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1. Introduction

This paper is concerned with the development of a symmetric numerical method for first order transport equations
in non-divergence form by using the primal-dual finite element framework presented in [1]. For simplicity, we consider
the model problem that seeks an unknown function A satisfying

B(x)- VA —c(x)A =f in £2,

1.1
A=g onl., (1.1)

where £2 is an open bounded and connected domain in R? (d = 2, 3) with Lipschitz continuous boundary I" = 92, I'"
is the inflow boundary satisfying 8- n < 0, and n is the unit outward normal direction to I". Assume that the convection
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vector B = (B1,..., Bq) € [L®(2)]¢ is piecewise smooth, the reaction coefficient c € L°(£2) is piecewise continuous,
the load function f € L*(£2), and the inflow boundary data g € [*(I"_).

The first-order transport equation arises in many areas of science and engineering. Numerical methods for transport
equations often impose a mathematical and computational challenge on its stability and capability of resolving the
solution’s discontinuities or sharp changing fronts. The first order linear transport equation serves as a benchmark for
testing new approaches in numerical partial differential equations. Readers are referred to the introduction section of [2]
and the references cited therein for a detailed description of the first-order transport equation as well as its physical and
engineering applications.

This paper will develop a new numerical method for the linear transport problem (1.1) where the convection vector 8
and the reaction coefficient ¢ are assumed to be piecewise continuous functions without any coercivity assumption in the
form of c + %V -B > o > 0 or alike used in most existing literatures. Our new numerical scheme is devised by using the
framework of the primal-dual weak Galerkin (PDWG) finite element method [1-13]. The PDWG method was originally
formulated as a constraint optimization problem in which the “discontinuity” of the approximating solution is minimized
with the constraint of a satisfaction of the PDE locally on each element. The idea of primal-dual for solving PDEs has been
also developed by Burman [14,15] in other finite element contexts, and it was given the name of “stabilized finite element
methods” by Burman.

The transport Eq. (1.1) can be viewed as the adjoint of a transport equation in divergence form [2]. In [2], the
linear transport equation in divergence form was formulated into a weak form through the integration by parts so that
no derivatives are applied to the primal variable. The corresponding numerical scheme thus has convergence under
the H”-regularity assumption for the exact solution. For the transport equation in non-divergence form (1.1), we shall
use a straightforward weak form through a simple test against any square integrable functions. Compared with [2], a
stabilization term in the form of 1, ZTeTh h%(uh, v) is introduced in the present PDWG scheme in order to achieve an
optimal order of convergence in L?. In addition, a term ZTeTh 71(f, B - Vop — cop) is added to the right-hand side of the
dual equation to accommodate a least squares term in the stabilizer s(-, -) for the dual equation. In other words, the PDWG
scheme for the model problem (1.1) requires some non-trivial modifications of the numerical method presented in [2].

The main contributions of this paper are the following. First, a new PDWG numerical method was devised and analyzed
mathematically for its solvability and stability. Secondly, a convergence was established based on a minimal assumption on
the PDE coefficients; namely, the model problem has one and only one solution and the coefficients are merely piecewise
smooth. It should be pointed out that, due to the non-smoothness of the convection vector §, the transport equation in
non-divergence form cannot be formulated into a divergence form for an application of the scheme developed in [2].

The paper is organized as follows. In Section 2, we present a PDWG algorithm. In Section 3, we prove the existence
and uniqueness for the numerical solution. In Section 4, we derive error equations for the PDWG finite element method.
Sections Section 5 is devoted to a convergence analysis for the PDWG approximations. Section 6 contains a series of
numerical results that demonstrate the efficiency, stability, and accuracy of the new PDWG method.

2. Primal-dual weak Galerkin algorithm

The usual notations for Sobolev spaces and norms are adopted in this article. For an open bounded domain D c R¢
with Lipschitz continuous boundary, denote by || - [Isp, | - |5 p, and (-, -)s p the norm, seminorm and the inner product in
the Sobolev space H*(D), s > 0, respectively. H(D) coincides with L?(D), and the norm and the inner product are denoted
as || - |lp and (-, -)p. When D = §2 or the domain of integration is clear from the context, the subscript D will be omitted
in the norm and inner product notations. Denote by I the identity operator.

Denote by T a polygonal or polyhedral element with boundary dT. By a weak function on T, we mean a pair v = {vg, vp}
such that vy € L*(T) and v, € L?(3T); vy can be viewed as the value of v in T and v, represents v on 9T. Let W(T) be the
local space of all weak functions on T; i.e.,

W(T) = {v = {vg, vy} : vy € L3(T), v € L2(3T)).

