = 0, ∂yχ1 = ∇dvb · n4, ∂zχ1 = ∇dvb · n6,

∂yχ2 = 0, ∂xχ2 = ∇dvb · n2, ∂zχ2 = ∇dvb · n6,

∂zχ3 = 0, ∂xχ3 = ∇dvb · n2, ∂yχ3 = ∇dvb · n4,

|F1|χ1(M1) + |F3|χ2(M3) + |F5|χ3(M5) = 0.

(6.12)

Lemma 6.2. Assume u ∈ H3(Ω) is a given function. Let Th = ∆x × ∆y × ∆z be a cubic partition. On each element T ∈ Th,

for any vb ∈ V 0
b , there holds

⟨(q − Qhq) · n, S(vb) − vb⟩∂T

=χ1(M1)

∫

T

q1xdT + χ2(M3)

∫

T

q2ydT + χ3(M5)

∫

T

q3zdT + R1(T ),
(6.13)

where χi (i = 1, 2, 3) are the extension functions defined in (6.9)–(6.11), and q = A∇u = (q1, q2, q3)
′, q1 = a11ux + a12uy +

a13uz , q2 = a21ux + a22uy + a23uz , q3 = a31ux + a32uy + a33uz , q1x =
∂q1
∂x

, q2y =
∂q2
∂y

, q3z =
∂q3
∂z

, respectively. The remainder

term R1(T ) satisfies the following estimate
∑

T∈Th

|R1(T )| ≤ Ch2∥q∥2∥∇dvb∥0. (6.14)

Proof. Using the definition of χi in (6.9)–(6.11), (6.8), and the usual integration by parts, we obtain

⟨(q − Qhq) · n, S(vb) − vb⟩∂T

=⟨q · n, S(vb) − vb⟩∂T

= −

∫

F1

q1χ1dF +

∫

F2

q1χ1dF −

∫

F3

q2χ2dF

+

∫

F4

q2χ2dF −

∫

F5

q3χ3dF +

∫

F6

q3χ3dF

=

∫

T

q1xχ1dT +

∫

T

q2yχ2dT +

∫

T

q3zχ3dT .

(6.15)

Since χ 1 is linear in both the y-direction and the z-direction, and is constant in the x-direction, we have

χ 1(y, z) = χ 1(M1) + ∂yχ 1(y − yc) + ∂zχ 1(z − zc),

which, together with the usual integration by parts, gives
∫

T

q1xχ1dT =

∫

T

q1xχ1(M1)dT +

∫

T

q1x∂yχ1(y − yc)dT +

∫

T

q1x∂zχ1(z − zc)dT

=

∫

T

q1xχ1(M1)dT +

∫

T

q1xy∂yχ1E31(y)dT +

∫

T

q1xz∂zχ1E32(z)dT ,

where E31(y) = 1
8
|ey|

2 − 1
2
(y − yc)

2 and E32(z) = 1
8
|ez |

2 − 1
2
(z − zc)

2.
Similarly, there holds

∫

T

q2yχ2dT =

∫

T

q2yχ2(M3)dT +

∫

T

q2y∂xχ2(x − xc)dT +

∫

T

q2y∂zχ2(z − zc)dT

=

∫

T

q2yχ2(M3)dT +

∫

T

q2yx∂xχ2E41(x)dT +

∫

T

q2yz∂zχ2E42(z)dT ,

where E41(x) = 1
8
|ex|

2 − 1
2
(x − xc)

2, E42(z) = 1
8
|ez |

2 − 1
2
(z − zc)

2.
Likewise, we have∫

T

q3zχ3dT =

∫

T

q3zχ3(M5)dT +

∫

T

q3z∂xχ3(x − xc)dT +

∫

T

q3z∂yχ3(y − yc)dT

=

∫

T

q3zχ3(M5)dT +

∫

T

q3zx∂xχ3E51(x)dT +

∫

T

q3zy∂yχ3E52(y)dT ,

where E51(x) = 1
8
|ex|

2 − 1
2
(x − xc)

2, and E52(y) = 1
8
|ey|

2 − 1
2
(y − yc)

2.
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Substituting the above three identities into (6.15) gives

⟨(q − Qhq) · n, S(vb) − vb⟩∂T

= χ1(M1)

∫

T

q1xdT + χ2(M3)

∫

T

q2ydT + χ3(M5)

∫

T

q3zdT + R1(T ),

where the remainder term R1(T ) is given by

R1(T ) =

∫

T

q1xy∂yχ1E31(y)dT +

∫

T

q1xz∂zχ1E32(z)dT

+

∫

T

q2yx∂xχ2E41(x)dT +

∫

T

q2yz∂zχ2E42(z)dT

+

∫

T

q3zx∂xχ3E51(x)dT +

∫

T

q3zy∂yχ3E52(y)dT .

(6.16)

Using the Cauchy–Schwarz inequality and (6.12), there holds

⏐⏐⏐
∑

T∈Th

∫

T

q1xy∂yχ 1E31(y)dT

⏐⏐⏐ ≤ Ch2(
∑

T∈Th

∥∇2q1∥
2
T )

1
2 (

∑

T∈Th

∥∂yχ 1∥
2
T )

1
2

≤ Ch2∥q1∥2∥∇dvb∥0.

Each of the rest five terms in the remainder term R1(T ) in (6.16) can be estimated in a similar way. This completes the

proof of the Lemma. □

The following Lemma shall provide an estimate for the second term on the right-hand side of the error Eq. (5.2).

Lemma 6.3. Under the assumptions of Lemma 6.2, there holds

ρh−1⟨QbS(Qbu) − Qbu,QbS(vb) − vb⟩∂T

= − A1ρh
−1(|ex|χ1(M1)

∫

T

uxxdT + |ey|χ2(M3)

∫

T

uyydT

+ |ez |χ3(M5)

∫

T

uzzdT ) + R2(T ),

(6.17)

where A1 = 1
6
and the remainder term R2(T ) satisfies

∑

T∈Th

|R2(T )| ≤ Ch2∥u∥3|||S(vb) − vb|||Eh
. (6.18)

Here we define

|||S(vb) − vb|||
2
Eh

:= ρh−1
∑

T∈Th

⟨QbS(vb) − vb,QbS(vb) − vb⟩∂T . (6.19)

Proof. Using (4.2), (6.9)–(6.11), Lemma 6.1, and (6.12), we have

ρh−1⟨QbS(Qbu) − Qbu,QbS(vb) − vb⟩∂T

= − ρh−1⟨Qbu, S(vb) − vb⟩∂T

= − ρh−1
(

|F1|χ1(M1)Qbu(M1) + |F2|χ1(M2)Qbu(M2)

+ |F3|χ2(M3)Qbu(M3) + |F4|χ2(M4)Qbu(M4)

+ |F5|χ3(M5)Qbu(M5) + |F6|χ3(M6)Qbu(M6)
)

= − ρh−1|F1|χ1(M1)
(
Qbu(M1) + Qbu(M2) − Qbu(M5) − Qbu(M6)

)

− ρh−1|F3|χ2(M3)
(
Qbu(M3) + Qbu(M4) − Qbu(M5) − Qbu(M6)

)
.

