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Deep learning’s performance has been extensively recognized recently. Graph neural networks (GNNs) are
designed to deal with graph-structural data that classical deep learning does not easily manage. Since most
GNNs were created using distinct theories, direct comparisons are impossible. Prior research has primarily
concentrated on categorizing existing models, with little attention paid to their intrinsic connections. The
purpose of this study is to establish a uni�ed framework that integrates GNNs based on spectral graph and
approximation theory. The framework incorporates a strong integration between spatial- and spectral-based
GNNs while tightly associating approaches that exist within each respective domain.

1 INTRODUCTION
Deep learning’s performance in various machine learning tasks [96, 120, 145, 168, 170, 203] has
been extensively recognized in recent decades, with amazing success on Euclidean data. In recent
decades, a slew of new applications have emerged in which e�ective information analysis boils
down to the non-Euclidean geometry of data represented by a graph, such as social networks
[119], transportation networks [21], spread of epidemic disease [156], brain’s neuronal networks
[148], gene data on biological regulatory networks [58], telecommunication networks [66], and
knowledge graph [137]. Previous deep learning algorithms, such as convolutional and recurrent
neural networks, couldn’t handle such non-Euclidean problems on graph-structured data. Modeling
data using a graph is di�cult because graph data is irregular, i.e., each graph has a di�erent number
of nodes and each node in a graph has a varied number of neighbors, making some operations like
convolutions inapplicable to the network structure.
There has recently been a surge growing interest in applying deep learning to graph data.

Inspired by deep learning’s success, principles from deep learning models are used to handle the
graph’s inherent complexity. This growing trend has piqued the interest of the machine learning
community, and a huge number of graph neural networks (GNN) models have been proposed based
on diverse theories [14, 38, 62, 87, 114, 188] and grouped into coarse-grained groupings like the
spectral [88, 155, 204, 230, 234] and spatial [14, 87, 188] domains. GNNs have seen rising popularity
recently for learning graph representations and quickly spread out to many application domains,
such as physics [7, 113], chemistry [35, 57], knowledge graph [13, 211, 220, 229], recommender
systems [49, 70, 193, 202], computer vision [78, 104, 131], natural language processing [20, 182, 200],
combinatorial optimization [41, 80, 174], tra�c network [39, 45, 103, 219], program representation
[64, 198, 236], social network [24, 163, 202]. However, current research in methodology has not
translated into a clear understanding of the mechanisms involved, nor has it given us insight into
GNNs’ e�ectiveness or physical meaning. As a result, several consequences will occur: (1) There is
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no underlying principle that connects all GNNs, which also limits their growth. (2) In high-stakes
applications such as drug development, GNN models may carry potentially hazardous unknowns
since they are black boxes. Consequently, the necessity of dissecting GNNs is highlighted, thereby
driving academics to hunt for a more universal framework. The main problem is that existing GNN
models use a variety of techniques, including randomwalks [71, 85, 164], PageRank [30, 54, 115, 116],
attention models [112, 118, 188], low-pass �lters [29, 158], and message forwarding [81, 82]. Some
preliminary research can only explain a few GNNs methods [82, 209, 222], leaving the majority of
GNN unaccounted for. Previous GNNs surveys have dealt mostly with classifying several existing
models into multiple categories and expanding on each category individually, with no regard to
the interrelationships between them [88, 155, 204, 230, 234].
This research 1 aims to provide a coherent framework for generalizing GNNs by bridging the

divide between seemingly unrelated works in the spatial and spectral domains, as well as by linking
methods within each domain. The study will build a uni�ed theoretical framework that encompasses
diverse GNNs. Our research is novel in that it connects disparate GNN models, allowing for direct
rethinking and comparison of all GNN models.

1.1 Graph Neural Networks in Spatial and Spectral Domain
Over the past several years, GNNs have gained a lot of attention. However, the existence of
numerous GNNs complicates model selection because they are not easily understood within the
same framework. Speci�cally, one uses spectral theory to implement early GNNs [62, 89], whereas
spatial theory is used to propose others [46, 87]. The mismatch inherent to spectral and spatial
approaches means that direct comparisons are di�cult. Even in each area, there are numerous
models, which makes it di�cult to examine their strengths and weaknesses.
To untangle the mess, we present a uni�ed framework that connects the spatial and spectral

domains and reveals their intricate relationship. Furthermore, both domains’ subcategories are
proven to have a hierarchical link. The focus on a uni�ed framework adds to the knowledge of
how GNNs operate. The goal of this research is to use a combination of spectral graph theory and
approximation theory to investigate the relationship between important categories, such as spatial
and spectral-based approaches. We give a detailed analysis of GNNs’ current research �ndings in
this paper, as well as a discussion of trending topics such as over-smoothing. Many well-known
GNNs will be used to demonstrate the universality of our architecture. This article’s main motiva-
tion is twofold: (1) Connecting the spectral and spatial domains. The fundamental concepts,
principles, and physical implications of spectral- and spatial-based GNNs are signi�cantly di�erent
due to their distinct features. As a result, we present an overview of the fundamental principles and
properties of spectral- and spatial-based GNNs in order to help people better grasp the problems,
potential, and necessity of GNNs. Formally, a rigorous equivalence is established, indicating that
spatial connection function is comparable to spectral �ltering; (2) Dissecting spectral and spatial
domains, respectively. In spectral techniques, �ltering functions on eigenvalues are examined,
and the �ltering function choice can be matched with various tactics in approximation theory.
While spatial methodologies are used to explore attribute aggregation, which may be understood
from the size and direction within a predetermined region.
The structure of the article is summarized as follows: Basic concepts, distinctive principles,

and properties of graph neural networks are covered in Section 2, as well as ways for encoding
the graph, spectral-based GNNs, spatial-based GNNs, and essential fundamentals. The proposed
framework is summarized in Section 3, which emphasizes the relevance of hierarchy. From Section
4 through Section 5, we explore exemplary GNN models in each domain using our proposed

1A short version is available at [52]
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taxonomy structure. In Section 6, we go over the advantages and disadvantages of each domain in
detail, as well as practical guidance on GNN model selection. Section 7 also includes a case study of
our techniques, demonstrating our proposed framework with current and relevant GNNs concerns.

1.2 Related Surveys and Our Contributions
Existing works can be divided into three groups: Existing Works Group 1 (Comprehensive
Collection): Recently, many extensive surveys on graph neural networks have been compiled
[37, 88, 204, 230, 234, 241]. Instead of studying their hierarchical and underlying mechanisms, most
existing surveys focus on gathering newly published works and categorizing them into separate
categories. A detailed survey, in particular, provides an overview of many examples of graph
neural networks, classifying them as spatial or spectral-based techniques [37]. A taxonomy of
graph types, training methods, and propagation processes was recently published in [234]. Another
survey [230] categorized graph neural network advances as semi-supervised (graph convolution),
unsupervised (graph auto-encoder), and latest advancements (graph recurrent neural network and
graph reinforcement learning). Graph convolution, graph auto-encoder, graph recurrent neural
network, and spatial-temporal graph neural networks are all included in [204]. These existing
surveys, on the other hand, fail to integrate their categories into a cohesive framework. Existing
Works Group 2 (Particular Perspectives): The second thread of surveys for graph neural net-
works is from diverse theoretical perspectives. For example, in the �eld of graph neural networks
with an attention mechanism, a comprehensive and concentrated survey was undertaken [121].
Another example demonstrated how many graph neural networks with negative sampling might
be merged into an analytical matrix factorization framework [167]. One similar study o�ered a
general view proving that network embedding techniques and matrix factorization are equal in
terms of two objectives: one for similar nodes and the other for distant nodes [139]. One speci�c
survey created four benchmark datasets with diverse features and user-friendly interfaces for 10
common algorithms, providing a uni�ed paradigm for systematic categorization and analysis on
several existing heterogeneous network embeddings approaches [213]. A recent work analyzed
anonymous and degree-aware message-passing to study the distinguishing power of di�erent
classes [81]. However, this research is limited to a subset of the GNNs family and lacks a global per-
spective. ExistingWorks Group 3 (Post-Hoc Explanation): Building post-hoc models and then
identifying the underlying patterns from a statistical standpoint is another technique to analyze
GNNs [18, 122, 136, 224]. Because neural networks are employed without any theories or domain
expertise, this methodology is referred to as "black box". For this reason, post-hoc models have the
potential to be biased, subject to adversarial attacks, and di�cult to verify. Our research focuses on
interpretable graph neural networks, which have a strong theoretical foundation. Previous surveys

Existing Works 1 Existing Works 2 Existing Works 3 This Survey
Theoretical Support   
Comprehensiveness    

Table 1. Comparing this study with previous studies

either categorize several disparate groups or only address a few GNNs using a certain methodology.
Following the overall goals of our framework, we want to create one framework that uni�es GNNs
across the spatial and spectral domains as well as within each domain via theoretical support. It
should be noted that the majority of the work presented is related to Graph Convolution Networks
(GCN) [114], which is the most common type of GNNs, and that many other varieties of GNNs are
still based on GCN. As a result, we do not di�erentiate between GNNs and GCN in this context and
refer to GNNs in the following sections.
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2 PROBLEM SETUP AND PRELIMINARY
In this section, we outline basic concepts, necessary preliminary, and problem setup of learning
node-level representation which is the major task in the GNN literature. A simple graph is de�ned
as G = (V, E), where V is a set of n nodes and E represents edges. An entry E8 2 V denotes
a node, and 48, 9 = {E8 , E 9 } 2 E indicates an edge between nodes 8 and 9 . The adjacency matrix
A 2 R#⇥# is de�ned by if there is a link between node 8 and 9 , A8, 9 = 1, and else 0. Node features
X 2 R#⇥� is a matrix with each entry G8 2 X representing the feature vector on node 8 . Another
popular graph matrix is the graph Laplacian which is de�ned as L = D�A 2 R#⇥# where D is the
degree matrix. Due to its generalization ability [32] , the symmetric normalized Laplacian is often
used, which is de�ned as L̃ = D�

1
2 LD�

1
2 . Another option is random walk normalization: L̃ = D�1 L.

Note that normalization could also be applied to the adjacency matrix, and their relationship is
L̃ = I� Ã. Most GNNs focus on node-level embeddings, learning how a graph signal is modi�ed by

Table 2. Commonly used notations.

Notations Descriptions
G A graph.
V The set of nodes in a graph.
E The set of edges in a graph.
A, Ã The adjacency matrix and its normalization.
L, L̃ The graph Laplacian matrix and its normalization.
E A node E 2 V .
48 9 An edge 48 9 2 E .
_8 2 Λ Eigenvalue(s).
U,U| Eigenvector matrix and its transpose.
U8 2 U, u|8 2 U| Single eigenvector and its transpose.
D The degree matrix of A and D88 =

Õ=
9=1 A8 9 .

