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a b s t r a c t

This article presents a new primal–dual weak Galerkin (PDWG) finite element method

for transport equations in non-divergence form. The PDWG method employs locally

reconstructed differential operators and stabilizers in the weak Galerkin framework, and

yields a symmetric discrete linear system involving the primal variable and the dual

variable (known as the Lagrangian multiplier) for the adjoint equation. Optimal order

error estimates are established in various discrete Sobolev norms for the corresponding

numerical solutions. Numerical results are reported to illustrate the accuracy and

efficiency of the new PDWG method.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with the development of a symmetric numerical method for first order transport equations

in non-divergence form by using the primal–dual finite element framework presented in [1]. For simplicity, we consider

the model problem that seeks an unknown function λ satisfying

β(x) · ∇λ − c(x)λ =f in Ω,

λ =g on Γ−,
(1.1)

where Ω is an open bounded and connected domain in R
d (d = 2, 3) with Lipschitz continuous boundary Γ = ∂Ω , Γ−

is the inflow boundary satisfying β · n < 0, and n is the unit outward normal direction to Γ . Assume that the convection
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vector β = (β1, . . . , βd) ∈ [L∞(Ω)]d is piecewise smooth, the reaction coefficient c ∈ L∞(Ω) is piecewise continuous,

the load function f ∈ L2(Ω), and the inflow boundary data g ∈ L2(Γ−).

The first-order transport equation arises in many areas of science and engineering. Numerical methods for transport

equations often impose a mathematical and computational challenge on its stability and capability of resolving the

solution’s discontinuities or sharp changing fronts. The first order linear transport equation serves as a benchmark for

testing new approaches in numerical partial differential equations. Readers are referred to the introduction section of [2]

and the references cited therein for a detailed description of the first-order transport equation as well as its physical and

engineering applications.

This paper will develop a new numerical method for the linear transport problem (1.1) where the convection vector β
and the reaction coefficient c are assumed to be piecewise continuous functions without any coercivity assumption in the

form of c + 1
2
∇ · β ≥ α > 0 or alike used in most existing literatures. Our new numerical scheme is devised by using the

framework of the primal–dual weak Galerkin (PDWG) finite element method [1–13]. The PDWG method was originally

formulated as a constraint optimization problem in which the ‘‘discontinuity’’ of the approximating solution is minimized

with the constraint of a satisfaction of the PDE locally on each element. The idea of primal–dual for solving PDEs has been

also developed by Burman [14,15] in other finite element contexts, and it was given the name of ‘‘stabilized finite element

methods’’ by Burman.

The transport Eq. (1.1) can be viewed as the adjoint of a transport equation in divergence form [2]. In [2], the

linear transport equation in divergence form was formulated into a weak form through the integration by parts so that

no derivatives are applied to the primal variable. The corresponding numerical scheme thus has convergence under

the Hθ -regularity assumption for the exact solution. For the transport equation in non-divergence form (1.1), we shall

use a straightforward weak form through a simple test against any square integrable functions. Compared with [2], a

stabilization term in the form of τ2
∑

T∈Th
h2
T (uh, v) is introduced in the present PDWG scheme in order to achieve an

optimal order of convergence in L2. In addition, a term
∑

T∈Th
τ1(f ,β · ∇σ0 − cσ0) is added to the right-hand side of the

dual equation to accommodate a least squares term in the stabilizer s(·, ·) for the dual equation. In other words, the PDWG

scheme for the model problem (1.1) requires some non-trivial modifications of the numerical method presented in [2].

The main contributions of this paper are the following. First, a new PDWG numerical method was devised and analyzed

mathematically for its solvability and stability. Secondly, a convergence was established based on a minimal assumption on

the PDE coefficients; namely, the model problem has one and only one solution and the coefficients are merely piecewise

smooth. It should be pointed out that, due to the non-smoothness of the convection vector β, the transport equation in

non-divergence form cannot be formulated into a divergence form for an application of the scheme developed in [2].

The paper is organized as follows. In Section 2, we present a PDWG algorithm. In Section 3, we prove the existence

and uniqueness for the numerical solution. In Section 4, we derive error equations for the PDWG finite element method.

Sections Section 5 is devoted to a convergence analysis for the PDWG approximations. Section 6 contains a series of

numerical results that demonstrate the efficiency, stability, and accuracy of the new PDWG method.

2. Primal–dual weak Galerkin algorithm

The usual notations for Sobolev spaces and norms are adopted in this article. For an open bounded domain D ⊂ R
d

with Lipschitz continuous boundary, denote by ∥ · ∥s,D, | · |s,D, and (·, ·)s,D the norm, seminorm and the inner product in

the Sobolev space Hs(D), s ≥ 0, respectively. H0(D) coincides with L2(D), and the norm and the inner product are denoted

as ∥ · ∥D and (·, ·)D. When D = Ω or the domain of integration is clear from the context, the subscript D will be omitted

in the norm and inner product notations. Denote by I the identity operator.

Denote by T a polygonal or polyhedral element with boundary ∂T . By a weak function on T , we mean a pair v = {v0, vb}
such that v0 ∈ L2(T ) and vb ∈ L2(∂T ); v0 can be viewed as the value of v in T and vb represents v on ∂T . Let W(T ) be the

local space of all weak functions on T ; i.e.,

W(T ) = {v = {v0, vb} : v0 ∈ L2(T ), vb ∈ L2(∂T )}.