(6.20)
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Note that Qbu|Fi=
1

|Fi|

∫
Fi
udF is the average of u on the flat face Fi. Using the Euler–MacLaurin formula gives

|F1|
(
Qbu(M1) + Qbu(M2) − Qbu(M5) − Qbu(M6)

)

=

∫

F1

u(xi−1, y, z)dF +

∫

F2

u(xi, y, z)dF

−
|F1|

|F5|

(∫

F5

u(x, y, zs−1)dF +

∫

F6

u(x, y, zs)dF
)

=
1

|ex|

(
2

∫

T

u(x, y, z)dT + A1|ex|
2

∫

T

uxxdT +
1

24
|ex|

3

∫

T

uxxxE1(x)dT
)

−
1

|ez |
·
|F1|

|F5|

(
2

∫

T

u(x, y, z)dT + A1|ez |
2

∫

T

uzzdT

+
1

24
|ez |

3

∫

T

uzzzE3(z)dT
)

=A1

(
|ex|

∫

T

uxxdT −
|ez |

2

|ex|

∫

T

uzzdT

)

+
1

24

(
|ex|

2

∫

T

uxxxE1(x)dT −
|ez |

3

|ex|
uzzzE3(z)dT

)
,

(6.21)

where E1(x) and E3(z) are the cubic polynomials in both the x-direction and the z-direction.
Similarly, we arrive at

|F3|
(
Qbu(M3) + Qbu(M4) − Qbu(M5) − Qbu(M6)

)

=A1|ey|

∫

T

uyydT − A1

|ez |
2

|ey|

∫

T

uzzdT

+
|ey|

2

24

∫

T

uyyyE2(y)dT −
|ez |

3

24|ey|

∫

T

uzzzE3(z)dT ,

(6.22)

where E2(y) is the cubic polynomial in the y-direction.
Substituting (6.21)–(6.22) into (6.20) and using (6.12), we have

ρh−1⟨QbS(Qbu) − Qbu,QbS(vb) − vb⟩∂T

= − ρh−1χ1(M1)
(
A1|ex|

∫

T

uxxdT − A1

|ez |
2

|ex|

∫

T

uzzdT

+
|ex|

2

24

∫

T

uxxxE1(x)dT −
|ez |

3

24|ex|

∫

T

uzzzE3(z)dT
)

− ρh−1χ2(M3)
(
A1|ey|

∫

T

uyydT − A1

|ez |
2

|ey|

∫

T

uzzdT

+
|ey|

2

24

∫

T

uyyyE2(y)dT −
|ez |

3

24|ey|

∫

T

uzzzE3(z)dT
)

= − A1ρh
−1

(
|ex|χ1(M1)

∫

T

uxxdT + |ey|χ2(M3)

∫

T

uyydT

+ |ez |χ3(M5)

∫

T

uzzdT

)
+R2(T ),

where the remainder R2(T ) is given by

R2(T ) = −
1

24
ρh−1

(
|ex|

2χ1(M1)

∫

T

uxxxE1(x)dT

+ |ey|
2χ2(M3)

∫

T

uyyyE2(y)dT + |ez |
2χ3(M5)

∫

T

uzzzE3(z)dT
)
.

Similar to the proof of (6.14), it is easy to arrive at (6.18). This completes the proof of the Lemma. □

7. Superconvergence

In this section, we shall establish the superconvergence error estimates for the simplified weak Galerkin finite element
scheme (4.4) for solving the three dimensional second order model problem (1.1) on the cubic partitions.
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Theorem 7.1. Assume that u ∈ H3(Ω) is the exact solution of the second order elliptic model problem (1.1) in three dimensions.

Let ub ∈ Vb be the weak Galerkin finite element solution arising from the simplified WG scheme (4.4) satisfying the boundary

condition ub = Qbg on ∂Ω . On each cubic element T = [xi−1, xi] × [yj−1, yj] × [zs−1, zs] ∈ Th, we define wb ∈ Vb as follows

wb =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

12
ρ−1h−1

(
ρh−1(|ey|

2Qbuyy|F1+|ez |
2Qbuzz |F1 ) − 6(|ey|Qbq2y|F1+|ez |Qbq3z |F1 )

)
, on F1,

1

12
ρ−1h−1

(
ρh−1(|ey|

2Qbuyy|F2+|ez |
2Qbuzz |F2 ) − 6(|ey|Qbq2y|F2+|ez |Qbq3z |F2 )

)
, on F2,

1

12
ρ−1h−1

(
ρh−1(|ex|

2Qbuxx|F3+|ez |
2Qbuzz |F3 ) − 6(|ex|Qbq1x|F3+|ez |Qbq3z |F3 )

)
, on F3,

1

12
ρ−1h−1

(
ρh−1(|ex|

2Qbuxx|F4+|ez |
2Qbuzz |F4 ) − 6(|ex|Qbq1x|F4+|ez |Qbq3z |F4 )

)
, on F4,

1

12
ρ−1h−1

(
ρh−1(|ey|

2Qbuyy|F5+|ex|
2Qbuxx|F5 ) − 6(|ey|Qbq2y|F5+|ex|Qbq1x|F5 )

)
, on F5,

1

12
ρ−1h−1

(
ρh−1(|ey|

2Qbuyy|F6+|ex|
2Qbuxx|F6 ) − 6(|ey|Qbq2y|F6+|ex|Qbq1x|F6 )

)
, on F6.

Let ẽb = (Qbu − ub) + h2wb be the modified error function. For any vb ∈ V 0
b , the error function ẽb satisfies

(A∇dẽb,∇dvb)h + ρh−1
∑

T∈Th

⟨QbS(ẽb) − ẽb,QbS(vb) − vb⟩∂T

=h2(A∇dwb,∇dvb)h + R4(vb),

(7.1)

where R4(vb) is the remainder satisfying

|R4(vb)| ≤ Ch2∥u∥3|||S(vb) − vb|||Eh
. (7.2)

Proof. It follows from (5.3), Lemmas 6.2 and 6.3 that

ζu(vb) = −
∑

T∈Th

A1ρh
−1|ex|χ1(M1)

∫

T

uxxdT +
∑

T∈Th

χ1(M1)

∫

T

q1xdT

−
∑

T∈Th

A1ρh
−1|ey|χ2(M3)

∫

T

uyydT +
∑

T∈Th

χ2(M3)

∫

T

q2ydT

−
∑

T∈Th

A1ρh
−1|ez |χ3(M5)

∫

T

uzzdT +
∑

T∈Th

χ3(M5)

∫

T

q3zdT

+
∑

T∈Th

(R1(T ) + R2(T )).

(7.3)

Using the usual integration by parts yields
∫

T

uxxdT = −

∫

T

uxxy(y − yc)dT +
1

2
|ey|

∫

F3

uxxdF +
1

2
|ey|

∫

F4

uxxdF

= −

∫

T

uxxy(y − yc)dT +
1

2
|ey||F3|Qbuxx|F3+

1

2
|ey||F4|Qbuxx|F4 .

Similarly, we have
∫

T

uyydT = −

∫

T

uyyz(z − zc)dT +
1

2
|ez ||F5|Qbuyy|F5+

1

2
|ez ||F6|Qbuyy|F6 ,

∫

T

uzzdT = −

∫

T

uzzx(x − xc)dT +
1

2
|ex||F1|Qbuzz |F1+

1

2
|ex||F2|Qbuzz |F2 .

Likewise, there holds∫

T

q1xdT = −

∫

T

q1xy(y − yc)dT +
1

2
|ey||F3|Qbq1x|F3+

1

2
|ey||F4|Qbq1x|F4 ,

∫

T

q2ydT = −

∫

T

q2yz(z − zc)dT +
1

2
|ez ||F5|Qbq2y|F5+

1

2
|ez ||F6|Qbq2y|F6 ,

∫

T

q3zdT = −

∫

T

q3zx(x − xc)dT +
1

2
|ex||F1|Qbq3z |F1+

1

2
|ex||F2|Qbq3z |F2 .
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Substituting the above identities into (7.3) gives rise to

ζu(vb) = −
A1

2

∑

T∈Th

ρh−1|ex||ey||F3|χ1(M1)(Qbuxx|F3+Qbuxx|F4 )

−
A1

2

∑

T∈Th

ρh−1|ey||ez ||F5|χ2(M3)(Qbuyy|F5+Qbuyy|F6 )

−
A1

2

∑

T∈Th

ρh−1|ez ||ex||F1|χ3(M5)(Qbuzz |F1+Qbuzz |F2 )

+
1

2

∑

T∈Th

|ey||F3|χ1(M1)(Qbq1x|F3+Qbq1x|F4 )

+
1

2

∑

T∈Th

|ez ||F5|χ2(M3)(Qbq2y|F5+Qbq2y|F6 )

+
1

2

∑

T∈Th

|ex||F1|χ3(M5)(Qbq3z |F1+Qbq3z |F2 ) +
∑

T∈Th

R3(T ),

(7.4)

where the remainder term R3(T ) is given by

R3(T ) =A1ρh
−1|ex|χ1(M1)

∫

T

uxxy(y − yc)dT − χ1(M1)

∫

T

q1xy(y − yc)dT

+ A1ρh
−1|ey|χ2(M3)

∫

T

uyyz(z − zc)dT − χ2(M3)

∫

T

q2yz(z − zc)dT

+ A1ρh
−1|ez |χ3(M5)

∫

T

uzzx(x − xc)dT − χ3(M5)

∫

T

q3zx(x − xc)dT

+ R1(T ) + R2(T ).