X 2 R#⇥3 The feature matrix of a graph.
Z 2 R#⇥1 New node feature matrix.
H 2 R#⇥1 The node hidden feature matrix.
hE 2 R1 The hidden feature vector of node E .
# node number
1 dimension size of hidden feature
� Element-wise product.
Θ, \ Learnable model parameters.
P(·),Q(·) Polynomial function.
N(E) Directed neighbors of node E

a graph topology, and outputting a �ltered feature as:
5 : ⌧,X ! Z, (1)

where we aim to �nd a mapping which can integrate graph structure and original node features,
generating a update node representation Z.⌧ represents the graph connectivity, and many options
are available as listed in Table 3, and most popular are symmetric normalized graph matrices.

In this survey, we use the graph Laplacian, adjacency matrix, and their modi�cations described
in Table 3 to represent a graph. So yet, no experimental or theoretical evidence has been shown
that any �lter has a consistent advantage [195]. This survey is investigating two speci�c groups of
GNNs, namely spectral- and spatial-based GNNs, which are de�ned as below:

De�nition 2.1 (Spatial Method). By integrating graph connectivity ⌧ and node features X, the
updated node representations (Z) are de�ned as:

Z = 5 (⌧) · X, (2)
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Table 3. Representations for graph topology

Notations Descriptions
A Adjacency matrix
L Graph Laplacian
Ã = A+ I Adjacency with self loop
D�1 A Random walk row normalized adjacency
AD�1 Random walk column normalized adjacency
D�1/2 AD�1/2 Symmetric normalized adjacency
D̃�1Ã Left renormalized adjacency, D̃88 =

Õ
9 Ã8 9

ÃD̃�1 Right renormalized
D̃�1/2ÃD̃�1/2 Symmetric renormalized
(D̃�1Ã): Powers of left renormalized adjacency
(ÃD̃�1

)
: Powers of right renormalized adjacency

where ⌧ is often implemented with A or L in existing works. Therefore, spatial methods focus on
�nding a node aggregation function 5 (·) that learns a proper aggregation with node features X
to obtain a updated node embedding Z.

Before introducing another de�nition, the necessary preliminary background is o�ered: (1)
graph Fourier transform: The graph Laplacian L can be diagonalized [180, 244] as L̃ = UΛU|,
where Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues (i.e.,
Λ88 = _8 ), and U represents eigenvectors. Further, the graph Fourier transform of a signal X is
de�ned as X̂ = U| X 2 R#⇥# and its inverse as X = U X̂. (2) spectral convolution: According to
the Convolution Theorem (i.e., Fourier transform of a convolution of two signals is the element-wise
product of their Fourier transforms) [161], the convolution is de�ned in the Fourier domain such
that

51 ⇤ 52 = U [(U| 51) � (U| 52)] ,
where � is the element-wise product, and 51/52 are two signals de�ned on the time or spatial
domain.

De�nition 2.2 (Spectral Method). A node signal 52 = X is �ltered by spectral function g = U| 51
as:

g ⇤X = U
⇥
g(Λ) �

�
U| X

� ⇤
= U diag(g(Λ)) U| X, (3)

where g is known as frequency response function. If g is polynomial, rational or exponential
function, then we can reduce the equation above to:

g ⇤X = g(L̃) X . (4)

In short, the objective of spectral methods is to learn a frequency response function g(·).

The goal of both methods is to learn how to approximate node aggregation or a frequency
response function using the data. A great deal of approximation techniques are utilized, and thus
5 or 6 can be e�ciently estimated. Approximation theory is a branch of mathematics dedicated
to discovering and quantifying the errors caused when functions are approximated using smaller
functions. Despite the fact that polynomials have a more convenient form than rational functions
and are more popular due to its e�ciency, rational functions are better at approximating functions
at singularities and on unbounded domains. The basic characteristics of rational functions are
outlined in complex analytic literature [4, 6, 34, 56, 149, 162, 165, 166, 169, 186, 246]. As an important
polynomial approximation, Chebyshev approximation is �rst introduced as spectral �ltering for
graph convolution: A real symmetric graph Laplacian L can be decomposed as L = UΛU�1 = UΛU|.
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Chebyshev approximation on spectral �lter g is applied [62, 89] so that is can be approximated
with a polynomials with order k:

g ⇤X =Ug(Λ) U| X

⇡U
’
:

\:): (Λ̃) U| X (Λ̃ =
2

_<0G
Λ� IN)

=
’
:

\:): (L̃)G (UΛ: U| = (UΛU|
)
:
)

Amost popular graph convolutional network [114] further simpli�es this approximation by reducing
the order to 1:

g ⇤X ⇡\0 IN G + \1L̃ X (expand to 1st order)

=\0 IN G + \1 (
2

_<0G
L� IN)) X (L̃= 2

_<0G
L� IN))

=\0 IN G + \1 (L� IN)) X (_<0G=2)

=\0 IN G � \1 D̃ A D̃X (L=IN � D̃ A D̃)

=\0 (IN + D̃ A D̃) X (\0=�\1)

=\0 (D̃
�

1
2 ÃD̃�

1
2
)G (Ã=A+ IN ,D̃88=

Õ
9 A8 9 ) .

As a result, \0 is the only parameter to learn. The learnable parameters in many di�erent GNNs
can vary based on the model design.

3 FRAMEWORK OVERVIEW
The development of GNNs is brie�y discussed belowwith representative studies before we introduce
our proposed theoretical framework. Table 4 depicts many sample models that focus on node-level
graph convolution. The spectral perspective was previously explored (SGWT [89]), and it serves as
the technical foundation for all subsequent spectral methods, including spectral convolution and
approximation. Researchers continue to add to this thread, demonstrating that spectral methods
have the ability to handle graphs (SGNN [38], ISGNN [94], ChebNet [62]). Furthermore, GCN [114],
and GraphSAGE [87] create e�ective training methodologies, gaining considerable attention from
various communities. After that, spectral techniques development stagnated, with the exception of
a few publications on rational �ltering (RationalNet [51], AR [129], ARMA [25]). Meanwhile, focus
shifts to the spatial domain, which has dominated GNNs to this point. Random walks (ParWalk
[201], DeepWalk [164], LINE [184]) and CNN (DCNN [14]) were used in early spatial approaches.
Following that, MPNN [82] solidi�ed the message-passing mechanism in spatial techniques. High-
order polynomial approximation has been studied [117, 173, 199, 209], but only within the context
of ChebNet or DCNN. It’s worth noting that while numerous publications described their suggested
methods from both spatial and spectral perspectives, only a few GNNs are covered [117, 155]. Until
recently, spectral research has demonstrated a resurgence.
In this survey, we provide a framework to fully comprehend spectral methods from a spatial

perspective and vice versa. A cross-domain perspective is used to integrate spatial and spectral
techniques into a coherent framework. As shown in Figure 1, the proposed framework divides
GNNs into two domains: spatial (A-0) and spectral (B-0), each of which is further separated into
three subcategories (A-1/A-2/A-3 and B-1/B-2/B-3). A-0 is separated into linear (A-1), polynomial
(A-2) and rational (A-3) aggregations based on the types of neighbor aggregation (i.e., 5 in Def. 2.1).
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Table 4. Chronological list of notable GNNs in spatial and spectral domains

Spatial Spectral
Before 2015 ParWalk [201], DeepWalk [164], LINE

[184]
Spectral GNN [38], ISGNN [94], Neu-
ral graph �ngerprints [67]

2016 DCNN [14], Molecular Graph Convo-
lutions [109], PATCHY-SAN [157]

GCN [114], ChebNet [62]

2017 MPNN [82], PGCN [74], GraphSAGE
[87]

MoNet [155]

2018 GIN [209], Adapative GCN [100], Fast
GCN [47] JKNet [210], Large Scale
GCN [76]

RationalNet[51], AR [129], Cay-
leyNet [124]

2019 SGCN [199], DeepGCN [126], Mix-
Hop [3], PPAP [115]

ARMA [25], GDC [117], Eigen-
Pool [146], GWNN [207], Stable
GCNN[191]

2020 SIGN [173], Spline GNN [242],
UaGGP [141], GraLSP [106], Graph-
SAINT [227], DropEdge [172],
BGNN[237], ALaGNN[206] Continu-
ous GNN [205], GCNII [50], PPRGo
[31], DAGNN [138], H2GCN [239]

GraphZoom [63]

2021 ADC [231], UGCN [105], DGC [196],
E(n)GNN [175], GRAND [42], C&S
[97], LGNN [140]

Interpretable Spectral Filter [110], Ex-
pressive Spectral Perspective [17],
S2GC [238], BernNet [93]

2022 GINR[84], Adaptive SGC [43], PG-
GNN [101], DIMP [215]

AGWN [150], ChebNetII [92], Jaco-
biConv [194], SpecGNN [216], G2CN
[128], PGNN [75], ChebGibbsNet [9],
SpecFormer[11], SIGN [10], Spectral
Density [197]

Operations on �rst-order neighbors only are considered in linear aggregation (A-1), whereas high-
order neighbors are incorporated in polynomial aggregation (A-2). In addition, rational aggregation
(A-3) includes self-aggregation. According to the types of approximation techniques, the spectral
methods are divided into linear (B-1), polynomial (B-2), and rational (B-3) approximation depending
on the types of frequency �ltering (i.e., g in Def. 2.2). In Section 4 and 5, each category and
subcategory will be explained in detail with examples.

3.1 Inside the Spatial and Spectral Domain
The hierarchical link between the spatial and spectral domains is depicted in this subsection.
Spatial-based techniques can be divided into three types, with specialization and generalization
relationships existing:

(A�1) L����� A���������� � (A�2) P��������� A���������� � (A�3) R������� A����������,

where it is a generalization from left to right, and specialization from right to left. Speci�cally,
Linear Aggregation (A-1) comprises all algorithms for learning a linear function among neighbors
in the �rst-order. Higher-order neighbors are included in Polynomial Aggregation (A-2), and the
order number is de�ned by the polynomials. Additionally, Rational Aggregation (A-3) utilizes
self-aggregation. Since the inclusion of higher-order neighbors causes linear aggregation (A-1) to
transform into polynomial aggregation (A-2), and polynomial aggregation (A-2) to transform into
rational aggregation (A-3) if self-aggregation is added. The approaches falling under the general
category of spectral analysis can be grouped into three distinct groups:

(B�1) L����� A������������ � (B�2) P��������� A������������ � (B�3) R������� A������������,
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1
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1

Fig. 1. Illustration of major graph neural operations and their relationship. Spatial and spectral methods are
divided into three groups, respectively. Groups A-1, A-2, and A-3 are strongly-correlated by generalization
and specialization, so are groups B-1, B-3, and B-3. The equivalence among them is marked in the same color.
which includes left-to-right generalization and right-to-left specialization. Concretely, (B-1) outlines
all models that aggregate frequency components using a linear function, while (B-2) uses polynomial
approximation, and (B-3) applies rational approximation. Therefore, (B-1) can be generalized as
(B-2) if replacing linear approximation with polynomial approximation, (B-2) is generalized as (B-3)
if replacing polynomial approximation with rational approximation.

