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Abstract 
With the advent of ultra-wide bandgap (UWBG) semiconductor materials, such as Gallium Oxide (Ga2O3) and 
Aluminum Nitride (AlN), higher temperature and higher voltage operation of power devices is becoming 
realizable. However, conventional polymeric and organic encapsulant materials are typically limited to operating 
temperatures of 200 °C and below. In this work, six materials were identified and evaluated as candidates for use 
as encapsulants for operation and high-voltage insulation at and above 250 °C. High-temperature silicone gel was 
used as a reference material and was compared to five novel encapsulants including an epoxy resin, a hydro-set 
cement, two low melting point glass compounds, and a ceramic potting compound. Gas pycnometry was utilized 
to evaluate the voiding concentration to avoid partial discharge. Each material was then processed onto a direct-
bonded-aluminum (DBA) substrate test coupon to evaluate compatibility with a commonly used metal-ceramic 
substrate and processability for use in a power module. The insulation capability of each material was evaluated 
by testing the partial discharge inception voltage (PDIV) across a 1mm gap etched in the substrate. The dielectric 
stability was then tested by soaking the materials in air at 250 °C for various intervals and observing the degradation 
of their PDIVs and appearances. The results of each test were compared, and conclusions were drawn about each 
material’s feasibility for use as a dielectric encapsulation material for a power module operating at temperatures 
exceeding 200 °C. 
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I. Introduction 
Encapsulation materials must play several critical roles to 
achieve successful operation and reliability of power 
electronics modules. They provide protections against 
electrical breakdown, chemical erosion, moisture absorption, 
hazardous radiation, as well as relief of mechanical stresses 
and shock [1].  Conventional power electronics packages, like 
that pictured in Fig. 1, have been designed and optimized for 
use with silicon semiconductor devices which are limited to 
approximately 150 ℃ operation due to the intrinsic carrier 
concentration of Si. With the low intrinsic carrier 
concentration and UWBG of new semiconductor materials, 
i.e. 1.79*10-23cm-3 and 4.8 eV for Ga2O3 respectively, the 
promise of high-temperature and high-power operation is 
realizable [2-4].  

 
Though these new devices theoretically have a much higher-
temperature operating limit, conventional packages use 
polymeric encapsulation materials which are typically 
restricted to an operating temperature of 175 ℃ [5]. Acrylic, 
polyurethane, epoxy, and silicone encapsulation materials are 
limited by their glass transition temperature (Tg) and thermal 
decomposition [6], [7]. Increasing the operating temperature 
has several benefits including reduction of heavy and 
expensive cooling systems used to cool many of the 
commercially available power modules today, increased 
thermal reliability of existing systems, and the potential to 
operate in much higher ambient temperature environments 
[8]. The current power electronics package requires 
innovation to support the high-temperature operation 
permitted by the next generation of semiconductor devices. 
This work provides criteria for high-temperature 
encapsulation materials, performs a survey of potential 
candidates, and conducts a series of tests to evaluate their 
compatibility for use in a power module application as well as 
their high-temperature electrical durability. 
  

Figure 1: Common Power Module Architecture 
 



II. Criteria and Selection 
A. Requirements and Considerations 
Keeping in mind the aforementioned roles of an encapsulation 
material for a power module, Table I below summarizes 
critical properties for the evaluation of potential materials. 
 

 
The dielectric requirements are established in the standard 
IEC 61287, which defines testing requirements for the PDIV 
and breakdown of passivation materials for converter 
applications [9]. These values will be dependent on the 
voltage level of the application, but it should be noted that the 
PDIV of materials has been shown to decrease by up to 53% 
over a temperature range of 25-250 ℃ [7], so appropriate 
scaling should be considered and testing performed in the 
design process. 
Temperatures should be kept below the manufacturer 
prescribed glass transition and operating temperatures unless 
materials are subjected to high-temperature storage lifetime 
(HTSL) and thermal-cycling reliability tests within the 
desired configuration. Conventionally used encapsulants like 
epoxy molding compounds have low thermal conductivities. 
Packages targeting higher-power levels require low junction-
to-ambient thermal resistance to maintain temperatures below 
component maximums and achieve manageable 
thermomechanical stresses inside the package [10]. Therefore, 
a material with higher thermal conductivity should be selected 
so long as they meet the other application requirements. There 
have been efforts to add silica and hexagonal boron nitride 
fillers to increase the thermal conductivity of conventionally 
used polymeric encapsulation materials; however, this leads 
to an increase in viscosity which may limit the composite 
material’s use for double side cooled (DSC) and flip chip 