From the definition of Qb and the usual integration by parts, we arrive at

1

2
|ex|

2|F5|χ3(M5)(Qbuxx|F3+Qbuxx|F4 )

=
|ex|

2|F5|

|ey||F3|
χ3(M5)(

∫

T

uxxdT +

∫

T

uxxy(y − yc)dT )

=
|ex|

2|F5|

2
χ3(M5)(Qbuxx|F5+Qbuxx|F6 )

+
|ex|

2

|ez |
χ3(M5)(

∫

T

uxxy(y − yc)dT −

∫

T

uxxz(z − zc)dT ).

(7.5)

Similarly, we have

1

2
|ex||F5|χ3(M5)(Qbq1x|F3+Qbq1x|F4 )

=
|ex||F5|

|ey||F3|
χ3(M5)(

∫

T

q1xdT +

∫

T

q1xy(y − yc)dT )

=
|ex||F5|

2
χ3(M5)(Qbq1x|F5+Qbq1x|F6 )

+
|ex|

|ez |
χ3(M5)(

∫

T

q1xy(y − yc)dT −

∫

T

q1xz(z − zc)dT ),

(7.6)

1

2
|ey|

2|F1|χ1(M1)(Qbuyy|F5+Qbuyy|F6 )

=
|ey|

2|F1|

|ez ||F5|
χ1(M1)(

∫

T

uyydT +

∫

T

uyyz(z − zc)dT )

=
|ey|

2|F1|

2
χ1(M1)(Qbuyy|F1+Qbuyy|F2 )

+
|ey|

2

|ex|
χ1(M1)(

∫

T

uyyz(z − zc)dT −

∫

T

uyyx(x − xc)dT ),

(7.7)
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1

2
|ez |

2|F3|χ2(M3)(Qbuzz |F1+Qbuzz |F2 )

=
|ez |

2|F3|

|ex||F1|
χ2(M3)(

∫

T

uzzdT +

∫

T

uzzx(x − xc)dT )

=
|ez |

2|F3|

2
χ2(M3)(Qbuzz |F3+Qbuzz |F4 )

+
|ez |

2

|ey|
χ2(M3)(

∫

T

uzzx(x − xc)dT −

∫

T

uzzy(y − yc)dT ),

(7.8)

1

2
|ey||F1|χ1(M1)(Qbq2y|F5+Qbq2y|F6 )

=
|ey||F1|

2
χ1(M1)(Qbq2y|F1+Qbq2y|F2 )

+
|ey|

|ex|
χ1(M1)(

∫

T

q2yz(z − zc)dT −

∫

T

q2yx(x − xc)dT ),

(7.9)

1

2
|ez ||F3|χ2(M3)(Qbq3z |F1+Qbq3z |F2 )

=
|ez ||F3|

2
χ2(M3)(Qbq3z |F3+Qbq3z |F4 )

+
|ez |

|ey|
χ2(M3)(

∫

T

q3zx(x − xc)dT −

∫

T

q3zy(y − yc)dT ).

(7.10)

Using (6.12) and (7.5)–(7.10), (7.4) can be rewritten as

ζu(vb)

=
A1

2

∑

T∈Th

ρh−1|F1|χ1(M1)
(

|ey|
2(Qbuyy|F1+Qbuyy|F2 )

+ |ez |
2(Qbuzz |F1+Qbuzz |F2 )

)

+
A1

2

∑

T∈Th

ρh−1|F3|χ2(M3)
(

|ex|
2(Qbuxx|F3+Qbuxx|F4 )

+ |ez |
2(Qbuzz |F3+Qbuzz |F4 )

)

+
A1

2

∑

T∈Th

ρh−1|F5|χ3(M5)
(

|ey|
2(Qbuyy|F5+Qbuyy|F6 )

+ |ex|
2(Qbuxx|F5+Qbuxx|F6 )

)

−
1

2

∑

T∈Th

|F1|χ1(M1)
(

|ey|(Qbq2y|F1+Qbq2y|F2 )

+ |ez |(Qbq3z |F1+Qbq3z |F2 )
)

−
1

2

∑

T∈Th

|F3|χ2(M3)
(

|ex|(Qbq1x|F3+Qbq1x|F4 )

+ |ez |(Qbq3z |F3+Qbq3z |F4 )
)

−
1

2

∑

T∈Th

|F5|χ3(M5)
(

|ex|(Qbq1x|F5+Qbq1x|F6 )

+ |ey|(Qbq2y|F5+Qbq2y|F6 )
)

+
∑

T∈Th

R4(T ),

(7.11)



D. Li, Y. Nie and C. Wang / Computers and Mathematics with Applications 78 (2019) 905–928 917

where the remainder term R4(T ) is given by

R4(T ) =A1

ρh−1|ex|
2

|ez |
χ3(M5)(

∫

T

uxxy(y − yc)dT −

∫

T

uxxz(z − zc)dT )

+ A1

ρh−1|ey|
2

|ex|
χ1(M1)(

∫

T

uyyz(z − zc)dT −

∫

T

uyyx(x − xc)dT )

+ A1

ρh−1|ez |
2

|ey|
χ2(M3)(

∫

T

uzzx(x − xc)dT −

∫

T

uzzy(y − yc)dT )

−
|ex|

|ez |
χ3(M5)(

∫

T

q1xy(y − yc)dT −

∫

T

q1xz(z − zc)dT )

−
|ey|

|ex|
χ1(M1)(

∫

T

q2yz(z − zc)dT −

∫

T

q2yx(x − xc)dT )

−
|ez |

|ey|
χ2(M3)(

∫

T

q3zx(x − xc)dT −

∫

T

q3zy(y − yc)dT )

+ R3(T ).

Letting

wb =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
ρ−1h−1

(
ρh−1A1(|ey|

2Qbuyy|F1+|ez |
2Qbuzz |F1 ) − |ey|Qbq2y|F1−|ez |Qbq3z |F1

)
, on F1,

1

2
ρ−1h−1

(
ρh−1A1(|ey|

2Qbuyy|F2+|ez |
2Qbuzz |F2 ) − |ey|Qbq2y|F2−|ez |Qbq3z |F2

)
, on F2,

1

2
ρ−1h−1

(
ρh−1A1(|ex|

2Qbuxx|F3+|ez |
2Qbuzz |F3 ) − |ex|Qbq1x|F3−|ez |Qbq3z |F3

)
, on F3,

1

2
ρ−1h−1

(
ρh−1A1(|ex|

2Qbuxx|F4+|ez |
2Qbuzz |F4 ) − |ex|Qbq1x|F4−|ez |Qbq3z |F4

)
, on F4,

1

2
ρ−1h−1

(
ρh−1A1(|ey|

2Qbuyy|F5+|ex|
2Qbuxx|F5 ) − |ex|Qbq1x|F5−|ey|Qbq2y|F5

)
, on F5,

1

2
ρ−1h−1

(
ρh−1A1(|ey|

2Qbuyy|F6+|ex|
2Qbuxx|F6 ) − |ex|Qbq1x|F6−|ey|Qbq2y|F6

)
, on F6.

Thus, (7.11) is rewritten as

ζu(vb) =ρh
∑

T∈Th

⟨wb,QbS(vb) − vb⟩∂T +
∑

T∈Th

R4(T )

= − ρh
∑

T∈Th

⟨QbS(wb) − wb,QbS(vb) − vb⟩∂T +
∑

T∈Th

R4(T ),
(7.12)

where we use (4.2) on the last line.

Substituting (7.12) into (5.2) we obtain

(A∇deb,∇dvb)h + ρh−1
∑

T∈Th

⟨QbS(eb) − eb,QbS(vb) − vb⟩∂T

= − ρh
∑

T∈Th

⟨QbS(wb) − wb,QbS(vb) − vb⟩∂T + R4(vb),
(7.13)

where R4(vb) =
∑

T∈Th
R4(T ).

Letting ẽb = eb + h2wb, we arrive at

(A∇dẽb,∇dvb)h + ρh−1
∑

T∈Th

⟨QbS(ẽb) − ẽb,QbS(vb) − vb⟩∂T

=h2(A∇dwb,∇dvb)h + R4(vb).

