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Abstract

Deep neural networks are often overparameter-
ized and may not easily achieve model gen-
eralization. Adversarial training has shown
effectiveness in improving generalization by
regularizing the change of loss on top of adver-
sarially chosen perturbations. The recently pro-
posed sharpness-aware minimization (SAM)
algorithm conducts adversarial weight pertur-
bation, encouraging the model to converge to a
flat minima. SAM finds a common adversarial
weight perturbation per-batch. Although per-
instance adversarial weight perturbations are
stronger adversaries and can potentially lead to
better generalization performance, their compu-
tational cost is very high and thus it is impossi-
ble to use per-instance perturbations efficiently
in SAM. In this paper, we tackle this efficiency
bottleneck and propose sharpness-aware mini-
mization with dynamic reweighting (δ-SAM).
Our theoretical analysis motivates that it is pos-
sible to approach the stronger, per-instance ad-
versarial weight perturbations using reweighted
per-batch weight perturbations. δ-SAM dynam-
ically reweights perturbation within each batch
according to the theoretically principled weight-
ing factors, serving as a good approximation
to per-instance perturbation. Experiments on
various natural language understanding tasks
demonstrate the effectiveness of δ-SAM.

1 Introduction

Although deep neural networks (DNNs) have
demonstrated promising results in various fields
such as natural language understanding (Devlin
et al., 2019) and computer vision (Krizhevsky et al.,
2012), they are often overparameterized and can
easily overfit the training data (Zhang et al., 2021).
Adversarial training has been proven effective in
improving both model generalization (Zhu et al.,
2019; Zhang et al., 2020a) and adversarial robust-
ness (Madry et al., 2018; Zhang et al., 2019). A
general approach for adversarial training has been
first to augment the inputs with small perturbations

Figure 1: δ-SAM performs close to the computation-
intensive per-instance weight perturbation while adding
only marginal computation overhead to the standard per-
batch SAM. Results shown are from the MRPC dataset.
See §5.5 for more detailed results.

that lead to the maximum possible change of loss,
and then optimize the model parameters to the di-
rection where the changed amount is minimized.
Besides perturbing inputs, a recent work of

sharpness-aware minimization (SAM; Foret et al.
2020) has further proposed to adversarially perturb
model weights. Such a method works by first ad-
versarially calculating a weight perturbation that
maximizes the empirical risk and then minimizing
the empirical risk on the perturbed model. This
method demonstrates improved model generaliza-
tions across different datasets and models. In princi-
ple, each instance in a batch has its own worst-case
weight perturbation and the weight perturbations of
different instances need to be calculated separately
and cannot be done in a single forward/backward
pass. This leads to a significant increase in com-
putational and memory cost. To allow a feasible
algorithm, SAM approximates per-instance pertur-
bations by a single per-batch perturbation, where
the weight perturbation is calculated on the aver-
aged loss of the batch and shared by all instances in
the batch. However, as the per-batch perturbation
represents the average of perturbations yielded by
different instances, it is a weaker adversary com-
pared to per-instance perturbations, and may hinder
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the effectiveness of SAM.
In this paper, we study how to efficiently ap-

proximate per-instance weight perturbation for
sharpness-aware minimization, while maintaining
a similar computational cost to per-batch pertur-
bation. We first theoretically analyze the gradi-
ent posed by the optimization of per-instance per-
turbation, and find that it can be effectively ap-
proximated with a weighted-batch perturbation un-
der some assumptions, where the instances with
a larger rate of gradient change are up-weighted.
Based on this motivation, we propose sharpness-
aware minimization with dynamic reweighting (δ-
SAM). Specifically, we first estimate the Hessian
and gradient norm of each instance by perturbing
the loss with a random Gaussian noise on model
weights. Next, δ-SAM dynamically reweights the
loss within each batch of training instances, and
then calculate a shared weight perturbation that
maximizes the reweighted batch loss. Finally, we
update the perturbed model on the original (un-
weighted) batch. Compared to SAM, δ-SAM only
requires extra computation cost in estimation of the
rate of gradient change, which can be efficiently
performed using three additional forward passes.
We evaluate δ-SAM on finetuning pretrained

language models (PLMs). Experiments on stan-
dard GLUE benchmark (Wang et al., 2018), self-
supervised Semantic Textual Similarity (STS), and
abstractive summarization tasks show that besides
significantly outperforming base models, δ-SAM
also consistently outperforms SAM with only 18%
extra computational cost in average.
The main contributions of this paper are three-

fold. First, we analyze the training objective of
per-instance weight perturbation and find that un-
der some assumptions, it can be approximated by a
weighted-batch perturbation, where instances are
efficiently reweighted according to their caused
rates of gradient changes. Second, we propose
to use random perturbations as estimations to ef-
ficiently realize the weighting scheme. Third, we
evaluate δ-SAM on a diverse set of datasets and
find consistent improvements across the board.