applications [11], [12]. In addition, the processing and curing 
temperatures for each material must be kept below a safe 
temperature for all components of the package (i.e. 
interconnect melting temperature, device annealing 
temperature).  
Lastly, close attention must be payed to the mechanical 
concerns during processing and the thermo-mechanical 
stresses that arise when operating at elevated temperatures.  
The encapsulant’s coefficient of thermal expansion (CTE) 
should be matched as closely as possible to the other module 
components (i.e. devices, die attach, substrate) as CTE 
mismatch is the primary source of thermo-mechanical stresses 
in a package when operating at elevated temperatures [13]. It 
has also been demonstrated that having an elastic modulus 
between 4-10 GPa, which is higher than typical epoxies and 
gels and similar to that of many resin materials, can be 
beneficial in increasing the reliability of both conventional 
and DSC packaging configurations [14], [15]. Finally, the 
uncured viscosity must be sufficiently low so that the 
encapsulant can flow under the smallest facet of the package 
and be entirely outgassed. As such, a viscosity of 20 Pa-sec is 
desirable for DSC and flip chip configurations [16].  
 

B. Potential Materials 
Now that the criteria for a high-temperature encapsulation 
material has been established, a survey was conducted of 
potential options. This survey was conducted with the goal of 
compatibility with a 1.2 kV Ga2O3 power module targeting of 
300℃ operation. As such, the desired CTE has been tailored 
to match that of Ga2O3. Junction side cooling will be 
employed, so a sufficiently low uncured viscosity is required 
to be able to flow under a 0.5 mm facet. Results of the survey 
can be found in Table II below. Two additional materials, 
cyanate ester [17] and benzocyclobutene [18], were identified 
as potential candidates due to their high Tg; however, due to 
limited commercial availability, they were not included in the 
following survey or testing. 
 
III. Test Procedure and Rationale 
A. Gas Pycnometry 
Unless processed in an inert environment, pockets of 
entrapped gas, commonly referred to as voids, can create areas 
of lower dielectric strength [19], [20].  As such, particular care 
must be taken in processing and fabrication of encapsulation 
materials for consistent and predictable performance. Gas 
pycnometry can be used to establish the density of a sample 
with known volume to estimate the concentration of entrapped 
gas per the USP 699 [21]. Fig. 2 depicts the test setup used 
and as the various fabricated samples can be seen in Table III 
below. Helium gas is used due to its small particle size and the 
difference in pressure between the reference chamber and the 
chamber containing the sample can be used to find the voiding  

Table I: Critical Encapsulation Properties 

Property Desired Value 

Electrical 
Dielectric strength ≥ 10 kV/mm (Or as needed 

for application) 

Dielectric constant < 5 

Thermal 

Glass transition 
temperature (Tg) 

> Working temperature (°C) 

Thermal conductivity (k) > 1 (W/mK) (As high as 
possible) 

Processing temperature < Safe component 
temperature 

Mechanical 

Coefficient of thermal 
expansion(α) 

Matched to device, die attach 
and substrate (ppm/K) 

Elastic modulus (E) 4-10 (GPa) 

Viscosity (η) < 20 Pa-sec for underfill 
 (50 for encapsulation) 



concentration. There are two limitations to this setup from a 
power module perspective. First, the sample size is limited to 
1.85 cm x 3.95 cm which does not allow for flexibility in 
testing a complete configuration. Second, if there are any 
hermetic voids entrapped with openings smaller than that of a 
helium particle, they may not be included in the relative 
density calculation. If further voiding is evident or suspected 
SEM or x-ray imaging may be necessary to garner a more 
exact result. 
 
 

 
Figure 2: Gas Pycnometry Setup [22] 

    
Table III below summarizes the results from the gas 
pycnometry testing both directly after the samples have been 
produced as well as after a 250 ℃ soak in air for 50 hours in 
order to correlate a potential increase in voiding concentration 
to a decrease in PDIV and breakdown strength of each 
material in the testing described in a subsequent section. 
As anticipated, the porosity of the liquid binder ceramic-based 
materials was higher because outgassing was performed 
before and not during the cure, allowing gasses to be 
entrapped as the liquid evaporates during the curing process. 

