®

Check for
updates

One-Time Programs from Commodity
Hardware

Harry Eldridge!, Aarushi Goel?®) Matthew Green!, Abhishek Jain®,
and Maximilian Zinkus'

1 Johns Hopkins University, Baltimore, USA
{hme ,mgreen,abhishek,zinkus}@cs. jhu.edu
2 NTT Research, Sunnyvale, USA

aarushi.goel@ntt-research.com

Abstract. One-time programs, originally formulated by Goldwasser
et al. [26], are a powerful cryptographic primitive with compelling appli-
cations. Known solutions for one-time programs, however, require spe-
cialized secure hardware that is not widely available (or, alternatively,
access to blockchains and very strong cryptographic tools).

In this work we investigate the possibility of realizing one-time pro-
grams from a recent and now more commonly available hardware func-
tionality: the counter lockbozx. A counter lockbox is a stateful functional-
ity that protects an encryption key under a user-specified password, and
enforces a limited number of incorrect guesses. Counter lockboxes have
become widely available in consumer devices and cloud platforms.

We show that counter lockboxes can be used to realize one-time pro-
grams for general functionalities. We develop a number of techniques to
reduce the number of counter lockboxes required for our constructions,
that may be of independent interest.

1 Introduction

One-time programs, formulated by Goldwasser et al. [26], are a flexible and pow-
erful cryptographic primitive with compelling applications to limited-attempt
authentication, fuzzy vaults, limited-query differential-private data analysis, and
even autonomous ransomware and beyond. In the standard model, one-time
programs are known to be impossible to realize purely in software [13,26]. To
evade this impossibility, prior works have examined the problem of building
one-time programs from secure hardware tokens [26,30], or alternatively, using
blockchains [28].

The works of [26,30] employ tamper-proof hardware that implements one-
time memory — a simple, stateful functionality that allows anyone to read one
location, after which all other locations become inaccessible. While these results
are practical and work in a variety of settings, they have mainly garnered theo-
retical interest. The likely cause is that one-time memory tokens have not been
available as a standard feature of popular personal or cloud computing platforms.
While it is possible to realize these tokens using programmable smart cards or

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13749, pp. 121-150, 2022.
https://doi.org/10.1007/978-3-031-22368-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22368-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-22368-6_5

122 H. Eldridge et al.

HSMs [17,32,52], such development typically requires expensive equipment and
considerable development effort. Moreover, the few affordable platforms that
support custom programming may provide weak or limited security guarantees.
If portability is not required, tamper-proof hardware tokens can also be realized
through virtualization: secure enclaves such as Intel SGX [42] and ARM Trust-
Zone [46] offer tamper-resilience under relatively strong adversarial assumptions
such as operating system (OS) compromise. Indeed, if such an enclave platform
is considered trusted, it is likely easier to implement an entire one-time func-
tionality within the enclave. However, implicit trust in an enclave provider is
unacceptable in some threat models, and the soundness of this trust regardless
of threat model has been repeatedly called into question [14,19,45]. These execu-
tion environments also typically place limitations on end-users’ ability to deploy
arbitrary code [6,33,50].

Counter Lockboxes. Recently, a new generation of device- and cloud-based
secure hardware has become available to end users. This includes secure co-
processors that are now built into many smartphones and tablets, including
the Apple Secure Enclave Processor (SEP) [3] and Google’s Titan M2 [27] co-
processor. It also includes specialized Hardware Security Modules (HSMs) that
have recently been deployed within the data centers of consumer cloud providers;
these can be accessed remotely from consumer devices to implement services such
as Apple’s Cloud Key Vault [39], Android Backup [48], WhatsApp backup [38],
and Signal Secure Value Recovery [40]. Notably, these systems are not aimed
at enterprise customers; they are configured to protect end-user cryptographic
keys, even from attacks that might be launched by the device manufacturer or
cloud provider themselves. These systems are now being used across billions
of devices, making them more broadly accessible to consumers than any prior
secure hardware platform.

Unlike secure enclave environments such as TrustZone or SGX, these
consumer-oriented hardware devices do not allow end-devices to securely exe-
cute arbitrary programs. Instead, they present a limited interface to the device’s
application software. Since the primary purpose of these systems is to protect
encryption keys under user-selected passwords, the most common interface is a
functionality akin to what we describe as a counter lockboz.! To initialize a lock-
box, the application software provides a password to the hardware along with a
maximum attempt limit. At any later point, the software can retrieve the decryp-
tion key by providing the correct password. To protect the key against guessing
attacks, the hardware increments a tamper-resistant counter for each incorrect
guess: when this counter exceeds the maximum attempt limit, the hardware
deletes the stored key. Given that this lockbox functionality has been deployed
at massive scale, it represents an attractive building block for constructing more
sophisticated cryptographic protocols.

! The term counter lockbox was previously introduced by Apple for its SEP [3]. We
use it in this work to refer to a broad class of similar functionalities.

One-Time Programs from Commodity Hardware 123

Using Lockboxes to Construct One-Time Programs. The ubiquity of this
basic lockbox functionality motivates us to investigate the following question: can
such a simple functionality be used to achieve gemeral secure computation? In
this work, we answer the question in the affirmative: given access to a sufficient
number of lockboxes, we show that it is possible to realize the full power of
one-time programs.

This result has important practical implications: since lockboxes are increas-
ingly available to consumer hardware, this approach provides a “backdoor” route
to constructing obfuscated software, even on hardware that does not directly sup-
port this functionality. This capability facilitates many constructive applications.
For example, it can be used to build sophisticated attempt-limiting authentica-
tion functionalities. A limited-attempt fuzzy vault [34] can release cryptographic
secrets when a user provides an input that satisfies some complex approximate
function such as biometric matching or inexact string comparison [15]. Obfus-
cated software also enables privacy-preserving applications such as differentially-
private statistical data analysis, where query limits must be enforced to maintain
a privacy budget [22]. This functionality has a dark side as well: one-time pro-
grams allow for the creation of autonomous ransomware [10,20,36], a form of
malware with no command-and-control infrastructure: in this paradigm, decryp-
tion keys are revealed only when the user provides the malware with proof of
payment on a public blockchain. This last concern illustrates how carefully sys-
tem designers must tread when exposing secure lockbox functionality to users
and developers, since as we demonstrate in this work, even this relatively weak
primitive can be leveraged into powerful secure computation. The lower bounds
for this transformation also raise practical concerns: system designers may wish
to know how many instances may be safely exposed to users before the power of
these constructions can be exploited.

1.1 Owur Results

In this work, we show that it is possible to construct secure one-time programs
(OTP) using multiple instances of the counter lockbox functionality. Our main
result is a construction of OTP for general functionalities based on one-way
functions that requires a constant number of counter lockboxes per input-bit.
This asymptotically matches prior constructions of one-time programs [25] in
the number of hardware tokens utilized.

Theorem 1 (Informal). Assuming the existence of one-way functions, for any
functionality F, there exists a construction of one-time programs in the lockbox-
hybrid model that makes O (1) invocations to the lockbox functionality per input
bit of F.

We present our main result with counter lockboxes that allow exactly one
password attempt. In practice, lockboxes may allow more attempts. For exam-
ple, lockboxes may fix the maximum number of attempts to some system-wide
constant (e.g., 10 attempts.) To handle such cases, we demonstrate an extension

124 H. Eldridge et al.

of our main construction that supports lockboxes with any number of password
attempts. The resulting scheme requires the same number of lockboxes as before.

Reducing The Number of Hardware Tokens. We observe that at the cost
of stronger assumptions, it is possible to achieve an asymptotic reduction in
the total number of counter lockboxes. In particular, by using laconic oblivious
transfer (LOT) [18] with malicious receiver security, we can reduce the total
number of lockboxes to be independent of the input size and to depend only on
the security parameter.

Our transformation is generic, and is applicable to any OTP construction
(including prior known schemes). As such, this might be of independent interest.

Theorem 2 (Informal). Assuming the existence of malicious receiver laconic
oblivious transfer, for any functionality F', there exists a construction of one-
time programs that makes O () total invocations to the lockbox functionality
(where X is the security parameter).

LOT schemes with malicious receiver security can be generically constructed
by compiling the receiver message of existing LOT schemes with succinct argu-
ments of knowledge (SNARKS) [11,44] either in the random oracle model, or by
relying on knowledge assumptions.

Our Approach. Our starting point is the observation from the work of Gold-
wasser et al. [26] that garbled circuits [51] are almost like one-time programs,
except the seeming need of interactive oblivious transfer (OT) to transmit the
wire labels corresponding to an evaluator’s input. Fortunately, a one-time mem-
ory (OTM) token naturally yields the OT functionality, which paves the way for
constructing one-time programs from OTM tokens.

Unlike OTMs, however, a natural use of counter lockboxes yields a “leaky”
OT functionality, where the receiver is able to learn both sender inputs with some
constant probability (we elaborate on this in Sect. 2). By applying standard OT
combiner techniques [31,43], the leaky OT functionality can be transformed into
secure OT. However, this results in a significant overhead in the number of
lockboxes required. Specifically, this approach requires O()\) lockboxes per input
bit of the functionality, as opposed to O(1) OTMs required in prior works.

Towards obtaining our result in Theorem 1, we observe that O(1) lockboxes
per input bit are sufficient to instantiate a leaky “batch” oblivious transfer func-
tionality, where the receiver can learn both sender inputs for an a priori bounded
constant fraction of the input bits. We then devise a way to construct a secure
(i.e., “non-leaky”) batch-OT from leaky batch-OT via robust garbling — a form of
garbling where security holds even if the receiver learns both labels for a constant
fraction of the input wires — for special functions. The secure batch-OT can then
be used together with standard garbled circuits to obtain one-time programs for
general functions.

Finally, we demonstrate that using laconic OT, the task of designing OTP
for general functions with arbitrary input lengths can be reduced to the task
of designing an OTP for functions whose input length is a fixed polynomial

One-Time Programs from Commodity Hardware 125

in the security parameter. As a result of this reduction, we are able to “com-
press” the effective input size, thereby achieving a reduction in the number of
required hardware tokens. As we discuss later, this transformation requires an
LOT scheme that achieves simulation-based security against malicious receivers.

Real World Implications. In order to assess the practical feasibility of our
one-time programs, we need to consider several cost factors — number of hardware
tokens required, cost of each hardware token, time to generate the OTP, and the
size of software component of the OTP.