Let P.(T) be the space of polynomials on T with degree r and less. The discrete weak gradient of v, denoted as
Vo.r1v € [P(T)]¢ for v € W(T), is defined by

(Var. 10, ¥)r = —(vo, V- ¥)r + (vp, ¥ - m)yr, VY € [P(T)]. (2.1)
From the integration by parts, (2.1) maybe rewritten as follows
(Vurr,10, ¥)r = (Yo, ¥)r — (vo — v, ¥ - M)pr, Vi € [P(T)]°, (2.2)

provided that vy € H'(T).

Let 7, be a finite element partition of the domain £2 into polygons in 2D or polyhedra in 3D which is shape regular in
the sense of [16]. Denote by &, the set of all edges/faces in 73, and 6,? = &, \ 052 the set of all interior edges/faces. Denote
by hr the size of T € 7; and h = maxycy;, hr the meshsize of the partition 7. For any piecewise smooth function ¢ with
respect to the partition 7, denote by [[¢] the jump of ¢ along the interior edge/face e given by

[¢1 = ¢1ny + o1y,
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where ¢; := ¢|r;, and n; is the unit outward normal direction on e = 9T; N 97T, relative to the element T;, i =1, 2.
Let k > 1 be a given integer. Denote by W (T) the local space of discrete weak functions; i.e.,
Wi(T) = {{00, ob} : 00 € Pi(T), 0 € Pi(e), e C 3T} (2.3)

The global weak finite element space W), can be obtained by patching W,(T) over all elements T € 7, through a common
value v, on 8,?. Denote by W,? the subspace of W, with vanishing boundary values on I'"_; i.e.,

Wy = ({00, op} € Wy : 0ple = 0,e C I}
Our second finite element space My consists of piecewise polynomials of degree m(k); i.e
={w: wlt € Pu(T), VT € Ty}, (2.4)

where m(k) = k — 1, or k.
For simplicity, denote by Vo the discrete weak gradient V,, y_; ro computed by (2.1) on each element T; i.e.,

(Vwo)lr = Vy-11(o]r), VT € Tp.
Introduce the following bilinear forms:
PG)—Z/ "(po — pb)(00 — op)ds
T€Th (2.5)
41 [(B- Vo conl(B- Vo — caok,
T

b(o,v) =Y (B Vuo — coo, v)r,
TeTh
for any p, o € Wy, v € My, where 7; > 0 is a parameter.
The primal-dual weak Galerkin scheme for (1.1) can be stated as follows:

Primal-Dual Weak Galerkin Algorithm 2.1. Find (Aj; up) € Wy, x My, such that Apl. = Qu(gle), € C I'—, and satisfying

s o)+ b(o,un) = > n(f. B+ Voo — coo)r, Yo € Wy, (2.6)
TeTy
—75 Y W (up, v)r + b0, v) = (F, ), Vv € My, (27)

TeTh

where 7, > 0 is a parameter and Q, is the local L? projection operator into Py(e).
3. Solution existence and uniqueness

Denote by Q, the L? projection operator onto Py(T). Analogously, for e C 8T, denote by Q, the L? projection operator
onto Py(e). The composite projection Q,w for w € H!(£2) is given by

(Quw)lr = {Qo(wlr), Qu(wlyr)}, VT € Tp.

Let Oy, be the L? projection operator onto the finite element space M. Denote by @ the L? projection operator onto the
space of piecewise polynomials of degree k — 1. Observe that Qj is identical to Q, when m(k) = k — 1. The following
commutative property is known [16]:

Vi(Qw) = Qu(Vw),  Yw e H'(T). (3.1)
For simplicity of analysis, in what follows in the paper, we assume that the convection vector g and the reaction
coefficient ¢ are piecewise continuous functions with respect to the finite element partition 7.

Theorem 3.1. Assume that the transport problem (1.1) has a unique solution. Then, the primal-dual weak Galerkin algorithm
(2.6)-(2.7) has a unique solution for any parameter T, > 0.

Proof. It suffices to show that the homogeneous problem of (2.6)—(2.7) has only the trivial solution. To this end, assume
f =0and g = 0. By choosing v = u, and 0 = A in (2.6)-(2.7) we arrive at

S(An, Ap) + T2 Z h¥(up, up)r = 0,
TeTh

which implies Ay = Aj, on each 3T, B- VAo — cAg = 0, and u;, = 0 on each element T. We thus obtain Ay € C%(£2) and
furthermore B - VAo — cAg = 0 in 2, which, together with A = A, = 0 on I'_, yields Ao = 0 in £2 from the solution