2 Related Work

Model Generalization. Deep neural networks are
often overparameterized and may suffer from poor
generalization (Zhang et al., 2021). A lot of efforts
have been devoted to improve the generalization of
neural models, leading to methods including data

augmentation (Sennrich et al., 2016; Wei and Zou,
2019; Sun et al., 2020; Kumar et al., 2020; Thakur
et al., 2021), regularization (Loshchilov and Hutter,
2018; Xuhong et al., 2018; Liang et al., 2021), and
improved optimization processes (Izmailov et al.,
2018; Mobahi et al., 2020; Heo et al., 2021). These
methods consider different aspects of generaliza-
tion and may be combined to achieve better perfor-
mance. Among them, adversarial training (Good-
fellow et al., 2014) has demonstrated its effective-
ness in improving model generalization without the
need of any extra data or external knowledge, and
has been widely attempted to enhance NLP mod-
els (Zhu et al., 2019; Jiang et al., 2020a; Pereira
et al., 2021; Li and Qiu, 2021). Adversarial training
works by adversarially perturbing the input embed-
ding and either minimize the adversarial risk or reg-
ularizes the change of risk to be small. Specifically,
FreeLB (Zhu et al., 2019) uses projected gradient
descent (PGD;Madry et al. 2018) to generate adver-
sarial perturbations on input embedding, and recy-
cles the computed gradients when updating model
parameters in adjacent steps (Shafahi et al., 2019)
to reduce the computational costs. TAT (Pereira
et al., 2021) improves FreeLB by prioritizing the
most frequently mispredicted classes in perturba-
tion calculation. TAVAT (Li and Qiu, 2021) uses
a token-level accumulated perturbation vocabulary
to guide the initialization in PGD. However, these
works only consider the robustness on input feature
representation, while we consider the robustness of
all model weights.

Sharpness-Aware Minimization. Foret et al.
(2020) leverage the correlation between flat minima
and better model generalization and propose SAM
for training deep neural models that are robust to ad-
versarial weight perturbations. It has demonstrated
effectiveness in tasks on both vision (Chen et al.,
2022; Zheng et al., 2021) and language (Bahri et al.,
2022) modalities. Several variants of SAM have
been proposed to improve its efficiency or effective-
ness. For efficiency, Brock et al. (2021) propose to
speed up SAM by perturbing fewer instances in the
batch; Du et al. (2022) introduce stochastic weight
perturbation and sharpness-sensitive data selection
to reduce the computational overhead. For effec-
tiveness; Kwon et al. (2021) propose to adaptively
set the SAM’s radius such that it is invariant to
parameters’ scales; Zhuang et al. (2022) introduce
a gradient ascent optimization step in the perturbed
model’s orthogonal direction to achieve better flat-
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Algorithm 1: SAM and δ-SAM
Input: model fw, training set
S ≜ {(xi,yi)}|S|i=1, loss function
l : W ×X × Y → R+, batch size N ,
neighborhood size ρ ∈ R+, optimizer h.

Output: a flat solution ŵ.
Initialize model weights w.
while not converge do

Sample a batch B = {(xj ,yj)}Nj=1.
For δ-SAM:
Reweigh B by Eq. 5.
Compute gradient ∇lB(w) of the
(reweighted) batch’s empirical risk.
Perturb the model weights by
ϵ∗ = ρ∇lB(w)/ ∥∇lB(w)∥2.

Update w w.r.t. the unweighted
empirical risk 1

N

∑N
j=1 lj(w + ϵ∗)

with the optimizer h.

ness. In contrast to the aforementioned studies, this
paper, for the first time, tackles how to narrow the
gap of per-instance and per-batch weight perturba-
tion. Accordingly, we propose an efficient approxi-
mation to per-instance weight perturbation, which
shows improved results on several NLP tasks while
does not bring much computational overheads.

3 Sharpness-Aware Minimization (SAM)

In this section, we briefly review the principle of
SAM and discuss its limitations.
Literature has observed a direct correlation be-

tween flat minima and better model generalization,
both empirically and theoretically (Keskar et al.,
2016; Dziugaite and Roy, 2017; Li et al., 2018;
Jiang et al., 2020b). To find a flat loss landscape,
SAM (Foret et al., 2020) adversarially perturbs the
model weights and optimizes the following min-
max objective on a batch of size N :

min
w

max
ϵ:∥ϵ∥2≤ρ

1

N

N∑

i=1

li(w + ϵ), (1)

where given the model weights w, the inner maxi-
mization seeks for a perturbation ϵ with L2-norm
≤ ρ that maximizes the empirical risk, and the
outer minimization minimizes the empirical risk of
the perturbed model. This training objective aims
at finding model parameters whose neighborhood
has a uniformly low training loss. As finding the
exact solution to ϵ is NP-hard, SAM estimates the

solution ϵ∗ of the inner maximization with a single-
step gradient descent on the empirical risk of the
batch:

l(w) =
1

N

N∑

i=1

li(w),

ϵ∗ ≈ arg max
ϵ:∥ϵ∥2≤ρ

l(w) + ϵ⊺∇l(w)

= ρ∇l(w)/ ∥∇l(w)∥2 .