In our first construction, the main consideration is hardware. Indeed, besides
the use of lockboxes to implement leaky batch OT, the rest of our construction
comprises of robust garbling for special functions — an efficient, information-
theoretic gadget, and regular garbled circuits. The efficiency of state-of-the-art
constructions of regular garbled circuits is well-established in prior works [47]. In
Sect. 8.1, we evaluate the concrete number of lockboxes required to implement
one-time programs in practice and observe that there is a notable (albeit, con-
stant factor) expansion from the input length to the number of total lockboxes
required due to the use of binary linear error-correcting codes in our scheme.
Overall, our results show that one-time programs may be practical for small
to modest-sized inputs using a number of lockboxes that may be practical on
today’s systems or systems that will be available in the near future. Because such
one-time programs may allow for destructive applications, our concrete bounds
on the number of lockboxes can provide safety guidance for system developers
who expose such functionalities to application developers.

Given our current understanding of LOT schemes, our second transformation
is primarily of theoretical interest at the moment. We first note that recent works
[1,29] have achieved significant improvements in concrete efficiency of LOT by
allowing for linear decryption times (as opposed to poly-logarithmic decryption
complexity achieved in the initial works). Our transformation only requires the
laconic digest property of LOT and is not sensitive to decryption complexity. As
such, it can be instantiated using the state-of-the-art LOT schemes with linear
decryption complexity. However, the main efficiency bottleneck stems from the
fact that our transformation requires a “non-interactive” version of LOT which
is obtained by evaluating the LOT sender algorithm inside a garbled circuit.
For current LOT schemes, this translates to evaluating public-key operations
inside a garbled circuit for every receiver input bit, which to our current under-
standing, is quite expensive. Our work, therefore, motivates the design of new
LOT schemes (with potentially linear decryption times) with “garbling friendly”
sender algorithms.

2 Technical Overview

We now describe our main ideas for constructing a one-time program using
counter lockboxes. We first describe a basic construction that relies on a fairly
large number of lockboxes with only one attempt allowed (denoted A = 1). This
approach requires O(\) lockboxes per bit of input to the one-time program for

126 H. Eldridge et al.

security parameter A. This construction serves as a technical warm-up and high-
lights the main challenges in building OTPs from counter lockboxes as opposed
to one-time memory (OTM) tokens used by Goldwasser et al. [26].

We then describe our key ideas towards constructing OTPs with many fewer
lockboxes, even constant per input bit. This asymptotically matches prior con-
structions based on OTM tokens. Finally, we discuss two extensions. First, we
describe a generic method using laconic oblivious transfer [18] (LOT) to reduce
the total number of lockboxes to be independent of the input size, and to depend
only on A. Second, we describe how our constructions can be extended to support
counter lockboxes that allow multiple password attempts.

Initial Ideas. Goldwasser et al. [26] proposed a construction of one-time pro-
grams using one-time memory (OTM) tokens. Their construction relies on the
observation that garbled circuits are almost like one-time programs, except that
the sender needs to interact with the receiver (via oblivious transfer) to securely
hand over input wire labels for the garbled circuit corresponding to the receiver’s
input. This interaction can be replaced with OTMs for each input wire: the
sender can embed both the 0-label and the 1-label for each wire inside an OTM,
and send all the OTMs together with the garbled circuit in one shot. The secu-
rity of OTM ensures that the receiver learns at most one label from each OTM,
which it can then use to evaluate the garbled circuit.

While the above idea is intuitive, the security proof requires a bit more care
due to the fact that the adversary can choose its input in an adaptive fashion
and query the OTM tokens in an arbitrary order. In particular, the proof of
security requires garbling schemes with adaptive security. Efficient solutions for
such garbling schemes are known in the random oracle model [8].

In this work, we build OTPs using a different kind of hardware token, the
counter lockbox. A natural approach is to emulate the OTM functionality using
counter lockboxes. However, an immediate challenge arises. Recall that a counter
lockbox protects a secret value with a pre-configured password and limited
attempts; if the number of incorrect attempts reaches the threshold, the secret
value is irrevocably deleted. A natural idea is to store the two wire labels for
each input bit in two separate lockboxes and devise a mechanism that allows a
receiver to unlock only one of the two lockboxes. This, however, seems to require
revealing only one of the two passwords to the user, returning to the problem of
emulating OTM.

2.1 Basic Protocol

Our first idea is to use the receiver’s input bits as passwords to the lockboxes.
Concretely, for each input wire, we can use 0 and 1 as the passwords for the
lockboxes that hide the 0-label and 1-label, respectively. The two lockboxes for
each wire are then shuffled so that the input-to-password mapping is not known
to the receiver.

An honest receiver can simply use the same value to attempt to unlock both
lockboxes associated with an input wire. This guarantees that they obtain their
desired label from one lockbox and consumes the single attempt of the other.

One-Time Programs from Commodity Hardware 127

A malicious receiver may attempt to learn both labels by guessing the password
for both of the lockboxes. This will give them only a % chance of success: at least
one label remains hidden with that probability. This idea can be leveraged to
reduce the adversary’s chances of learning both values: instead of embedding each
label in a single lockbox, we “distribute” each label across additional lockboxes.

We now discuss the baseline construction of OTP that results from using
lockboxes in this manner. A reader already familiar with the garbling based
OTP approach may want to skip the next two paragraphs and directly go to the
analysis of this baseline construction.

Generating the OTP. Let C be a Boolean circuit with input length n. The
sender first garbles C' to obtain a garbled circuit C' along with n pairs of wire
labels (labelg, label}). It then performs the following steps:

1. Sample uniform bits b1, . .., by, where ¢ counts the number of lockboxes each
label is distributed across.

2. For each j =1 to 2¢: first, create an independent lockbox L; using maximum
attempt counter A = 1 and password P = b;. Receive the corresponding
lockbox secret K.

3. Next, compute CT}, = labelf @ GBVj,bj:O K; and CT} = label} @ @WM:l K;.

Finally, the sender provides the receiver with the garbled circuit €' and the tuples
(CT§,CTY), ..., (CTE, CTY) as well as references to the 2¢ - n lockboxes.

OTP Evaluation. To evaluate this program on an input = = (x1,...,,), the
receiver performs the following steps for i = 1 to n:

1. For j =1 to 2/, attempt to open the lockbox L; with password z; to retrieve
either K or an error (in which case, set K; = 0.)

2. Compute Iabelii = CT;I_ @;:1 K;.

The receiver can now evaluate C' using the labels la beli1 ;.- label} to obtain a
circuit output.

Analysis. It is easy to verify correctness of the above construction. What
remains is to show that the protocol achieves security, i.e., that a malicious
receiver has a negligible chance of recovering more than one label for any input
wire. The argument here is simple: to recover both (labelf, label}) for some wire
1, the attacker must query each of 2¢ lockboxes L; using exactly the right pass-
words. However, since the lockboxes do not reveal the password until the attempt
to open is made (at which point, the lockbox either reveals the secret or destroys
it), the attacker must succeed in distinguishing between the 0 and 1 lockboxes.
With an optimal guessing strategy, this happens with probability mgé'!” ~ 20—1(“
Therefore, for A bits of security, we need ¢ = O(\) lockboxes per-input wire.

Limitations. While a decent baseline solution, this simple approach has several
limitations. First, the number of lockboxes required grows with O()), which is
significantly worse than the one-time program construction of [26] that requires

128 H. Eldridge et al.

a constant number of hardware tokens per wire. Moreover, the above solution
does not support lockboxes that allow multiple password attempts, and there-
fore has limited applicability for real-world use. To address these limitations, in
the following sections we present techniques to reduce the number of counter
lockboxes required. Later, we also describe approaches for supporting lockboxes
that allow multiple password attempts.

2.2 Reducing the Number of Lockboxes

Our baseline solution can be seen as implicitly building a secure combiner for
the OTM functionality. Indeed, the secret-sharing-based approach is also used in
prior works that build secure combiners for oblivious transfer (OT) (e.g. [31,43]).
It is natural to ask whether one can obtain a reduction in the number of lockboxes
by using a more efficient combiner. To the best of our knowledge, however, all
existing methods require an overhead of O(\) — the same as our baseline solution
— when each component is only secure with constant probability.

We now discuss our key insights towards reducing the number of lockboxes
required for one-time programs. To streamline this discussion, we start by defin-
ing an abstract “leaky” OT primitive and show how to obtain a one-time pro-
gram using this primitive. Later, we discuss how counter lockboxes can be used
to instantiate such a primitive and also analyse the total number of the lockboxes
required for this instantiation.

Insight I: Leaky Batch-OT. Let us assume we have access to a leaky OT
functionality, where the receiver can choose to specify: (1) either a choice bit b
and get sender input my; as output, (2) or a special “leakage” option. In this
case, it learns both sender inputs mg and m; with some constant probability,
and only one of the these inputs with the remaining probability.

This notion can be generalized to a leaky batch-OT functionality, where the
receiver is allowed to learn both sender inputs for an a priori bounded constant
fraction of the OTs. Furthermore, it is easy to see that multiple copies of the
leaky OT functionality — one for each input bit — can realize leaky batch-OT.
We ask whether it is possible to build one-time programs using leaky batch-OT,
without paying the overhead of standard OT combiners.

At first, this seems highly unlikely. Indeed, the standard approach to one-
time programs — as discussed earlier — involves the use of garbled circuits. Using
leaky batch-OT would result in leakage of both wire labels for several input wires.
The security of standard garbled circuits, however, completely breaks down if
both wire labels are leaked even for a single wire (let alone multiple wires).

Insight II: Robust Garbling. We address this challenge by using a notion
of robust garbling — one where security of the garbled function is ensured even
if the receiver learns both labels for a constant fraction of the input wires. If
achievable, such a tool would be clearly helpful for our task at hand. However,
while intuitively appealing, it is not immediately apparent how to formally define
such a notion.

One-Time Programs from Commodity Hardware 129

With leakage, the adversary may obtain labels for multiple different inputs
— inputs differing at bit locations where both wire labels were obtained. Should
the adversary then be allowed to learn multiple outputs, or only a single output?
Clearly the former conflicts with the one-time nature of the required functional-
ity, and thus we would like to enforce the latter. This raises a new question: which
output? For example, if the function is such that each input corresponds to a
different output, it is not clear how we can enforce the single-output requirement
in a meaningful way. Indeed, achieving our intuitive notion of robustness seems
impossible for general functions. We note that previously, Almashagbeh et al.
[2], also considered a notion of robustness in garbled circuits (and more generally
in non-interactive secure multiparty computation). However, given their appli-
cation, they consider a slightly weaker setting, where they are able to assume
an a priori fixed output for the adversary and hence do not need to deal with
the above issue of “which output to reveal”.? Since such assumptions are not
applicable to our setting, we cannot rely on their definition of robustness.