3



D. Li, C. Wang and J. Wang Journal of Computational and Applied Mathematics 412 (2022) 114313

uniqueness of the model problem (1.1). From Ay = X, on each 9T, we have A, = 0 in £ so that A, = 0 in £2. This
completes the proof of the theorem. O

Next, we shall study the solution uniqueness for the algorithm (2.6)-(2.7) when the least-squares term disappears
from the stabilizer s(p, o) in (2.5). The linear transport operator in (1.1) is said to have the L[?>-regularity if there exists a

constant C; such that the solution @ of the following problem
X)-V® —c(x)® =F in £2,
B(x) (x) (32)
A=0 onIl_

satisfies the following estimate

[@llo = GillFllo- (33)

Theorem 3.2. Assume that B is locally C1%(T) and c is locally C%%(T) on each element T € Ty. Under the assumption of the
L?-regularity estimate (3.3), the primal-dual weak Galerkin algorithm (2.6)—(2.7) with m(k) = k has one and only one solution
with parameter value t; = 0 in (2.5), provide that the meshsize h is sufficiently small.

Proof. It suffices to show that the homogeneous problem of (2.6)—(2.7) has only the trivial solution. To this end, assume
f=0and g =0.As t; =0, by choosing v = u; and o = A, in (2.6)-(2.7) we arrive at

S(An, An) + 2 Z hi(up, up)r =0,
TeTh
which leads to Ao = A on each 9T and up = 0 on each element T € 7p. It follows from (2.7) that
0 = b(Ap, v)
= Z(ﬂ  VipAp — Cho, V)r

TeTy

= Z(ﬂ - Vg — Cho, V)7

TeTy
= (Qu(B- V1o — Cho), v)r
TeTh

for all v € My, where we have used V,, A, = VA due to the fact that 1y = A on each aT. Thus, we have Qp(8-VAig—chg) =
0 on each T € 7;. From Ag = A, on each 3T we have Ao € C%(£2) so that

B-Vig—cro=(I—u)B-Vio—cho)=F, Aolr.=0. (34)
From the [?-regularity assumption (3.3), Eq. (3.4), and the assumption of m(k) = k, we arrive at
I2o0llo <CillFllo
1
<G (30— B Vio - co)lR)’
TeTy

1

=G (2 10— QB = B)- Vao)lE + I = Qe — Do)l ",

TeTh

where B is the L? projection of B onto the space of piecewise linear functions and € is the L? projection of ¢ onto the
space of piecewise constant functions. Since 8 is locally C"* and c is locally C%¢, we thus have

- — 2
%ol <C1 (Y 18 = Bl Vholld s + lle = Elibeqr20ll3r)
TeTh

[N

=G (GRE™ Y VAol + CGhE ol )
TeTy
<Ch ol

where we have used the inverse inequality in the last estimate. Hence

(1= Ch*)llxollo = O,
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which leads to ||Agllo = 0 when the meshsize h is sufficiently small. This shows that o = 0 in £2, and furthermore, 1, = 0
from the fact that A, = Ao on each dT. This completes the proof of the theorem. O

4. Error equations

Let 1 be the exact solution of the transport problem (1.1) and (Ay, uy) € Wy, x My be its numerical approximation
arising from the scheme (2.6)-(2.7). Denote the error functions by

€p = )\h — Qh)», (4.1)
ep = uUp — Qpll. (4.2)

Note that the exact solution to the dual equation is the trivial function u = 0.

Lemma 4.1. The error functions €, and e, satisfy the following equations:

S(ep, o)+ b(o, ep) = €;(0), Vo € W,?, (4.3)
—73 Y hi(en, v)r + blen, v) = G(v), Vv € My (4.4)
TeTh
Here,
G(o) =) 1(B- V0. — QoA) — c( — Qo) B - Voo — ool
TeTh (4.5)
— h'(Qok — Qvh, 00 — Tb)ar,
G(v) =Y (B (I — Qu)VA — c(h — Qo). vr. (4.6)

TeTh

Proof. From (2.7) and the commutative property (3.1) we have

— 1 ) hHup — Qutt, v)r + b(hn — Qi v)
TeTy

= (fv U) - b(Q}‘l)"a v)
=(f,v)— Y (B VuQir — cQok, v)r

TeTh

=(B-VA—chv)= Y (B-QuVA—cQoh, v)r

TeTh

=Y (B-(I— Qu)VA —c(x — Q). v)r,

TeTh

where we have used the first equation in (1.1), which gives (4.4). To derive (4.3), we subtract s(QyX, o) from both sides
of (2.6) to obtain

S(An — QuA, o)+ b(o, up — Quu)
= Z ‘ﬁ(f’ ﬂ : VO-O - CUO)T - S(Qh)"v O')