The outer minimization can be performed with a
standalone optimizer (e.g., Adam; Kingma and Ba
2015). SAM roughly doubles the computational
cost of training the model, requiring two forward
and two backward passes for each batch. The SAM
algorithm is outlined in Alg. 1.
Besides perturbing by batches, weight perturba-

tion can also be performed on individual instances:

min
w

1

N

N∑

i=1

max
ϵi:∥ϵi∥2≤ρ

li(w + ϵi), (2)

where ϵi is calculated by single-step gradient de-
scent on individual instances. This approach is sim-
ilar to many adversarial training methods in NLP,
such as VAT (Miyato et al., 2018) and FreeLB (Zhu
et al., 2019), except that the perturbation is com-
puted on model weights instead of input embedding
only. We refer to the objectives of Eq. 1 and Eq. 2
as per-batch weight perturbation and per-instance
weight perturbation, respectively. It is noted in the
same paper by Foret et al. (2020) that per-instance
weight perturbation produces a smaller test error
and is a better predictor of model generalization.
Despite its effectiveness, per-instance weight

perturbation increases the computational and mem-
ory cost significantly, requiring 2N forward and
2N backward passes for a batch of size N . Be-
cause per-instance weight perturbation modifies
all model weights independently, the perturbation
for each individual instance needs to be computed
on a distinct model copy. Therefore, per-instance
weight perturbation can be computationally unaf-
fordable for large-scale training.

4 SAM with Dynamic Reweighting

In this paper, we seek to improve SAM with a bet-
ter adversary on weight perturbations. As the per-
batch weight perturbation adopted by SAM weak-
ens the adversarial training, we propose a simple
yet effective modification of SAM, δ-SAM (SAM
with dynamic reweighting), that can approximate
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per-instance weight perturbation without requiring
much additional computational cost. Our reweight-
ing approach is motivated by a theoretical analysis
on approximating the per-instance weight pertur-
bation to justify its superior efficiency. Based on
this motivation, we then illustrate how δ-SAM is
realized in implementation.

4.1 Theoretical Motivations
In this subsection, we motivate our dynamic
reweighting approach by formally analyzing the
training objective posed by per-instance perturba-
tion, and show that it can be approximated with a
weighted-batch perturbation, which motivates our
δ-SAM algorithm.

Preliminary. We motivate our approach from the
perspective of sharpness in SAM, which quantifies
the flatness of loss landscape as the increase of
loss in the neighborhood region of model weights.
The sharpness of per-batch and per-instance weight
perturbations are defined as:

Rbatch = max
ϵ:∥ϵ∥2≤ρ

1

N

N∑

i=1

(li(w + ϵ)− li(w)) ,

Rinst =
1

N

N∑

i=1

max
ϵi:∥ϵi∥2≤ρ

(li(w + ϵi)− li(w)) .

Due to non-shared ϵi, Rinst ≥ Rbatch, suggesting
stronger regularization effects of Rinst. However,
Rinst is expensive to compute, since ϵi in the N
inner maximization problems must be calculated
by gradient descent on N individual instances, for
which O(N) backward passes through the network
are needed. In the analysis below, we show how
to approximate the strongerRinst with a weighted
per-batch weight perturbation.

We start by considering the second-order expan-
sion of a general empirical risk li for instance i:

li(w + ϵ) = li(w) +∇li(w)⊺ϵ+
1

2
ϵ⊺Hi(w)ϵ.

To allow a tractable theoretical analysis, we assume
that the Hessian is a low-rank, positive definite
matrix Hi(w) = ai∇li(w)∇li(w)⊺, (ai > 0).
Then, we obtain the perturbations in Rbatch and
Rinst under second-order approximation in closed-
form with one-step gradient descent, to align with
the practice of SAM:

ϵ = ρ∇l(w)/ ∥∇l(w)∥2 ,
ϵi = ρ∇li(w)/ ∥∇li(w)∥2 ,

where ∇l(w) = 1
N

∑N
i=1∇li(w) is the average

gradient of the batch.