Let Pr (T ) be the space of polynomials on T with degree r and less. The discrete weak gradient of v, denoted as

∇w,r,Tv ∈ [Pr (T )]
d for v ∈ W(T ), is defined by

(∇w,r,Tv,ψ)T = −(v0, ∇ · ψ)T + ⟨vb,ψ · n⟩∂T , ∀ψ ∈ [Pr (T )]
d. (2.1)

From the integration by parts, (2.1) maybe rewritten as follows

(∇w,r,Tv,ψ)T = (∇v0,ψ)T − ⟨v0 − vb,ψ · n⟩∂T , ∀ψ ∈ [Pr (T )]
d, (2.2)

provided that v0 ∈ H1(T ).

Let Th be a finite element partition of the domain Ω into polygons in 2D or polyhedra in 3D which is shape regular in

the sense of [16]. Denote by Eh the set of all edges/faces in Th, and E
0
h = Eh \ ∂Ω the set of all interior edges/faces. Denote

by hT the size of T ∈ Th and h = maxT∈Th
hT the meshsize of the partition Th. For any piecewise smooth function φ with

respect to the partition Th, denote by [[φ]] the jump of φ along the interior edge/face e given by

[[φ]] = φ1n1 + φ2n2,
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where φi := φ|Ti , and ni is the unit outward normal direction on e = ∂T1 ∩ ∂T2 relative to the element Ti, i = 1, 2.
Let k ≥ 1 be a given integer. Denote by Wk(T ) the local space of discrete weak functions; i.e.,

Wk(T ) = {{σ0, σb} : σ0 ∈ Pk(T ), σb ∈ Pk(e), e ⊂ ∂T }. (2.3)

The global weak finite element space Wh can be obtained by patching Wk(T ) over all elements T ∈ Th through a common
value vb on E

0
h . Denote by W 0

h the subspace of Wh with vanishing boundary values on Γ−; i.e.,

W 0
h = {{σ0, σb} ∈ Wh : σb|e = 0, e ⊂ Γ−}.

Our second finite element space Mh consists of piecewise polynomials of degree m(k); i.e.,

Mh = {w : w|T ∈ Pm(k)(T ), ∀T ∈ Th}, (2.4)

where m(k) = k − 1, or k.
For simplicity, denote by ∇wσ the discrete weak gradient ∇w,k−1,Tσ computed by (2.1) on each element T ; i.e.,

(∇wσ )|T = ∇w,k−1,T (σ |T ), ∀T ∈ Th.

Introduce the following bilinear forms:

s(ρ, σ ) =
∑

T∈Th

∫

∂T

h−1
T (ρ0 − ρb)(σ0 − σb)ds

+ τ1

∫

T

(β · ∇ρ0 − cρ0)(β · ∇σ0 − cσ0)dT ,

(2.5)

b(σ , v) =
∑

T∈Th

(β · ∇wσ − cσ0, v)T ,

for any ρ, σ ∈ Wh, v ∈ Mh, where τ1 ≥ 0 is a parameter.
The primal–dual weak Galerkin scheme for (1.1) can be stated as follows:

Primal-Dual Weak Galerkin Algorithm 2.1. Find (λh; uh) ∈ Wh × Mh, such that λb|e = Qb(g|e), e ⊂ Γ−, and satisfying

s(λh, σ ) + b(σ , uh) =
∑

T∈Th

τ1(f ,β · ∇σ0 − cσ0)T , ∀σ ∈ W 0
h , (2.6)

−τ2

∑

T∈Th

h2
T (uh, v)T + b(λh, v) = (f , v), ∀v ∈ Mh, (2.7)

where τ2 > 0 is a parameter and Qb is the local L2 projection operator into Pk(e).

3. Solution existence and uniqueness

Denote by Q0 the L2 projection operator onto Pk(T ). Analogously, for e ⊂ ∂T , denote by Qb the L2 projection operator
onto Pk(e). The composite projection Qhw for w ∈ H1(Ω) is given by

(Qhw)|T := {Q0(w|T ),Qb(w|∂T )}, ∀T ∈ Th.

Let Qh be the L2 projection operator onto the finite element space Mh. Denote by Qh the L2 projection operator onto the
space of piecewise polynomials of degree k − 1. Observe that Qh is identical to Qh when m(k) = k − 1. The following
commutative property is known [16]:

∇w(Qhw) = Qh(∇w), ∀w ∈ H1(T ). (3.1)

For simplicity of analysis, in what follows in the paper, we assume that the convection vector β and the reaction
coefficient c are piecewise continuous functions with respect to the finite element partition Th.

Theorem 3.1. Assume that the transport problem (1.1) has a unique solution. Then, the primal–dual weak Galerkin algorithm
(2.6)–(2.7) has a unique solution for any parameter τ1 > 0.