TeTh

= Z T(B- Vi —ch, B- Voo — cop)r — hy ' (Qor — Quk, 00 — Op)ar
TeTy

— (B - VQor — cQoA, B - Voo — coo)r
=Y " n(B- V(= Q1) — c(r — QA), B Voo — cop)r

TeTy
— hy ' (Qoh — Qu), 00 — 0b)ar,
which leads to the error Eq. (4.3). This completes the proof of the lemma. O

5
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5. Error estimates

Introduce a scaled L? norm in the finite element space Mj, as follows:

1
Il = (72 3" mI0IE) " v em, (5.1)

TeTh

where 7, > 0. In Wj,, we equip the following semi-norm:

[N

A, = (Z o — 2l + 7118+ Vo — cholF) . (5.2)
TeTh

where 7; > 0.

Lemma 5.1. Assume that the solution to the transport problem in the non-divergence form (1.1) is unique. Then the seminorm
Il - llw, defines a norm in the linear space W,? when t; > 0.

Proof. We shall only verify the positivity property for || - [y, . To this end, assume [|A[ly, = O for some A = {Aq, Ap} € W,?.
Since 7; > 0, then from (5.2) we have Ao = A, on 3T and 8- VAo — cAg = 0 on any T € T;. This implies o € C%(£2) and
B-Vio —crop = 0in £2. Thus, from X € W,? and the solution uniqueness for (1.1) we obtain 1y = 0 and furthermore,
Ab = Ag = 0. This completes the proof of the lemma. O

Recall that 7; is a shape-regular finite element partition of the domain £2. Thus, for any T € 7; and ¢ € H'(T), the
following trace inequality holds true [16]:

Ipl5r < Clhy'lI7 + hrlIVIF). (5.3)
If ¢ is a polynomial on the element T € 73, the following trace inequality holds true [16]; i.e.,

Ipll5r < Chy'lIpllF. (5.4)

Lemma 5.2 ([16]). Let T, be a finite element partition of the domain $2 satisfying the shape regular assumption as specified
in [16]. Forany 0 < s < 1 and 0 < m < k, there holds

D hFlu— Quul?; < Ch" P ull?,,, 0 <n < mk), (5.5)
TeTy
D hEIR = QoAllZy < CPM2 A, 0<m <k (5.6)
TeTh

Theorem 5.3. Let A and (Ay; up) € Wy x My, be the exact solution of the transport problem (1.1) and the primal-dual weak
Galerkin solution arising from the numerical scheme (2.6)-(2.7), respectively. Assume that the exact solution A is sufficiently
regular such that A € @;zIHk“(Qj) where {.Qj}jzl is a non-overlapping partition of the domain 2. Then, the following estimate
holds true:

J
_1
llenllw, + llenllg, < CC1+ 75 2D " [IAllir.g;- (5.7)
j=1

Proof. By setting o = ¢ in the error Eq. (4.3) and v = e; in (4.4), we have

2} Z h(en, en)r + s(en, €n) = Ci(€n) — Calen),
TeTh

which gives
Nenllzs, + llenllfy, <I€(en)l + 15(en)l = I + L. (5.8)

We shall estimate the two terms I; and I, in (5.8). For Iy, it follows from the Cauchy-Schwarz inequality, the triangle
inequality, (4.5), the trace inequality (5.3), and the estimate (5.6) with m = k that

6
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h :‘ Z T1(B - V(A — QoA) — c(A — QoA), B- Vo — ceo)r

TeTh

— hy'(Qoh — Qoh, €0 — €b>ar)

=

< (3 - v0.— a0niz) + (3 mulet - aonid)

TeTy TeTy
1
(X w8 Veo - ceoll})’
TeTy
1 1
_ 2 _ 2
+ (0 bt — el (3 byt IQor — QoI
TeTy, TeTh (5.9)

J J
<llenllw, (CR* Y " nllerngy + CHF Y lIAllkyr.e)
j=1 j=1

+ lenllw, (Y b7 1007 = 1)

TeTy

N=

J
_ 1
<llenllw, (Ch" D Il + €O A l1Qox — AllF + 1QoA — Mﬁ,T)z)
j=1 TeTh
J

K
<Chllenllw, D I-ls1.2;-
=1

As to I, we use the orthogonality property of Qp to obtain

L=| Y (B U= @u)VA — .~ Qb en)|

TeTy
< 380 = Qi e |+ | 30 (c — i) enr|
TeTh TeTh
= >0 - @)vr (1 - @B - Bewr|
TeTh
+ | 20— o cenr|.
TeTh

Next, from the Cauchy-Schwarz inequality, (4.6), the triangle inequality, the estimate (5.5) with m = k and m = 1, the
estimate (5.6) with m = k, and the inverse inequality we obtain

=30 10 = @nvaiz) (3 10 - @B - Benl)’

TeTy TeTh

1 1

1— 2 2
+ lellseer (D 75 21 on = 212)* (D whlenll?)