3.2 Between the Spatial and Spectral Domain
In this section, we go through the link between the spatial and spectral domains over the border.
There is also equivalency by modifying the analytical form of these subcategories, as shown below.
Linear Aggregation (A-1) and Linear Approximation (B-1) are the initial equivalences:

(A�1) L����� A���������� , (B�1) L����� A������������,

which means that adjusting weights on neighbors in linear aggregation equates to adjusting weights
on frequency components in linear approximation using a linear function. Linear Aggregation (A-1)
and Linear Approximation (B-1) have the same linear function and can seamlessly convert to each
other in closed form. The main di�erence between them is that Linear Aggregation (A-1) recovers
the signal as a linear function of the frequency component, whereas Linear Approximation (B-1)
models the target signal as a linear function of neighbor nodes. Both Linear Aggregation (A-1) and
Linear Approximation (B-1) aggregate the representations of neighbors by tweaking the weights
of each neighbor, or uses a linear �lter on eigenvalues with a negative slope, i.e., g(Λ) = �Λ+0.
Because the low-frequency components are given a higher weight by 6 than their original values,
this is referred to as low-pass �ltering (i.e., eigenvalues). This group’s main advantages are (1) its
low computational cost and (2) the large number of real-world scenarios that are subject to the
homophily assumption (i.e., neighbors are similar). The fundamental disadvantage is that not every
network guarantees homophily.
Polynomial Aggregation (A-2) and Polynomial Approximation (B-2) are identical in terms of

actual operation, i.e.,
(A�2) P��������� A���������� , (B�2) P��������� A������������.

This means that in polynomial aggregation, aggregating higher orders of neighbors can be expressed
as the sum of di�erent orders of frequency components in polynomial approximation. Both use
higher-order neighbors in addition to �rst-order neighbors, increasing the capacity to simulate a
more complex relationship among the neighbors. It is theoretically more powerful than (A-1)/(B-1)
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A1 A2 A3

B1 B2 B3

Computational Efficiency

Linear Approximation Polynomial Approximation Rational Approximation

Linear Aggregation Polynomial Aggregation Rational Aggregation

Spatial Domain

Spectral Domain

A0

B0

Generalization Power

Fig. 2. Category and subcategory comparison.

from a spectral standpoint, because (A-2)/(B-2) is a polynomial approximation as a spectral �lter,
whereas (A-1)/(B-1) is linear regression. As a result, one �aw is the cost of border neighborhood,
which leads to higher computational complexity than (A-1)/ (B-1). Another �aw of them is that if
the order is set too large, it will over-smooth (i.e., all nodes will look the same), and there is no
golden rule for order size because it is based on data. Note that K-layer (A-1) or (B-1) is equivalent
to K-order of (A-2)/(B-2), hence stacking K-layer (A-1) or (B-1) causes over-smoothing (B-1).

Similarly, the last equivalence relationship is

(A�3) R������� A���������� , (B�3) R������� A������������,

in which rational aggregation de�nes a label aggregation with self-aggregation, while rational ap-
proximation adjusts �lter function with rational approximation. Both alleviate the over-smoothing
issue by introducing self-aggregation, which limits the intensity of uni-directional aggregation in
the spatial domain. From a spectral perspective, this advantage can be interpreted as the superiority
of rational approximation (A-3/B-3) over polynomial approximation (A-2/B-2). In particular, the
rational approximation is more powerful and precise, particularly when estimating some abrupt
signals like discontinuity. [4, 34, 56, 149, 165, 166, 186]
As a result, we may summarize the advantages and disadvantages of each combination as

illustrated in Figure 2. The category selection is based on the data complexity and the e�ciency
required, as there is a trade-o� between computational e�ciency and generalization capability.
Table 5 shows the structure of sections 4 and 5, where we will discuss details of these two threads
respectively and exemplify using several representative graph neural networks. The second column
denotes spatial perspective (section 4, A-0), which can treat popular GNNs as learning a function
of adjacency matrix, or node aggregation function. Similarly, the third column means spectral
view (section 5, B-0), which sees GNN as learning a function of eigenvalues or frequency response
functions. The cell at the intersection of the second row and second columnmeans that this category
of GNNs can be treated as a linear function of adjacency matrix, or say, its node aggregation function
is linear. The other intersection cells follow a similar schema. Note that categories within the same
row have the same format and function. For instance, in the second row, A-1 and B-1 share the
format of a linear function, but their parameters need not be identical.

4 SPATIAL-BASED GNNS (A-0)
In the current literature, spatial approaches such as self-loop, normalization, high-order neighbors,
aggregation, and node combination are often explored. We established a new taxonomy for spatial-
based GNNs based on these operations, dividing them into three separate groupings as below.

4.1 Linear Aggregation (A-1)
A lot of research has gone into understanding the aggregation among �rst order neighbors (i.e.,
direct neighbors) [82, 87, 164, 188, 208, 209]. The supervisory signal patterns are revealed by altering
the weights for the node and its �rst order neighbors. The revised node embeddings, Z(E8 ), can be
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Table 5. Structure of section 4 and 5.

Section 4 (A-0)
Spatial: function of adjacency matrix

Section 5 (B-0)
Spectral: function of eigenvalues

Linear ; (·)
sub-section 4.1 (A-1)

; (�) = 01� + 00�0 = 01� + 00�

sub-section 5.1 (B-1)
; (⇤) = 01⇤ + 00⇤0 = 01⇤ + 00

Polynomial P(·)
sub-section 4.2 (A-2)

P(�) = 0<�< + . . . + 0:�
:
+ . . . + 00�0

sub-section 5.2 (B-2)
P(⇤) = 0<⇤< + . . . + 0:⇤

:
+ . . . + 00⇤0

Rational P( ·)
Q( ·)

sub-section 4.3 (A-3)
P(�)
Q(�) =

0<�<
+...+0:�:

+...+00�0

0<�<+...+0:�:+...+00�0

sub-section 5.3 (B-3)
P(⇤)
Q(⇤) =

0<⇤<+...+0:⇤:+...+00⇤0

0<⇤<+...+0:⇤:+...+00⇤0

represented in the following way:

Z(E8 ) =

self nodez       }|       {
�(E8 ) h(E8 ) +

neighbors’ aggregationz                     }|                     {’
D 9 2N(E8 )

 (D 9 ) h(D 9 ), (5)

where D 9 denotes a neighbor of node E8 , h(·) is their representations, and �/ indicate the weight
functions. The �rst item on the right hand side denotes the weighted representation of node E8 ,
while the second represents the update from its neighbors. By applying random walk normalization
(i.e., dividing neighbors by degree of the current node), Equation 5 and its symmetric normalization
can be written as:

Z(E8 ) = �(E8 ) h(E8 ) +
’

D 9 2N(E8 )

 (D 9 )
h(D 9 )
38

, Z̃(E8 ) = �(E8 ) h(E8 ) +
’

D 9 2N(E8 )

 (D 9 )
h(D 9 )p
383 9

, (6)

where 38 represents the degree of node E8 . Normalization has better generalization capacity, which
is not only due to some implicit evidence but also because of a theoretical proof on performance
improvement [107]. In a simpli�ed con�guration, weights for all the neighbors are the same and is
a scalar valuek , while the weight for self node q is another scalar value. Therefore, they can be
rewritten in matrix form as:

Z = q X+k D�1 AX = (q I+k D�1 A) X, Z̃ = q X+k D- 12 AD- 12 X = (q I+k D- 12 AD- 12 ) X . (7)

Equations 7 can be generalized as an identical form:
Z = (q I+k Ã) X, (8)

where Ã denotes normalized A, which could be implemented by random walk or symmetric
normalization. As shown in Figure 3, the new representation of the current node (in red) is updated
as the sum of the previous representations of itself and its neighbors. (A-1) may adjust the weights of
the neighbors. The following are a few state-of-the-art approaches that were chosen to demonstrate
this schema:

4.1.1 Graph Convolutional Network (GCN). As the one state of the art, GCN [114] adds a self-
loop to nodes, and applies a renormalization trick which changes degree matrix from D88 =

Õ
9 A8 9

to D̂88 =
Õ
9 (A+ I)8 9 . Speci�cally, GCN can be written as:

Z = D̂�
1
2 ÂD̂�

1
2 X = D̂�

1
2 (I+A)D̂�

1
2 X = (I+ Ã) X, (9)

where Â = A+ I, and Ã is normalized adjacency matrix with self-loop. Therefore, Equation 9 is
equivalent to Equation 8 when setting q = 0 and k = 1 with the renormalization trick. Besides,
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Fig. 3. Illustration of A-1: the current node (red) updates itself with its original representation plus neighbors.

GCN takes the sum of each node and average of its neighbors as new node embeddings. Note that
the normalization of GCN is di�erent from the others, but the physical meaning is the same.

4.1.2 GraphSAGE. Computing intermediate representations of each node and its neighbors,
GraphSAGE [87] applies an aggregation among its neighbors. Take mean aggregator as example, it
averages a node with its neighbors, i.e.,

Z(E8 ) = MEAN
�
{h(E8 )} [

�
h(D 9 ),8D 9 2 N(E8 )

 �
, (10)

where h indicates the intermediate representation, andN denotes the neighbor nodes. Equation 10
can be written in matrix form after implementing MEAN using symmetric normalization:

Z = D- 12 (I+A) D- 12 X = (I+ Ã) X, (11)

which is equivalent to Equation 8 with q = 1 and k = 1. Note that the key di�erence between
GCN and GraphSAGE is the normalization strategy: the former is symmetric normalization with
renormalization trick, and the latter is random walk normalization.

4.1.3 Graph Isomorphism Network (GIN). Inspired by the Weisfeiler-Lehman (WL) test, GIN
[209] developes conditions to maximize the power of GNNs, proposing a simple architecture, Graph
Isomorphism Network (GIN). With strong theoretical support, GIN generalizes the WL test and
updates node representations as:

Z = (1 + n) · h(E) +
’
D 9

2 N(E8 ) h(D 9 ) = [(1 + n) I+A] X, (12)

which is equivalent to Equation 8 with q = 1 + n andk = 1. Note that GIN does not perform any
normalization.

4.1.4 Graph A�ention Model (GAT). GAT [188] applies attention mechanism by adjusting
neighbors’ weights, instead of using uniform weights in many related works:

Z = (,0CC ⌦ A) X, (13)

where,0CC 2 R#⇥# is a matrix, ⌦ denote element-wise multiplication, and calculated by a forward
neural network,0CC (8, 9) = 5 (h8 , h9 ) with a pair of node representations as input. GAT can be
treated as learning dynamic weight on the neighbors since their weights are not uniform. MoNet
[155] is similar to GAT, since its update follows:

Z(E) =
’

D2N(E)

F 9 (u(h8 , h9 )) h9 , (14)

where u is a d-dimensional vector of pseudo-coordinates u(G,~), and

F 9 (u) = exp
✓
�
1
2

⇣
u � - 9

⌘>
⌃�19

⇣
u � - 9

⌘◆
, (15)
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Fig. 4. Illustration of A-2: This current node (red) is using its original representation plus its first and
second-order neighbors to update itself.

where ` 9 are learnable d ⇥ d and d ⇥ 1 covariance matrix and mean vector of a Gaussian ker-
nel, respectively. Let,">=4C = F (D (·)) as a weight function of a pair of node representations
representation, then it is also a attention model:

Z = (,">#4C ⌦ A) X, (16)

These works do not consider updating nodes with their original representations, i.e., q = 0 andk is
replaced with matrix parameter, in Equation 8. However, it is easy to extend them with self node.