Proof. It suffices to show that the homogeneous problem of (2.6)–(2.7) has only the trivial solution. To this end, assume
f = 0 and g = 0. By choosing v = uh and σ = λh in (2.6)–(2.7) we arrive at

s(λh, λh) + τ2

∑

T∈Th

h2
T (uh, uh)T = 0,

which implies λ0 = λb on each ∂T , β · ∇λ0 − cλ0 = 0, and uh = 0 on each element T . We thus obtain λ0 ∈ C0(Ω) and
furthermore β · ∇λ0 − cλ0 = 0 in Ω , which, together with λ0 = λb = 0 on Γ−, yields λ0 ≡ 0 in Ω from the solution
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uniqueness of the model problem (1.1). From λ0 = λb on each ∂T , we have λb ≡ 0 in Ω so that λh ≡ 0 in Ω . This

completes the proof of the theorem. □

Next, we shall study the solution uniqueness for the algorithm (2.6)–(2.7) when the least-squares term disappears

from the stabilizer s(ρ, σ ) in (2.5). The linear transport operator in (1.1) is said to have the L2-regularity if there exists a

constant C1 such that the solution Φ of the following problem

β(x) · ∇Φ − c(x)Φ =F in Ω,

λ =0 on Γ−

(3.2)

satisfies the following estimate

∥Φ∥0 ≤ C1∥F∥0. (3.3)

Theorem 3.2. Assume that β is locally C1,α(T ) and c is locally C0,α(T ) on each element T ∈ Th. Under the assumption of the

L2-regularity estimate (3.3), the primal–dual weak Galerkin algorithm (2.6)–(2.7) with m(k) = k has one and only one solution

with parameter value τ1 = 0 in (2.5), provide that the meshsize h is sufficiently small.

Proof. It suffices to show that the homogeneous problem of (2.6)–(2.7) has only the trivial solution. To this end, assume

f = 0 and g = 0. As τ1 = 0, by choosing v = uh and σ = λh in (2.6)–(2.7) we arrive at

s(λh, λh) + τ2

∑

T∈Th

h2
T (uh, uh)T = 0,

which leads to λ0 = λb on each ∂T and uh = 0 on each element T ∈ Th. It follows from (2.7) that

0 = b(λh, v)

=
∑

T∈Th

(β · ∇wλh − cλ0, v)T

=
∑

T∈Th

(β · ∇λ0 − cλ0, v)T

=
∑

T∈Th

(Qh(β · ∇λ0 − cλ0), v)T

for all v ∈ Mh, where we have used ∇wλh = ∇λ0 due to the fact that λ0 = λb on each ∂T . Thus, we haveQh(β·∇λ0−cλ0) =
0 on each T ∈ Th. From λ0 = λb on each ∂T we have λ0 ∈ C0(Ω) so that

β · ∇λ0 − cλ0 = (I − Qh)(β · ∇λ0 − cλ0) := F , λ0|Γ− = 0. (3.4)

From the L2-regularity assumption (3.3), Eq. (3.4), and the assumption of m(k) = k, we arrive at

∥λ0∥0 ≤C1∥F∥0

≤C1

(

∑

T∈Th

∥(I − Qh)(β · ∇λ0 − cλ0)∥
2
T

)
1
2

≤C1

(

∑

T∈Th

∥(I − Qh)((β − β̃) · ∇λ0)∥
2
T + ∥(I − Qh)((c − c)λ0)∥

2
T

)
1
2
,

where β̃ is the L2 projection of β onto the space of piecewise linear functions and c is the L2 projection of c onto the

space of piecewise constant functions. Since β is locally C1,α and c is locally C0,α , we thus have

∥λ0∥0 ≤C1

(

∑

T∈Th

∥β − β̃∥2
L∞(T )∥∇λ0∥

2
0,T + ∥c − c∥2

L∞(T )∥λ0∥
2
0,T

)
1
2

≤C1

(

C2h
2+2α
T

∑

T∈Th

∥∇λ0∥
2
0,T + C3h

2α
T ∥λ0∥

2
0,T

)
1
2

≤Chα∥λ0∥0,

where we have used the inverse inequality in the last estimate. Hence

(1 − Chα)∥λ0∥0 ≤ 0,

4
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which leads to ∥λ0∥0 = 0 when the meshsize h is sufficiently small. This shows that λ0 ≡ 0 in Ω , and furthermore, λb ≡ 0

from the fact that λb = λ0 on each ∂T . This completes the proof of the theorem. □

4. Error equations

Let λ be the exact solution of the transport problem (1.1) and (λh, uh) ∈ Wh × Mh be its numerical approximation

arising from the scheme (2.6)–(2.7). Denote the error functions by

ϵh = λh − Qhλ, (4.1)

eh = uh − Qhu. (4.2)

Note that the exact solution to the dual equation is the trivial function u = 0.

Lemma 4.1. The error functions ϵh and eh satisfy the following equations:

s(ϵh, σ ) + b(σ , eh) = ℓλ(σ ), ∀σ ∈ W 0
h , (4.3)

−τ2

∑

T∈Th

h2
T (eh, v)T + b(ϵh, v) = ζλ(v), ∀v ∈ Mh. (4.4)

Here,

ℓλ(σ ) =
∑

T∈Th

τ1(β · ∇(λ − Q0λ) − c(λ − Q0λ),β · ∇σ0 − cσ0)T

− h−1
T ⟨Q0λ − Qbλ, σ0 − σb⟩∂T ,

(4.5)

ζλ(v) =
∑

T∈Th

(β · (I − Qh)∇λ − c(λ − Q0λ), v)T . (4.6)

Proof. From (2.7) and the commutative property (3.1) we have

− τ2

∑

T∈Th

h2
T (uh − Qhu, v)T + b(λh − Qhλ, v)

= (f , v) − b(Qhλ, v)