TeTh TeTh
: 1 ) (5.10)
_ T
=cit [ (D BIVE = Benlr)” + G, lenll, | D Il

TeTh j=1

J
1
T2k
<Cr, 2Wllenllng, Y IMllks1. 0,
j=1

where we have used the fact that maxre7;, [|VB|l1o(ry < C due to the piecewise smoothness assumption on 8 with respect
to the finite element partition 7y,.
Combining (5.8) with (5.9) and (5.10) yields the error estimate (5.7). This completes the proof of the theorem. O

7
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6. Numerical experiments

In this section we shall report some computational results for the scheme (2.6)-(2.7) with linear and quadratic elements
(i.e., k = 1, 2). Recall that the finite element spaces are constructed as follows

W = {{ho. h} : Ao € P(T). & € Pi(e). e C AT, VT € T},
M,(qk) = {up : uplr € Pmy(T), VT € Ty}, m(k) =k —1, ork.

For convenience, they are referred to as C~! — P (T)/Pi(dT)/Pm(io(T) element in this section.

The numerical solution A, = {Xg, Ap} € W,Ek) and uy € M,(f) is compared with the L? projection of the exact solution A
and u = 0. The corresponding error functions are denoted as

€0 =ro— QoA, € =2y —QA, ep=up— Quu = Up.

The L? norm for the error A, on the element boundary is defined as
1

2
oo = | ot [ eias

TeTy aT

The numerical experiments are conducted on several polygonal domains £2;. The first one is the unit square domain
£2; = (0, 1)%. The second one, denoted as £2-, is an L-shaped domain with vertices A; = (0, 0), A, = (1, 0), A3 = (1, 0.5),
A4 =(0.5,0.5),As = (0.5, 1), and Ag = (0, 1). The third one is a cracked unit square given by £23 = (0, 1)2\(0.5, 1)x {0.5}.
The crack clearly takes place along the edge (0.5, 1) x {0.5}. Our fourth one is also a cracked diamond characterized as
24 = {(x,y) : x| + [yl < 1}\ {(0, 1) x 0}. The inflow boundary I"_ is determined by the condition of 8- n < 0, where
n is the unit outward normal direction on 9£2. The right-hand side function f and the inflow Dirichlet data g are set to
match the exact solution A if possible.

Our numerical experiments are based on uniform partitions of the domain, which are obtained through a successive
refinement of a given coarse triangulation by dividing each coarse element into four congruent sub-triangles by connecting
the mid-points on the three edges of the triangular element. The rectangular partitions are generated through a successive
refinement of a coarse 3 x 2 rectangular partition of the domain by dividing each coarse element into four congruent
sub-rectangles by connecting the mid-points on the two parallel edges.

6.1. Constant-valued convection vector f8

This test problem is defined on §2, with exact solution A = cos(x)cos(y), convection tensor 8 = [1, 1], and reaction
coefficient ¢ = 1. Tables 6.1 and 6.2 illustrate the numerical performance of the C~' — Py(T)/P;(3T)/Po(T) element when
triangular and rectangular partitions are employed, respectively. Table 6.1 shows that the convergence for € and ¢, in the
L% norm is of optimal order of ©(h?) on triangular partitions with (t;, 72) = (0, 0). Table 6.2 suggests that the convergence
for € and €, in the [ norm is also at the optimal order of ®(h?) on rectangular partitions, but a superconvergence is
observed for the dual variable u; on rectangular partitions.

Tables 6.3 and 6.4 illustrate the performance of numerical scheme when the C~! — P,(T)/P,(dT)/P;(T) element are
employed on the L-shaped domain £2,. The exact solution is given by A = cos(x) cos(y), the convection vector is 8 = [1, 1],

Table 6.1
Numerical rates of convergence for the C~! — Py(T)/P1(dT)/Po(T) element with the exact solution
A = cos(x)cos(y) on the unit square domain £2;; uniform triangular partitions; convection vector
B = [1, 1]; reaction coefficient ¢ = 1; and the parameters (74, 72) = (0, 0).
1/h ll€oll Order llepl Order llenll Order
4 1.0883E—02 2.0976 1.9684E—02 2.1808 1.1270E—02 0.6656
8 2.4728E—03 2.1379 4.3116E—03 2.1908 5.9859E—03 0.9128
16 5.6872E—04 2.1203 9.7480E—04 2.1450 3.0096E—03 0.9920
32 1.3458E—04 2.0793 2.2889E—-04 2.0904 1.5017E—-03 1.0030
Table 6.2

Numerical rates of convergence for the C~! — Py(T)/P1(dT)/Po(T) element with the exact solution
A = cos(x)cos(y) on the unit square domain 2;; uniform rectangular partitions; convection vector
B = [1, 1]; reaction coefficient ¢ = 1; and the parameters (4, 72) = (0, 0).