Training Objective. After Rbatch or Rinst is ob-
tained, SAM will compute ∂

∂wRbatch or ∂
∂wRinst

and update model weights to minimize the loss. To
aim for a more effective perturbation, we seek to
align with the gradientRinst, which determines how
model weights will be updated under the strong per-
instance adversary. We hope to update the model
weights in a “similar” manner as the per-instance
adversary, while not explicitly computing the ex-
pensive term Rinst. Here “similar” means the co-
sine similarity between the gradient of Rinst and
our new objective is positive.1

We thereby first derive the gradient of per-
instance weight perturbation. Specifically, after
calculating ϵi in the inner maximization step (ϵi is
not differentiated in outer minimization), the gradi-
ent of per-instance perturbation is:

∂

∂w
Rinst =

1

N

N∑

i=1

(∇li(w + ϵi)−∇li(w))

=
1

N

N∑

i=1

Hi(w)ϵi

=
1

N

N∑

i=1

ρai ∥∇li(w)∥2∇li(w). (3)

In this paper, we aim at finding a per-batch per-
turbation ϵ′ that produces the gradient whose di-
rection is aligned with the per-instance gradient,
so model weights will be updated similarly us-
ing gradient based optimizers. Specifically, for
a shared perturbation ϵ′ and R defined as R :=
1
N

∑N
i=1 (li(w + ϵ′)− li(w)), its gradient is:

∂

∂w
R =

1

N

N∑

i=1

(
∇li(w + ϵ′)−∇li(w)

)

=

(
1

N

N∑

i=1

Hi(w)

)
ϵ′.

Compared to the ordinary Rbatch, here we propose
to use a different ϵ′. Our goal is that optimizing
R also leads to smaller Rinst; that is, we seek to
find an ϵ′ such that

(
∂
∂wR

)⊺ ∂
∂wRinst > 0. An easy

choice would be:

ϵ′ = ρ ·
(

∂

∂w
Rinst

)/∥∥∥∥
∂

∂w
Rinst

∥∥∥∥
2

. (4)

1If the cosine similarity is positive, then optimizingR also
leads to optimized Rinst.
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Because eachHi is positive definite under our as-
sumptions, 1

N

∑N
i=1Hi(w) is also positive defi-

nite, then we have:

(
∂

∂w
R
)⊺ ∂

∂w
Rinst

∝
(

∂

∂w
Rinst

)⊺
(

1

N

N∑

i=1

Hi(w)

)(
∂

∂w
Rinst

)

> 0.

Thus, under this specific ϵ′ = ∂
∂wRinst, ∂

∂wR is
aligned with ∂

∂wRinst. Although ∂
∂wRinst is the

gradient that we aim to approximate and not com-
putable here, the key observation of Eq. 4 is that
per-instance weight perturbation can be optimized
by using a perturbation shared by all instances in
the batch. Therefore, we attempt to perturb the
model with only a (rough) estimation of ϵ′. Now
the next challenge is how to efficiently derive such
estimation.

An important observation is that under our as-
sumptions on Hi(w) and the use of second or-
der approximations, ∂

∂wRinst can be calculated by
using one time backpropagation on a reweighted
batch. To see this fact, we define weights gi =
ai ∥∇li(w)∥2 and the reweighted batch is:

lreweighted =
1

N

N∑

i=1

gili(w).

Then, treating gi as constants, ∂
∂w lreweighted ∝

∂
∂wRinst, as defined in Eq. 3. Compared to per-
batch SAM, this reweighting only requires small
extra computation cost on calculating the instance
weights gi. We introduce how to estimate these
weights efficiently in the following section.

4.2 Implementation

In δ-SAM, the key problem in implementation is
how to efficiently estimate the instance weight gi.
We solve this problem by sampling random pertur-
bations. Specifically, for random perturbation r,
where ri follows Gaussian distribution N (0, σI),
under the same assumptions as in Section 4.1, we

have:

E[(li(w + r)− li(w − r))2]

= E[∇li(w)⊺r · ∇li(w)⊺r]

= σ2 ∥∇li(w)∥22 .
E[li(w + r) + li(w − r)− 2li(w)]

= E[r⊺Hir]

= aiσ
2 ∥∇li(w)∥22 .