= (f , v) −
∑

T∈Th

(β · ∇wQhλ − cQ0λ, v)T

= (β · ∇λ − cλ, v) −
∑

T∈Th

(β · Qh∇λ − cQ0λ, v)T

=
∑

T∈Th

(β · (I − Qh)∇λ − c(λ − Q0λ), v)T ,

where we have used the first equation in (1.1), which gives (4.4). To derive (4.3), we subtract s(Qhλ, σ ) from both sides

of (2.6) to obtain

s(λh − Qhλ, σ ) + b(σ , uh − Qhu)

=
∑

T∈Th

τ1(f ,β · ∇σ0 − cσ0)T − s(Qhλ, σ )

=
∑

T∈Th

τ1(β · ∇λ − cλ,β · ∇σ0 − cσ0)T − h−1
T ⟨Q0λ − Qbλ, σ0 − σb⟩∂T

− τ1(β · ∇Q0λ − cQ0λ,β · ∇σ0 − cσ0)T

=
∑

T∈Th

τ1(β · ∇(λ − Q0λ) − c(λ − Q0λ),β · ∇σ0 − cσ0)T

− h−1
T ⟨Q0λ − Qbλ, σ0 − σb⟩∂T ,

which leads to the error Eq. (4.3). This completes the proof of the lemma. □
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5. Error estimates

Introduce a scaled L2 norm in the finite element space Mh as follows:

|||v|||Mh
=

(

τ2

∑

T∈Th

h2
T∥v∥2

T

)
1
2
, v ∈ Mh, (5.1)

where τ2 > 0. In Wh, we equip the following semi-norm:

|||λ|||Wh
=

(

∑

T∈Th

h−1
T ∥λ0 − λb∥

2
∂T + τ1∥β · ∇λ0 − cλ0∥

2
T

)
1
2
, (5.2)

where τ1 ≥ 0.

Lemma 5.1. Assume that the solution to the transport problem in the non-divergence form (1.1) is unique. Then the seminorm

||| · |||Wh
defines a norm in the linear space W 0

h when τ1 > 0.

Proof. We shall only verify the positivity property for |||·|||Wh
. To this end, assume |||λ|||Wh

= 0 for some λ = {λ0, λb} ∈ W 0
h .

Since τ1 > 0, then from (5.2) we have λ0 = λb on ∂T and β · ∇λ0 − cλ0 = 0 on any T ∈ Th. This implies λ0 ∈ C0(Ω) and

β · ∇λ0 − cλ0 = 0 in Ω . Thus, from λ ∈ W 0
h and the solution uniqueness for (1.1) we obtain λ0 ≡ 0 and furthermore,

λb = λ0 = 0. This completes the proof of the lemma. □

Recall that Th is a shape-regular finite element partition of the domain Ω . Thus, for any T ∈ Th and φ ∈ H1(T ), the

following trace inequality holds true [16]:

∥φ∥2
∂T ≤ C(h−1

T ∥φ∥2
T + hT∥∇φ∥2

T ). (5.3)

If φ is a polynomial on the element T ∈ Th, the following trace inequality holds true [16]; i.e.,

∥φ∥2
∂T ≤ Ch−1

T ∥φ∥2
T . (5.4)

Lemma 5.2 ([16]). Let Th be a finite element partition of the domain Ω satisfying the shape regular assumption as specified

in [16]. For any 0 ≤ s ≤ 1 and 0 ≤ m ≤ k, there holds

∑

T∈Th

h2s
T ∥u − Qhu∥

2
s,T ≤ Ch2n+2∥u∥2

n+1, 0 ≤ n ≤ m(k), (5.5)

∑

T∈Th

h2s
T ∥λ − Q0λ∥2

s,T ≤ Ch2m+2∥λ∥2
m+1, 0 ≤ m ≤ k. (5.6)

Theorem 5.3. Let λ and (λh; uh) ∈ Wh × Mh be the exact solution of the transport problem (1.1) and the primal–dual weak

Galerkin solution arising from the numerical scheme (2.6)–(2.7), respectively. Assume that the exact solution λ is sufficiently

regular such that λ ∈ ⊕
J

j=1H
k+1(Ωj) where {Ωj}

J

j=1 is a non-overlapping partition of the domain Ω . Then, the following estimate

holds true:

|||ϵh|||Wh
+ |||eh|||Mh

≤ C(1 + τ
− 1

2
2 )hk

J
∑

j=1

∥λ∥k+1,Ωj
. (5.7)

Proof. By setting σ = ϵh in the error Eq. (4.3) and v = eh in (4.4), we have

τ2

∑

T∈Th

h2
T (eh, eh)T + s(ϵh, ϵh) = ℓλ(ϵh) − ζλ(eh),

which gives

|||eh|||
2
Mh

+ |||ϵh|||
2
Wh

≤|ℓλ(ϵh)| + |ζλ(eh)| = I1 + I2. (5.8)

We shall estimate the two terms I1 and I2 in (5.8). For I1, it follows from the Cauchy–Schwarz inequality, the triangle

inequality, (4.5), the trace inequality (5.3), and the estimate (5.6) with m = k that