We therefore weaken our goal and attempt to define robust garbling for a
restricted class of functions that have a huge number of collisions, i.e. where inputs
have a certain degree of redundancy. If we consider functions where multiple inputs
with an overlapping subset of input bits have the same output, we could hope to
achieve robustness. Even if the receiver learns multiple labels for the remaining
(non-overlapping) bits, it will only learn at most one unique output.

As the following example shows, however, we need to be more careful. Con-
sider two n-bit input strings x; and x5 that share the same first n/2 bits, and
another input string x3 that shares the same last n/2 bits with x. Toward the
above intuitive description of collisions, if x; and xo correspond to the same
output, and x5 and x3 do as well, by transitivity x; and x3 (that do not neces-
sarily share a significant fraction of overlapping bits) also have the same output.
Without further specification, this can escalate quickly until all inputs have the
same output and we end up with a constant function.

In a pursuit to capture more interesting and non-trivial functions, we specify
a class of functions that take inputs of length n, with respect to a parameter ~y
and try to capture the idea that there is only at most one unique non-_L output
associated with any n — v input bits. Note that this is different from saying
that inputs with the same subset of n — 4 input bits have a unique output.
We say that a function is admissible if for any n — v input bits, there exists at
most one unique combination of the remaining « bits, such that the output of
this function on the combined n-bit input is a non-_1 value. Moreover, if such a
unique combination of the remaining v bits exists, then it is easy to find them
using a deterministic procedure.® In this work, we consider robust garbling for
such admissible functions.

OTPs from Robust Garbling. Let us now assume that we have robust
garbling for this restricted class of functions. We now describe how we can
leverage robust garbling to build OTPs for general functions. Let F be the

2 we refer the reader to Sect. 2.5 for a more detailed comparison with their work.

3 The reason why we need this deterministic procedure will be explained shortly.

130 H. Eldridge et al.

intended OTP functionality. Then, consider a new functionality F’ such that
F'(enc(x)) = F(x), where F” is an admissible function amenable to robust gar-
bling and enc is some mapping function that allows us to map inputs of F' to
inputs of F’. Concretely, we can use an error-correcting code (ECC) as the map-
ping function enc that can introduce redundancy in the mapped input to help
ensure that F’ satisfies the above conditions of being an amenable function.

This idea can now be used to design an OTP for F as follows: (1) The sender
garbles F' using a regular garbling scheme. (2) For each input wire i and bit
b € {0,1}, it defines F}, such that on input enc(x), F;, runs the ECC decoding
function dec to decode x and then if x[{] = b it outputs the b-label for the i-th
wire, and otherwise it outputs L. For any ECC with distance v + 1, there is
only one “valid” codeword associated with any n — ~-bit message, hence, it is
easy to see that dec (and as a result F},) is an admissible function. (3) The
sender garbles each F 1 using robust garbhng An important point to note is
that each F}, takes the same input enc(x). (4) The sender uses this observation
to concatenate input labels for each F; '7 , and embed them inside the leaky batch-
OT.

Constructing Leaky OT. We now describe our idea for constructing leaky
OT (and consequently leaky batch-OT). Intuitively, our leaky oblivious transfer
functionality allows the receiver to obtain both sender inputs with some constant
probability.

Our construction of leaky OT is quite natural: in fact, we use the same
approach as in the base protocol discussed earlier, where the sender prepares 2/
lockboxes (where £ is some constant) and distributes the “0” and “1” message
across £ lockboxes. As before, in order to learn both sender inputs, the adversary
must correctly guess the passwords for each of the 2¢ associated lockboxes. The
adversary then succeeds with a constant probability of ~ 20%

For leaky batch-OT, when considering a collection of n such leaky OTs, the
probability that an adversary can successfully obtain both sender inputs for a
constant fraction of the OTs is =~ 20(%2) Now, observe that if n is sufficiently
large (say n = O(X)), then the probability &~ 55t is negligible in A, even if
¢ is some constant value. While this analysis is somewhat simplified, it suffices
for the purposes of this discussion. More details can be found in the technical
sections.

Importantly, the above insight gives us significant improvement in the
required number of lockboxes. Specifically, we now only require a constant num-
ber of lockboxes per OT (or input wire). However, as discussed before, in order
to implement our idea of combining leaky batch-OT with robust garbling, the
length of input to this leaky batch-OT is slightly longer than our “real” input. In
particular, the input to our leaky batch-OT is an ECC encoding of the receiver’s
input. If we use binary linear ECCs with constant rate, then the length of this
codeword is n + v where v = O(n), and we need a total of £- (n +) lockboxes,
which in an amortized sense is a constant number of lockboxes per n-bits.

Handling Adaptivity. We now highlight some important subtleties regarding
the security definitions of leaky batch-OT and robust garbling.

One-Time Programs from Commodity Hardware 131

In our OTP constructions, we use robust garbling in conjunction with leaky
batch-OT. Specifically, the receiver obtains labels for a robust-garbled circuit
from the leaky batch-OT. From our prior discussion on leaky batch-OT, it is
clear that an adversary can obtain both labels for some (e.g. v out of n) of the
input wires of this robust garbling. Moreover, recall that in above construction of
leaky batch OT, given the entire set of lockboxes, an adversary can query them
in any order of its choosing. In fact, it can “adaptively” decide an order based
on the outcomes of previously queried lockboxes. In other words, the adversary
can be “fully adaptive”. Our definition of leaky batch-OT must allow for this
flexibility and our robust garbling must also support this “fully adaptive” setting.

Since the adversary can potentially learn both labels for some of the inputs,
for simulation, we need a way to predict the output based only on the input bits
for which the adversary gets exactly one label. This is why we require that the
set of admissible functions admit a deterministic procedure to predict the only
(if any) valid associated output.

Finally, we remark that since the adversary can choose to ask for the second
label of some input wires in any order, the simulator would not know until the
last query which n—- input bits it must consider to predict the output. However,
by then it might be “too late” to correctly simulate garbling. To overcome this,
we make a crucial observation about our construction of leaky batch-OT from
lockboxes: recall that in our construction we have 2¢ lockboxes associated with
every index i € [n]. If an adversarial receiver successfully opens the relevant
lockboxes and learns one of the sender messages (say msg?) associated with
that index, it is easy to predict if the adversary will also be able to learn the
other sender message (say msgzl*b) corresponding to that index. Indeed, if the
adversary made any incorrect password attempts for any of the ¢ lockboxes
associated with msg}fb, then the simulator can predict that the adversary will
never be able to learn msgi_b. However, if no incorrect password attempts were
made for those ¢ lockboxes, then the adversary can be certain that the remaining
(unopened) lockboxes associated with index-i have password 1—b and can always
successfully open them and learn msg%fb.

Therefore, we model our definition of leaky batch-OT to require the fol-
lowing: whenever the adversary makes a query for a particular index, it must
specify whether it plans to query the second message for this index in the future.
Moreover, since we only want to allow for some bounded leakage, the number of
indices for which the adversary can make this request is bounded by a parame-
ter . This observation helps ensure that the simulator of robust garbling does
not need to wait until the “last query” to determine which n — 7 input bits it
must consider to predict the output. Instead, this can be determined once the
adversary makes at least one query for each of the n indices.

Constructing Robust Garbling. We now discuss robust garbling for a sub-
class of admissible functions. As discussed earlier, such a construction for a
restricted function class suffices for our use in the construction of OTP. In
particular, we consider admissible functions of the form f = (M, u,z), where

132 H. Eldridge et al.

M € {0,1}¥*" u € {0,1}* are public and z € {0,1}* is private, such that on
if u =Mx

7 & {0,1}* otherwise

While all “invalid” inputs must lead to a L output in admissible functions, the
above function instead outputs a random z’. We note that this is not a problem
in our setting (and the above function is still admissible). This is because in our
OTP construction, the value z will correspond to labels of the garbled circuit
that garbles the actual function for which we compute the OTP. In the case that
the output of the above function is a random unrelated value instead of a valid
label, the receiver will be able to detect this while evaluating and demarcate this
output as essentially equivalent to 1. We elaborate more on this in Sect. 6.2.

Benhamouda et al. [9] design a non-interactive multi-party computation
(NIMPC) protocol for such functions, but where M, u, z could be matrices and
vectors in any field and where each party contributes one element of x as input.
This NIMPC protocol can be re-imagined as a robust garbling for such function-
alities, when M, u, z are matrices and vectors over the Boolean field. Previously,
Almashagbeh et al. [2] leveraged a similar observation (of combining this NIMPC
protocol with a regular garbled circuit) towards designing a garbling scheme that
remains robust in the presence of an adversary who gets access to both labels
for a fraction of the input-wires. However, there are some important differences
between our definition and theirs; see Sect. 2.5 for a discussion).

The NIMPC protocol in [9] is presented in two phases — (1) an offline pre-
processing phase that outputs private messages to each party and a broadcast
message to all parties, and (2) an online phase where each party deterministically
computes and broadcasts a single message based on its input and the private
message output in the pre-processing phase. We observe that when working
over a Boolean field, the broadcast message of the offline phase can be viewed
as a garbling of the above function. Since there are only two-possible values
for each element of the input vector x, we can compute both possible messages
corresponding to each element that the parties are expected to send in the online
phase, and these may essentially act as the wire labels for the garbled circuit.

More concretely, this robust garbling works as follows: (1) sample a random

any input x € {0,1}", f(x) =

matrix s < {0,1}***¥ and compute s’; = s- M. ; for each i € [n]. (2) For input
wire i € [n], the O-label label; o € {0,1}* is sampled randomly and the 1-label
is computed as label; 1 = label, o ® s’;. (3) The garbled function is defined as

f=z@®s-ud Gaie[n] label; o. To evaluate, the receiver can simply exclusive-

or all the appropriate labels with f . In Sect.6.2, we show this construction
satisfies the above notion of robust garbling, and that if x satisfies u = Mx,
then z = [& @ie[n} label; [}, otherwise, this evaluation will output random z’.