It is easy to see from the definition of wb that

∥∇dwb∥0 ≤ C∥u∥3, (7.14)

from which, (7.2) is obtained in a similar way of the proof of (6.14). This completes the proof of the theorem. □
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For the second order elliptic problem (1.1) in three dimensions with the homogeneous Dirichlet boundary value, we
have wb ∈ V 0

b . Letting vb = ẽb in (7.1) gives a superconvergence estimate

(∑

T∈Th

∥∇dẽb∥
2
T

) 1
2

≤ Ch2∥u∥3.

For the second order elliptic problem (1.1) in three dimensions with the nonhomogeneous Dirichlet boundary condition,
we have wb /∈ V 0

b . Thus, ẽb = (Qbu − ub) + h2wb /∈ V 0
b . In order to obtain a superconvergence estimate, we enforce a

computational solution ub satisfying the following condition:

ub = Qbg + h2wb, on ∂Ω. (7.15)

The above boundary condition is able to be implemented if wb|∂Ω is computable without any prior knowledge of the exact
solution u. The following theorem and corollary assume that wb|∂Ω is computable.

Theorem 7.2. Assume that u ∈ H3(Ω) is the exact solution of the second order elliptic model problem (1.1) in three dimensions

and ub ∈ V
g

b is the numerical solution of the simplified weak Galerkin finite element scheme (4.4). Let wb ∈ Vb be a given

function defined in Theorem 7.1. Denote by ẽb = (Qbu−ub)+h2wb the modified error function. The following superconvergence

estimate holds true:

⎛
⎝∑

T∈Th

∥∇dẽb∥
2
T

⎞
⎠

1
2

+ |||S(ẽb) − ẽb|||Eh
≤ Ch2∥u∥3. (7.16)

Proof. Letting vb = ẽb ∈ V 0
b in (7.1) gives

(A∇dẽb,∇dẽb)h + ρh−1
∑

T∈Th

⟨QbS(ẽb) − ẽb,QbS(ẽb) − ẽb⟩∂T

=h2(A∇dwb,∇dẽb)h + R4(ẽb).

It follows from (7.2), (7.14), (6.19) and the Cauchy–Schwarz inequality that

(A∇dẽb,∇dẽb)h + ρh−1
∑

T∈Th

∥QbS(ẽb) − ẽb∥
2
∂T

≤ Ch2∥u∥3(∥∇dẽb∥0 + |||S(ẽb) − ẽb|||Eh
)

≤ Ch4∥u∥2
3 +

∥A∥∞

2
∥∇dẽb∥

2
0 +

1

2
|||S(ẽb) − ẽb|||

2
Eh
,

which leads to
∑

T∈Th

∥∇dẽb∥
2
T + |||S(ẽb) − ẽb|||

2
Eh

≤ Ch4∥u∥2
3.

This completes the proof of the theorem. □

We can see from (7.15) that the standard L2 projection of Dirichlet data g is perturbed by

εb :=
1

12

(
|ey|

2Qbgyy + |ez |
2Qbgzz − 6ρ−1h(|ey|Qbq2y + |ez |Qbq3z)

)

on boundary faces parallel to the flat face F1 (or F2),

εb :=
1

12

(
|ex|

2Qbgxx + |ez |
2Qbgzz − 6ρ−1h(|ex|Qbq1x + |ez |Qbq3z)

)

on boundary faces parallel to the flat face F3 (or F4), and

εb :=
1

12

(
|ex|

2Qbgxx + |ey|
2Qbgyy − 6ρ−1h(|ex|Qbq1x + |ey|Qbq2y)

)

on boundary faces parallel to the flat face F5 (or F6). For the Dirichlet boundary value problem with a diagonal diffusive
tensor A = (a11, 0, 0; 0, a22, 0; 0, 0, a33), the perturbation εb is computable using the boundary data g and thus the mixed
partial derivatives of u are not needed. The following superconvergence estimate is particularly for the second order
elliptic problem in three dimensions with a diagonal diffusive tensor A.

Corollary 7.3. Assume that u ∈ H3(Ω) is the exact solution of the model problem (1.1) in three dimensions with a diagonal

diffusive tensor A = (a11, 0, 0; 0, a22, 0; 0, 0, a33). Let ub ∈ Vb be the weak Galerkin finite element solution arising from the
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scheme (4.4) with the boundary values specified as follows: on the boundary faces which are parallel to the flat face F1 (or F2),
let

ub = Qbg +
1

12

(
|ey|(|ey| −

6

ρ
ha22)Qbgyy + |ez |(|ez | −

6

ρ
ha33)Qbgzz

)
(7.17)

on the boundary faces which are parallel to the flat face F3 (or F4), let

ub = Qbg +
1

12

(
|ex|(|ex| −

6

ρ
ha11)Qbgxx + |ez |(|ez | −

6

ρ
ha33)Qbgzz

)
(7.18)

and on the boundary faces which are parallel to the flat face F5 (or F6), let

ub = Qbg +
1

12

(
|ey|(|ey| −

6

ρ
ha22)Qbgyy + |ex|(|ex| −

6

ρ
ha11)Qbgxx

)
. (7.19)

There holds
⎛
⎝∑

T∈Th

∥Qh∇u − ∇dub∥
2
T

⎞
⎠

1/2

≤ Ch2∥u∥3. (7.20)

Proof. Note that the perturbation εb is of the order O(h2). It follows from Theorem 7.2 that
⎛
⎝∑

T∈Th

∥∇dQbu − ∇dub∥
2
T

⎞
⎠

1/2

≤ Ch2∥u∥3,

which combined with the commutative property (5.1), yields
⎛
⎝∑

T∈Th

∥Qh∇u − ∇dub∥
2
T

⎞
⎠

1/2

≤ Ch2∥u∥3.

This completes the proof of the corollary. □

For the model problem (1.1) in three dimensions with arbitrary diffusive coefficient A, the following superconvergence
error estimate holds true.

Theorem 7.4. Assume that u ∈ H3(Ω) is the exact solution of the second order elliptic model problem (1.1) in three dimensions.
Let ub ∈ Vb be the weak Galerkin finite element solution arising from the scheme (4.4) with the boundary value ub = Qbg on
∂Ω . There holds

⎛
⎝∑

T∈Th

∥∇deb∥
2
T

⎞
⎠

1
2

≤ Ch1.5(∥u∥3 + ∥∇2u∥0,∂Ω ).

Proof. The proof is the similar to the proof of Theorem 6.7 in [22], and therefore the details are omitted here. □

Corollary 7.5. Let ub ∈ Vb such that ub = Qbg on ∂Ω be the weak Galerkin finite element solution of the model problem
(1.1) in three dimensions arising from the scheme (4.4). Assume that (1) the exact solution u ∈ H3(Ω) of the model problem
(1.1) satisfies uxx = uyy = uzz ; (2) Th is a uniform cubic partition Ω with |ex| = |ey| = |ez |; and (3) the diffusive tensor
A = (a11, 0, 0; 0, a22, 0; 0, 0, a33) satisfies a11 = a22 = a33. Denote by eb = Qbu − ub. The following superconvergence result
holds true:

⎛
⎝∑

T∈Th

∥∇deb∥
2
T

⎞
⎠

1
2

≤ Ch2∥u∥3.

Proof. Using Theorem 7.1, Lemma 6.1 and the error Eq. (7.13) concludes the corollary. Details are omitted here due to
page limitation. □

8. Numerical experiments

In this section, a series of numerical tests will be demonstrated for the simplified WG algorithm (4.4) for solving the
second order elliptic problem (1.1) in three dimensions to verify the superconvergence error estimates established in the
previous sections.
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Table 8.1

Test Case 1: Convergence of the lowest order WG-FEM on the unit cubic domain with exact solution u = sin(πx) sin(πy) sin(πz), uniform cubic

partitions, stabilization parameter ρ = 6.