4.2 Polynomial Aggregation (A-2)
Several research use higher orders of neighbors to integrate deeper structural information [14, 62,
85, 184, 199]. Because direct neighbors aren’t always enough to describe a node’s surroundings.
Excessive order, on the other hand, generally averages all node representations, resulting in over-
smoothing and a loss of emphasis on the immediate neighborhood [129]. Manymodels aremotivated
by this to �ne-tune the aggregation strategy based on di�erent orders of neighbors. As a result,
adequate constraint and order �exibility are essential for node representation. Challenging signals,
such as Gabor-like �lters, have been shown to have a high order of neighbors [3].

De�ne the shortest distance between node 8 and 9 as 3⌧ (8, 9), and mN(8, g) to be the set of nodes
9 that satis�es 3⌧ (8, 9) = g , i.e., g-order neighbors. Formally, this type of work can be written as:

Z(E8 ) = �(E8 ) h(E8 )+

1st-order neighborz                           }|                           {’
D 9 2N(E8 ,g=1)

 (g=1) h(D 9 ) +

2nd-order neighborz                           }|                           {’
D 9 2N(E8 ,g=2)

 (g=1) h(D 9 ) +...+

k-th order neighborz                            }|                            {’
D 9 2N(E8 ,g=:)

 (g=:) h(D 9 ) +...,

(17)
where  (g) indicates a scalar parameter for all g-order neighbors. Setting the same order neighbors
to share the same weights, Equation 17 can be rewritten in matrix form:

Z = (q I+
:’
9=1

k 9 A9 ) X = P: (A) X, (18)

where P: (·) is a polynomial function with order number k. Applying symmetric normalization,
Equation 18 can be rewritten in matrix form as:

Z = (q I+
:’
9=1
k8 (D- 12 AD- 12 ) 9 ) X = (q I+

:’
8=1

k8 Ã
8
) X = (

’
8=0

k8 Ã
8
) X = P: (Ã) X, (19)

where q = k0, and A could also be normalized by random walk normalization: Ã = D�1 A. As
shown in Figure 4, the new representation of the current node (in red) is updated as the sum of
the previous representations of itself, its �rst and second-order neighbors. Note that the weights
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among those representations are learnable. Several existing works are analyzed below, showing
that they are variants of Equation 18 or 19.

4.2.1 ChebNet. To bridge the gap, spectral convolutional operation is generalized, which requires
expensive steps of spectral decomposition and matrix multiplication [69, 94]. Introducing truncated
Chebyshev polynomial for estimating wavelet in graph signal processing, ChebNet [62] embeds a
novel neural network layer for the convolution operator. Speci�cally, ChebNet can be written as:

 �1’
:=0

\:): (L̃) X = (\̃0 I+\̃1L̃ + \̃2L̃
2
+ ...) X, (20)

where ): (·) denotes the Chebyshev polynomial and \: is the Chebyshev coe�cient. \̃ is the
coe�cient after expansion and reorganization. Since L̃ = I� Ã, we have:

 �1’
:=0

\:): (L̃) X = [\̃0 I+\̃1 (I� Ã) + \̃2 (I� Ã)2 + ...] X = (q I+
:’
8=1

k8 Ã
8
) X = P: (Ã) X, (21)

which is exactly Equation 19. The prede�ned  is the order number of Chebyshev polynomial, and
a larger K mean higher approximation accuracy in estimating the function of eigenvalues. Equation
21 shows that K also can be explained as the highest order of the neighbors.

4.2.2 DeepWalk . Applying random walk, DeepWalk [164] �rst draws a group of random paths
from a graph and applies a skip-gram algorithm to extract node features. Assuming the number
of random walk is large enough, the transition probability of random walk on a graph can be
represented as:

Ã = D�1 A . (22)

Let the window size of skip-gram be 2C + 1 and the current node is the (t+1)-th one along each
sampled random walk path, so the farthest neighbor current node can reach is the �rst one and
the last one. A node and its neighbors are likely to appear in the same random walk path, and the
neighbors follow the transition probability (Equation 22) to appear in the same path. Therefore, the
updated representation is as follows:

Z =
1

C + 1
(I+ Ã+ Ã2

+... + ÃC ) X =
1

C + 1
P: (Ã) X, (23)

where I means that DeepWalk always considers previous representation of the current node as
one element, Ã represents the direct neighbors’ transition probability, and Ã2 denotes that of the
second-order neighbors. It will have at most C-order neighbors depending on the prede�ned length
of the random walk (i.e., 2C + 1).

4.2.3 Di�usion convolutional neural networks (DCNN). DCNN [14] uses a degree-normalized
transition matrix (i.e., renormalized adjacency matrix: Ã = D̃ A) as graph representation, and per-
forms node embedding update as:

Z =, � Ã⇤ X = [F1,F2,F3, ...,F: ]
|
� [Ã, Ã2

, Ã3
..., Ã: ]| X, (24)

where Ã⇤ denotes a tensor containing the power series of Ã, and the � operator represents element-
wise multiplication. It can be transformed as:

Z = (F1 Ã+F2 Ã
2
+F3 Ã

3
+...F: Ã

:
) X = P: (Ã) X . (25)
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4.2.4 Scalable InceptionGraphNeuralNetworks (SIGN). By generalizingGCN [114], GAT [188]
and SGC [199], SIGN [173] constructs a block linear di�usion operators along with non-linearity.
For node-wise classi�cation tasks, SIGN has the form:

Z = f ( [X⇥0,A1X⇥1, . . . ,AAX⇥A ]) ,
Y = b (Z⌦),

(26)

where [·, ·, . . . , ] is concatenation, and A denotes the power number. Then, SIGN can be rewritten
as:

Z = [X⇥0,A1X⇥1, . . . ,AAX⇥A ] ⌦ = l0f (X⇥0) + l1f (A1X⇥1), . . . ,lAf (AAX⇥A ), (27)

where f (AAX⇥A ) could be treated as re�ned representation of each order of label aggregation
by non-linear function f and fully-connected layer ⌦, i.e., öAA X. Replacing � with normalized
adjacency matrix, it can be rewritten as:

Ẑ = l0
ö̃A0 X + l1

ö̃A1 X, . . . ,lA
ö̃AA X =

’
A

lA
ö̃AA X = úP(Ã) X. (28)

4.2.5 Graph di�usion convolution (GDC). GDC [117] de�nes a generalized graph di�usion
via the di�usion matrix:

Z =
1’
:=0

\:Z
: , (29)

where \: are the weighting coe�cients with
Õ

1

:=0 \: = 1, \: 2 [0, 1], ) is a generalized undirected
transitionmatrix which includes the randomwalk transitionmatrix)AF = AD�1, and the symmetric
transition matrix )B~< = D- 12 AD- 12 . In the general case, it can be written as :

Z =
1’
:=0

\: Ã
:
= P(Ã) . (30)

4.2.6 Node2Vec. Node2Vec [85] de�nes a second-order random walk to control the balance
between BFS (breath-�rst search) and DFS (depth-�rst search). Consider a random walk that
traversed an edge between node C and E , denoted as (C , E), and now it resides at node E . Then, the
transition probabilities to next stop G from node C is de�ned as:

% (C ! G) =

8>>><
>>>:

1
? if 3 (C, G) = 0, return to the source
1 if 3 (C, G) = 1, BSF
1
@ if 3 (C, G) = 2, DFS,

(31)

where 3 (C, G) denotes the shortest path between nodes C and G . 3 (C, G)=0 indicates a second-order
random walk returns to its source node, (i.e., C ! E ! C ), while 3 (C, G)=1 means that this walk
goes to a BFS node, and 3 (C, G)=2 to a DFS node. The parameters ? and @ control the distribution of
the three cases. Assuming the random walk is su�ciently sampled, Node2Vec can be rewritten in
matrix form:

Z = (
1
?
·

sourcez}|{
I +

BFSz}|{
Ã +

1
@

DFSz    }|    {
(Ã2

� Ã)) X, (32)

which can be transformed and reorganized as:

Z = [
1
?
I+(1 �

1
@
) Ã+

1
@
Ã2

] X = P:=2 (Ã) X, (33)

where transition probabilities Ã = D-1 A is random walk normalized adjacency matrix.
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4.2.7 LINE[137] / SDNE[192] . These two models consider �rst order and second-order neigh-
bors as the constraints for learning node embeddings. �rst order: the nodes representation is forced
to be similar to its neighbors, which is equivalent to:

Z = Ã X . (34)

Second-order: the pair of nodes are forced to be similar if their neighbors are similar, which
is equivalent to make second-order neighbors similar, therefore we can get the second-order
connectivity by taking the power of the original adjacency:

Z = Ã2 X . (35)

Then the �nal learned node embeddings are formulated as:

Z = Ã X+U Ã2 X = P:=2 (Ã) X . (36)

Since LINE uses concatenation between the representations constrained by �rst and second-order,
U = 1; For SDNE, U is pre-de�ned.

4.2.8 Simple Graph Convolution (SGC). To reduce the computational overhead, SGC [199]
removes non-linear function between neighboring graph convolution layers, and combines graph
aggregation in one single layer:

Z = Ã: X (37)

where Ã is renormalized adjacency matrix, i.e., Ã = D̃- 12 A D̃- 12 , where D̃- 12 is degree matrix with
self loop. Therefore, it can be easily rewritten as:

Z = (0 · I+0 · Ã+0 · Ã2
+... + 1 · Ã: ) X = P: (Ã) X, (38)

which only has the highest order term.

4.3 Rational Aggregation (A-3)
Most works merely consider label propagation from the node to its neighbors (i.e., gathering
information from its neighbors) but ignore self-aggregation. Self-aggregation means that labels or
attributes can be propagated back to themselves or restart propagating with a certain probability.
This reverse behavior can avoid over-smoothing issue [115]. Note that Polynomial Aggregation
(A-2) may manually change the order number to relieve the over-smoothing issue, but Rational
Aggregation (A-3) can do so automatically. Theoretically, rational function approximation is more
e�ective than polynomial and has been researched in machine learning problems [33, 165, 185].
Several works use a rational function on the adjacency matrix to perform self-aggregation, either
explicitly or implicitly [25, 51, 102, 115, 124, 130, 143, 187].