2.3 Reducing Lockboxes Using Laconic OT

We now describe a generic method for achieving an asymptotic reduction in the
total number of counter lockboxes by using laconic oblivious transfer (LOT) [18].

One-Time Programs from Commodity Hardware 133

Recall that our previous construction requires a total of O (n) lockboxes for n-bit
inputs. Using LOT, we can reduce the number of lockboxes to be independent
of the input size and only depend on the security parameter (as determined by
the LOT scheme).

An LOT scheme allows a receiver to commit to a large input = € {0,1}"
via a short hash whose size is a fixed polynomial in the security parameter.
Subsequently, a sender with inputs (mg, m;) and an index i sends a short message
to the receiver. Using this message, the receiver can recover myp; but my_,(;
remains computationally hidden.? Moreover, the hash value can be reused by the
sender to transmit different messages to the receiver, based on different choices
of indices 1.

At a high-level, we can use LOT to “compress” the effective input size,
thereby achieving an asymptotic reduction in the number of lockboxes. More
specifically, let C be a circuit with n-bit inputs. We can build a one-time pro-
gram for C' using the following two-step approach:

1. First, we compute an adaptively secure garbled circuit C for C together with
a set of wire labels.

2. Now let Send be the next-message sender function in an LOT scheme. Let us
consider n different copies (Sendy,...,Send,) of Send, where the i-th copy is
hardwired with an index i € [n] and a pair of labels (lab?, lab}). Here, lab} is
the b-th label corresponding to the i-th input bit computed in the first step.
Now, consider a new circuit Send that computes all of the functions
Sends,...,Send,, (in parallel). The input to this circuit is the LOT receiver
message H — namely, the hash of an input z (to the original circuit C'). We
now create a one-time program OTP for Send with O([H|) counter lock-
boxes using the scheme described in the previ/olli sub-section. The final one-
time program OTP for circuit C' consists of OTP and the garbled circuit C
computed in the first step.

To evaluate the one-time program OTP on an input x, a receiver first com-
putes an LOT hash H of z and evaluates OTP on input H. Using the output
values, it evaluates the garbled circuit C' and returns its output.

It is easy to verify that the above construction achieves correctness. In order
to prove security, we need to be able to extract the input of the receiver. However,
from the security of 6'\|'T37 we can only hope to extract the input to 6'F|/3, namely,
H, which is presumably the LOT hash of some input z. In order to extract the
actual z, we therefore require an LOT scheme that achieves simulation-based
security against malicious receivers.

It is well known that such an LOT scheme cannot be constructed using stan-
dard black-box simulation techniques [21]. However, if we rely on random oracles
or knowledge assumptions, then such a scheme can be constructed by compiling

4 We emphasize that LOT is non-trivial even without privacy for receivers. While
receiver privacy can be generically added [18], we do not require it for our transfor-
mation.

134 H. Eldridge et al.

an LOT scheme with a succinct argument of knowledge (SNARK) [11,44]. Due
to space constraints we defer the formal description of our OTP construction
using Laconic OT to the full version of the paper.

2.4 Counter Lockboxes with Multiple Password Attempts

Up to this point we have only considered counter lockboxes that allow for a single
attempt to guess the password. For some real-world instantiations of counter
lockboxes e.g. [39,40], this may not be a valid assumption. We now discuss how
our construction of leaky batch-OT can be adapted to support counter lockboxes
that allow for any number of password attempts.

A natural approach is that the sender may simply “burn” all but one attempt
from each lockbox they configure. However, this may be undesirable, especially
in a cloud-based lockbox setting or if the sender does not wish to track the state
of each lockbox. Therefore, we also provide a subtler approach described in this
section and more fully examined in the full version of the paper.

Let z be the number of password attempts allowed by a counter lockbox
functionality. We modify the previous construction as follows: once the sender
decides that a particular lockbox should be a b-lockbox for a choice bit b, they
do not simply set its password to b. Instead, they create z distinct strings
bin(1)]|b, ..., bin(z)||b — each ending with bit b, where bin(¢) denotes the binary
representation of ¢. The sender then selects one of these z at random and sets it
as the password for the counter lockbox.

For any choice bit b, an honest receiver can simply generate and try all of
the z potential passwords for any lockbox. This guarantees that it can open all
of the required lockboxes to reconstruct the desired label for its choice bit. On
the other hand, the adversary gains no new advantage from having z attempts
since there are 2z potential password choices for any lockbox. In particular, an
adversary can do no better in determining whether a lockbox is a b-lockbox than
by “committing” to some b and trying b concatenated with each possible prefix
string. We can therefore achieve the same parameters for the multiple password
attempt case as in the single attempt case. Due to space constraints we defer a
formal treatment of this topic to the full version of the paper.

2.5 Related Work

Chaum and Pederson [16] were the first to propose the use of tamper-proof hard-
ware for cryptography purposes, and Goldreich and Ostrovsky [24] explored its
application to software protection. Goldwasser, Kalai and Rothblum [26] intro-
duced the notion of one-time programs as well as one-time memory tokens.
Further improvements to their construction were investigated by Goyal et al.
[30] and Bellare et al. [8]. More recently, Goyal and Goyal [28] investigated the
use of blockchains to construct one-time programs.

Prior to our work, Almashaqbeh et al. [2] also leveraged the techniques from
[9] to achieve a form of robustness in non-interactive secure computation using
garbled circuits in a different context. There are some key differences between

One-Time Programs from Commodity Hardware 135

Functionality]-'?TP

Create: Upon receiving (create, sid, P;, P;, z) from P; where z is a string do:
1. Send (create,sid, P;, P;) to P;j.
2. Store (P;, Pj,x).

Execute: On receiving (run,sid, P;,y) from party P;, find the stored tuple (P;, Pj, z) (if no
such tuple exists, do nothing.) Send f(z,y) to P; and delete tuple (P;, P;, x).

Fig. 1. Ideal functionality for a one-time program (OTP), parameterized with a specific
function f, quoted from [30].

our work and theirs: we provide a general definition of robust garbling that
accounts for the challenges involved in determining the adversary’s input (and
output) in our setting involving “leakage”. In particular, as discussed earlier,
since it is unclear how to define robust garbling for general functions, we define a
class of admissible functions and robust garbling for such functions (as discussed
in Sect.2.2). In contrast, their definitions assume an a priori fixed input (and
output) for the adversary, and are not applicable to our setting. Further, our
definitions (unlike theirs) account for fully adaptive adversaries, which is crucial
to our setting where the adversary can query the lockboxes in arbitrary order.

3 Preliminaries

We include preliminary definitions and discussion for computational indistin-
guishability, the UC-Framework, adaptive projective garbling schemes, linear
error-correcting codes and succinct non-interactive arguments of knowledge
(SNARKs) in the full version of the paper.

3.1 One-Time Programs

One-time Programs (OTP) were introduced by [26]. At a high level, a one-time
program for a function f enables a party to evaluate f on any one input of its
choice. The security of a one-time program dictates that no efficient adversary
should be able to learn anything about the function f, beyond what can be
inferred from its output f(z) on any one input x of its choice.

Similar to Goyal et al. [30], we model one-time programs as a two-party non-
interactive protocol that is secure against malicious receivers. We define the ideal
functionality for a one-time program in Fig. 1.

4 Counter Lockboxes

In this section, we formalize our notion of counter lockboxes. A counter lockboz, or
just “lockbox,” is a stateful abstraction for securely storing cryptographic secrets
such that they are protected by a human-memorable password. To create a new

136 H. Eldridge et al.

lockbox, a requester provides a password P and a maximum attempt counter
A. The lockbox then generates random value K and returns K to the requester.
The lockbox also stores internally A, some data with which it can re-compute
K given P, and some information it can use to check if a future password guess
matches P.

At a later point, a requester can provide some password P’ to the lockbox,
which will use its internal state to check if P’ produces a match. If so, the lockbox
recomputes and returns K to the requester. If the password does not produce a
match, the lockbox decrements A. After A incorrect guesses the lockbox com-
pletely erases its internal content, preventing the value of K from ever being
retrieved.

We model the lockbox functionality as FL°Po< described in Fig.2. In this
work, we study cryptography in the]—"k“kb"x—hybrid model.

Functionality F5oPo

Create: On input (create, P;, P;, sid,id, P, A) from party P; where A > 0, send
(create, P;, Pj, sid, id) to P;. Sample K € {0,1}*, store the tuple (P;, P;, sid, id, P, A, K, 0),
and send K to P;

Open On input (open P;, sid, id, P') from party P;:
If a tuple (P;, Pj, sid, id, P, A K, N) does not cxlst then do nothing.
— If N = A then delete the tuple and return expired.
— Otherwise if P = P’ then delete and replace the tuple with (P;, P}, sid, id, P, A, K, 0)
and return K.
— If P # P’ then delete and replace the tuple with (P;, P;, sid,id, P, A, K, N + 1) and
return bad_guess.

Fig. 2. Ideal functionality for a counter lockbox. This simplified interface assumes that
the lockbox “secret” K is a random string of length A and that the password guess is
directly compared to a stored password.

On the Communication Model. Previous works using secure hardware
tokens [26] assume a two-party model in which a sender provisions stateful
tokens and sends them to the receiver, who then uses them to evaluate a one-
time program. This model can be directly adapted to cloud-based lockbox func-
tionalities by simply forwarding references to the appropriate online locations.
Lockboxes on a fixed device, however, may require adapted usage. For exam-
ple, unlike hardware tokens, lockboxes implemented within the Apple SEP are
an integral component of the device and cannot easily be removed or replaced.
Hence our results can rely on the following different usage scenarios:

1. In a cloud-based scenario, the sender provisions a series of lockboxes on
a shared (accessible to both parties) server, such as an Apple Cloud Key
Vault [39] HSM or Google Titan [48] HSM in a remote data center. The
sender then provides the location (IP address or URL) of these lockboxes
along with some auxiliary data to the receiver. The receiver accesses these
lockboxes to evaluate the one-time program.

One-Time Programs from Commodity Hardware 137

2. In a device-based scenario, the sender provisions a device (such as an Apple
i0S device with a SEP) with lockboxes and then physically delivers the device
to the receiver. Given the physical security of the SEP [3], these lockboxes are
designed to resist device forensics. Auxiliary data can be transmitted within
the regular device memory, and evaluation could even be facilitated by custom
on-device software such as an iOS app if deemed acceptable to the evaluator.