Meshes ∥u − S(ub)∥∞,⋆ ∥e0∥0 ∥∇deb∥0 ∥∇dub − ∇u∥1,⋆ ∥e0∥1,1

4 × 4 × 4 2.4845e−02 1.9393e−02 1.8494e−01 4.1467e−02 1.6637e−01

8 × 8 × 8 6.4194e−03 4.6306e−03 4.8626e−02 1.1850e−02 4.3758e−02

16 × 16 × 16 1.6069e−03 1.1415e−03 1.2310e−02 3.0582e−03 1.1079e−02

32 × 32 × 32 4.0164e−04 2.8433e−04 3.0872e−03 7.7058e−04 2.7784e−03

Rate 2.00 2.01 2.00 1.99 2.00

Table 8.2

Test Case 1: Convergence of the lowest order WG-FEM on the unit cubic domain with exact solution u = sin(πx) sin(πy) sin(πz), non-uniform cubic

partitions, stabilization parameter ρ = 6, and h = (|ex|
2+|ey|

2+|ez |
2)

1
2 .

Meshes ∥u − S(ub)∥∞,⋆ ∥e0∥0 ∥∇deb∥0 ∥∇dub − ∇u∥1,⋆ ∥e0∥1,1

3 × 4 × 5 3.0558e−02 2.3666e−02 2.1210e−01 5.2931e−02 1.9037e−01

6 × 8 × 10 6.3404e−03 5.6370e−03 5.5494e−02 1.3847e−02 4.9893e−02

12 × 16 × 20 1.5721e−03 1.3928e−03 1.4036e−02 3.5264e−03 1.2625e−02

24 × 32 × 40 3.9192e−04 3.4718e−04 3.5192e−03 8.8605e−04 3.1660e−03

Rate 2.00 2.00 2.00 1.99 2.00

The numerical tests are based on the lowest order (i.e., k = 1) of weak functions on the uniform and non-uniform
cubic partitions of the unit cube Ω = (0, 1)3. More precisely, the local weak finite element space is given by V (T , 1) =
{v = {v0, vb}, v0 ∈ P1(T ), vb ∈ P0(F ), F ⊂ ∂T }, and ∇dv|T∈ [P0(T )]

3.
Let u be the exact solution of the model problem (1.1). The error function eh is given by eh = Qhu−uh = {e0, eb} where

e0 = Q0u − S(ub) and eb = Qbu − ub. The error functions are measured in various norms as follows:

Discrete L∞-norm : ∥u − S(ub)∥∞,⋆ = max
T∈Th

⏐⏐(u − S(ub))(Mc)
⏐⏐,

L2-norm : ∥e0∥0 =
(∑

T∈Th

∫

T

|Q0u − S(ub)|
2dT

)1/2

,

H1-norm : ∥∇deb∥0 =
(∑

T∈Th

∫

T

|∇d(Qbu − ub)|
2dT

)1/2

,

Discrete W 1,1-norm : ∥∇dub − ∇u∥1,⋆ =
(∑

T∈Th

∫

T

|∇dub − ∇u(Mc)|
2dT

)1/2

,

W 1,1-seminorm : ∥e0∥1,1 =
(∑

T∈Th

∫

T

|∇(Q0u − S(ub))|
2dT

)1/2

,

where Mc is the center of the cubic element T .

8.1. Numerical experiments for constant diffusion tensor A

Test Case 1 (Homogeneous BVP). In this set of tests, the diffusive coefficient tensor A is an identity matrix and the exact
solution is u = sin(πx) sin(πy) sin(πz). This is a homogeneous boundary value problem on the domain Ω = (0, 1)3.

Tables 8.1–8.4 illustrate the numerical results on the uniform and non-uniform cubic partitions with the stabilization
parameters ρ = 6 and ρ = 1, respectively. These results show that the convergence rate for the error eb in H1-norm is
of order O(h2), which is consistent with the conclusion in Corollary 7.3. We also compute the convergence rates for the
error functions in ∥ ·∥1,⋆ norm and ∥ ·∥1,1 norm which seem to be in the superconvergence order of O(h2), although there
are not any corresponding theories available in this paper.

It is interesting to see from Tables 8.1 and 8.3 that the numerical results corresponding to stabilization parameters
ρ = 6 and ρ = 1 are very close to each other. Furthermore, we compute the numerical results for some other stabilization
parameter ρ = 0.01, 0.1, 2, 5, and we found the numerical results are still very close to the results in Table 8.1. Due to
page limitation, we shall not demonstrate the numerical results for ρ = 0.01, 0.1, 2, 5 in this paper. Interested readers
are welcome to draw their own conclusions for this phenomenon.

Test Case 2 (Nonhomogeneous BVP). In this set of tests, the exact solution is u = cos(x) sin(y) cos(z) and the coefficient
matrix A is an identity matrix. This is a non-homogeneous boundary value problem on the domain Ω = (0, 1)3.

In Tables 8.5 and 8.6, we employ the perturbed L2 projection defined in (7.17)–(7.19) and stabilization parameter
ρ = 1. The numerical results demonstrate that ∥∇deb∥0 converges in the superconvergence order of O(h2), which perfectly
consists with Corollary 7.3. In Tables 8.7 and 8.8, we use the usual L2 projection (i.e., the perturbation term εb = 0) and
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Table 8.3

Test Case 1: Convergence of the lowest order WG-FEM on the unit cubic domain with exact solution u = sin(πx) sin(πy) sin(πz), uniform cubic

partitions, stabilization parameter ρ = 1.

Meshes ∥u − S(ub)∥∞,⋆ ∥e0∥0 ∥∇deb∥0 ∥∇dub − ∇u∥1,⋆ ∥e0∥1,1

4 × 4 × 4 2.4845e−02 1.9393e−02 1.8494e−01 4.1467e−02 1.6637e−01

8 × 8 × 8 6.4194e−03 4.6306e−03 4.8626e−02 1.1850e−02 4.3758e−02

16 × 16 × 16 1.6069e−03 1.1415e−03 1.2310e−02 3.0582e−03 1.1079e−02

32 × 32 × 32 4.0164e−04 2.8433e−04 3.0872e−03 7.7058e−04 2.7784e−03

Rate 2.00 2.01 2.00 1.99 2.00

Table 8.4

Test Case 1: Convergence of the lowest order WG-FEM on the unit cubic domain with exact solution u = sin(πx) sin(πy) sin(πz), non-uniform cubic

partitions, stabilization parameter ρ = 1, and h = max(|ex|, |ey|, |ez |).

Meshes ∥u − S(ub)∥∞,⋆ ∥e0∥0 ∥∇deb∥0 ∥∇dub − ∇u∥1,⋆ ∥e0∥1,1

3 × 4 × 5 2.2605e−02 2.5271e−02 2.1817e−01 6.9417e−02 1.9998e−01

6 × 8 × 10 3.4472e−03 6.6425e−03 6.1177e−02 2.8983e−02 5.7273e−02

12 × 16 × 20 7.3558e−04 1.6886e−03 1.5931e−02 8.3053e−03 1.5017e−02

24 × 32 × 40 1.7500e−04 4.2391e−04 4.0277e−03 2.1491e−03 3.8034e−03

Rate 2.07 1.99 1.98 1.95 1.98

Table 8.5

Test Case 2: Convergence of the lowest order WG-FEM on the unit cubic domain with exact solution u = cos(x) sin(y) cos(z), uniform cubic partitions,

stabilization parameter ρ = 1, and perturbed L2 projection of the Dirichlet boundary data g by (7.17)–(7.19).

Meshes ∥u − S(ub)∥∞,⋆ ∥e0∥0 ∥∇deb∥0 ∥∇dub − ∇u∥1,⋆ ∥e0∥1,1

4 × 4 × 4 2.8491e−02 1.6837e−02 3.5512e−02 3.0139e−02 3.4796e−02

8 × 8 × 8 7.7591e−03 4.2216e−03 8.9019e−03 7.5565e−03 8.7222e−03

16 × 16 × 16 2.0045e−03 1.0576e−03 2.2294e−03 1.8930e−03 2.1845e−03

32 × 32 × 32 5.0788e−04 2.6457e−04 5.5769e−04 4.7357e−04 5.4645e−04

Rate 1.98 2.00 2.00 2.00 2.00

Table 8.6

Test Case 2: Convergence of the lowest order WG-FEM on the unit cubic domain with exact solution u = cos(x) sin(y) cos(z), non-uniform cubic

partitions, stabilization parameter ρ = 1, h = max(|ex|, |ey|, |ez |), and perturbed L2 projection of the Dirichlet boundary data g by (7.17)–(7.19).