Because generic label propagation is achieved bymultiplying the graph Laplacian, self-aggregation
may be achieved by multiplying the inverse graph Laplacian as follows:

Z = P< (Ã)Q= (Ã)
�1 X =

P< (Ã)
Q= (Ã)

X, (39)

where P andQ are two di�erent polynomial functions, and the bias ofQ is often set to 1 to normalize
the coe�cients. As shown in Figure 5, the new representations of the current node (in red) are
updated as the previous one with probability P, and as that of neighbors with probability (1-P).
The di�erence of A-3 beyond A-2 is that A-3 can avoid over-smoothing issue in an automatic
manner [129, 232]. Over-smoothing issue happens when GNNs go deep, which would drive node
features to a stationary point and average all the information from raw node representations. Graph
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Fig. 5. Illustration of A-3: These current nodes (red) are using the representation that predates this iteration
and the surrounding nodes to compute the total. In A-3, the ratio of the original representation remains
stable, whereas A-1 dose not control the ratio.

convolution can be described as an optimization problem [130, 158, 232, 241], e.g., (1) minimizing
the supervised loss and (2) keeping the local neighborhood similar:

Z = argmin
Z

{ k Z�. k22|    {z    }
(1) supervised loss

+ U Tr
�
Z> LZ

�
|          {z          }

(2) neighborhood regularization

}, (40)

where U is the controlling weight between the two constraints. The problem has analytical solution:

Z = (I+U L̃)�1. = ((1 + U) I� Ã). . (41)

However, because 0;?⌘0 increases with the number of times graph convolution is done, it is
prone to over-smoothing. Over-smoothing is addressed in a variety of ways [50, 98, 172, 173,
210], including Rational Aggregation (A-3), which does so by retaining a portion of the original
representation no matter how many iterations it does, greatly reducing over-smoothing.

4.3.1 Auto-Regressive. Label propagation (LP) [22, 233, 243] is a widely used methodology for
graph-based learning. The objective of LP is two-fold: one is to extract embeddings that match
with the node label, the other is to become similar to neighboring vertices. The label can be treated
as part of node attributes, so we have:

Z = (I+U L̃)�1 X =
I

I+U (I� Ã)
X =

I
(1 + U) I�U Ã

X, (42)

which is the closed-form solution and also equivalent to the form of Equation 39, i.e., P = I and
Q = (1 + U) I�U Ã.

4.3.2 Personalized PageRank (PPNP). Obtaining node’s representation via teleport (restart),
PPNP [30, 115, 223] keeps the original representation (self-aggregation) X with probability U .
Therefore, 1-U is the probability of performing the normal label propagation:

Z = U
⇣
I�(1 � U) Ã

⌘�1
X =

U

I�(1 � U) Ã
X, (43)

where Ã = D-1 A is random walk normalized adjacency matrix with self-loop. Equation 43 is with
a rational function whose numerator is a constant.

4.3.3 ARMA filter. ARMA [25] �lter approximates any desired �lter response function with
updates as:

Z =
1

I�0 Ã
X . (44)

Note that ARMA �lter is an unnormalized version of PPNP. When a+b=1, ARMA becomes PPNP.
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4.3.4 ParWalks. A partially absorbing random walk is a second-order Markov chain with partial
absorption at each state. [201] shows that with proper absorption, the absorption probabilities can
well capture the global graph structure. Note that the concept "absorption" in [201] is similar to
"teleport" or "restart" in PPNP [115]. ParWalks de�nes the aggregation as:

?8 9 =

8>>><
>>>:

U8
U8+38

, 8 = 9

F8 9

U8+38
, 8 < 9,

(45)

where U is de�ned as a variable to control the level of absorption,F8 9 and 38 indicate non-negative
matrix of pairwise a�nities between vertex 8 and 9 , and degree of vertex 8 , respectively.

Z =
U I
U + L̃

X =
U

U I+ I� Ã
X, (46)

where U is rede�ned as a regularizer in the original paper [201]. When U = 1, all nodes follow
the same absorbing behavior. Otherwise, each node has an independent absorbing policy. Also,
ParWalks model is equivelent to ARMA �lter (0 = 1 = 1

2 ) when U = 1 and with normalized
Laplacian:

Z =
I

I+ L̃
X =

I
I+(I� Ã)

X =
1
2 I

I� 1
2 Ã

X . (47)

The author also discussed the over-smoothing issue: when Λ = I and as U ! 0, a ParWalk would
converge to the constant distribution 1/=, regardless of the starting vertex.

4.3.5 RationalNet. To leverage higher order of neighbors, RationalNet [51] proposes a general
rational function with a prede�ned order number, and it is optimized by Remez algorithm. The
analytic form is exactly Equation 39. The major di�erence beyond PPNP or ARMA �lter is that
RationalNet generalized them, and the order can be any number.

Remark: The optimization towards rational aggregation (A-3) is exactly the same as the residual
learning that was �rst and widely used in image recognition [91]. As shown in the work PPAP
[164], the author proposed an iterative algorithm called APPAP, which is

Z(:+1) = (1 � U)�̃Z(:)
+U Z0 =

� (G) where G=Z(0)z                    }|                    {
:’
8

U (1 � U)8�̃8 Z(0)
+

identity Gz}|{
U Z0 (48)

where Z: means the intermediate representations at :-th layer. This format is exactly the same as
residual learning as illustrated in Figure 6: sum of multiple graph convolutions serve as � (G), and
each time identify input will be added. The slight di�erence is that Equation 48 has normalized
the weights, i.e., (1 � U) + U = 1. Because Rational Aggregation (A-3) includes the inverse of
a matrix, it has a high computational cost. Iterative methods are commonly used to e�ciently
determine the inverse of a matrix [25, 115, 124]. In this subsection, we only demonstrate one layer
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or iteration of Auto-Regression, PPNP, ARMA, and ParWalks. Multiple iterations will result in a
more sophisticated rational function. Higher orders are achieved by several iterations or layers. The
main distinction between rational and polynomial aggregation is whether or not the inverse graph
Laplacian polynomial exists. In each cycle of rational aggregation, a �xed ratio for the original
representation is always reserved, whereas polynomial aggregation does not. On the other hand,
calculating the inverse of the graph Laplacian is expensive, making iterative fashion a key object
in online learning algorithms [95]. By leveraging the concept of conductance, with 5 as a heat
distribution over the vertexes, L(5 ) indicates the �ux induced by 5 over the graph. Then based
on the representer theorem [12, 176], 5 (V8 ) = L�1 (L(5 )) could be interpreted as the heat at each
vertex been expressed concerning or derived from the �ux through every vertex. Thus, when L
sends a heat distribution f over each node to �ux through each vertex, L�1 sends some of the �uxes
over the graph back to the original heat distribution (i.e., keep part of �uxes itself). Going back to
the graph learning application, we �rst translate our updated “heat distribution” to �ux through
all of those nodes by calculating P(L(5 )). M-th degree of P(·) means that each vertex can update
M-th neighbors at most. Then using another updated �ux in the reverse direction, Q(L(5 ))�1 will
adjust or reduce �ux within N-th neighbors. Polynomial aggregation with more layers or a higher
degree tends to involve more neighbors, increasing capacity. When utilizing too many layers or
degrees, over-smoothing is almost always unavoidable (e.g., all nodes are similar). However, unless
all of the layers or degrees are tried, determining the appropriate number of layers or degrees is
di�cult. The over-smoothing problem is largely overcome by the “sending back” (i.e., teleport)
behavior of rational aggregation, in which the out-degree �ux is restrained even if excesses of
graph convolutional layers or approximation degrees are added.[115].
Three groups of spatial methods introduced above (i.e., A-1, A-2, A-3) are strongly connected

under generalization and specialization relationship, as shown in Figure 1. Generalization: By
adding more neighbors of higher rank, Linear Aggregation (A-1) can be expanded to Polynomial
Aggregation (A-2). By adding reverse aggregation, Polynomial Aggregation (A-2) can be advanced
to Rational Aggregation (A-3); Specialization: Linear Aggregation (A-1) is a special case of Poly-
nomial Aggregation where the order is set to 1. (A-2). Rational Aggregation (A-3) degenerates into
Polynomial Aggregation when reverse aggregation is removed (A-2).

5 SPECTRAL-BASED GNNS (B-0)
The use of eigen-decomposition and analysis of the weight-adjusting function (i.e., frequency
�lter function or frequency response function) on eigenvalues of graph matrices are both parts of
graph spectral theory. In spectral-based GNNs (B-0), weights are applied to frequency components
(eigenvectors) in order to recover the target signal using the �lter’s output. Accordingly, we
propose a new taxonomy for graph neural networks, dividing spectral-based GNNs into three
subgroups depending on the types of response �ltering functions. In addition, the same set of
representative models discussed in Section 4 will be analyzed under spectral view. To facilitate
comprehension of the analysis, their spatial and spectral analytical forms are listed in Table 6. The
detailed transformation of equations in category B-0 is deferred to the appendix.

5.1 Linear Approximation (B-1)
Changing the weights of frequency components in the spectrum domain has been the subject
of several research. The �lter function’s objective is to suit the intended output by adjusting
eigenvalues. Many of them have been shown to be low-pass �lters [130], which implies that only
low-frequency components are highlighted, i.e., the �rst few eigenvalues are increased, while
the rest are decreased. There are several studies that may be understood as changing frequency
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Table 6. Summary of Representative GNNs

(A-1) linear function of A (B-1) linear function of Λ
GCN I+ Ã 2 � Λ
GraphSAGE D̂�1

+ Ã 2 � Λ
GIN (1 + n) I+A 2 + n � Λ

(A-2) polynomial function of A (B-2) polynomial function of Λ
ChebNet qI +
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+k3Ã3
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+ . . . \1Λ + \2Λ2

+ \3Λ3
+ . . .

Node2Vec 1
? I +

⇣
1 � 1

@

⌘
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Fig. 7. Illustration of B-1: A linear function 6 maps the eigenvalues to new values.

component weights during aggregation. A linear g function is used in particular:

Z = (

;’
8=0

\8_8 u8 u|8 ) X = Ug\ (Λ) U
| X, (49)

where u8 is the i-th eigenvector, and g is frequency �lter function or frequency response function
controlled by parameters \ , with selected ; lowest frequency components. The goal of g is to change
the weights of eigenvalues to �t the target output. As shown in Figure 7, B-1 updates the weights
of eigenvectors (u1, u2, u2 . . .) as g\ (_) which is a linear function. Several state-of-the-art methods
introduced in Section 4 are analyzed to provide a better understanding of this scheme.