Therefore, by sampling random perturbations and
take the expectation, we can get unbiased estima-
tions of ai and the gradient norm ∥∇li(w)∥2. Each
estimation takes three forward passes for calculat-
ing li(w), li(w + r), and li(w − r). As we do
not need to save the intermediate states for back-
propagation (no_grad in PyTorch), these forward
passes are faster than normal ones. In δ-SAM, for
the efficiency of the algorithm, we only sample one
(shared) r ∼ N (0, σI) for each batch in δ-SAM,
and then calculate the instance weight gi by:

gi =
|li(w + r) + li(w − r)− 2li(w)|
max(|li(w + r)− li(w − r)| , η) , (5)

where η is a hyperparameter for avoiding division
by zero. After deriving the instance weights, the
weighted-batch weight perturbation can be com-
puted by:

∇lB(w) = ∇
(

N∑

i

gili(w)

)
, (6)

ϵ∗ = ρ∇lB(w)/ ∥∇lB(w)∥2 . (7)

We hereby summarize our algorithm, as out-
lined in Alg. 1. Modifications made for δ-SAM
are highlighted in blue. Given a batch B, we first
dynamically reweigh the instances by Eq. 5, then
estimate the perturbation ϵ∗ that maximizes the
reweighted loss by a single-step gradient descent
as shown in Eq. 6 and Eq. 7, and finally minimize
the empirical risk of the perturbed model on the
original (unweighted) batch.

5 Experiments

This section presents experimental evaluation of δ-
SAM based on the GLUE benchmark tasks (§5.2),
self-supervised Semantic Textual Similarity (STS)
tasks (§5.3), and the CNN/DailyMail abstractive
summarization task (§5.4). We also provide addi-
tional analyses to further illustrate the performance
of δ-SAM (§5.5).
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Model avg. MNLI QQP RTE QNLI MRPC CoLA SST2 STS-B
Acc-m Acc Acc Acc Acc Mcc Acc Pearson

BERTBASE 82.9 83.8 91.0 68.2 90.8 85.3 62.3 92.4 89.3
R-Drop (Liang et al., 2021) 84.1 85.5 91.4 71.1 92.0 87.3 62.6 93.0 89.6

SAM 83.9 85.0 91.6 69.3 91.7 88.2 63.1 93.0 89.4
δ-SAM 84.7 85.2 91.7 72.2 91.5 89.5 63.8 93.7 89.7

RoBERTaLARGE (Liu et al., 2019) 88.9 90.2 92.2 86.6 94.7 90.9 68.0 96.4 92.4
R-Drop (Liang et al., 2021) 89.7 90.9 92.5 88.4 95.2 91.4 70.0 96.9 92.5
FreeLB (Zhu et al., 2019) 89.8 90.6 92.6 88.1 95.0 91.4 71.1 96.7 92.7
SMART (Jiang et al., 2020a) - 91.1 92.4 92.0∗ 95.6 89.2∗ 70.6 96.9 92.8∗

R3F (Aghajanyan et al., 2020) - 91.1 92.4 88.5 95.3 91.6 71.2 97.0 -

SAM 89.6 91.0 92.3 88.5 95.0 91.4 69.2 96.7 92.4
δ-SAM 90.1 91.1 92.5 89.2 95.1 92.2 71.1 96.9 92.7

Table 1: Results on the development set of the GLUE benchmark. ∗ denotes results derived from the model
intermediately trained on the MNLI dataset (not comparable to other results), while others are derived by finetuning
the original BERT/RoBERTa. The results of BERTBASE are from the reimplementation by Liang et al. (2021).

5.1 Baseline Methods
We compare SAM and δ-SAM to the following
baseline methods, which were all proposed for im-
proving the generalization of PLMs:

• R-Drop (Liang et al., 2021) enforces the predic-
tion of the same instances augmented by differ-
ent dropout masks to be similar with a consis-
tency term (KL divergence for classification and
mean squared error for regression), which leads
to improved performance on various language
and vision tasks.

• R3F (Aghajanyan et al., 2020) also uses a con-
sistency term to make the prediction of the same
instance to be similar. Besides augmenting the
instances by different dropout masks, it further
adds random uniform or normal noise to input
embedding in PLMs. Therefore, R3F can be
regarded as an extension to R-Drop.

• FreeLB (Zhu et al., 2019) adversarially per-
turbs the token embedding using a multi-step
projected gradient descent (PGD; Madry et al.
2018) to maximize the empirical risk and regu-
larizes the adversarial risk to be small.

• SMART (Jiang et al., 2020a) is a framework
that combines multiple techniques for improv-
ing model generalization, including adversarial
training, and improved optimizer and regulariza-
tion techniques. In terms of adversarial training,
it perturbs the input embedding with PGD to
maximize the empirical risk. It then uses a con-
sistency term to regularize the change of risk to
be small, for which the consistency term is de-
fined as the KL divergence for classification and

mean squared loss for regression.