1/h ll€oll Order llepl Order llenll Order
4 5.3456E—03 1.8945 1.1620E—02 2.0765 1.8751E—03 0.2718
8 1.3145E-03 2.0238 2.5890E—03 2.1661 9.0089E—04 1.0575
16 3.1893E—04 2.0432 5.8772E—04 2.1392 3.3841E—04 1.4126
32 7.7962E—05 2.0324 1.3796E—04 2.0909 1.1621E—04 1.5420
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Table 6.3

Numerical rates of convergence for the C~' — P,(T)/P,(3T)/Py(T) element with the exact solution
A = cos(x) cos(y) on the L-shaped domain £2; uniform triangular partitions; convection vector § = [1, 1];
reaction coefficient ¢ = 1; and the parameters (7, 72) = (0, 1).

1/h lleoll Order llep |l Order [len]l Order
4 2.9682E—05 3.2140 6.1448E—05 3.1241 3.0201E—04 1.7985
8 3.3257E-06 3.1579 7.1909E—-06 3.0951 8.0495E—05 1.9076
16 3.8296E—07 3.1184 8.5521E—07 3.0718 2.0782E—05 1.9536
32 4.5478E—08 3.0740 1.0369E—07 3.0441 5.2789E—06 1.9770
Table 6.4
Numerical rates of convergence for the C~! — Py(T)/P,(dT)/P;(T) element with the exact solution

A = cos(x) cos(y) on the L-shaped domain £2;; uniform triangular partitions; convection vector 8 = [1, 1];
reaction coefficient ¢ = 1; and the parameters (74, 72) = (0, 0).

1/h lleoll Order llep |l Order [len]l Order

4 2.9790E—-05 3.2274 6.1690E—05 3.1381 3.0360E—04 1.8214

8 3.3289E—06 3.1617 7.1986E—06 3.0993 8.0598E—05 19134

16 3.8306E—07 3.1194 8.5546E—07 3.0730 2.0789E—05 1.9549

32 4.5481E—08 3.0742 1.0369E—-07 3.0444 5.2794E—-04 1.9774
Table 6.5

Numerical rates of convergence for the C~! — P,(T)/P,(dT)/P1(T) element with the exact solution A =
exp(x) cos(y) on the cracked domain §25; uniform triangular partitions; convection § = [0.5—y,x—0.5];
reaction ¢ = 0; and the parameters (1, 72) = (0, 0).

1/h |l€oll Order llepl Order llenll Order
4 9.1034E—05 3.4056 1.4755E—04 3.4116 4.9032E-03 2.0398
8 9.7249E—-06 3.2267 1.5660E—05 3.2360 1.3389E—03 1.8727
16 1.1326E—06 3.1021 1.7997E—06 3.1212 3.6043E—04 1.8933
32 1.3717E—07 3.0456 2.1528E—07 3.0635 9.6096E—05 1.9072
Table 6.6
Numerical rates of convergence for the C~' — P,(T)/P,(dT)/Py(T) element with the exact solution

A = sin(rx) cos(ry) on the unit square domain £2;; uniform triangular partitions; convection 8 = [—y, X];
reaction ¢ = x +y; and the parameters (71, 1) = (1, 0).

1/h lleoll Order llep |l Order |len ]l Order

4 1.8233E—02 3.2195 3.0485E—02 3.2969 4.8981E—01 2.0117
8 1.6511E—-03 3.4651 2.6914E—-03 3.5017 1.2298E—01 1.9938
16 1.6687E—04 3.3067 2.7016E—04 3.3165 3.1170E—02 1.9801
32 1.9382E—05 3.1059 3.0957E—05 3.1255 7.9248E—03 1.9757

and the reaction coefficient is ¢ = 1. The numerical results show that the convergence for ¢, and ¢, in the [? norm are
of the optimal order O(h?).

6.2. Continuous convection vector 8

Table 6.5 demonstrates the numerical performance of the C~! — P,(T)/P,(dT)/P;(T) element on the uniform triangular
partition for the cracked domain £23;. The exact solution is given as A = exp(x)cos(y), the convection is a circular
B = [0.5 — y,x — 0.5], and the reaction is ¢ = 0. The numerical results show that the convergence for €g and ¢, in
the L2 norm arrive at the optimal order of O(h*).