Remark: The aforementioned methods apply linear low-pass �ltering, and the only di�erence
among them is that the bias is di�erent (i.e., 2 for GCN, 2 for GraphSAGE, and 2+n for GIN).
Therefore, we study the in�uence of bias on the �lter function, and de�ne a metric:

F (_8 ) =
|180B � _8 |Õ
9
��180B � _ 9 �� , (50)

which indicates the overall proportion change of each eigenvalue after applying the response func-
tion. A large adjusted value means that the �ltering will enlarge the in�uence of the corresponding
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Fig. 8. Illustration of B-2: A polynomial function P maps the eigenvalues to new values.

eigenvector. The range of the eigenvalue is in [0, 2) for the normalized Laplacian matrix [55]. If let
180B be larger than or equal to 2, we have:

F (_8 ) =
180B � _8

# · 180B �
Õ
9 _ 9

=

slopez               }|               {
�1

# · 180B �
Õ
9 _ 9

_8 +

interceptz               }|               {
180B

# · 180B �
Õ
9 _ 9

, (51)

when 180B is larger or equal than 2, the slope is negative, which means that the �lter function is
low-pass �ltering: as the bias increases, the slope becomes larger, and larger weights are assigned
to low-frequency spectral components. Therefore, the bias of all studies in this subsection is larger
or equal to 2.

5.2 Order of Approximation (B-2)
Considering higher order of frequency, �lter function can approximate any smooth �lter function,
because it is equivalent to applying the polynomial approximation. Therefore, introducing higher-
order of frequencies boosts the representation power of �lter function in simulating spectral signal.
Formally, this type of work can be written as:

Z = (

;’
8=0

:’
9=0

\ 9_
9
8 u8 u

|
8 ) X = UP\ (Λ) U| X, (52)

where g(·) = P\ (·) is a polynomial function. As shown in Figure 8, B-2 updates the weights of
eigenvectors (u1, u2, . . .) as P\ (_) which is a polynomial function.

Remark: Polynomial approximation, in theory, gets more accurate as the order grows [6, 56, 162,
166, 186]. It’s worth noting that Linear Approximation (B-1) can be thought of as a polynomial
approximation of order 1. We look into polynomial approximation on the B86=(G) function, com-
paring and contrasting all of the cases in Polynomial Approximation (B-2). Because it is di�cult for
any straight line to suit a jump signal, as shown in Figure 9a, linear functions cannot accurately
approximate B86=(G). The situation improves dramatically when polynomial approximation is used,
as demonstrated in Figure 9b. The variance will be greatly decreased if the order of the polynomial
function is increased (Figure 9c). To recapitulate, higher-order polynomial approximation is more
accurate than lower-order polynomial approximation, but it comes at the expense of increased
computational complexity. Node2Vec/LINE/SDNE with an order of 2 have lesser approximation
power than those with more than 2 layers/orders because the latter’s order is prede�ned and can
be as large as possible (e.g., ChebNet [62], DeepWalk [164], Di�usion CNN [14], Simple Graph
Convolution [199]).
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Fig. 9. Approximation for B86=(G) (in black): (a) linear approximation (b) polynomial approximation with low
orders, (c) polynomial approximation with high orders.

Fig. 10. Illustration of B-3: A rational function maps the eigenvalues to new values.

5.3 Approximation Type (B-3)
Despite its widespread use and experimental success, polynomial approximation only works when
applied to a smooth spectral signal. Real-world signals, on the other hand, cannot be guaranteed
to be smooth. As a result, the rational approximation is employed to improve the accuracy of
non-smooth signal modeling. An example of a rational kernel-based technique is as follows:

Z = (

;’
8

:’
9=0
\ 9_

9
8

=’
<=1

q<_<8 + 1
u8 u|8 ) X = U

P\ (Λ)
Qq (Λ)

U| X, (53)

where g(·) = P\ ( ·)
Qq ( ·)

is a rational function, and P,Q are independent polynomial functions. Spectral
methods process graph as a signal in the frequency domain. As shown in Figure 10, B-3 updates
the weights of eigenvectors (u1, u2, . . .) as g\ (_) which is a rational function.

Remark:When the function to approximate contains discontinuities, rational function has over-
whelming advantage over the polynomials or linear functions. Figure 11 illustrates the di�erence
between rational and polynomial approximation. Theoretically, rational approximation only needs
exponentially less orders than that of polynomial functions [51].

Fig. 11. Rational (rat) and polynomial (poly) approximation for several functions with discontinuity (func).
From le� to right:

p
|G � 0.5|; |G � 0.5|; G

10 |G�0.5 |+1 ;<0G (0.5, B8=(G + G2)) � G
20 . Figures are from [51].
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Fig. 12. Connection between the Spatial and Spectral Perspective

6 THEORETICAL ANALYSIS
In terms of volume, spatial-based approaches outnumber spectrum-based methods in the literature
[2, 37, 204, 230, 234], owing to the following reasons: (1) Spectral-based methods have a much
higher computing overhead than spatial-based methods, and spectral methods are less intuitive
than spatial methods. (2) Spatial-based approaches are convenient for model construction and
scalability. However, from a spatial and spectral perspective, there is a trade-o�; neither has a major
advantage over the other. This section outlines numerous viewpoints that demonstrate the merits
and limitations of such views.

6.1 Uncertainty Principle: Global v.s. Local Perspectives
Spectral-based approaches decompose data into orthogonal frequency components and examine
graph �ltering from the spectral domain with a global perspective. Each frequency indicates a
global basis: low-frequency components emphasize local weights with little variation, whereas
high-frequency components are linked to signi�cant variance in neighborhood. In other words,
the Laplacian spectrum re�ects topological properties: the �rst few eigenvalues are related with
substantial community structure, whilst the last few eigenvalues indicate the graph’s bipartiteness
[60, 61]. A typical low-pass �ltering function for eigenvalues is shown on the left of Figure 12, which
raises small eigenvalues while decreasing adjusted values for large eigenvalues. Only low-frequency
components are maintained in this scenario, and neighbors have little variance.
Filtering patterns from the local neighborhood are characterized by spatial-based approaches.

Most GNNs assume homophily among neighbors, so signals traversing across the neighborhood
is smooth or with little variation, which is exactly the same concept as low-pass �ltering. The
relationship between low-pass �ltering in the spectral domain (left) and its e�ects in the spatial
domain (middle and right) is depicted in Figure 12 [60]. It appears at �rst glance that global and
local viewpoints di�er greatly, but on closer inspection, they depict the same signal in very di�erent
ways: �ltering in the spectral domain that does low-pass/high-pass �ltering is analogous to learning
which neighbors are similar/dissimilar. While it is true that the two types of observations yield
similar results, this does not entail that they are identical. It is impossible to know an unknown
quantity’s value with absolute con�dence in quantum mechanics because of the Heisenberg’s
uncertainty principle [73]. Speci�cally,

�2
C�

2
l �

1
4
, (54)

where �C and �l denote time spread and frequency spread, respectively. Signal concentration can
also be impacted by the concentration of time and frequency. A graph representing the trade-o�
between a signal’s localization on a graph and in its spectral domain is created, which is in�uenced
by the uncertainty principle of quantum mechanics [5]. A lower bound on the product of the
two spreads is obtained by quantifying the spreads in the vertex and the spectral domain of a
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graph signal G . This result suggests that applying spatial-based GNNs results in accuracy loss
in the spectral domain, while using spectral-based GNNs results in accuracy loss in the spatial
domain. In sum: (1) Global and local perspectives are strong connected: Global observation
is the process of generalizing details in local settings, while localized understanding provides
details of the global picture. (2) Global and local perspectives outperform each other in their
own domains: Clear local context tends to muddy the big picture, but a focus on global context
diminishes the smaller picture. GNNs are able to expand the range of options with the addition of

Table 7. Comparison between the Spatial (A-0) and Spectral (B-0) Methods

Methodology Computation Space Complexity Stability
Spectral Global One-step High Exact
Spatial Local Iterative Low Approximate

other preexisting works, which bridge the gap between global and local views or between spectral
and spatial information, to improve the expressive potential of GNNs [29, 133, 189, 228, 240, 245].
According to the information above, we can state that no model can be �awless from a global or local
perspective. It is only possible to have a proper trade-o� between. As shown in Table 7, four aspects
are compared: Methodology: Spatial approaches describe local regions while working bottom-up,
and identify global patterns using a graph frequency approach. On the other hand, spectral methods
work top-down, beginning with a graph and ending with a global observation. Computation:
To use spatial approaches, one has to carry out a number of steps on their local region before
convergence is achieved. With spectral approaches, you can get a critical component with a
single-step computation. Space Complexity: The high space complexity of spectral approaches is
associated with the massive memory storage required to load the full graph. If memory is su�cient,
the full graph can be covered by using spatial methods. However, for a smaller graph, you can
choose to cover it using samplings such as sampling of regions or paths. Stability: To create
accurate, consistent results, spatial analysis methods need to apply iterative algorithms, therefore
the outcomes will vary. Eigen-decomposition is a unique feature of spectral approaches if no same
eigenvalues.
Guidance of Choosing Spatial and Spectral Methods. The user can choose between spatial
or spectral GNNs depending on their previously described properties. Distributed and Online
Learning: spatial method is easily converted to distributed learning [135, 178], whereas spectral
is di�cult to transfer. Even if it is possible to approximate spectrum technique using a neural
network model [177] and then use distributed learning on a neural network [190], new nodes and
edges must be retrained from scratch. Alternatively, the spatial technique can e�ectively manage
online learning with streaming data [79]. Global View: The spectral method may provide a global
perspective that the spatial method lacks. In situations where the group form is not spherical,
the spatial method may disregard this in�uence and continue to follow the circular shape as a
prospective group [15, 90]. This can be remedied by employing clustering before to the spatial
technique [179]. This also renders spatial methods more locally interpretable and obscures their
global perspective.

6.2 Comparison between Linear, Polynomial and Rational Methods
Linear methods (A-1 and B-1) have a time complexity of O(# 2� ) due to the matrix multiplication
of AX. Accordingly, polynomial and rational method are analyzed in Table 8 where K is the order
number. To compare their expressive power, the convergence rate on challenging jump signal is
employed as a benchmark [51] (a smooth signal cannot distinguish them). As shown in Table 8,
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rational methods (A-3 and B-3) converge exponentially faster than linear methods (A-1/B-1), and
polynomial methods (A-2/B-2) converge linearly faster than linear methods (A-1/B-1). Therefore,
there is a trade-o� between the expressive power and computational e�ciency. linear methods (A-
1/B-1) have the best e�ciency but only capture the linear relationship. Rational methods (A-3/B-3)
consume the most considerable overhead but could tackle more challenging signals.