An expected slight increase in porosity was seen uniformly 
across the board when the materials were thermally aged and 
burned in, with the only considerable degradation observed 
being the ceramic potting compound; exhibiting a 12% 
increase in average porosity. 
 

B. Substrate Compatibility and Processability 
The next test was to attempt to process each of the materials 
onto a DBA substrate to judge if the manufacturer supplied 
cure profile yields a proper encapsulation of the commonly 
used metal-ceramic substrate. This was a qualitative test to 
establish the feasibility of each material for use in a power 
module.  
The silicone gel and epoxy resin were both easily outgassed 
and processed with no visible voids and sufficiently low 
viscosity to fill the 1mm gap between pads on the substrate 
(the rationale for the configuration will be discussed in the 
following section). The hydroset cement was also low enough 
viscosity to fill the small facet, and could be effectively 
outgassed with only small surface dimples forming after 
curing.  
The low melting point glass composites required significantly 
higher processing temperatures, 420 ℃ and 510 ℃ for fusing 
temperatures from the frit and 500-600 ℃ for melting 
sufficient to pour. Even with pre-heating the substrates and a 
slow cooling time, large cracks formed through both glass 
samples similar to what was observed in Liu et al. [22]. In 
addition, when pouring, the molten glass was still quite 
viscous with no opportunity to outgas without a high-
temperature vacuum furnace. While polyimide CTE buffers 
and other manufacturing techniques could be implemented to 
potentially successfully use these materials, they were 
eliminated from contention due to the difficult and high 
temperature processing. 

Table II: Requirements and Survey of Potential Materials 
 

Property Desired 
Value 

Silicone Gel 
(NuSil 2188) 

Epoxy Resin 
(Durapot 863) 

Hydroset Cement 
(Ceramacast 675-N) 

Ceramic Potting 
Compound 

(Durapot 801) 

LMP Glass 
(Schott 339) 

LMP Glass 
(Schott 393) 

Electrical 
Dielectric strength 

(kV/mm) ≥10 19.5 21.65 11.81 13.78 N/A (assumed 
high) 

N/A (assumed 
high) 

Dielectric constant <5 2.9 3.5 - - 8.4 11.6 

Thermal 

Glass transition/operating 
temperature (⁰C) >300 250 314 1100 N/A 325 325 

Thermal conductivity 
(W/mK) 

>1 (high as 
possible) 

N/A (assumed 
low) 1.3 N/A (assumed high) 1.15 N/A N/A 

Mechanical 

CTE (ppm/K) 3.77 (ideally) 
or < 20 N/A 3.4 5.6 4.3 4.7 4.7 

Elastic Modulus (GPa) 4-10 <1 2.65 N/A (assumed high) N/A 58 58 

Viscosity (Pa-sec) < 20 13 2 15 2.8 50+ 50+ 

Processing temperature (⁰C) <300 150 350 22 22 510-600 420-500 
         



Lastly, the ceramic potting compound was unable to be 
degassed due a very short potting life that caused it to harden 
in the vacuum chamber, forming large pockets of air inside 
the material. In addition, the material formed deep cracks 
during the cure profile losing its adhesion to the substrate and 
falling away. As such, the ceramic potting compound was also 
deemed inadequate for this use case and not investigated for 
its electrical properties. 

 

C. Baseline PDIV and HTSL Reliability 
Now that the materials have been down selected based on their 
compatibility and processability for power module 
applications, the electrical capability of the three remaining 
materials must be tested. In order to characterize the electrical 
insulation of each material, test coupons were fabricated as 
show in Fig. 3 below. Two bent silver leads were sintered to 
a DBA substrate. A 1 mm gap, a common spacing in power 
modules, is etched between the conductive pads of metal on 
the top side and the encapsulation is then processed on top. 
The bottom metallization is not removed as this is commonly 
used for connection to a baseplate. 
 