Table 6.6 demonstrates the computational performance of the algorithm on the uniform triangular partition of the unit
square domain £2;. The exact solution is A = sin(;x) cos(;ry), the convection is B = [—y, x], and the reaction is ¢ = x+y.
The numerical results show that the convergence for €y and €, in the L? norm are of the optimal order ©(h®) when the
C~' — Py(T)/P,(3T)/P1(T) element is used.

6.3. Discontinuous convection 8

This numerical test was conducted for the C~' — P;(T)/P;(3T)/Po(T) element on uniform triangular partitions for the
unit square domain £2;. The exact solution is given by A = sin(x) cos(y). The convection vector B is defined as g = [1, —1]
fory < 1—xand 8 = [-2, 2] otherwise. The reaction term is given by ¢ = 1. The numerical results in Tables 6.7-6.8
show that the convergence for € and ¢, in the L? norm are of the optimal order O(h?).

Fig. 6.1 shows the plots of the numerical solution Aq arising from the PDWG scheme (2.6)-(2.7) when the C~! —
P,(T)/P5(3T)/P1(T) element is employed. The configuration of the test problem is as follows: (1) the convection 8 =

9
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Table 6.7

Numerical rates of convergence for the C~! — Py(T)/P;(dT)/Py(T) element with exact solution A =
sin(x)cos(y) on the unit square domain £2;; uniform triangular partitions; convection g = [1, —1] for
¥y <1—xand B =[-2,2] otherwise; reaction ¢ = 1; and the parameters (zy, 7o) = (0, 1).

1/h |l€oll Order llepl Order llenll Order
1 3.2120E-02 7.0574E—02 9.0720E—03

2 1.1795E—02 1.4452 2.1695E—02 1.7018 2.3864E—03 1.9266
4 2.8507E—03 2.0489 4.9996E—03 2.1175 9.1523E—04 1.3826
8 7.0230E—04 2.0197 1.1936E—03 2.0664 4.2927E—04 1.0922
16 1.7520E—04 2.0045 2.9198E—04 2.0315 2.1125E-04 1.0229
32 4.3771E—05 2.0009 7.2224E—-05 2.0153 1.0519E—-04 1.0059

Table 6.8

Numerical rates of convergence for the C~' — Py(T)/P;(dT)/Po(T) element with the exact solution
A = sin(x) cos(y) on the unit square domain §2;; uniform triangular partitions; convection g8 = [1, —1]
for y < 1—x and B = [—2, 2] otherwise; reaction ¢ = 1; and the parameters (ty, 7;) = (0, 0).

1/h lleoll Order llep |l Order [len ]l Order
1 4.0936E—02 9.0019E—02 1.3976E—02

2 1.2259E—-02 1.7396 2.2582E—02 1.9951 3.0632E—-03 2.1899
4 2.9157E-03 2.0719 5.1131E-03 2.1429 1.2530E—03 1.2896
8 7.1768E—04 2.0224 1.2183E—03 2.0693 5.9790E—04 1.0675
16 1.7876E—04 2.0053 2.9787E—04 2.0321 2.9519E—-04 1.0183
32 4.4655E—05 2.0012 7.3676E—05 2.0154 1.4707E—04 1.0051

Figure for Numerical Solution Figure for Numerical Solution
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Fig. 6.1. Plots of numerical solution Ay on the unit square domain £21; C~! — P,(T)/P(3T)/P1(T) element; uniform triangular partitions; convection
B =1[1,—-1] fory < 1—x and B = [—2, 2] elsewhere; reaction ¢ = 0; the load function f = 0; the inflow boundary data g = 1 on the inflow
boundary edge {0} x (0, 1) and g = —1 on the inflow boundary edge {1} x (0, 1); and (7, 72) = (1, 1).

[1,-1]fory < 1 —xand B = [—2, 2] elsewhere; (2) the reaction ¢ = 0; (3) the load function f = 0; and (4) inflow
boundary data of g = 1. The left one in Fig, 6.1 is the contour plot of the numerical solution Ag; and the right one is its
surface plot. It is easy to see that the numerical solution X is consistent with the exact solution A of the model problem
(1.1).

6.4. Plots of numerical solutions Ag

Fig. 6.2 shows the contour plots of the numerical solution Ay obtained by using the C~! — P,(T)/P5(dT)/P;(T) element
in £21. The convection vector is given by g = [—y, x] fory < 1—x and B = [1 —y, x — 1] otherwise. The reaction term is
given by ¢ = 0. The inflow boundary data g = sin(3x) cos(5y). The parameters are (71, 72) = (1, 1). Fig. 6.2 demonstrates
the contour plots of the numerical solution X for the load function f = 1 (left figure) and f = 0 (right figure), respectively.