5.2 GLUE Tasks

Task Setup. We first evaluate δ-SAM on the GLUE
benchmark (Wang et al., 2018). In this experi-
ment, we use both BERTBASE and RoBERTaLARGE

as the encoders. To ensure a fair comparison,
for task-specific hyperparameters including batch
sizes, optimizers, learning rates, training steps,
weight decay, dropout rates, and learning rate
scheduling, we strictly replicate the values from
R-Drop (Liang et al., 2021). For SAM and δ-
SAM, we search ρ in {0.01, 0.02, 0.05} and η in
{1e-4,2e-4,5e-4,1e-3}. For σ in random
perturbations, we find that rescaling the random
Gaussian perturbation to an L2-norm of ρ achieves
promising results, so we simply set σ = 1 and
rescale the random perturbation afterwards. Fol-
lowing the evaluation settings of R3F and R-drop,
we report the best result on the development set out
of 5 runs of training with different random seeds.

Results and Discussion. Results are shown in
Table 1. We observe that in average, SAM im-
proves BERTBASE and RoBERTaLARGE by 1.0% and
0.7%, respectively, showing that SAM improves
the generalization of PLMs, being consistent with
the findings in the recent work (Bahri et al., 2022).
However, its performance is still worse than other
compared methods. On the other hand, δ-SAM
improves BERTBASE and RoBERTaLARGE by 1.8%
and 1.2%, respectively, and also achieves better
or comparable results compared to other methods,
demonstrating its effectiveness. In terms of indi-
vidual tasks, the performance gain of δ-SAM to
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Model avg. STS12 STS13 STS14 STS15 STS16 STS-B SICK-R

Mirror-BERTBASE 74.85 67.87 80.98 71.84 81.58 74.41 77.78 69.53
+ FreeLB 75.71 69.78 80.81 72.87 82.55 74.77 79.01 70.40
+ R3F 75.27 68.58 80.93 72.51 81.97 75.47 77.62 69.79
+ SAM 75.50 68.37 82.16 72.88 82.22 74.71 77.98 70.20
+ δ-SAM 75.72 68.44 82.30 73.12 82.27 75.12 78.83 69.94
+ SAM w/ random noise 76.44 70.09 83.53 74.22 82.67 77.61 80.16 66.81
+ δ-SAM w/ random noise 76.71 69.73 83.73 74.58 83.01 77.72 79.08 69.11

Mirror-RoBERTaBASE 74.98 64.49 81.69 73.32 79.78 77.49 78.53 69.56
+ FreeLB 75.73 65.52 82.41 74.00 80.72 78.60 79.06 69.81
+ R3F 75.32 64.58 82.12 73.62 80.27 77.90 78.66 70.13
+ SAM 75.18 64.86 81.96 73.56 79.82 77.06 78.83 70.21
+ δ-SAM 75.27 64.97 81.89 73.46 80.12 77.62 78.96 69.89
+ SAM w/ random noise 75.90 66.65 82.52 74.10 80.81 78.47 79.02 69.71
+ δ-SAM w/ random noise 76.31 66.94 82.86 74.46 81.13 78.91 79.52 70.32

Table 2: Results on self-supervised STS tasks. For all datasets, we report the average Spearman’s ρ of 5 runs of
training using 5 fixed random seeds.

SAM is larger on smaller datasets (e.g., MRPC,
RTE, CoLA, SST2), while it becomes less promi-
nent on larger datasets. We hypothesize that due to
increased training steps and number of instances in
large datasets, the gap between per-batch and per-
instance perturbation becomes smaller. It is also
possible that smaller datasets need better general-
ization so δ-SAM helps more. Besides, we observe
that the improved performance and generalization
by δ-SAM is obtained at a merely little average
extra computational cost of 18% to SAM (see Ta-
ble 6 in Appendix for the running time of models).
Taking BERTBASE and the SST2 dataset as an ex-
ample, the average running time is 118/132 min for
SAM/δ-SAM, respectively, meaning that δ-SAM
is only 12% slower than SAM to approximate per-
instance perturbation.

5.3 Self-supervised STS

Model. To conduct self-supervised STS evaluation,
we apply δ-SAM to the training process of Mirror-
BERTBASE and Mirror-RoBERTaBASE (Liu et al.,
2021), which are SOTA self-supervised sentence
embedding frameworks. Similar to SimCSE (Gao
et al., 2021), Mirror-BERT embeds a sentence x
with the same encoder but different dropout masks
to get two sentence embedding h1 and h2, and
optimizes h1 and h2 to be similar using contrastive
loss. This training objective resembles R-Drop
and SMART. Empirically, we find that applying
adversarial training (FreeLB, SAM, and δ-SAM)
to only one embedding (e.g. h2 only) achieves
much better results than to the contrastive loss, and
we use that strategy in experiments.