6
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I1 =

⏐

⏐

⏐

∑

T∈Th

τ1(β · ∇(λ − Q0λ) − c(λ − Q0λ),β · ∇ϵ0 − cϵ0)T

− h−1
T ⟨Q0λ − Qbλ, ϵ0 − ϵb⟩∂T

⏐

⏐

⏐

≤

⎛

⎝

(

∑

T∈Th

τ1∥β · ∇(λ − Q0λ)∥
2
T

)
1
2

+
(

∑

T∈Th

τ1∥c(λ − Q0λ)∥
2
T

)
1
2

⎞

⎠

·
(

∑

T∈Th

τ1∥β · ∇ϵ0 − cϵ0∥
2
T

)
1
2

+
(

∑

T∈Th

h−1
T ∥ϵ0 − ϵb∥

2
∂T

)
1
2
(

∑

T∈Th

h−1
T ∥Q0λ − Qbλ∥2

∂T

)
1
2

≤|||ϵh|||Wh
(Chk

J
∑

j=1

∥λ∥k+1,Ωj
+ Chk+1

J
∑

j=1

∥λ∥k+1,Ωj
)

+ |||ϵh|||Wh

(

∑

T∈Th

h−1
T ∥Q0λ − λ∥2

∂T

)
1
2

≤|||ϵh|||Wh

(

Chk

J
∑

j=1

∥λ∥k+1,Ωj
+ C(

∑

T∈Th

h−2
T ∥Q0λ − λ∥2

T + ∥Q0λ − λ∥2
1,T )

1
2

)

≤Chk|||ϵh|||Wh

J
∑

j=1

∥λ∥k+1,Ωj
.

(5.9)

As to I2, we use the orthogonality property of Qh to obtain

I2 =

⏐

⏐

⏐

∑

T∈Th

(β · (I − Qh)∇λ − c(λ − Q0λ), eh)T

⏐

⏐

⏐

≤

⏐

⏐

⏐

∑

T∈Th

(β · (I − Qh)∇λ, eh)T

⏐

⏐

⏐
+

⏐

⏐

⏐

∑

T∈Th

(c(λ − Q0λ), eh)T

⏐

⏐

⏐

=

⏐

⏐

⏐

∑

T∈Th

((I − Qh)∇λ, (I − Qh)(β − β)eh)T

⏐

⏐

⏐

+

⏐

⏐

⏐

∑

T∈Th

(λ − Q0λ, ceh)T

⏐

⏐

⏐
.

Next, from the Cauchy–Schwarz inequality, (4.6), the triangle inequality, the estimate (5.5) with m = k and m = 1, the

estimate (5.6) with m = k, and the inverse inequality we obtain

|I2| ≤
(

∑

T∈Th

∥(I − Qh)∇λ∥2
T

)
1
2
(

∑

T∈Th

∥(I − Qh)(β − β)eh∥
2
T

)
1
2

+ ∥c∥L∞(Ω)

(

∑

T∈Th

τ−1
2 h−2

T ∥Q0λ − λ∥2
T

)
1
2
(

∑

T∈Th

τ2h
2
T∥eh∥

2
T

)
1
2

≤C1h
k

⎛

⎝

(

∑

T∈Th

h2
T∥∇(β − β)eh∥

2
0,T

)
1
2

+ C2τ
− 1

2
2 |||eh|||Mh

⎞

⎠

J
∑

j=1

∥λ∥k+1,Ωj

≤Cτ
− 1

2
2 hk|||eh|||Mh

J
∑

j=1

∥λ∥k+1,Ωj
,

(5.10)

where we have used the fact that maxT∈Th
∥∇β∥L∞(T ) ≤ C due to the piecewise smoothness assumption on β with respect

to the finite element partition Th.

Combining (5.8) with (5.9) and (5.10) yields the error estimate (5.7). This completes the proof of the theorem. □
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6. Numerical experiments

In this section we shall report some computational results for the scheme (2.6)–(2.7) with linear and quadratic elements
(i.e., k = 1, 2). Recall that the finite element spaces are constructed as follows

W
(k)

h = {{λ0, λb} : λ0 ∈ Pk(T ), λb ∈ Pk(e), e ⊂ ∂T , ∀T ∈ Th},

M
(k)

h = {uh : uh|T ∈ Pm(k)(T ), ∀T ∈ Th}, m(k) = k − 1, or k.

For convenience, they are referred to as C−1 − Pk(T )/Pk(∂T )/Pm(k)(T ) element in this section.

The numerical solution λh = {λ0, λb} ∈ W
(k)

h and uh ∈ M
(k)

h is compared with the L2 projection of the exact solution λ

and u = 0. The corresponding error functions are denoted as

ϵ0 = λ0 − Q0λ, ϵb = λb − Qbλ, eh = uh − Qhu = uh.

The L2 norm for the error λb on the element boundary is defined as

∥ϵb∥ =

⎛

⎝

∑

T∈Th

hT

∫

∂T

ϵ2
bds

⎞

⎠

1
2

.

The numerical experiments are conducted on several polygonal domains Ωi. The first one is the unit square domain
Ω1 = (0, 1)2. The second one, denoted as Ω2, is an L-shaped domain with vertices A1 = (0, 0), A2 = (1, 0), A3 = (1, 0.5),
A4 = (0.5, 0.5), A5 = (0.5, 1), and A6 = (0, 1). The third one is a cracked unit square given by Ω3 = (0, 1)2\(0.5, 1)×{0.5}.
The crack clearly takes place along the edge (0.5, 1) × {0.5}. Our fourth one is also a cracked diamond characterized as
Ω4 = {(x, y) : |x| + |y| < 1} \ {(0, 1) × 0}. The inflow boundary Γ− is determined by the condition of β · n < 0, where
n is the unit outward normal direction on ∂Ω . The right-hand side function f and the inflow Dirichlet data g are set to
match the exact solution λ if possible.