Meshes ∥u − S(ub)∥∞,⋆ ∥e0∥0 ∥∇deb∥0 ∥∇dub − ∇u∥1,⋆ ∥e0∥1,1

3 × 4 × 5 4.5196e−02 2.5473e−02 5.1833e−02 4.5731e−02 5.1101e−02

6 × 8 × 10 1.2338e−02 6.3927e−03 1.2987e−02 1.1459e−02 1.2803e−02

12 × 16 × 20 3.1901e−03 1.6029e−03 3.2538e−03 2.8716e−03 3.2078e−03

24 × 32 × 40 8.0847e−04 4.0115e−04 8.1411e−04 7.1856e−04 8.0261e−04

Rate 1.98 2.00 2.00 2.00 2.00

stabilization parameter ρ = 1. Table 8.7 shows the convergence rate for ∥∇deb∥0 is in a superconvergence order of O(h2),

which is in great consistency with Corollary 7.5, since the exact solution satisfies uxx = uyy = uzz , the coefficient matrix
A is an identity matrix, and the partitions are uniform. Table 8.8 shows that the superconvergence order in H1- norm for

eb is higher than our theory r = 1.5 in Theorem 7.4. Tables 8.5–8.8 show that a perturbed L2 projection does provide a

better numerical solution than the usual L2 projection.

Tables 8.9–8.11 show the numerical results for the stabilization parameter ρ = 6. Note that the perturbed L2 projection

defined in (7.17)–(7.19) turns to be the usual L2 projection for the stabilization parameter ρ = 6 on the uniform

partitions. Table 8.9 shows the convergence rate for ∥∇deb∥0 for the usual L2 projection on the uniform partitions is

in the superconvergence order of O(h2) which is consistent with Corollary 7.3. In Table 8.10, the perturbed L2 projection

on the non-uniform partitions is used and the numerical results show the superconvergence order for ∥∇deb∥0 is O(h2),

which consists with Corollary 7.3. In Table 8.11, the usual L2 projection on non-uniform partitions is employed and it

seems that the convergence rate for ∥∇deb∥0 is in the order of O(h1.95), which is higher than O(h1.5) in Theorem 7.4.

Test Case 3 (Nonhomogeneous BVP). In this group of numerical tests, the coefficient tensor A is an identity matrix, the

stabilization parameter is ρ = 1, and the exact solution is u = cos(πx) cos(πy)exp(z). This is a nonhomogeneous boundary

value problem.

Figs. 8.1 and 8.2 compare the performance on uniform cubic partitions when the perturbed L2 projection and the usual

L2 projection are used, respectively. Fig. 8.1 presents the superconvergence order for ∥∇deb∥0 for the usual L2 projection

is better than the theory O(h1.5) in Theorem 7.4. Fig. 8.2 demonstrates that the superconvergence rate for ∥∇deb∥ is O(h2)

for the perturbed L2 projection, which consists perfectly with Corollary 7.3.
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Table 8.7

Test Case 2: Convergence of the lowest order WG-FEM on the unit cubic domain with exact solution u = cos(x) sin(y) cos(z), uniform cubic partitions,

stabilization parameter ρ = 1, and L2 projection of the Dirichlet boundary data g .

Meshes ∥u − S(ub)∥∞,⋆ ∥e0∥0 ∥∇deb∥0 ∥∇dub − ∇u∥1,⋆ ∥e0∥1,1

4 × 4 × 4 9.6021e−03 1.7217e−03 1.6445e−03 5.3190e−03 1.6266e−03

8 × 8 × 8 2.5944e−03 4.3709e−04 4.0413e−04 1.3353e−03 4.0262e−04

16 × 16 × 16 6.6871e−04 1.1006e−04 1.0087e−04 3.3482e−04 1.0093e−04

32 × 32 × 32 1.6933e−04 2.7576e−05 2.5230e−05 8.3791e−05 2.5280e−05

Rate 1.98 2.00 2.00 2.00 2.00

Table 8.8

Test Case 2: Convergence of the lowest order WG-FEM on the unit cubic domain with exact solution u = cos(x) sin(y) cos(z), non-uniform cubic

partitions, stabilization parameter ρ = 1, h = max(|ex|, |ey|, |ez |), and L2 projection of the Dirichlet boundary data g .

Meshes ∥u − S(ub)∥∞,⋆ ∥e0∥0 ∥∇deb∥0 ∥∇dub − ∇u∥1,⋆ ∥e0∥1,1

3 × 4 × 5 1.0491e−02 1.7126e−03 9.4802e−03 1.1082e−02 9.5562e−03

6 × 8 × 10 3.1746e−03 4.4825e−04 3.4760e−03 3.7710e−03 3.4972e−03

12 × 16 × 20 8.7237e−04 1.1627e−04 1.0666e−03 1.1282e−03 1.0715e−03

24 × 32 × 40 2.3618e−04 2.9556e−05 3.0668e−04 3.2021e−04 3.0782e−04

Rate 1.89 1.98 1.80 1.82 1.80

Table 8.9

Test Case 2: Convergence of the lowest order WG-FEM on the unit cubic domain with exact solution u = cos(x) sin(y) cos(z), uniform cubic partitions,

stabilization parameter ρ = 6, and L2 projection of the Dirichlet boundary data g .

Meshes ∥u − S(ub)∥∞,⋆ ∥e0∥0 ∥∇deb∥0 ∥∇dub − ∇u∥1,⋆ ∥e0∥1,1

4 × 4 × 4 9.6682e−03 1.7514e−03 1.5820e−03 5.3468e−03 1.5844e−03

8 × 8 × 8 2.6003e−03 4.4054e−04 4.0144e−04 1.3398e−03 4.0227e−04

16 × 16 × 16 6.6911e−04 1.1033e−04 1.0080e−04 3.3520e−04 1.0104e−04

32 × 32 × 32 1.6935e−04 2.7594e−05 2.5229e−05 8.3818e−05 2.5291e−05

Rate 1.98 2.00 2.00 2.00 2.00

Table 8.10

Test Case 2: Convergence of the lowest order WG-FEM on the unit cubic domain with exact solution u = cos(x) sin(y) cos(z), non-uniform cubic

partitions, stabilization parameter ρ = 6, h = (|ex|
2+|ey|

2+|ez |
2)

1
2 , and perturbed L2 projection of the Dirichlet boundary data g by (7.17)–(7.19).

Meshes ∥u − S(ub)∥∞,⋆ ∥e0∥0 ∥∇deb∥0 ∥∇dub − ∇u∥1,⋆ ∥e0∥1,1

3 × 4 × 5 4.5849e−03 1.1666e−03 5.8119e−03 7.9357e−04 5.0500e−03

6 × 8 × 10 1.2310e−03 2.8277e−04 1.4518e−03 1.9305e−04 1.2608e−03

12 × 16 × 20 3.1661e−04 7.0116e−05 3.6286e−04 4.8178e−05 3.1510e−04

24 × 32 × 40 8.0124e−05 1.7493e−05 9.0708e−05 1.2045e−05 7.8768e−05

Rate 1.98 2.00 2.00 2.00 2.00

Table 8.11

Test Case 2: Convergence of the lowest order WG-FEM on the unit cubic domain with exact solution u = cos(x) sin(y) cos(z), non-uniform cubic

partitions, stabilization parameter ρ = 6, h = (|ex|
2+|ey|

2+|ez |
2)

1
2 , and L2 projection of the Dirichlet boundary data g .

Meshes ∥u − S(ub)∥∞,⋆ ∥e0∥0 ∥∇deb∥0 ∥∇dub − ∇u∥1,⋆ ∥e0∥1,1

3 × 4 × 5 1.0575e−02 1.8212e−03 2.0566e−03 6.1443e−03 1.9932e−03

6 × 8 × 10 2.8577e−03 4.5857e−04 5.2697e−04 1.5434e−03 5.1248e−04

12 × 16 × 20 7.3831e−04 1.1496e−04 1.3610e−04 3.8768e−04 1.3270e−04

24 × 32 × 40 1.8753e−04 2.8764e−05 3.5157e−05 9.7348e−05 3.4342e−05

Rate 1.98 2.00 1.95 1.99 1.95

Figs. 8.3 and 8.4 compare the performance on non-uniform cubic partitions for the perturbed L2 projection and the
usual L2 projection, respectively. The convergence order shown in Fig. 8.3 is in good consistency with the theory O(h2).
Moreover, from Fig. 8.4, we can see that the convergence rate is greater than the theoretical result O(h1.5) for the error
function ∇deb. It should be pointed out that the convergence rate is obtained based on a least square fitting technique as
specified in [56].