Task Setup. We experiment with self-supervised
sentence embedding learning on 7 STS datasets
including SemEval 2012-2016 datasets (STS12-16,
Agirre et al. 2012, 2013, 2014, 2015, 2016), STS
Benchmark (STS-B, Cer et al. 2017), and SICK-
Relatedness (SICK-R, Marelli et al. 2014). We
strictly follow and replicate the model and experi-
mental setup of Mirror-BERT. As the training ob-
jective of Mirror-BERT is similar to R-Drop and
SMART, we compare with other baselines includ-
ing R3F2 and FreeLB on this task. Furthermore, as
FreeLB and R3F both use random noise to augment
input embedding, we also attempt with adding ran-
dom uniform noise to input embedding in δ-SAM
for fair comparison. Following the evaluation set-
ting of Mirror-BERT, we report the average Spear-
man’s ρ under 5 fixed random seeds for all models.
All hyperparameters of FreeLB, R3F, SAM, and
δ-SAM are tuned on the development set of STS-B.

Results and Discussion. Results are shown in Ta-
ble 2. Overall, δ-SAM with random noise achieves
the best results on both encoders, outperform-
ing Mirror-BERTBASE and Mirror-RoBERTaBASE by
1.86% and 1.33% in terms of Spearman’s ρ in aver-
age, respectively, and also outperforms other meth-
ods. On individual datasets, δ-SAM with random
noise achieves the top performance on 11 of 14 se-
tups. Note that both R3F and FreeLB use random
noise so the comparison is fair. Applying δ-SAM
alone leads to improvements of 0.87% and 0.29%
on Mirror-BERTBASE and Mirror-RoBERTaBASE, re-
spectively. Besides, δ-SAM outperforms SAM on
both encoders either w/ or w/o random noise. These

2Applying R3F to Mirror-BERT is simply adding random
noise to input embedding.
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Model RG-1 RG-2 RG-L

BART (Lewis et al., 2020) 44.16 21.28 40.90
PEGASUS (Zhang et al., 2020b) 44.17 21.41 41.11
BART + R3F (Aghajanyan et al.,
2020)

44.38 21.53 41.17

BART + R-Drop (Liang et al., 2021) 44.51 21.58 41.24
BART + δ-SAM 44.70 21.54 41.81

Table 3: Results on CNN/Daily Mail summarization.

results have demonstrated that besides supervised
models, δ-SAM can also effectively improve self-
supervised sentence embedding models.

5.4 Summarization

Task Setup. We experiment with the abstrac-
tive summarization task on the CNN/DailyMail
dataset (Hermann et al., 2015). Using the large ver-
sion of BART (Lewis et al., 2020) as the encoder-
decoder model, we compare δ-SAM to two reg-
ularization methods, including R3F and R-Drop,
that have experimented on this task. Besides, we
also compare to PEGASUS (Zhang et al., 2020b),
which introduces a self-supervised training objec-
tive specifically designed for summarization. Fol-
lowing the experimental settings of BART, we
report metrics including the unigram ROUGE-1
and bigram ROUGE-2 for evaluating the infor-
mativeness, and the longest common subsequence
ROUGE-L for evaluating the fluency.

Results and Discussion. Results are shown in Ta-
ble 3. We observe that δ-SAM achieves the best
results in ROUGE-1 and ROUGE-L, outperforming
the original BART by 0.54% and 0.91%, respec-
tively. As for ROUGE-2, it also outperforms BART
by 0.26% and achieves performance comparable
to R3F and R-Drop. This experiment shows the
effectiveness of δ-SAM on optimizing an encoder-
decoder model for abstractive summarization.

5.5 Analysis

The previous experiments have demonstrated that δ-
SAM achieves promising improvements on various
tasks. In this section, we analyze whether δ-SAM
can derive smaller adversarial risk and how well it
approximates per-instance weight perturbation.
We assess the adversarial risks and accuracies

of four optimization approaches including vanilla
training, SAM, δ-SAM, and per-instance weight
perturbation. We measure the adversarial risk

Method Ladv Acc
MRPC RTE MRPC RTE

Vanilla 1.93 2.97 84.6/85.3 67.9/68.2
SAM 0.62 0.78 86.8/88.2 68.6/69.3
δ-SAM 0.59 0.75 87.5/89.5 69.3/72.2
Per-instance perturbation 0.50 0.65 88.2/89.7 70.0/71.5

Table 4: Adversarial risk and evaluation results on
MRPC and RTE datasets. We report the average ad-
versarial risk and the median/max accuracy of 5 runs.

with Eq. 2 in §3, which is copied as follows:

Ladv =
1

N

N∑

i=1

max
ϵi:∥ϵi∥2≤ρ

li(w + ϵi).