3. In a further device-centric instantiation, the sender and receiver may not be
physically co-located. To provision lockboxes on the receiver’s secure hard-
ware, the sender employs a cryptographic protocol that enables secure mes-
sage transmission to the receiver’s secure hardware, while entirely bypass-
ing the receiver’s ability to observe this provisioning. For example, Apple’s
SEP supports a cryptographic protocol for communications between the SEP
and application processor within a single device. With appropriate key man-
agement, this could be repurposed to allow a remote party to communicate
securely with a receiver’s SEP.

In all three settings, we assume that the hardware itself is secure against logical
and physical attacks: this means that the only way to access lockbox secrets is
through the password interface the hardware exposes. By contrast we assume
that, at least at program execution time, the receiver has full control of the
remaining portions of the device processor and can query the lockbox interface
arbitrarily.

Discussion. In all prior hardware-token models, the sender physically transmits
the device to the receiver and it is assumed that there is no “backward commu-
nication channel” to the sender. Indeed, such a channel can lead to privacy loss
for the receiver.

However, one could consider a stronger model, where the sender does in
fact have the ability to inspect lockboxes after the receiver is done querying
them. In such a model, to prevent the sender from learning receiver’s input bits,
it is important to ensure that the following three states of lockboxes remain
indistinguishable — (1) lockboxes with leftover password attempts, (2) lockboxes
that were “destroyed” because of failed password attempts and (3) ones that
are still presumably “functional” because they were opened using the correct
password. For the first kind, we can use a simple defense and ask the receiver to
consume all password attempts on each.

For the remaining two forms, our ideal lockbox functionality implicitly
assumes that an adversary cannot distinguish between hardware that outputs
the secret and one where the secret was destroyed because of failed password
attempts. In the above stronger model, hardware that matches this ideal func-
tionality clearly will not “leak” extra information once its attempts have been
expired. It simply outputs L, and there is no way to distinguish between “expired
during evaluation without producing a secret” and “did output the secret but
expired later as a defensive cleanup measure.” While in general, real hardware
may not behave like an ideal function, our definition of this ideal functionality is
inspired by precise technical specifications from vendors such as Apple (see e.g.
Apple i0S Security Guide), and there seems to be strong evidence that hardware

138 H. Eldridge et al.

Functionality f?;_,y)

Initialize: Upon receiving (init, sid, id, sen, rec, {(m; o, mi,l)},;e[n]) from the sender sen, where
{(mi,o,mivl)}ig[n]e M?2" | send (init, sid, id, sen, rec) to the receiver rec and store the tuple
(sid, id, sen, rec, {(mi 0, M 1) bic(n]» S1, S2, counter), where S; = Sz = @) and counter = 0.

Open: Upon receiving (open, sid, id, sen, rec, i, b, choice) from party rec, where choice €
{both, single}, find the stored tuple (sid,id, sen,rec,{(mi0,Mi 1)}ic[n], S1,S2, counter) (if no
such tuple exists, do nothing).
— If i € S1, do nothing.
— Else if 1 € Sy, send m; , to rec.
— Else, do the following:
e If choice = single, send m; 3, to rec, then delete and replace the tuple with
(sid, id, sen, rec, {(mi 0, M 1) }ic(n)» S1 U {i}, S2, counter)
e clse, if choice = both and counter = ~ return forbidden. Else if counter < « send m;; to
rec, then delete and replace the tuple with (sid,id, sen, rec, {(mi 0, mi 1)}icm], S1,S2 U
{i}, counter + 1).

Fig. 3. Ideal functionality for leaky batch-OT

will satisfy it. As a result, our constructions remain secure in this stronger model
as long as the hardware behaves similarly to the ideal functionality.

5 Leaky Batch-OT

In this section, we present and formalize a notion of leaky batch-OT and show
how it can be realised using counter lockboxes.

5.1 Definition

Leaky batch oblivious transfer is a two-party functionality between a sender and
receiver, where the sender initially inputs n pairs of messages {(m; 0, Ms 1) }icm
where each m;; is in some message domain M. For each ¢ € [n], the receiver
inputs a single bit b € {0,1} and obtains m; ;. Additionally, at most « times,
the receiver is allowed to input ¢ and obtain m; ;_;, assuming they have previ-
ously received m; ;. Our specific formulation is more nuanced. We give a formal
definition of this reactive functionality in Fig. 3.

5.2 Construction

In this section, we construct a protocol for leaky batch-OT using counter lock-
boxes. Recall that our definition of leaky batch-OT only allows the receiver to
obtain both messages for at most v indices ¢ € [n]. Therefore, we show that if
{ is set to [—logy ()] + 1 then except with some negligible probability in n a
malicious receiver can successfully obtain keys of all 2¢ lockboxes for at most
7 indices i € [n]. We give a formal description of this protocol in the Frockbox.
hybrid model in Fig.4. Due to space constraints we defer the formal proof of
security to the full version of the paper and include a proof sketch here.

One-Time Programs from Commodity Hardware 139

Theorem 3. There exists a protocol for securely realizing the leaky batch-OT

functionality f(%TW) (Fig. 3) against a malicious sender and receiver, in the

Frockbox_hybrid model, where the sender only sends a single message to receiver,
while the receiver does not to send any messages to the sender.

Proof Sketch. We first present a simulator that in the ideal world simulates
sending lockboxes to the adversary as in the protocol. We then show that as
long as the adversary is not able to successfully open all 2¢ lockboxes associated
with more than 7 input wires, with BAD denoting the event that the adversary
succeeds in doing so, the transcript output by the simulator is indistinguishable
from that computed in the real world.

We then proceed to show that the probability that the BAD event happens
in negligible when £ = [—log, ()] + 1. For this, we first show that the probabil-
ity of the adversary successfully opening all 2¢ lockboxes for one wire is at most
p= (%)e . ﬁ. As intuition, the adversary can do no better when guessing
passwords than just guessing whatever password is in the majority among the
remaining lockboxes. For ¢ of the guesses this gives them a 50% chance of suc-
cess, producing the (%)[term. The second term follows from a similar but more
involved calculation. Following our derivation of p, we use a Chernoff bound to
show that the overall probability is negligible in n. We then conclude that when
n is large, i.e. O(X), the protocol is secure.

— Sender: Let £ := [—logy(2)] 4+ 1. Given inputs {(m; 0, i 1)}ic[n], the sender sen samples
a fresh sid. For each i € [n], do the following:
1. Sample a random permutation 7; : [2¢] — [2].
2. Sample 2¢ unique ids {id; ;} e[2¢]-
3. For each j € [2/],
o Ifm;(j) < ¢, invoke fk“kb” on arguments (create, sen, rec, sid, id; r, (;),0, 1) and obtain
K;T_gu) in return.

i (4)

e Else, invoke }"/'{"Ckb"x on arguments (create, sen, rec, sid, id; ,(;),1,1) and get K,

in return.)
4. Compute C; 9 :=m; 0 P @ﬁ:l K.
5. Compute Cj 1 :=m; 1 @ @?i[+1 K{,l'
6. Send {(Ci,0,Ci,1)}ie[n] to the receiver rec.
— Receiver. Given a set of input bits {bi}ie[n] and upon receiving
{(sid, id; 7, (j)sS€N, rec) }iel2e),ig[n) from the fk“kb"x functionalities and {(Ci,0, Ci,1) }ie(n
from the sender, the receiver proceeds as follows for each i € [n]:

1. For each j € [2/], invoke F5*®™ on arguments (open, sen, sid, id; b;) to receive

i (3)
either Kzr’“b(_’) or bad_guess, in which case set Kzr
Jb;)

2. Compute m;p, = Cip, & @?2:1 K:gij)

i (3) _
by =0.

Fig. 4. Protocol for leaky batch OT

140 H. Eldridge et al.

6 Robust Garbling

In this section, we formalize the notion of robust garbling for a class of admissible
functions. We then present a robust garbling scheme for a sub-class of such
functions, with fully adaptive, information-theoretic security.

6.1 Definitions

In a robust garbling scheme, we want to capture the requirement that even if the
receiver obtains both labels for some of the input wires, it should only be able
to learn exactly one output. However, this poses the following conundrum: on
the one hand, we are allowing the receiver to obtain labels for multiple inputs.
On the other hand, we do not want it to learn more than one output. How do
we reconcile these requirements?

While achieving a reconciliation seems impossible for general functions, we
can hope to do so for functions where the inputs have some level of redundancy.
In other words, if only a subset of the input bits are sufficient to determine the
output of the function, we can hope to construct a garbling scheme where even
if the receiver learns multiple labels for the remaining bits, it will only learn at
most one uniquely defined output.

We now give a formal definition of such a class of functions.

Definition 1 (Function Class F™7). F™7 contains all functions f
{0,1}™ — {0,1}* U {L} such that for any set S C [n] of size (n —) and
any set of bits {;}ies, there exists at most one “valid” {x;};,.g such that
f(.l?l,...,],‘n) 7éJ_

Further, there is an an associated function Expand : {0,1}(»=7) — {0, 1}
such that for every {x;}ics:

1 If Haiteq, such that f(x1,...,2,) # L, then Expand({zi}ics) =
(21, o).

2. Else, f (Expand({z;}ics)) = L.

At a high level, the above definition implies that it is possible to determine
the unique output associated with any (n — «y) bits of input.

Next, we formalize the notion of robust garbling for this class of functions. In
addition to the robustness property discussed above, we also want this garbling
scheme to be “fully adaptive”. That is, upon receiving the garbled circuit, the
adversary should be allowed to choose its input bit-by-bit, depending on the
labels received thus far. We note that this is stronger than the standard notion
of adaptivity for garbled circuits [7,8,23], where the adversary must specify its
entire input in one go, after receiving the garbled circuit.

Moreover, as discussed previously, we allow the adversary to receive both
labels for some of the input wires. However, in case it plans to obtain the second
label for any index, it must specify that at the time of making the first query
for that index. This way, once the adversary has received at least one label for
each input position, the simulator can determine the output based on the ones

One-Time Programs from Commodity Hardware 141

for which the adversary is guaranteed to not make a second query and simulate
accordingly. Therefore, we model our simulator for robust garbling to essentially
consist of three algorithms (SimFunc, SimIn, SimInLast), where SimFunc simulates
the garbled circuit using only “public-information” about the circuit (e.g., the
size of the circuit). SimIn and SimlInLast are used for simulating the input wire
labels, where SimlInLast is used specifically once the adversary has obtained at
least one label for each input wire.
We now present a definition of robust garbling.