Fig. 6.3 shows the contour plots of the numerical solution Ao on the L-shaped domain §2,. The convection vector is
given by B =[—1,1] fory < 0.5 —x and 8 = [1, —1] elsewhere, and the reaction is ¢ = 1. The inflow boundary data is
g = sin(mrx) cos(rry). The parameters are set as (ty, 72) = (1, 1). The plot in left is for the load functions f = 1, and the
one on right is for f = 0 with C=1 — P,(T)/P,(dT)/P;(T) elements.

10



D. Li, C. Wang and ]. Wang Journal of Computational and Applied Mathematics 412 (2022) 114313

Figure for Numerical Solution Figure for Numerical Solution
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Fig. 6.2. Contour plots of numerical solution Ay on the unit square domain £2;; C~' — P,(T)/P,(dT)/Py(T) element; uniform triangular partitions;
convection § = [—y,x] fory < 1 —x and B = [1 — y,x — 1] otherwise; reaction ¢ = 0; the inflow boundary data g = sin(3x)cos(5y); and
(71, 72) = (1, 1). The load function f = 1 (left) and f = 0 (right).

Figure for Numerical Solution Figure for Numerical Solution

0 \ . .
0 0.1 02 03 04 05 06 07 08 09 1 o 01 02 03 04 05 06 07 08 09 1

Fig. 6.3. Contour plots of numerical solution Ay on the L-shaped domain £2,; C~' — Py(T)/P,(dT)/P;(T) element; uniform triangular partitions;
convection § =[—1,1] fory < 0.5—x and B = [1, —1] elsewhere; reaction ¢ = 1; the inflow boundary data g = sin(xx) cos(rry); and (71, 72) = (1, 1).
f =1 (left) and f = 0 (right).

Fig. 6.4 is for the numerical solution Aq on the cracked unit square domain £2;. The convection vector is given by
B =[0.5 —y,x — 0.5], the reaction is ¢ = x — y, the inflow boundary data is g = sin(x), and (t1, 7o) = (1, 1). Fig. 6.4 in
the left is for the load function f = 1, and the one on right is for f = 0.

Table 6.9 illustrates the computational performance of the algorithm on the cracked domain £2, when the C~! —
P,(T)/P,(3T)/P1(T) element is used. The exact solution is A = sin(wx)sin(zy), the convection is § = [2 — y, x], and the
reaction is ¢ = —1. The numerical results show that the convergence for € and ¢, in the L?> norm are of the optimal order
O(h?) (see Fig. 6.5).

In summary, the numerical results from the primal-dual weak Galerkin finite element scheme (2.6)-(2.7) for the
transport problem (1.1) confirm the theory developed in this paper. The numerical experiments reveal optimal-order of
convergence for all the test cases. We are confident that the PDWG scheme is a stable, accurate, and convergent numerical
method for the first-order transport problem in non-divergence form.

11



D. Li, C. Wang and J. Wang Journal of Computational and Applied Mathematics 412 (2022) 114313

Figure for Numerical Solution Figure for Numerical Solution
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Fig. 6.4. Contour plots of numerical solution A on the cracked square domain £23; C~! — P,(T)/P,(3T)/P;(T) element; uniform triangular partitions;
convection B = [0.5 —y, x — 0.5]; reaction ¢ = x — y; the inflow boundary data g = sin(x); and (7y, 72) = (1, 1). f = 1 (left) and f = 0 (right).

Table 6.9
Numerical rates of convergence for the C~' — P,(T)/P,(dT)/Py(T) element with the exact solution
A = sin(wx)sin(ry) on the cracked domain $24; uniform triangular partitions; convection vector
B =[2 —y, x]; reaction coefficient c = —1; and the parameters (t;, 72) = (0, 1).
1/h ll€oll Order llepll Order llenll Order
4 1.8937E—02 2.9572 3.3943E—-02 3.0853 8.8951E—02 1.4150
8 2.2397E-03 3.0798 4,0766E—03 3.0577 2.3357E—02 1.9291
16 2.4510E—04 3.1919 4.5456E—04 3.1648 5.5016E—03 2.0860
32 2.7712E-05 3.1448 5.2391E-05 3.1171 1.2981E—03 2.0834

Figure for Numerical Solution

Fig. 6.5. Plots of numerical solution Ao on the cracked square domain £24 using the C~' — P,(T)/Py(3T)/P;(T) element; uniform triangular partitions;
convection 8 = [2 —y, x]; reaction ¢ =y — x; inflow boundary data g = 0; load function f = 1 and (71, 72) = (1, 1).
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