For all compared methods, we set ρ = 0.05 in Ladv.
Due to the high computational cost of per-instance
weight perturbation (about 7x of δ-SAM with a
batch size of 16), we only conduct experiments on
two small datasets: MRPC and RTE.
From the results shown in Table 4, we observe

that δ-SAM achieves smaller adversarial risk than
SAM, showing that δ-SAM is indeed a better ap-
proximation to per-instance weight perturbation
than SAM, being consistent with our theoretical
motivation (§4.1). When it comes to accuracy, we
observe that: (1) Per-instance weight perturbation
generally achieves the highest accuracy except for
the maximum accuracy on RTE, being consistent
with the observation in Foret et al. (2020); (2) Al-
though δ-SAM consistently outperforms SAM, its
performance is often slightly lower than the much
more costly per-instance weight perturbation, indi-
cating room for further improvements.

6 Conclusion

This paper presents a new sharpness-aware min-
imization method with dynamic reweighting (δ-
SAM). The proposed method represents the first
successful attempt in realizing a per-instance
weighting scheme. We achieve this by prioritiz-
ing instances with larger gradient change rate in
adversarial weight perturbation, in comparison to
previous approaches that adopt per-batch weight
perturbation. We show that perturbation calculated
on reweighted batch can serve as a better approx-
imation to per-instance weight perturbation while
requiring only similar computational cost to per-
batch perturbation. We conduct extensive experi-
ments on the GLUE, STS, and abstractive summa-
rization benchmarks. Across all 30 experimental
setups that compares to SAM, δ-SAM achieves
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an consistent improvement over SAM in 27 of
them. When compared to a set of other competitive
regularization methods, δ-SAM achieves the best
performance in 23 out of 33 of the setups. Fur-
ther, we quantitatively analyze δ-SAM’s impact on
sharpness, finding that it indeed leads to flatter loss
landscape. Future work includes inventing new
techniques to further reduce the computational cost
of δ-SAM and demonstrating its effectiveness on
more tasks such as sequence tagging and question
answering.

Limitations

Like SAM and other training methods based on
weight perturbation, the improved performance by
δ-SAM is at the cost of introducing additional com-
putational overhead to vanilla training. Specifically,
although δ-SAM more precisely approximates per-
instance weight perturbation with merely 18% ex-
tra computational cost to per-batch SAM, both
SAM and δ-SAM are still slower than vanilla train-
ing by roughly doubling the computational costs
in practice. This may limit the application of such
optimization algorithms on massive-scale training.
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Appendices

A Hyperparameters

On the GLUE benchmark, we search
ρ in {0.01, 0.02, 0.05} and η in
{1e-4,2e-4,5e-4,1e-3}, respectively.
The hyperparameters that achieve the best
performance on the GLUE benchmark is
listed in Table 5. On the STS benchmark,
we search ρ in {0.01, 0.02, 0.05, 0.1} and η
in {1e-3,1e-2, 0.1, 1.0}, respectively. We
search the scale of uniform random noise in
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. The best hyperpa-
rameter of ρ, η, and the scale of uniform random
noise is 0.1, 1.0, 0.1 for Mirror-BERT and 0.02,
1.0, 0.2 for Mirror-RoBERTa, respectively. For
summarization, we use ρ = 0.01 and η = 1e-4.
For all models, we use grid search to find the best
hyperparameter. For other hyperparameters (e.g.,
batch size, training steps, learning rate, etc.), we
directly use the suggested values in the original
papers. Note that for per-instance perturbation, we
adopt twice the number of original epochs since
we observe they are under trained with default
number of epochs.

B Running Time

The running time of SAM and δ-SAM on the
GLUE benchmark is shown in Table 6.3 All ex-
periments are conducted on one RTX2080 GPU.

3For easy comparison, the recorded training time is for the
same number of epochs across all models, though per-instance
perturbation actually takes twice the number of default epochs
in the actual experiment.
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Hyperparameter MNLI QQP RTE QNLI MRPC CoLA SST2 STS-B

BERTBASE

ρ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.01
η 1e-4 1e-4 5e-4 1e-4 1e-4 1e-4 1e-4 1e-4

RoBERTaLARGE

ρ 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
η 1e-4 1e-4 5e-4 1e-4 1e-4 1e-4 1e-4 1e-4

Table 5: Hyperparameters for SAM and δ-SAM on the GLUE benchmark.

Running time MNLI QQP RTE QNLI MRPC CoLA SST2 STS-B

BERTBASE

SAM 1240 818 15 349 12 25 118 26
δ-SAM 1350 995 16 450 15 25 132 31
Per-instance weight perturbation - - 87 - 105

RoBERTaLARGE

SAM 1056 2591 33 1402 30 38 285 42
δ-SAM 1699 2963 36 1425 35 45 325 58

Table 6: Average running time (in min) for SAM and δ-SAM on the GLUE benchmark.
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