Table 8. Comparison on Time Complexity and Expressive Power

Linear (A-1, B-1) Polynomial (A-2, B-2) Rational (A-3, B-3)
Time O(# 2� ) O(# +1� ) O(# +1� + # 3

)

Expressivity O(1) O(1/ ) O(exp�
p
 
)

Experiments are undertaken to highlight our theoretical analysis of spatial and spectral ap-
proaches by comparing the di�erences between the three underlying groups. We chose one typical
technique for linear �lter [114], polynomial �lter [62], and rational �lter [25]. Note that we only
distinguish them in the function of A or Λ, keeping all the other con�gurations the same. The
dataset includes representative homophily and heterophily datasets [43, 75, 105, 132, 144, 214]. The
evaluation code is released 2. The implementation is based on the o�cial Pytorch Geometric [1].
Each model on each dataset is evaluated 50 times, and the results are averaged.
As shown in Figure 13 (Left), there is no signi�cant di�erence in classi�cation accuracy in the

homophily dataset between the three models, with the exception of ChebNet, which performs
marginally better in PubMed and encounters an out-of-memory error in physics dataset. ChebNet
exhibits inferior accuracy on the Computers dataset, whereas GCN is signi�cantly superior. Figure
13 (Right) illustrates that ARMA consistently outperforms the others when performing the same
task on the heterophily dataset, while ChebNet consistently outperforms GCN. This demonstrates
the bene�ts of the advanced �lter function, as theoretically analyzed in Section 3.2. In terms of
runtime, as shown in Figure 14, ChebNet is often beyond log 1, while GCN never goes beyond log 1.
Rational method involve more matrix operation as ChebNet does, so rational method sometimes
goes beyond log 1, but due to optimization in implementation (iterative algorithm), which makee it
a little faster than ChebNet, but still consistently slower than GCN. In terms of runtime, as shown
in Figure 14, ChebNet frequently exceeds log 1, whereas GCN never does. Rational method involves
more matrix operations than ChebNet, so it sometimes exceeds log 1. However, due to optimization
in implementation (iterative algorithm), the rational method is slightly faster than ChebNet but
consistently slower than GCN. This veri�es our analysis in Section 6.2.
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Fig. 13. Performance Comparison. Le�: homophily dataset; Right: heterophily dataset

2https://github.com/aquastar/csur_bridge_spectral_spatial_gnn_survey
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Fig. 14. Runtime Comparison. Le�: homophily dataset; Right: heterophily dataset. (Y-axis is log-based)

7 EXEMPLIFY THE PROPOSED FRAMEWORK
Over-smoothing and large-scale di�culties are two of the most di�cult issues for existing GNNs,
and numerous recent publications have proposed various approaches to address them. We’ll show
in this section that all of the enhancements are still covered by our framework.

7.1 Sampling Point of View
The sampling mechanism is used as a spatial method for managing large graphs. Subgraph sampling
and random walk are popular approaches.

7.1.1 Subgraph Sampling. For an early work, GraphSAGE [87] applies uniform node sampling
for each batch, which is equivalent to subgraph sampling. The likelihood of transfer therefore
follows random normalization (i.e., Ã = D�1 A), which makes it part of Linear Aggregation (A-1).
In the majority of follow-up works, the same methodology is used [227]: (1) build a local graph
convolution for the input graph. (2) sample nodes in each layer, and (3) optimize parameters in
graph convolution. Steps (2) and (3) proceed iteratively to update the weights via stochastic gradient
descent [46, 48, 77, 100, 218, 227].
To avoid the recursive neighborhood expansion, FastGCN [46] treats graph convolutions as

integral transformation of embedding functions and proposes Monte Carlo approach to estimate
the integral. FastGCN employs importance sampling independently for each layer and reduce
variance cutting down the number of sampling nodes to constant size for all layers, exponentially
shrinking the computational cost. FastGCN is proved to be importance sampling, which is better
than uniform sampling, but still su�ers from unstable learning when no neighbors is selected for
one node and activation is zero. To avoid taxing calculation of activation, Stochastic GCN [48]
further uses the historical activation in the previous layer to avoid redundant re-evaluation. With
adaptive sampling, nodes on subsequent layers are sampled in order to speed up GraphSAGE
and FastGCN [100]. Learnable graph convolutional layer (LGCL) [77] selects a �xed number of
neighboring nodes for each feature based on value ranking, and transform graph into 1-D data
which is compatible with normal convolution networks. Similarly, A scalable GCN samples a �xed
number of nodes, with di�erent sampling policy called frontier sampling (FS). FS maintains a
constant size frontier set consisting of several vertices which is randomly popped out with a degree
based probability distribution [226]. Cluster-GCN [53] samples a community of nodes determined
by a graph clustering algorithm, and compute the graph convolution within each community.

7.1.2 Random Walk. To derive node-level representations with word2vec [151–153], various ran-
dom walk algorithms are proposed [85, 164, 184, 192, 217, 227]. Paths are viewed as complete
sentences, and nodes are viewed as individual words. Transition probability among nodes approxi-
mates to a random walk normalized adjacency matrix if enough random walks or uniform sampling
have been performed on the paths.
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As analyzed in previous section, DeepWalk [164] draws a number of random paths from the
graph, which makes the transfer probability of random walk is, i.e., Ã = D�1 A. Let the window size
of skip-gram be 2C + 1 and the index of current node is C + 1. Therefore, the updated representation
is as Z = 1

C+1 P(Ã) X (Equation 23). One popular word2vec con�guration, i.e., skip-gram with
Negative Sampling (SGNS), assumes a corpus of words w and their context c. Following the work
by Levy and Goldberg [125], SGNS is implicitly factorizing:

log
✓
| (F , 2) | · |D|

|F | · |2 |

◆
� log1 = GH

>,

where G and H denote matrix of current node and its neighbors, respectively. | (F , 2) |, |F |, |2 |
and D denote the number of times word-context pair (F , 2), word F , context 2 and corpus size,
respectively; 1 is the number of negative samples. Accordingly, [167] derived a exact format as:
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where |⇢ | and ) represents edge number and step size, respectively. Therefore, the target matrix to
decompose is still a polynomials of A. Node2Vec [85] de�nes a 2nd order random walk to control
the balance between Breath First Search (BFS) and Depth First Search (DFS). Assuming the random
walk is su�ciently sampled, Node2Vec’s second order can be rewritten to decompose matrix [167]:
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where Node2Vec is demonstrated to be polynomial methods. LINE [184] and SDNE [192] learn
the node representations within the �rst- and second-order neighbors, which can be treated as
unconstrained version of Node2Vec:
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� log1 .

GraphSAINT [227] employs multiple sampling polices but the best one is random walk. Pin-
SAGE [223] improves the e�ciency of GraphSAGE [87] by taking the top several neighbors with
highest normalized visit counts.
Remark: Sampling methods, as a spatial methodology, seek both variance reduction and e�ciency.
Subgraph and random walk are equal with enough samples since they traverse the entire network
with the transition probability associated with graph connection. A-3 and B-3 do not, however,
include any samplemethods, mainly due to their higher computational complexity. Space complexity
may be improved when sampling methods are used, but there is no guarantee that the time
complexity will be much reduced because of the enormous number of steps may be needed before
convergence.

7.2 Over-smoothing Point of View
We carve out two conditions under which neighborhood aggregation is not helpful: (1) when a
node’s neighbors are highly dissimilar and (2) when a node’s embedding is already similar to that
of its neighbors.
Most GNNs perform poorly when stacking many layers, which is called the over-smoothing

issue. Many related works aiming to solve the over-smoothing issue [28, 44, 50, 99, 126, 127, 138,
154, 160, 172, 210, 212, 232, 235, 240] can be reduced to one category of our proposed framework.
H2GCN [240] proposed a method that combines direct neighbors with higher-order, which is
equivalent to Polynomial Aggregation (A-2). Deep GCN [126, 127, 212] developed a model with a
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residue module, dense connection, and dilated aggregation, which learns the weights of all di�erent
orders of neighbors. This is equivalent to Polynomial Aggregation (A-2). GPR [54] generalize
PageRank and found the equivalence of GPR and Polynomial Approximation (B-2). JKNet [210]
also follows the same residue methodology as Deep GCN. DAGNN [138] stacks multiple layers
which uses di�erent orders of propagation with the learnable weights, which makes it belong to
Polynomial Aggregation (A-2). PairNorm [232] presents a two-step method that includes centering
and re-scaling, which mitigates the over-smoothing from graph convolution. Therefore, PairNorm
is equivalent to Rational Propagation (A-3), since re-scaling is similar to do propagation and restart
at the same time. [28] design an adaptive method to dynamically adjust the weights between
low-frequency and high-frequency components, resulting in two peaks in the spectral domain.
This could also be modeled by Rational Aggregation (A-3) with its accuracy in jump signals.
DropEdge [99, 172] randomly drops a certain number of edges to avoid over-smoothing, which can
be categorized as Rational Aggregation (A-3) since dropping edge prevents the propagation and
thereby provides a probability of keeping the original values of nodes. GCNII [50] applies initial
residual which combines the smoothed representation with an initial residual connection to the
�rst layer, and identity mapping, which adds an identity matrix to the weight matrix. Initial residual
is a trick that PPAP [115] uses, which enables itself to retard the over-smoothing by keeping partial
previous representations. Identity mapping further remains one original representation to slow
down the spreading of over-smoothing propagation.
Remark: A-1 lacks state-of-the-art methods, implying it is vulnerable to over-smoothing. Applying
A-1 many times with learnable weights for di�erent ordering equates to A-2. So A-2 might balance
low (raw representations) and high orders (smoothed representations). However, too many A-1
operations may result in over-smoothing. So, for A-2, precise order con�guration is required. No
matter the number of orders or layers, A-3 reserves a proportion of the �nal representation as raw
representation, making itself robust to over-smoothing.

8 LIMIT, OPEN CHALLENGES AND CONCLUSION
In this paper, we present a unifying paradigm for comprehending GNNs created under various
processes. Our study shows that the subcategories are closely related via generalization and
specialization links within their domains, as well as equivalence ties across domains. We show the
framework’s generalization power by reformulating existing GNNs models. As introduced in the
sections above, spatial methods are designed by various ideas, and they can be interpreted well by
the uni�ed spectral theory. Therefore, we will discuss the potential that spectral theory, as a un�ed
theoretical framework, may also extend to emerging directions.