Our numerical experiments are based on uniform partitions of the domain, which are obtained through a successive
refinement of a given coarse triangulation by dividing each coarse element into four congruent sub-triangles by connecting
the mid-points on the three edges of the triangular element. The rectangular partitions are generated through a successive
refinement of a coarse 3 × 2 rectangular partition of the domain by dividing each coarse element into four congruent
sub-rectangles by connecting the mid-points on the two parallel edges.

6.1. Constant-valued convection vector β

This test problem is defined on Ω1, with exact solution λ = cos(x) cos(y), convection tensor β = [1, 1], and reaction
coefficient c = 1. Tables 6.1 and 6.2 illustrate the numerical performance of the C−1 − P1(T )/P1(∂T )/P0(T ) element when
triangular and rectangular partitions are employed, respectively. Table 6.1 shows that the convergence for ϵ0 and ϵb in the
L2 norm is of optimal order of O(h2) on triangular partitions with (τ1, τ2) = (0, 0). Table 6.2 suggests that the convergence
for ϵ0 and ϵb in the L2 norm is also at the optimal order of O(h2) on rectangular partitions, but a superconvergence is
observed for the dual variable uh on rectangular partitions.

Tables 6.3 and 6.4 illustrate the performance of numerical scheme when the C−1 − P2(T )/P2(∂T )/P1(T ) element are
employed on the L-shaped domain Ω2. The exact solution is given by λ = cos(x) cos(y), the convection vector is β = [1, 1],

Table 6.1

Numerical rates of convergence for the C−1 − P1(T )/P1(∂T )/P0(T ) element with the exact solution

λ = cos(x) cos(y) on the unit square domain Ω1; uniform triangular partitions; convection vector

β = [1, 1]; reaction coefficient c = 1; and the parameters (τ1, τ2) = (0, 0).

1/h ∥ϵ0∥ Order ∥ϵb∥ Order ∥eh∥ Order

4 1.0883E−02 2.0976 1.9684E−02 2.1808 1.1270E−02 0.6656

8 2.4728E−03 2.1379 4.3116E−03 2.1908 5.9859E−03 0.9128

16 5.6872E−04 2.1203 9.7480E−04 2.1450 3.0096E−03 0.9920

32 1.3458E−04 2.0793 2.2889E−04 2.0904 1.5017E−03 1.0030

Table 6.2

Numerical rates of convergence for the C−1 − P1(T )/P1(∂T )/P0(T ) element with the exact solution

λ = cos(x) cos(y) on the unit square domain Ω1; uniform rectangular partitions; convection vector

β = [1, 1]; reaction coefficient c = 1; and the parameters (τ1, τ2) = (0, 0).

1/h ∥ϵ0∥ Order ∥ϵb∥ Order ∥eh∥ Order

4 5.3456E−03 1.8945 1.1620E−02 2.0765 1.8751E−03 0.2718

8 1.3145E−03 2.0238 2.5890E−03 2.1661 9.0089E−04 1.0575

16 3.1893E−04 2.0432 5.8772E−04 2.1392 3.3841E−04 1.4126

32 7.7962E−05 2.0324 1.3796E−04 2.0909 1.1621E−04 1.5420

8
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Table 6.3

Numerical rates of convergence for the C−1 − P2(T )/P2(∂T )/P1(T ) element with the exact solution

λ = cos(x) cos(y) on the L-shaped domain Ω2; uniform triangular partitions; convection vector β = [1, 1];

reaction coefficient c = 1; and the parameters (τ1, τ2) = (0, 1).

1/h ∥ϵ0∥ Order ∥ϵb∥ Order ∥eh∥ Order

4 2.9682E−05 3.2140 6.1448E−05 3.1241 3.0201E−04 1.7985

8 3.3257E−06 3.1579 7.1909E−06 3.0951 8.0495E−05 1.9076

16 3.8296E−07 3.1184 8.5521E−07 3.0718 2.0782E−05 1.9536

32 4.5478E−08 3.0740 1.0369E−07 3.0441 5.2789E−06 1.9770

Table 6.4

Numerical rates of convergence for the C−1 − P2(T )/P2(∂T )/P1(T ) element with the exact solution

λ = cos(x) cos(y) on the L-shaped domain Ω2; uniform triangular partitions; convection vector β = [1, 1];

reaction coefficient c = 1; and the parameters (τ1, τ2) = (0, 0).

1/h ∥ϵ0∥ Order ∥ϵb∥ Order ∥eh∥ Order

4 2.9790E−05 3.2274 6.1690E−05 3.1381 3.0360E−04 1.8214

8 3.3289E−06 3.1617 7.1986E−06 3.0993 8.0598E−05 1.9134

16 3.8306E−07 3.1194 8.5546E−07 3.0730 2.0789E−05 1.9549

32 4.5481E−08 3.0742 1.0369E−07 3.0444 5.2794E−04 1.9774

Table 6.5

Numerical rates of convergence for the C−1 − P2(T )/P2(∂T )/P1(T ) element with the exact solution λ =

exp(x) cos(y) on the cracked domain Ω3; uniform triangular partitions; convection β = [0.5−y, x−0.5];

reaction c = 0; and the parameters (τ1, τ2) = (0, 0).