 
Figure 3: PDIV Test Coupon 

 
Tests were performed by an Omicron MPD600 system 
following the method described in IEC60664 depicted in Fig. 
4 below [23]. One of the Ag leads was connected to the HV 
electrode while the other lead and the bottom metal are 
grounded. The whole fixture is then submerged in electrical 
insulation oil in order to ensure that the PD and breakdown 
occurs between the conducting traces on the substrate.  
A 60-Hz sinusoidal-signal is applied and is ramped from 0 V 
at approximately 100 V/s. This is monitored and recorded 
through the MPD software to track PD events as well as 
breakdown.  
To test the high-temperature stability of each encapsulant, 
identical samples were fabricated and soaked at 250 ℃ in air. 
Subsets of three samples were tested at different intervals; 
unaged, 50 hours, and 100 hours. The results from these tests 

as well as photos of the samples can be seen in Table IV and 
Table V respectively.  

 
The PDIV of the silicone gel degraded by 35% as was in line 
with previous works on polymeric encapsulations [7]. 
Interestingly, the breakdown strength was largely unaffected, 
even increasing slightly after being aged which is theorized to 
be due to further vulcanization of the rubber, but further 
investigation is necessary to confirm this hypothesis [24]. 
Next, the epoxy resin saw an initial drop of 32% and 35% for 
the PDIV and breakdown strength respectively, but no further 
degradation was observed between the 50- and 100-hour 
aging steps, suggesting good sustained electrical performance 
event when exposed to elevated temperatures.  
Lastly, the hydroset cement exhibited no PD events, instead 
reaching breakdown at ~2kV. While this was significantly 
lower than the other materials tested, no degradation was 
observed once again highlighting its potential as a high-
temperature stable encapsulation material. 
 
From a visual and mechanical standpoint, slight discoloration 
of the silicone can be seen with aging but no visible cracking 
or deformation occurred. The epoxy resin grew significantly 
darker in color and some cracks appeared along the surface. 
Lastly, the cement saw no real observable changes which was 
anticipated due to its high-temperature stability rating from 
the manufacturer. 
 
 

Table III: Gas Pycnometry Test Results 

 Silicone Gel 
(NuSil 2188) 

Epoxy Resin 
(Durapot 863) 

Hydroset Cement 
(Ceramacast 675-N) 

Ceramic Potting 
Compound (Durapot 801) 

LMP Glass 
(Schott 339) 

LMP Glass 
(Schott 393) 

 

      
Porosity Unaged 13.6% 13.3% 40.7% 34.5% 19.1% 32.1% 
Porosity 50 Hour 
Soak at 250 ⁰C 15.3% 18.3% 45.4% 46.55% 19.3% 32.7% 

 

  

 
Figure 4: PDIV Test Setup 

 



 
 

Table V: PDIV Samples 
Unaged vs. Aged 100 Hours at 250 ℃ 

Material Unaged 100 Hours 

Silicone Gel (NuSil 2188) 

  

Epoxy Resin (Durapot 
863) 

  

Hydroset Cement 
(Ceramacast 675-N) 

  
  

 IV. Conclusions 
While initially selected as a reference material, the silicone gel 
performed adequately for use in a power module 
configuration with temperatures up to 250 ℃ exhibiting PDIV 
and breakdown strengths after aging of 5.28 kV and 13.27 kV 
respectively. Though some cracking did occur, the epoxy 
resin was also identified as a good candidate for these high-
temperature applications showing effectively no degradation 
between the 50- and 100-hours aging interval. Finally, the 
hydroset cement seems to be limited to lower voltages than 
the other materials, assumedly due to its high porosity, 
exhibiting breakdown at ~2 kV, but is very thermally stable 
and has an assumedly higher thermal conductivity than the 
other materials tested.  

As a continuation of this work, testing at higher-temperatures 
and/or for longer thermal soak times (out to 1000 hours) 
should help in the material selection process. In addition, 
performing the PDIV testing at elevated temperatures and 
over repeated partial discharge events should garner a clearer 
image of the electrical stability of these materials at high-
temperature.  
To better understand the mechanical resilience of the 
materials, thermal gravimetric analysis could be implemented 
to establish the decomposition point of each material to 
observe the upper limits of potential operating temperatures. 
Finally, testing the adhesion strength between the 
encapsulation material and the substrate through the use of 
shear tests with thermal aging intervals could be an effective 
way to establish a high-temperature mechanical reliability of 
the encapsulation/substrate interface. 
To close, encapsulation materials were identified and tested 
for use in tandem with UWBG semiconductor materials for 
high-temperature power module applications which will assist 
in unlocking the full benefits that these next generation 
devices have over conventional Si based technologies.  
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