Despite the an increasing number of emerging GNNs models [68] made in recent years, spectral
methods so far has been intensively studied in node-level graph convolution only, leaving the other
graph learning problem uncovered. In recent years, graph learning has been successfully extended
to various tasks such as (sub)graph-level tasks, combinatorial optimization, explainability, domain
application (brain, PDE solver, circuit, molecule, protein), generative graph, graph transformer,
contrast learning, heterogeneous graph [18, 86, 142, 159, 222]. However, a uni�ed framework is
lacking, which is due to the underlying theories from spectral graph theory and graph signal
processing applied in node-level graph convolution application by the �rst few pioneer work
[62, 89, 114], but little attention has been paid to the theoretical study on the emerging topics rather
than node-level convolution. Therefore, most new topics in graph machine learning is based on
intuitive design or isolated theory, lacking a uni�ed framework to compare and understand these
separate learning models. In this section, we will list the possibility that all the selected topics can
be looked at through a uni�ed framework.
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Theoretical Understanding -The vast majority of recent research has examined spatial and
spectral approaches individually, and even from a theoretical standpoint. [111, 194, 209]. However,
it is unclear how these two distinct interpretations can be connected. This survey demonstrates
that the theoretical advantage of rational function over the others may be proved, however it is
currently unclear how the learning approach can be optimally structured to execute this advantage.
Using the partial di�erential equation [183], in which the di�usion equation and wave equation are
analogous to polynomial and rational �lters, provides an alternate viewpoint to integrate spatial
and spectral views.
Directed Graph - Most contemporary work, especially spectral methods, only handle undirected
graphs, due to symmetric graph matrix is readily available with o�-the-shelf techniques. Many
related works integrate or sum up asymmetric adjacency matrices from bi-direction into symmetric
matrix, which avoids decomposing asymmetric matrix directly. It is possible to decompose asym-
metric matrix by some techniques such as the Jordan norm [108], asymmetric matrices can be used
to express properties such as graph and �lter complexity. Directed graphs and their decomposition
can also be achievable in a certain type of geometric space called a graph manifold. As shown in
section 2.4 of [123], spectral �lters can be de�ned on directed graphs represented by non-symmetric
adjacency matrices with Hermitian transpose.
Dynamic Graph - Existing work model with GNNs and RNNs is built using graph convolutional
networks and recurrent neural networks, which lack transparency. Due to the limited expressive
power of RNNs, the task is constrained to prediction, and it is unable to perform long-term sequence
processingwell. Graph dynamics has a large number of valuable tasks, such as inferring the structure
of a graph, constructing a joint dynamic of structure and attributes, and exploring the connection
between structure and mass �ow. It is possible to use graph spectra to detect the patterns in
dynamics of graph [36, 147, 181]. Due to the challenge of the long-dependency of a path, the
spectral method can also provide a potential way to model trajectory prediction, as the spectra of
trajectory implicitly reveal the relationship with the whole graph [40].
Higher-Order Interaction and Combinatorial Optimization - Most current work falls into
�rst-order relationship at node-level. For example, the most spatial method is to learn the rela-
tionship between the current node and neighbors, but higher-order interaction is either ignored
or implicitly included. Existing explainable learning also focuses on the neighbors’ identi�cation
[225]. Also, the existing work pays the most attention to neighbors, but remote connection or
higher-order relationship with the other nodes receives little attention. Hypergraphs provide a
possibility to model the combinatorial e�ect [16, 72, 221] Hodge Laplacian [134, 171] and simplicial
complex [19, 23, 27] provide more theoretical tools for modeling this combinatorial e�ect.
Multilayer Network - In numerous realistic biological and engineering systems, however, the
units can be interconnected and interdependent via multiple interdependent and heterogeneous
networks. Failure of interdependent nodes between linked networks may result in cascading failures
inside and across the networks. Similar interactions exist in many cyber-physical systems, where the
spread of misinformation about infectious diseases via social media can result in risky daily plans at
the group level, resulting in an epidemic outbreak. Such interconnected networks can be represented
by multilayer networks that produce new degrees of freedom via coupling interactions. Such “new
physics” is prevalent in multilayer systems, but they are still poorly understood [8, 26, 59, 65]. Graph
neural network research on this crucial area is scarce [83]. One popular technique to generalize
principles from monolayer networks to multilayer networks is to “�atten” adjacency tensors into
matrices (called “supra-adjacency matrice”), and spectral theory is available and worth researching.
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A B-1
A.0.1 Graph Convolutional Network (GCN). Rewriting GCN [114] in spectral domain, we
have:

Z = Ã X = D- 12 (A+ I) D- 12 X = D- 12 (D� L+ I) D- 12 X = (I�D- 12 LD- 12 + I) X = U(2 � Λ) U| X, (55)

where Ã = D�
1
2 (A+ I)D�

1
2 is renormalization of Ã. Therefore, the frequency response function is

g(Λ) = 1�Λ which is a low-pass �lter, i.e., smaller eigenvalues which correspond to low frequency
components are assigned with a larger value.

A.0.2 GraphSAGE. Considering the MEAN aggregation as example, we can rewrite GraphSAGE
[87] in matrix form:

Z = D- 12 (I+A) D- 12 X = (I+ Ã) X = (2 I� L̃) X = U(2 � Λ) U| X . (56)

Hence, the frequency response function is g(Λ) = 2 � Λ which is a low-pass �ltering. Note that
GraphSAGE’s normalization is di�erent from GCN, which utilizes the renormalization trick.

(� + ⇡�1�) X (57) U
�
1 + ⇤%

�
U| X (58)

where % = ⇡�1�

A.0.3 Graph Isomorphism Network (GIN). Multi-Layer neural network is capable of �t the
scale (i.e., normalization) [114], so GIN [209] can be rewritten as:

Z = D- 12 [(1 + n) I+A] D- 12 X = D- 12 [(2 + n) I� L̃] D- 12 X = U(2 + n � Λ) U| X . (59)

GIN can be seen as a generalization of GCN or GraphSAGE without normalized adjacency matrix
A. The frequency response function is g(Λ) = 2 + n � Λ which is low-pass.

B B-2
B.0.1 ChebNet. As analyzed in Equation 21, ChebNet [89] can be written as:

 �1’
:=0

\:): (L̃) X = (\̃0 I+\̃1L̃ + \̃2L̃
2
+ ...) X, (60)

where ): (·) is the Chebyshev polynomial and \: is the Chebyshev coe�cient. \̃ is the coe�cient
after expansion and reorganization. Therefore, we can rewrite it as:

 �1’
:=0

\:): (L̃) X = U(\̃0 · 1 + \̃1 Λ+\̃2Λ2
+ ...) U| X, (61)

where spectral response function is g(Λ) = \̃0 · 1 + \̃1 Λ+\̃2Λ2
+ ... = P(Λ).
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B.0.2 DeepWalk. Starting from Equation 23, DeepWalk [164] can be rewritten as:

Z =
1

C + 1
(I+ Ã+ Ã2

+... + ÃC ) X

=
1

C + 1
(I+(I� L̃) + (I� L̃)2 + ... + (I� L̃)C ) X

=
1

C + 1
(2 I+(�1 � 2 � 3 � ...) L̃+(1 + 3 + 6 + ...) L̃2 +...((�1)C�1 +

✓
1
C

◆
(�1)C�1) L̃C�1 +(�1)C L̃C ) X

= (\0 I+\1 L̃+\2 L̃
2
+... + \C L̃

C
) X

= U(\0 + \1 Λ+\2 Λ2
+... + \C ΛC ) U| X

= UP:=A (Λ) U| X,

where g(Λ) = \0 + \1 Λ+\2 Λ2
+... + \C ΛC , and all parameters \8 are determined by the prede�ned

step size t.

B.0.3 Scalable Inception Graph Neural Networks (SIGN). Substituting Ã = I� L̃ in Equation
28, it can be rewritten as:

Ẑ =
’
A

lA
ú
(I� L̃)A X = U úP:=A (Λ) XU| . (62)

B.0.4 Graph di�usion convolution (GDC). Substituting Ã = I� L̃, general case in Equation 30
can be written as:

Z =
1’
:=0

\: (I� L̃) = U
1’
:=0

\: (1 � Λ): U| = UP(Λ) XU| . (63)

B.0.5 Di�usion convolutional neural networks (DCNN). As analyzed in Equation 24, DCNN
[14] can be transformed with Ã = I� L̃ as:

Z = P(I� L̃) X = UP(Λ) XU|, (64)

which is equivalent to ChebNet, and parameters \8 are learnable.

B.0.6 Node2Vec. Node2Vec [85] can be rewritten in matrix form as Equation 32. Then it can be
transformed and reorganized after substituting Ã = I� L̃:

Z = [(1 +
1
?
) I�(1 +

1
@
) L̃+

1
@
L̃2] X = U[(1 +

1
?
) � (1 +

1
@
) Λ+

1
@
Λ2

] U| X . (65)

Therefore, Node2Vec’s frequency response function is:

g(Λ) = (1 +
1
?
) � (1 +

1
@
) Λ+

1
@
Λ2, (66)

which integrates a second order function of Λ with prede�ned parameters, i.e., ? and @.

B.0.7 LINE/SDNE . As described in Equation 36, LINE [137] and SDNE [192] can be rewritten as:

Z = Ã X+U Ã2 X = (I� L̃) X+U (I� L̃)2 X = U[(I�Λ) + U (1 � Λ)2] XU| = UP:=2 (Λ) U| X, (67)

where response function g(Λ) = Λ+U Λ2 is a polynomial function with order 2.

B.0.8 Simple Graph Convolution (SGC). As analyzed in Equation 38, SGC can be transformed
as:

Z = (I� L̃): X = [

✓
:
0

◆
I+

✓
:
1

◆
L̃1 +

✓
:
2

◆
L̃2 + · · · + L̃: ] X

= U[
✓
:
0

◆
+

✓
:
1

◆
Λ1

+

✓
:
2

◆
Λ2

+ · · · + Λ: ] U| X,
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where spectral response function is a polynomial function of order k:

g(Λ) =
✓
:
0

◆
+

✓
:
1

◆
Λ1

+

✓
:
2

◆
Λ2

+ · · · + Λ: .

B.0.9 Improved GCN (IGCN). By stacking multiple layers IGCN [130] is proposed as:

Z = L̃: X = UΛ: U| X, (68)

where the spectral response function is a polynomial function with order k.

C B-3
C.0.1 Auto-Regressive filter. Label propagation (LP) [22, 233, 243] is a prevail methodology for
graph-based learning. The objective of LP is two-fold: one is to extract embeddings that matches
with the label, the other is to be similar with neighboring vertices. Label can be treated as part of
node attributes, so we can have:

Z = (I+U L̃)�1 X = U
1

1 + U (1 � Λ)
U| X . (69)

C.0.2 PPNP. Personalized PageRank (PPNP) [115] can obtain node’s representation via teleport
(restart) probability U which indicates the ratio of keeping the original representation:

Z =
U

I�(1 � U) (I� L̃)
X = U

U

U + (1 � U) Λ
U| X, (70)

where Ã = D-1 A is random-walk normalized adjacency matrix with self-loop. Equation 70 is with
a rational function whose numerator is a constant.

C.0.3 ARMA filter. Substituting Ã = I� L̃, Equation 44 can be rewritten as:

Z =
1

I�0(I� L̃)
X = U

1

(1 � 0) + 0 Λ
U| X . (71)

Note that ARMA �lter is an unnormalized version of PPNP. When a+b=1, ARMA �lter becomes
PPNP. Therefore, ARMA �lter is more generalized than PPNP due to its unnormalization.

C.0.4 ParWalks. [129, 201] Decomposing graph Lapacian, ParWalks can be written as:

Z = U
V

V + Λ
XU|, (72)

when setting V = U
1�U , it becomes PPNP:

Z = U
U

1�U
U

1�U + Λ
XU| = U

U

U + (1 � U) Λ
XU| . (73)

C.0.5 RationalNet. Substituting Ã = I� L̃, Equation 39 can be transform to Equation 53. The
frequency response function is a generalized rational function.
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