Definition 2 (Robust Garbling) A robust garbling scheme for functions f €
F™7 consists of a tuple of PPT algorithms (RobGarble, RobGarblelnp, RobEval)
such that:

~ (f,st) < RobGarble(1*, f): This is a PPT algorithm that takes as input the
security parameter 1* and a function f € F™Y and outputs a garbling f and
some private state information st.

- lab; 5, < RobGarblelnp(st, i, x;): This is a PPT algorithm that takes as input
the state information st, an index i € [n] and an input bit x;, and outputs the
corresponding input label lab; 4, .

~y = RobEval(f, {lab;z, }iemn)): Given a garbling f and a set of labels
{lab; 4, }icn) it outputs a value y € {0,1}%.

Correctness. For every A € N, f € F™7, and for each x € {0,1}", it holds
that: Pr[RobEval(f, {lab; z, }ie(n)) = f(x)] = 1, where (f,st) < RobGarble(1*, f)
and Vi € [n], lab; 5, < RobGarblelnp(st, i, z;).

v-Robust Adaptive Security. There exists a PPT simulator Sim =
(SimFunc, SimIn, SimInLast) such that, for any non-uniform PPT adversary A
there exists a negligible function v such that:

RobAd RobAd
| PrlExpy cc.aim(14,0) = 1] = Pr[Exp ¢ 6, (17, 1) = 1]] < v(})

where the experiment Expiozﬁdgim is defined in Fig. 5

6.2 Construction

In this section, we present an information-theoretically secure construction of

robust garbling for functions of the form f = (M,u,z) € F™7, where M €

{0,1}**" u € {0,1}* are public and z € {0,1}* is private, such that on any
if u=Mx

z & {0,1}% otherwise -

We use F;7 to denote this subclass of F7. While all invalid inputs must

linear
to lead to a L output in any f € F™7, functions in) instead output a
random z’. We note that depending on the context, this may not be a problem
(and the above function can still be admissible), if the receiver can distinguish

a valid output z from an invalid random 2z’ potentially using some “additional

input x € {0,1}", f(x) =

142 H. Eldridge et al.

Experiment Expf:bégpslm

1. The adversary specifies a functlon f € F™7 and obtains f, where f is created as follows:
— If b=0: (f,st) — RobGarble(1*, f)
— Ifb=1: (f7st) — SlmFunc(lk, l‘f‘) (Here, we implicitly assume that this simulator can
get any public information about f, not just its size.)
2. Initialize S; = Sz = 0 and counter = 0. For each j € [n + 7], the adversary A specifies a
tuple (ij, xij,choicei), where choice; € {single, both}.
— If choice; = single and (i,-) ¢ S1, update S1 = S1 U {(i,®i;)}. Else if choice; = both,
i ¢ S US> and counter < ~, update So = S> U {i} and set counter = counter + 1. In both
cases do the following:
e If b =0, output |3b1:j,mi_ «— RobGarblelnp(st, i, T).
e If b=1 and |S; US2| < n, output Iabij,z

e If b=1and |S; USz| =n,
output |abij,mi, — SimInLast(st,ij,ac,,-,j,S,out), where & C [n] is the set of indices
J
i € [n] such that (i,-) € S; and out = f(fexpand({i }ics))-
— Else if choice; = both, ¢ ¢ S; and i € Sz, do the following.
e If b =0, output Iabv. x; . + RobGarblelnp(st, ij,:c,-,].).
J

i Simln(st, i, T).

e If b =1, output lab;, T Simln(st, 7, T).
Finally, the adversary outputs a blt b’, which is the output of the experiment.

Fig. 5. v-robust adaptivity experiment

information.” In our OTP construction, the value z will correspond to labels of
the garbled circuit that garbles the actual function for which we compute the
OTP. While these labels are also random vectors in {0,1}*, the receiver gets
“additional information” in the form of the garbled circuit where z is used as an
input wire label. In case the output of the above function is a random unrelated
value instead of a valid label, while evaluating, the receiver will be able to detect
this and demarcate this output as essentially equivalent to L.

Garbling Scheme. We now present a construction of robust garbling scheme for
the above class of functions. As discussed previously, this is adapted from the
non-interactive multi-party computation (NIMPC) protocol for such functions
proposed by Benhamouda et al. [9].

— RobGarble(1?, f):

1. Sample a random s & {0, 1}kxk,
2. For each i € [n], sample a random r; € {0, 1}*.
3. Set st =s, {ri}ie[n]-
4. Output garbling f =z ®s-u® ®i€[n] r;.
— RobGarblelnp(st, Z, {x; }icinp\z):
1. Parse st = s, {Ti}ic[n)-
2. For each i € [n], compute s; = s-M. ;, where M. ; denotes the i-th column
of M
3. For each i € Z, compute and output lab; g = r,- and lab; ; =r; @ s).
4. For each i € [n]\ Z, output lab; ,, =r; ®s}
— RobEval(f, {lab; ., }iemn)): Compute and output f EB ®ze[n] lab; 4,

One-Time Programs from Commodity Hardware 143

We prove the following theorem in the full-version of our paper.

Theorem 4 There exists an information-theoretically secure robust adaptive

garbling scheme for each every function f € Fi7 .

7 One-Time Program

In this section we use the tools built in previous sections to construct a one-time
program. In addition to leaky batch-OT and robust garbling for "7 | we make
use of a standard adaptive, projective garbled circuit and linear error-correcting
codes over Fo.

We instantiate our one-time program construction using a [n, k, 7+ 1]o-binary
linear error-correcting code, where k is the message length, n is the code-word
length, and v+1 is the distance. We give a formal description of this construction

in the f(OT -hybrid model. While an honest receiver does not use the “leaky”

aspect of our leaky batch-OT to receive both (Iabj 05 Iab;J) for any index j, a
malicious receiver can certainly try to exploit it. However, since the number of
“double-labels” that they can obtain is capped at v (and our robust garbling is
secure as long as double-labels for at most v input wires are revealed), they will
never receive enough to successfully obtain both labels for any input wire of the
adaptive garbled circuit. As a result, even a malicious receiver will only be able
to learn the output for a single input.

Protocol. We give a formal description of the OTP protocol in Fig.6, in
the f(onTv)—hybrid model, using [n, k,y + 1]-binary linear error-correcting codes,
an adaptive projective garbled circuit (AdaGarbleCkt, AdaGarblelnp, AdaEvalCkt)

and a robust function garbling scheme (RobGarble, RobGarblelnp, RobEval) for

n,Y
linear*

Note that for all ¢ € [k] and b € {0,1}, the function F;; belongs to the
Find - class of functions described in Sect.6.2. It is easy to identify when the
output is 1, as the output of each function is an input wire label for a garbled
circuit. The use of an error-correcting code grants the properties required by
Find . By the definition of minimum distance, any set of (n — ~y) fixed bits will
define only a single valid codeword, and the Expand function is simply a lookup
for the codeword uniquely defined by those bits. Finally, each F;; clearly meets
the linear construction requirement of F;"} . We prove the following theorem in

the full-version of our paper.

inear”

Theorem 5 Assuming the existence of one-way functions, there exists a non-
interactive protocol for securely realizing .7-'OTP against a semi-honest sender and

malicious receiver in the]—" hybmd model

8 Concrete Analysis

In this section, we present a concrete analysis to investigate the suitability of our
schemes for real-world applications. In Sect. 8.1, we estimate the number of lock-
boxes required for different input lengths. In Sect. 8.2, we discuss how lockboxes

144 H. Eldridge et al.

— Sender: Given an input f, the sender sen proceeds as follows:
1. Express f as a circuit C, then compute (C, {lab; p}iek],befo,1}) — AdaGarbleCkt(1*, C).
2. Instantiate a linear error-correcting code with length n, rank k, minimum distance v+1
and generating matrix G.
3. For each i € [k], and each b € {0,1}, compute a matrix M, ; and vector u;; such
that u;, = M; -y if and only if y is a valid codeword generated using G and its

corresponding word has bit b at position i, i.e. u;, = M;; -y <= Ix € {0, l}k, yT =
x| - G A x; =b. Then, define the following function:

Iabin if u; p = M,in "y
Fiv(y) = $ &)
z' «— {0,1}* otherwise
Next, compute (Fy p, {VObUStLabj-'_l;/}je[n],b’e(o,l}) «— RobGarble(1*, F; 3).
i,b - ’
4. Define robustLab; ;s := {robustLabj;b,}ie[k]’be{OJ} for all j € [n],b" € {0,1}.

5. Sample a fresh sid and id and invoke -7:(O7LT,~,) on arguments (init, sid, id, send, rec,

{(robustLab; o, robustLabj,1)}]-6[”]1,)/6{071})

6. Send (C, {Fi,b}ie[k],be{o,l}) to the receiver rec.

— Receiver: Given an input x and upon receiving (sid,id,sen,rec) from T(C)Jﬁ) and

(c, {Fb,b}ie[k],be{o.l}) from the sender, the receiver proceeds as follows:

1. Compute y :=x" - G.

2. For each j € [n], invoke }'(OJW) on arguments (open, sid,id,sen,rec, j, y[j]) and get
e ib :
robustLab; v ;] = {robustLabjyy[j]}ie[k],be{o,l} in return.

3. For each i € [k], compute lab; ,, = Rob~Eva|(F,iyx[,-,]7 robustLab;:;[[;.]]}je[,,,]).

4. Compute and output z < AdaEvalCkt(C, {lab; x[:]}ic[k])-

Fig. 6. OTP protocol

can be instantiated using commodity hardware and the associated costs and
finally in Sect. 8.3, we discuss some potential applications of our construction.

8.1 Number of Lockboxes

We use lockboxes to implement the leaky batch-OT functionality and the input
to this functionality is an encoding of the “real” input of the receiver. For encod-
ing, we require linear binary ECC with a constant rate. More often than not,
finding optimal binary ECC for specific input lengths k typically requires iter-
ating over all possible alphabets in the domain. In our case, the problem of
choosing optimal codes, is made worse by the fact that we don’t necessar-
ily require codes with optimal distance = or the smallest codeword length n.
Instead, we want a code that gives the smallest value of 2nf, while ensuring that

e/p— np
(%) < 3557, where p = (3)°- (2%1)” and € = y/n (See Sect. 5.2 for

details). To simplify this problem and to get an estimate of how many lockboxes
are required, we pick a particular binary ECC with constant rate and find values

One-Time Programs from Commodity Hardware 145

of n, v and ¢ that give the smallest value of 2n¢ withing this encoding scheme.
In particular, we use Justesen codes [35].