1/h ∥ϵ0∥ Order ∥ϵb∥ Order ∥eh∥ Order

4 9.1034E−05 3.4056 1.4755E−04 3.4116 4.9032E−03 2.0398

8 9.7249E−06 3.2267 1.5660E−05 3.2360 1.3389E−03 1.8727

16 1.1326E−06 3.1021 1.7997E−06 3.1212 3.6043E−04 1.8933

32 1.3717E−07 3.0456 2.1528E−07 3.0635 9.6096E−05 1.9072

Table 6.6

Numerical rates of convergence for the C−1 − P2(T )/P2(∂T )/P1(T ) element with the exact solution

λ = sin(πx) cos(πy) on the unit square domain Ω1; uniform triangular partitions; convection β = [−y, x];

reaction c = x + y; and the parameters (τ1, τ2) = (1, 0).

1/h ∥ϵ0∥ Order ∥ϵb∥ Order ∥eh∥ Order

4 1.8233E−02 3.2195 3.0485E−02 3.2969 4.8981E−01 2.0117

8 1.6511E−03 3.4651 2.6914E−03 3.5017 1.2298E−01 1.9938

16 1.6687E−04 3.3067 2.7016E−04 3.3165 3.1170E−02 1.9801

32 1.9382E−05 3.1059 3.0957E−05 3.1255 7.9248E−03 1.9757

and the reaction coefficient is c = 1. The numerical results show that the convergence for ϵ0 and ϵb in the L2 norm are

of the optimal order O(h3).

6.2. Continuous convection vector β

Table 6.5 demonstrates the numerical performance of the C−1 −P2(T )/P2(∂T )/P1(T ) element on the uniform triangular

partition for the cracked domain Ω3. The exact solution is given as λ = exp(x) cos(y), the convection is a circular

β = [0.5 − y, x − 0.5], and the reaction is c = 0. The numerical results show that the convergence for ϵ0 and ϵb in

the L2 norm arrive at the optimal order of O(h3).

Table 6.6 demonstrates the computational performance of the algorithm on the uniform triangular partition of the unit

square domain Ω1. The exact solution is λ = sin(πx) cos(πy), the convection is β = [−y, x], and the reaction is c = x+ y.

The numerical results show that the convergence for ϵ0 and ϵb in the L2 norm are of the optimal order O(h3) when the

C−1 − P2(T )/P2(∂T )/P1(T ) element is used.

6.3. Discontinuous convection β

This numerical test was conducted for the C−1 − P1(T )/P1(∂T )/P0(T ) element on uniform triangular partitions for the

unit square domain Ω1. The exact solution is given by λ = sin(x) cos(y). The convection vector β is defined as β = [1, −1]
for y < 1 − x and β = [−2, 2] otherwise. The reaction term is given by c = 1. The numerical results in Tables 6.7–6.8

show that the convergence for ϵ0 and ϵb in the L2 norm are of the optimal order O(h2).

Fig. 6.1 shows the plots of the numerical solution λ0 arising from the PDWG scheme (2.6)–(2.7) when the C−1 −
P2(T )/P2(∂T )/P1(T ) element is employed. The configuration of the test problem is as follows: (1) the convection β =

9
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Table 6.7

Numerical rates of convergence for the C−1 − P1(T )/P1(∂T )/P0(T ) element with exact solution λ =

sin(x) cos(y) on the unit square domain Ω1; uniform triangular partitions; convection β = [1, −1] for

y < 1 − x and β = [−2, 2] otherwise; reaction c = 1; and the parameters (τ1, τ2) = (0, 1).

1/h ∥ϵ0∥ Order ∥ϵb∥ Order ∥eh∥ Order

1 3.2120E−02 7.0574E−02 9.0720E−03

2 1.1795E−02 1.4452 2.1695E−02 1.7018 2.3864E−03 1.9266

4 2.8507E−03 2.0489 4.9996E−03 2.1175 9.1523E−04 1.3826

8 7.0230E−04 2.0197 1.1936E−03 2.0664 4.2927E−04 1.0922

16 1.7520E−04 2.0045 2.9198E−04 2.0315 2.1125E−04 1.0229

32 4.3771E−05 2.0009 7.2224E−05 2.0153 1.0519E−04 1.0059

Table 6.8

Numerical rates of convergence for the C−1 − P1(T )/P1(∂T )/P0(T ) element with the exact solution

λ = sin(x) cos(y) on the unit square domain Ω1; uniform triangular partitions; convection β = [1, −1]

for y < 1 − x and β = [−2, 2] otherwise; reaction c = 1; and the parameters (τ1, τ2) = (0, 0).

1/h ∥ϵ0∥ Order ∥ϵb∥ Order ∥eh∥ Order

1 4.0936E−02 9.0019E−02 1.3976E−02

2 1.2259E−02 1.7396 2.2582E−02 1.9951 3.0632E−03 2.1899

4 2.9157E−03 2.0719 5.1131E−03 2.1429 1.2530E−03 1.2896

8 7.1768E−04 2.0224 1.2183E−03 2.0693 5.9790E−04 1.0675

16 1.7876E−04 2.0053 2.9787E−04 2.0321 2.9519E−04 1.0183

32 4.4655E−05 2.0012 7.3676E−05 2.0154 1.4707E−04 1.0051

Fig. 6.1. Plots of numerical solution λ0 on the unit square domain Ω1; C
−1 − P2(T )/P2(∂T )/P1(T ) element; uniform triangular partitions; convection

β = [1, −1] for y < 1 − x and β = [−2, 2] elsewhere; reaction c = 0; the load function f = 0; the inflow boundary data g = 1 on the inflow

boundary edge {0} × (0, 1) and g = −1 on the inflow boundary edge {1} × (0, 1); and (τ1, τ2) = (1, 1).