Test Case 4 (Nonhomogeneous BVP). In this test, the exact solution is u = sin(x) sin(y) sin(z), the diffusive tensor is

A =
[ 10 3 1

3 2 1
1 1 2

]
, and the stabilization parameter is ρ = 1. The numerical results shown in Table 8.12 are based on the

non-uniform cubic partitions and the usual L2 projection. The numerical performance in Table 8.12 is in great consistency
with Theorem 7.4.
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Fig. 8.1. Test Case 3: Convergence of the lowest order WG-FEM on the unit cubic domain with exact solution u = cos(πx) cos(πy)exp(z), uniform

cubic partitions, stabilization parameter ρ = 1, and L2 projection of the Dirichlet boundary data g .

Fig. 8.2. Test Case 3: Convergence of the lowest order WG-FEM on the unit cubic domain with exact solution u = cos(πx) cos(πy)exp(z), uniform

cubic partitions, stabilization parameter ρ = 1, and perturbed L2 projection of the Dirichlet boundary data g by (7.17)–(7.19).

Table 8.12

Test Case 4: Convergence of the lowest order WG-FEM on the unit cubic domain with exact solution u = sin(x) sin(y) sin(z), non-uniform cubic

partitions, stabilization parameter ρ = 1, h = max(|ex|, |ey|, |ez |), and L2 projection of the Dirichlet boundary data g . The coefficient matrix is

a11 = 10, a12 = 3, a13 = 1, and a22 = 2, a23 = 1, a33 = 2.

Meshes ∥u − S(ub)∥∞,⋆ ∥e0∥0 ∥∇deb∥0 ∥∇dub − ∇u∥1,⋆ ∥e0∥1,1

3 × 4 × 5 1.3451e−02 7.2295e−03 5.5726e−02 5.5713e−02 5.5722e−02

6 × 8 × 10 8.6020e−03 3.4567e−03 2.9073e−02 2.9050e−02 2.9071e−02

12 × 16 × 20 4.2236e−03 1.2471e−03 1.1590e−02 1.1583e−02 1.1589e−02

24 × 32 × 40 1.5369e−03 3.6709e−04 3.9243e−03 3.9227e−03 3.9242e−03

Rate 1.46 1.76 1.56 1.56 1.56

Test Case 5 (Nonhomogeneous BVP). This test is in the following configuration: (1) The coefficient tensor A is an identity
matrix; (2) the stabilization parameter ρ = 1; (3) the exact solution is u = cos(πx) sin(πy) cos(πz). We first construct an
initial non-uniform 4 × 4 × 4 cubic partition generated by perturbing a uniform 4 × 4 × 4 cubic partitions with a random
noise. More precisely, for the element T = [xi, xi+1]×[yj, yj+1]×[zs, zs+1] in an initial uniform 4 × 4 × 4 cubic partitions,
xi+1, yj+1 and zs+1 are adjusted as follows: x∗

i+1 = xi+1 + 0.2(rand(1) − 0.5)/N , y∗
j+1 = yj+1 + 0.2(rand(1) − 0.5)/N ,
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Fig. 8.3. Test Case 3: Convergence of the lowest order WG-FEM on the unit cubic domain with exact solution u = cos(πx) cos(πy)exp(z), non-uniform

cubic partitions, stabilization parameter ρ = 1, h = max(|ex|, |ey|, |ez |), and perturbed L2 projection of the Dirichlet boundary data g by (7.17)–(7.19).

Fig. 8.4. Test Case 3: Convergence of the lowest order WG-FEM on the unit cubic domain with exact solution u = cos(πx) cos(πy)exp(z), non-uniform

cubic partitions, stabilization parameter ρ = 1, h = max(|ex|, |ey|, |ez |), and L2 projection of the Dirichlet boundary data g .

and z∗
s+1 = zs+1 + 0.2(rand(1) − 0.5)/N , where N = 4 and rand(1) is the Matlab function which returns to a

single uniformly distributed random number in (0, 1). The random numbers rand(1) = {0.141886, 0.933993, 0.031833},
rand(1) = {0.959492, 0.392227, 0.823457}, and rand(1) = {0.421761, 0.678735, 0.276922} are used in the x-, y- and
z-directions, respectively. The next level of mesh is then generated by uniformly refining each of the non-uniform cubic
elements into 8 sub-cubes. The numerical results where the usual L2 projection and the perturbed L2 projection are
employed are presented in Figs. 8.5 and 8.6, respectively. Fig. 8.5 demonstrates that the superconvergence order is much
better than our theory for the usual L2 projection. Fig. 8.6 shows that the superconvergence rate is in good consistency
with the theory for the perturbed L2 projection.

Test Case 6 (Nonhomogeneous BVP). This test has the following configuration: (1) The coefficient tensor A is an identity
matrix and the stabilization parameter is ρ = 1; (2) the exact solution is u = cos(πx) sin(πy) cos(πz); (3) The cubic
partitions are obtained as follows: firstly, the domainΩ = (0, 1)3 is uniformly partitioned into 2N×2N×2N (N = 1, 2, 3, 4)
sub-cubes; secondly, the perturbation method used in Test Case 5 is employed on the uniform 2N × 2N × 2N meshes to
generate the non-uniform 2N × 2N × 2N meshes; thirdly, the 2N+1 × 2N+1 × 2N+1 meshes are then derived by uniformly
refining each cubic element in the non-uniform 2N × 2N × 2N meshes into 8 sub-cubic elements. Table 8.13 shows that
the convergence order for ∥∇deb∥0 with the usual L2 projection outperforms the result O(h1.5) in Theorem 7.4. Table 8.14
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Fig. 8.5. Test Case 5: Convergence of the lowest order WG-FEM on the unit cubic domain (0, 1)3 with exact solution u = cos(πx) sin(πy) cos(πz),

non-uniform cubic partitions, the coefficient matrix is identity, stabilization parameter ρ = 1, and L2 projection of the Dirichlet boundary data g .

Fig. 8.6. Test Case 5: Convergence of the lowest order WG-FEM on the unit cubic domain (0, 1)3 with exact solution u = cos(πx) sin(πy) cos(πz),

non-uniform cubic partitions, the coefficient matrix is identity, stabilization parameter ρ = 1, and perturbed L2 projection of the Dirichlet boundary

data g by (7.17)–(7.19).

shows that the superconvergence order for ∥∇deb∥0 is in the order O(h2) with the perturbed L2 projection, which is in
great consistency with Corollary 7.3.

8.2. Numerical experiments for piecewise constant diffusion tensor A

Test Case 7 (Nonhomogeneous BVP). The domain Ω = (0, 1)3 is divided into two subdomains by a flat face x = 1/2, where

Ω1 = (0, 1/2) ∗ (0, 1) ∗ (0, 1) and Ω2 = (1/2, 1) ∗ (0, 1) ∗ (0, 1). The diffusive coefficient tensor is Ai =
[ αxi ,0,0
0,α

y
i
,0

0,0,αz
i

]
, and the

exact solution is ui = αi cos(πx) sin(πy) cos(πz) for the subdomain Ωi, where the coefficients αx
i , α

y

i , α
z
i , αi are specified

in Table 8.15 for i = 1, 2. The stabilization parameter is ρ = 1. Table 8.16 presents that the convergence rate for ∥∇deb∥0

on the non-uniform partition with the usual L2 projection is better than the theory O(h1.5).

8.3. Numerical experiments for variable diffusive tensor A

Test Case 8 (Nonhomogeneous BVP). We consider a nonhomogeneous boundary value problem with the exact solution
u = sin(x) sin(y) sin(z). The coefficient tensor A is a symmetric and positive definite matrix with a11 = 1+ x2, a12 = xy/4,
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Table 8.13

Test Case 6: Convergence of the lowest order WG-FEM on the unit cubic domain (0, 1)3 with exact solution u = cos(πx) sin(πy) cos(πz), non-uniform

cubic partitions, stabilization parameter ρ = 1, and L2 projection of the Dirichlet boundary data g .