Table 1. Lockboxes required for various input lengths with statistical security param-
eter A > 50

Input Codeword | (n/, k', m,) £ | Total LB | LB/Bit
Length (k) | Length (n) (2n0) (2nl/k)
192 496 (43, 32, 6, 12) 717224 37.625
256 752 (47, 32, 8, 16) 7110528 41.125
560 1302 (93, 80, 7, 14) 7118228 32.55
5000 14180 (709, 500, 10, 400) 41113440 22.688
300000 735720 (24524, 20000, 15, 13080) | 4 | 5885760 | 19.6192

Encoding with Justesen Codes. Justesen codes are derived as the code con-
catenation of a Reed-Solomon code and the Wozencraft ensemble. The encoding
algorithm works as follows — the given binary input string of length £ is divided
into £’ blocks of length m each. This new vector of length &’ is encoded using the
Reed Solomon code (n', k', n’ — k' + 1) over field GF(2™). Finally, the resulting
n’ blocks of length m each are encoded using Wozencraft ensemble. We use a
particular Wozencraft ensemble [41], that yields a final codeword of length 2mn’'.
The minimum distance 7 of the resulting code is Eie[L (2;”), where g is the

smallest integer such that Zie[g] (2;") <n -k +1.

Estimating the Optimal no. of Lockboxes. Since, n’ here can potentially take
any value < 2™ (and m € [1, k]), a bruteforce approach to find optimal values even
within Justesen code will result in an exponential search. To reduce the search
space, we observe that for any given input length k& and distance ~, it suffices to
only look at the smallest admissible value of n’. Greater values of n’ for the same
k and ~ yield worse security and larger values of 2nf. We use this observation to
deploy the following strategy — for any input length k, iterate over all possible
values of m € [1, k], compute all corresponding admissible values of g,y and set

n' =k'+ (Zie[g} (2m)) —1 (this significantly reduces potential domain for n’). For

(]

each such combination of (m, n’,~y), we calculate security for reasonable values of ¢
and find the combination of (n', k', m, v, £) that results in the fewest total number
of lockboxes, while ensuring that the security is at least 270,

We report the number of lockboxes required for some input lengths in Table 1.
As expected, the number of lockboxes per input wire decreases as the number of
inputs increase. By replacing Wozencraft ensemble with BCH codes [12], we can
hope to get small improvements for larger input lengths; however, for smaller
inputs, BCH codes are unlikely to help. Overall, due to the lack of efficient binary
linear ECC, the number of required lockboxes are unlikely to be significantly
better than the ones computed using Justesen codes. Our laconic OT-based

146 H. Eldridge et al.

construction offers some relief in this regard: for instance, if the length of digest
output by the receiver is 256 bits, we require 10,528 total lockboxes for any input
length.

8.2 Instantiating Lockboxes

To realize counter lockboxes from the widely-available device- and cloud-based
hardware, some implementation considerations arise. In this section, we provide
brief background on each candidate lockbox and the practical considerations
involving their use.

Cloud-Based Backup Services. Apple’s Cloud Key Vault was introduced
in 2016 when Apple added functionality to encrypt and store user-controlled
encryption keys within hardware security modules (HSM) to remove Apple’s own
ability to access them. Each iCloud account (registered email address) has access
to a Cloud Key Vault record, which corresponds to a password-protected HSM
entry which allows up to ten attempts® via the Secure Remote Password [4,5]
(SRP) protocol. Notably, this requires one email address per lockbox, as Apple
allocates a single Cloud Key Vault entry to each user account.

Similar to Apple’s Cloud Key Vault, Google introduced HSM-based user-
controlled encryption to protect backups even from insider threats [37]. Their
system relies on the Titan [48] HSM hardware, and similarly implements a
password-based attempt-limited authentication service which can naturally be
viewed as a counter lockbox. Akin to Apple’s Cloud Key Vault, Google allocates
a single backup service instance per user account, and so each lockbox requires
a registered Google account (email address) to be deployed. Both iCloud and
Google accounts can be acquired for free, but acquiring multiple accounts can
require evading anti-spam measures.

Signal, the secure messaging platform, offers users a backup method relying
on user-controlled encryption inaccessible to Signal’s servers. This service is called
Secure Value Recovery, or SVR. SVR allows users to set a PIN, and gives them ten
attempts to authenticate to an Intel SGX enclave to retrieve their backup data.
As a secure enclave, SGX itself is capable of running one-time programs. However,
to end users only a basic API is exposed which allows authentication attempts
over a secure connection. Rather than email-based registration, Signal requires
phone numbers, specifically to receive a confirmation SMS. Therefore, each SVR
lockbox requires a phone number able to receive an SMS; such numbers cost $0.50
USD/month each at scale with a service like Twilio [49].

i0OS Devices. Apple also offers the eponymous counter lockbox as hardware
within modern i0S devices (smartphones and tablets) available since Fall 2020.
This component emerged with the second-generation Secure Enclave Proces-
sor [3] (SEP) and was designed to prevent forensic attacks against the passcode

5 In Sect. 2.4, we discuss generic techniques to convert a multiple-attempt (e.g. 10)
lockbox into a single-attempt, including simply “burning” n — 1 attempts of each
n-attempt lockbox before transmitting their locations to the receiver.

One-Time Programs from Commodity Hardware 147

attempt counter which moderates access to a device and its filesystem. Although
there are few official documents, initial exploration seems to imply that iOS
devices are able to support up to 1024 counter lockbox instances simultaneously.
Since counter lockboxes are intended for use by iOS itself, third-party develop-
ers must interact with them directly on jailbroken devices. Finally, a note on
monetary costs: currently, iPad air 4th generation can be purchased for about
$300. Thus, the average cost of each lockbox can be estimated to be about $0.30
USD.

8.3 Applications

Given the cost of each lockbox and the notable expansion between input length
and total lockboxes as seen in Tablel, at present the real-world applicabil-
ity of our constructions is somewhat limited. However, compelling applications
involving small input lengths are within reach: Bitcoin addresses are 160-bit
hashes, which could be input into a delegated signature one-time program. Down-
sampled biometric measurements could be input to fuzzy matching algorithms,
or passwords into client-side key derivations for user authentication. Compressed
descriptions of aggregations could be input to an offline differentially-private
database service to maintain privacy budgets. As lockbox availability grows,
these domains will only expand.

Acknowledgements. The first, second and fourth authors were supported in part
by NSF CNS-1814919, NSF CAREER 1942789 and Johns Hopkins University Cata-
lyst award. The fourth author was additionally supported in part by AFOSR Award
FA9550-19-1-0200 and the Office of Naval Research Grant N00014-19-1-2294. The
first, third and fifth authors were supported by the National Science Foundation
under awards CNS-1653110 and CNS-1801479 and by DARPA under Agreements No.
HR00112020021 and Agreements No. HR001120C0084. The fifth author was addition-
ally supported by a Google Security & Privacy Award. This work was done in part
while the second author was a student at Johns Hopkins University and while the sec-
ond and fourth authors were visiting University of California, Berkeley. Any opinions,
findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Government
or DARPA.

References

1. Alamati, N., Branco, P., Déttling, N., Garg, S., Hajiabadi, M., Pu, S.: Laconic pri-
vate set intersection and applications. Cryptology ePrint Archive, Report 2021 /728
(2021). https://eprint.iacr.org/2021/728

2. Almashagbeh, G., et al.: Gage MPC: bypassing residual function leakage for non-
interactive MPC. Proc. Priv. Enhanc. Technol. 2021(4), 528-548 (2021)

3. Apple Inc., Secure Enclave. https://support.apple.com/guide/security/secure-
enclave-sec59b0b31ff/web

4. Apple Inc., Escrow security for iCloud Keychain (2021). https://support.apple.
com/guide/security /escrow-security-for-icloud-keychain-sec3e341e75d /web

https://eprint.iacr.org/2021/728
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://support.apple.com/guide/security/escrow-security-for-icloud-keychain-sec3e341e75d/web
https://support.apple.com/guide/security/escrow-security-for-icloud-keychain-sec3e341e75d/web

148

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

H. Eldridge et al.

Apple Inc., HomeKit communication security (2021). https://support.apple.com/
guide/security /homekit-communication-security-sec3a881lccbl/web

ARM Holdings. Trusted Base System Architecture Documents. https://www.arm.
com/technologies/trustzone-for-cortex-a/tee-reference-documentation. Subject to
Non-Disclosure Agreement

. Backes, M., Gerling, R.W., Gerling, S., Niirnberger, S., Schréder, D., Simkin, M.:

WebTrust — a comprehensive authenticity and integrity framework for HTTP. In:
Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp.
401-418. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07536-5_24
Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.)
ASTACRYPT 2012. LNCS, vol. 7658, pp. 134-153. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4_10

Benhamouda, F., Krawczyk, H., Rabin, T.: Robust non-interactive multiparty com-
putation against constant-size collusion. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part I. LNCS, vol. 10401, pp. 391-419. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63688-7-13

Bhudia, A., O’Keeffe, D., Sgandurra, D., Hurley-Smith, D.: RansomClave: ran-
somware key management using SGX. In: The 16th International Conference on
Availability, Reliability and Security (2021)

Bitansky, N, et al.: The hunting of the SNARK. J. Cryptol. 30(4), 989-1066 (2017)
Bose, R.C., Ray-Chaudhuri, D.K.: On a class of error correcting binary group
codes. Inf. Control 3(1), 68-79 (1960)

Broadbent, A., Gutoski, G., Stebila, D.: Quantum one-time programs. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 344-360.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_20

Van Bulck, J., et al.: Breaking virtual memory protection and the SGX ecosystem
with foreshadow. IEEE Micro 39(3), 66-74 (2019)

Chatterjee, R., Athayle, A., Akhawe, D., Juels, A., Ristenpart, T.: Password typos
and how to correct them securely. In: S&P 2016. IEEE (2016)

Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89-105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4_7