[1, −1] for y < 1 − x and β = [−2, 2] elsewhere; (2) the reaction c = 0; (3) the load function f = 0; and (4) inflow

boundary data of g = 1. The left one in Fig, 6.1 is the contour plot of the numerical solution λ0; and the right one is its

surface plot. It is easy to see that the numerical solution λ0 is consistent with the exact solution λ of the model problem

(1.1).

6.4. Plots of numerical solutions λ0

Fig. 6.2 shows the contour plots of the numerical solution λ0 obtained by using the C−1 − P2(T )/P2(∂T )/P1(T ) element

in Ω1. The convection vector is given by β = [−y, x] for y < 1− x and β = [1− y, x− 1] otherwise. The reaction term is

given by c = 0. The inflow boundary data g = sin(3x) cos(5y). The parameters are (τ1, τ2) = (1, 1). Fig. 6.2 demonstrates

the contour plots of the numerical solution λ0 for the load function f = 1 (left figure) and f = 0 (right figure), respectively.

Fig. 6.3 shows the contour plots of the numerical solution λ0 on the L-shaped domain Ω2. The convection vector is

given by β = [−1, 1] for y < 0.5 − x and β = [1, −1] elsewhere, and the reaction is c = 1. The inflow boundary data is

g = sin(πx) cos(πy). The parameters are set as (τ1, τ2) = (1, 1). The plot in left is for the load functions f = 1, and the

one on right is for f = 0 with C−1 − P2(T )/P2(∂T )/P1(T ) elements.
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Fig. 6.2. Contour plots of numerical solution λ0 on the unit square domain Ω1; C−1 − P2(T )/P2(∂T )/P1(T ) element; uniform triangular partitions;

convection β = [−y, x] for y < 1 − x and β = [1 − y, x − 1] otherwise; reaction c = 0; the inflow boundary data g = sin(3x) cos(5y); and

(τ1, τ2) = (1, 1). The load function f = 1 (left) and f = 0 (right).

Fig. 6.3. Contour plots of numerical solution λ0 on the L-shaped domain Ω2; C−1 − P2(T )/P2(∂T )/P1(T ) element; uniform triangular partitions;

convection β = [−1, 1] for y < 0.5−x and β = [1, −1] elsewhere; reaction c = 1; the inflow boundary data g = sin(πx) cos(πy); and (τ1, τ2) = (1, 1).

f = 1 (left) and f = 0 (right).

Fig. 6.4 is for the numerical solution λ0 on the cracked unit square domain Ω3. The convection vector is given by
β = [0.5 − y, x − 0.5], the reaction is c = x − y, the inflow boundary data is g = sin(x), and (τ1, τ2) = (1, 1). Fig. 6.4 in
the left is for the load function f = 1, and the one on right is for f = 0.

Table 6.9 illustrates the computational performance of the algorithm on the cracked domain Ω4 when the C−1 −
P2(T )/P2(∂T )/P1(T ) element is used. The exact solution is λ = sin(πx) sin(πy), the convection is β = [2 − y, x], and the
reaction is c = −1. The numerical results show that the convergence for ϵ0 and ϵb in the L2 norm are of the optimal order
O(h3) (see Fig. 6.5).

In summary, the numerical results from the primal–dual weak Galerkin finite element scheme (2.6)–(2.7) for the
transport problem (1.1) confirm the theory developed in this paper. The numerical experiments reveal optimal-order of
convergence for all the test cases. We are confident that the PDWG scheme is a stable, accurate, and convergent numerical
method for the first-order transport problem in non-divergence form.
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Fig. 6.4. Contour plots of numerical solution λ0 on the cracked square domain Ω3; C
−1 − P2(T )/P2(∂T )/P1(T ) element; uniform triangular partitions;

convection β = [0.5 − y, x − 0.5]; reaction c = x − y; the inflow boundary data g = sin(x); and (τ1, τ2) = (1, 1). f = 1 (left) and f = 0 (right).

Table 6.9

Numerical rates of convergence for the C−1 − P2(T )/P2(∂T )/P1(T ) element with the exact solution

λ = sin(πx) sin(πy) on the cracked domain Ω4; uniform triangular partitions; convection vector

β = [2 − y, x]; reaction coefficient c = −1; and the parameters (τ1, τ2) = (0, 1).

1/h ∥ϵ0∥ Order ∥ϵb∥ Order ∥eh∥ Order

4 1.8937E−02 2.9572 3.3943E−02 3.0853 8.8951E−02 1.4150

8 2.2397E−03 3.0798 4.0766E−03 3.0577 2.3357E−02 1.9291

16 2.4510E−04 3.1919 4.5456E−04 3.1648 5.5016E−03 2.0860

32 2.7712E−05 3.1448 5.2391E−05 3.1171 1.2981E−03 2.0834

Fig. 6.5. Plots of numerical solution λ0 on the cracked square domain Ω4 using the C−1 −P2(T )/P2(∂T )/P1(T ) element; uniform triangular partitions;

convection β = [2 − y, x]; reaction c = y − x; inflow boundary data g = 0; load function f = 1 and (τ1, τ2) = (1, 1).
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