Meshes ∥u − S(ub)∥∞,⋆ ∥e0∥0 ∥∇deb∥0 ∥∇dub − ∇u∥1,⋆ ∥e0∥1,1

2 × 2 × 2 1.3717e−01 4.8600e−02 2.7327e−01 4.3071e−01 2.4263e−01

4 × 4 × 4 8.4609e−02 1.0223e−02 9.0252e−02 1.1798e−01 8.0640e−02

Rate 0.70 2.25 1.60 1.87 1.60

4 × 4 × 4 8.8874e−02 1.0715e−02 1.0106e−01 1.2318e−01 9.0524e−02

8 × 8 × 8 2.9802e−02 2.6654e−03 2.7306e−02 3.4129e−02 2.5044e−02

Rate 1.58 2.01 1.89 1.85 1.85

8 × 8 × 8 2.6820e−02 2.4725e−03 2.6568e−02 3.3013e−02 2.4314e−02

16 × 16 × 16 7.5071e−03 6.4926e−04 7.1617e−03 8.8805e−03 6.6747e−03

Rate 1.84 1.93 1.89 1.89 1.87

16 × 16 × 16 8.1166e−03 7.4520e−04 7.6548e−03 9.5440e−03 7.2359e−03

32 × 32 × 32 2.1534e−03 1.9459e−04 2.2590e−03 2.6909e−03 2.1752e−03

Rate 1.91 1.94 1.76 1.83 1.73

Table 8.14

Test Case 6: Convergence of the lowest order WG-FEM on the unit cubic domain (0, 1)3 with exact solution u = cos(πx) sin(πy) cos(πz), non-uniform

cubic partitions, stabilization parameter ρ = 1, and perturbed L2 projection of the Dirichlet boundary data g by (7.17)–(7.19).

Meshes ∥u − S(ub)∥∞,⋆ ∥e0∥0 ∥∇deb∥0 ∥∇dub − ∇u∥1,⋆ ∥e0∥1,1

2 × 2 × 2 3.3996e−01 6.0584e−01 3.2721e+00 2.7915e+00 3.2143e+00

4 × 4 × 4 2.4166e−01 1.4017e−01 8.7948e−01 7.4759e−01 8.6207e−01

Rate 0.49 2.11 1.90 1.90 1.90

4 × 4 × 4 2.6832e−01 1.5400e−01 9.6036e−01 8.2564e−01 9.4258e−01

8 × 8 × 8 9.8770e−02 3.9531e−02 2.5404e−01 2.1932e−01 2.4937e−01

Rate 1.44 1.96 1.92 1.91 1.92

8 × 8 × 8 9.0683e−02 3.7438e−02 2.4135e−01 2.0704e−01 2.3677e−01

16 × 16 × 16 2.6625e−02 9.5967e−03 6.2081e−02 5.3436e−02 6.0922e−02

Rate 1.77 1.96 1.96 1.95 1.96

16 × 16 × 16 2.9695e−02 1.0408e−02 6.7150e−02 5.8436e−02 6.5996e−02

32 × 32 × 32 7.8290e−03 2.6270e−03 1.6961e−02 1.4781e−02 1.6672e−02

Rate 1.92 1.99 1.99 1.98 1.98

Table 8.15

Test Case 7: Parameters for the diffusive

coefficients and the exact solution.

αx
1 = 1000 αx

2 = 1

α
y

1 = 100 α
y

2 = 0.1

αz
1 = 10 αz

2 = 0.01

α1 = 0.01 α2 = 10

Table 8.16

Test Case 7: Convergence of the lowest order WG-FEM on (0, 1)3 with exact solution u = αi cos(πx) sin(πy) cos(πz), piecewise constant diffusive

tensor, non-uniform cubic partitions, stabilization parameter ρ = 1, h = max(|ex|, |ey|, |ez |), and L2 projection of the boundary data g .

Meshes ∥u − S(ub)∥∞,⋆ ∥e0∥0 ∥∇deb∥0 ∥∇dub − ∇u∥1,⋆ ∥e0∥1,1

3 × 4 × 5 5.9145e−01 5.1023e−01 6.8587e+00 1.1085e+01 6.7852e+00

6 × 8 × 10 5.6868e−01 2.0684e−01 3.4145e+00 3.3386e+00 3.4065e+00

12 × 16 × 20 1.5697e−01 4.9439e−02 9.9702e−01 9.8059e−01 9.9530e−01

24 × 32 × 40 3.9016e−02 1.3197e−02 2.8390e−01 2.8028e−01 2.8352e−01

Rate 2.01 1.91 1.81 1.81 1.81

a13 = xz/4, a22 = 1+ y2, a23 = yz/4, a33 = 1+ z2. The non-uniform cubic partitions and the usual L2 projection are used

in this test with the stabilized parameter ρ = 1. Table 8.17 shows that the convergence rate for ∥∇deb∥0 outperforms the

result O(h1.5) in Theorem 7.4.

Test Case 9 (Reaction–diffusion equation). Consider the reaction–diffusion model:

−∆u + cu =f in Ω = (0, 1)3,

u =g on ∂Ω,
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Table 8.17

Test Case 8 : Convergence of the lowest order WG-FEM on the unit cubic domain with exact solution u = sin(x) sin(y) sin(z), non-uniform cubic

partitions, stabilization parameter ρ = 1, h = max(|ex|, |ey|, |ez |), and L2 projection of the Dirichlet boundary data g . The coefficient matrix is

a11 = 1 + x2 , a12 = xy/4, a13 = xz/4, a22 = 1 + y2 , a23 = yz/4, and a33 = 1 + z2 .

Meshes ∥u − S(ub)∥∞,⋆ ∥e0∥0 ∥∇deb∥0 ∥∇dub − ∇u∥1,⋆ ∥e0∥1,1

3 × 4 × 5 4.8515e−03 9.3955e−04 8.4062e−03 8.8736e−03 8.3704e−03

6 × 8 × 10 1.3571e−03 3.1310e−04 3.7875e−03 3.8168e−03 3.7760e−03

12 × 16 × 20 3.9676e−04 9.4737e−05 1.1738e−03 1.1752e−03 1.1707e−03

24 × 32 × 40 1.1258e−04 2.5404e−05 3.1457e−04 3.1448e−04 3.1379e−04

Rate 1.82 1.90 1.90 1.90 1.90

Table 8.18

Test Case 9: Convergence of the lowest order WG-FEM on the (0, 1)3 with exact solution u = x(1−x)y(1−2y)z(1−3z), non-uniform cubic partitions,

stabilization parameter ρ = 1, h = max(|ex|, |ey|, |ez |), and L2 projection of the boundary data g .

Meshes ∥u − S(ub)∥∞,⋆ ∥e0∥0 ∥∇deb∥0 ∥∇dub − ∇u∥1,⋆ ∥e0∥1,1

3 × 4 × 5 2.1502e−02 7.5361e−03 7.2672e−02 7.4019e−02 7.2672e−02

6 × 8 × 10 1.1389e−02 1.9955e−03 2.6789e−02 2.7184e−02 2.6789e−02

12 × 16 × 20 3.7672e−03 5.3715e−04 8.6059e−03 8.6998e−03 8.6059e−03

24 × 32 × 40 1.0559e−03 1.4113e−04 2.6083e−03 2.6290e−03 2.6083e−03

Rate 1.84 1.93 1.72 1.73 1.72

where the reaction coefficient is c = 2. The stabilizer parameter is ρ = 1, and the exact solution is u = x(1 − x)y(1 −
2y)z(1− 3z). The non-uniform cubic partitions and the usual L2 projection are taken in the test. Table 8.18 indicates that
the convergence order for ∥∇deb∥0 is higher than O(h1.5). It should be pointed out that the reaction–diffusion model is not
the second order elliptic model for which the superconvergence theory is established in the paper. However, the numerical
results demonstrate a good computational performance of the WG finite element method for the reaction–diffusion model.

In summary, the superconvergence theory established in this paper is well verified by various numerical experiments.
It is exciting that the convergence rate for ∥∇deb∥0 is higher than the conclusion O(h1.5) in Theorem 7.4 when the usual
L2 projection is taken. The numerical results show that the numerical solution related to the perturbed L2 projection does
perform better than the numerical solution related to the usual L2 projection. Furthermore, the numerical solution for the
reaction–diffusion equation shows a superconvergence error estimate by using the weak Galerkin scheme.
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