Chen, Z.: Java Card Technology for Smart Cards: Architecture and Programmer’s
Guide. Addison-Wesley Longman Publishing Co., Inc (2000)

Cho, C., Déttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part II. LNCS, vol. 10402, pp. 33-65. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63715-0_2

Dall, F., et al.: CacheQuote: efficiently recovering long-term secrets of SGX EPID
via cache attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(2), 171-191
(2018)

Delgado-Mohatar, O., Sierra-Cdmara, J.M., Anguiano, E.: Blockchain-based semi-
autonomous ransomware. Future Gener. Comput. Syst. 112, 589-603 (2020)
Déttling, N., Garg, S., Goyal, V., Malavolta, G.: Laconic conditional disclosure
of secrets and applications. In: Zuckerman, D., (eds.) 60th FOCS, pages 661-685.
IEEE Computer Society Press, November 2019

Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Theory of Cryptography Conference (2006)

https://support.apple.com/guide/security/homekit-communication-security-sec3a881ccb1/web
https://support.apple.com/guide/security/homekit-communication-security-sec3a881ccb1/web
https://www.arm.com/technologies/trustzone-for-cortex-a/tee-reference-documentation
https://www.arm.com/technologies/trustzone-for-cortex-a/tee-reference-documentation
https://doi.org/10.1007/978-3-319-07536-5_24
https://doi.org/10.1007/978-3-642-34961-4_10
https://doi.org/10.1007/978-3-319-63688-7_13
https://doi.org/10.1007/978-3-319-63688-7_13
https://doi.org/10.1007/978-3-642-40084-1_20
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-63715-0_2

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

One-Time Programs from Commodity Hardware 149

Garg, S., Srinivasan, A.: Adaptively secure garbling with near optimal online com-
plexity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS,
vol. 10821, pp. 535-565. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78375-8_18

Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM (JACM) 43(3), 431-473 (1996)

Goldwasser, S., Kalai, Y.T., Rothblum, G.N. : Delegating computation: interactive
proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 113—
122. ACM Press, May 2008

Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Annual Inter-
national Cryptology Conference, pp. 39-56 (2008)

Google. Google Tensor debuts on the new Pixel 6 this fall (2021). https://blog.
google/products/pixel/google-tensor-debuts-new-pixel-6-fall/

Goyal, R., Goyal, V.: Overcoming cryptographic impossibility results using
blockchains. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677,
pp. 529-561. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-
218

Goyal, R., Vusirikala, S., Waters, B.: New constructions of hinting PRGs, OWFs
with encryption, and more. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020, Part I. LNCS, vol. 12170, pp. 527-558. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-56784-2_18

Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 308-326. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11799-2_19

Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners
for oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 96-113. Springer, Heidelberg (2005). https://doi.org/
10.1007/11426639-6

Hazay, C., Lindell, Y.: Constructions of truly practical secure protocols using stan-
dardsmartcards. In: Ning, P., Syverson, P.F.; Jha, S. (eds.) ACM CCS 2008, pp.
491-500. ACM Press, October 2008

Intel. Overview on signing and whitelisting for intel software guard exten-
sion (SGX) enclaves. https://www.intel.com/content/dam/develop/external/us/
en/documents/overview-signing-whitelisting-intel-sgx-enclaves-737361.pdf

Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Cryptogr. 38(2), 237257
(2006)

Justesen, J.: Class of constructive asymptotically good algebraic codes. IEEE
Trans. Inf. Theory 18(5), 652-656 (1972)

Kaptchuk, G., Green, M., Miers, I.: Giving state to the stateless: augmenting trust-
worthy computation with ledgers. In: NDSS 2019 (2019)

Kensinger, T.. Google and Android have your back by protecting your
backups, September 2018. https://security.googleblog.com/2018/10/google-and-
android-have-your-back-by.html

Krassovsky, S., Cadden, G., et al.: Security of End-To-End Encrypted
Backups (2021). https://scontent.whatsapp.net/v/t39.8562-34/241394876_
546674233234181-8907137889500301879_n.pdf/WhatsApp-Security_Encrypted.-
Backups_Whitepaper.pdf?ccb=1-5& nc_sid=2fbf2a& _nc_ohc=4K040x7GheAAX -
4c-_& nc_ht=scontent.whatsapp.net&oh=01_AVxDv1cRIVElvgOFv89YURSU_
XOQUupw70bDPw602wOLEWg&o0e=6211F5FC

https://doi.org/10.1007/978-3-319-78375-8_18
https://doi.org/10.1007/978-3-319-78375-8_18
https://blog.google/products/pixel/google-tensor-debuts-new-pixel-6-fall/
https://blog.google/products/pixel/google-tensor-debuts-new-pixel-6-fall/
https://doi.org/10.1007/978-3-319-70500-2_18
https://doi.org/10.1007/978-3-319-70500-2_18
https://doi.org/10.1007/978-3-030-56784-2_18
https://doi.org/10.1007/978-3-030-56784-2_18
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/11426639_6
https://doi.org/10.1007/11426639_6
https://www.intel.com/content/dam/develop/external/us/en/documents/overview-signing-whitelisting-intel-sgx-enclaves-737361.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/overview-signing-whitelisting-intel-sgx-enclaves-737361.pdf
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html
https://scontent.whatsapp.net/v/t39.8562-34/241394876_546674233234181_8907137889500301879_n.pdf/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf?ccb=1-5&_nc_sid=2fbf2a&_nc_ohc=4K040x7GheAAX_-4c-_&_nc_ht=scontent.whatsapp.net&oh=01_AVxDv1cRlVElvg0Fv89URSU_XOQUupw70bDPw6o2w0LEWg&oe=6211F5FC
https://scontent.whatsapp.net/v/t39.8562-34/241394876_546674233234181_8907137889500301879_n.pdf/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf?ccb=1-5&_nc_sid=2fbf2a&_nc_ohc=4K040x7GheAAX_-4c-_&_nc_ht=scontent.whatsapp.net&oh=01_AVxDv1cRlVElvg0Fv89URSU_XOQUupw70bDPw6o2w0LEWg&oe=6211F5FC
https://scontent.whatsapp.net/v/t39.8562-34/241394876_546674233234181_8907137889500301879_n.pdf/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf?ccb=1-5&_nc_sid=2fbf2a&_nc_ohc=4K040x7GheAAX_-4c-_&_nc_ht=scontent.whatsapp.net&oh=01_AVxDv1cRlVElvg0Fv89URSU_XOQUupw70bDPw6o2w0LEWg&oe=6211F5FC
https://scontent.whatsapp.net/v/t39.8562-34/241394876_546674233234181_8907137889500301879_n.pdf/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf?ccb=1-5&_nc_sid=2fbf2a&_nc_ohc=4K040x7GheAAX_-4c-_&_nc_ht=scontent.whatsapp.net&oh=01_AVxDv1cRlVElvg0Fv89URSU_XOQUupw70bDPw6o2w0LEWg&oe=6211F5FC
https://scontent.whatsapp.net/v/t39.8562-34/241394876_546674233234181_8907137889500301879_n.pdf/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf?ccb=1-5&_nc_sid=2fbf2a&_nc_ohc=4K040x7GheAAX_-4c-_&_nc_ht=scontent.whatsapp.net&oh=01_AVxDv1cRlVElvg0Fv89URSU_XOQUupw70bDPw6o2w0LEWg&oe=6211F5FC

150

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

H. Eldridge et al.

Krsti¢, I.: Behind the scenes with i0S security (2016). https://www.blackhat.com/
docs/us-16 /materials/us-16-Krstic.pdf

Lund, J.: December 2019 https://signal.org/blog/secure-value-recovery/. Accessed
2 May 2022

MacWilliams, F.J.; Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland Pub. Co. (1977)

McKeen, F., et al.: Intel® software guard extensions (intel® sgx) support for
dynamic memory management inside an enclave. In: HASP 2016. ACM (2016)
Meier, R., Przydatek, B., Wullschleger, J.: Robuster combiners for oblivious trans-
fer. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 404-418. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_22

Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253-1298
(2000)

Murdock, K., Oswald, D.F., Garcia, F.D., Van Bulck, J., Gruss, D., Piessens, F.:
Plundervolt: software-based fault injection attacks against intel SGX. In: S&P
2020. IEEE (2020)

Pinto, S., Santos, N.: Demystifying arm trustzone: a comprehensive survey. ACM
Comput. Surv. (CSUR) 51(6) (2019)

Rosulek, M., Roy, L.: Three halves make a whole? Beating the half-gates lower
bound for garbled circuits. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part
I. LNCS, vol. 12825, pp. 94-124. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-84242-0_5

Savagaonkar, U., Porter, N., Taha, N., Serebrin, B., Mueller, N.: Titan in depth:
Security in plaintext (2017). https://cloud.google.com/blog/products/identity-
security/titan-in-depth-security-in-plaintext

Twilio (2022). https://www.twilio.com/sms/pricing/us

Xu, Q.: ARM-software/tf-issues (2017). https://github.com/ARM-software/tf-
issues/issues/534

Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pages 162-167. IEEE Computer Society Press, October 1986

yubico. YubiHSM 2. https://www.yubico.com/product/yubihsm-2/

https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://signal.org/blog/secure-value-recovery/
https://doi.org/10.1007/978-3-540-70936-7_22
https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1007/978-3-030-84242-0_5
https://cloud.google.com/blog/products/identity-security/titan-in-depth-security-in-plaintext
https://cloud.google.com/blog/products/identity-security/titan-in-depth-security-in-plaintext
https://www.twilio.com/sms/pricing/us
https://github.com/ARM-software/tf-issues/issues/534
https://github.com/ARM-software/tf-issues/issues/534
https://www.yubico.com/product/yubihsm-2/

	One-Time Programs from Commodity Hardware
	1 Introduction
	1.1 Our Results

	2 Technical Overview
	2.1 Basic Protocol
	2.2 Reducing the Number of Lockboxes
	2.3 Reducing Lockboxes Using Laconic OT
	2.4 Counter Lockboxes with Multiple Password Attempts
	2.5 Related Work

	3 Preliminaries
	3.1 One-Time Programs

	4 Counter Lockboxes
	5 Leaky Batch-OT
	5.1 Definition
	5.2 Construction

	6 Robust Garbling
	6.1 Definitions
	6.2 Construction

	7 One-Time Program
	8 Concrete Analysis
	8.1 Number of Lockboxes
	8.2 Instantiating Lockboxes
	8.3 Applications

	References

