Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Average-Case Subset Balancing Problems

Xi Chen* Yaonan Jin' Tim Randolph? Rocco A. Servedio®

Abstract

Given a set of n input integers, the Fqual Subset Sum problem asks us to find two distinct subsets with
the same sum. In this paper we present an algorithm that runs in time O*(3%3%"™) in the average case,
significantly improving over the O*(3°*®¥™) running time of the best known worst-case algorithm [MNPW19|

and the Meet-in-the-Middle benchmark of O*(3°-°™).
Our algorithm generalizes to a number of related problems, such as the “Generalized Equal Subset Sum”
problem, which asks us to assign a coefficient ¢; from a set C' to each input number z; such that > s Cizi = 0.

Our algorithm for the average-case version of this problem runs in time |C|(®-*=0/ICD" for some positive
constant co, whenever C = {0,%1,...,+d} or {%1,...,+d} for some positive integer d (with runtime

O*(|C|>*™) when |C| < 10). Our results extend to the problem of finding “nearly balanced” solutions in
which the target is a not-too-large nonzero offset 7.

Our approach relies on new structural results that characterize the probability that >, c;z; = 7 has a
solution ¢ € C™ when z;’s are chosen randomly; these results may be of independent interest. Our algorithm is
inspired by the “representation technique” introduced by Howgrave-Graham and Joux [HGJ10]. This requires
several new ideas to overcome preprocessing hurdles that arise in the representation framework, as well as a
novel application of dynamic programming in the solution recovery phase of the algorithm.

1 Introduction

The Subset Sum problem and its variants are among the most famous NP-complete problems, and the question
of whether Subset Sum can be solved in time O*(2(%->=9)™)! for some constant § > 0 is one of the major questions
in exact algorithms. Despite many attempts to find a “truly faster” exact algorithm, Horowitz and Sahni’s classic
O*(29-5™)-time Meet-in-the-Middle algorithm for worst-case inputs remains the benchmark after almost 50 years
[HS74].

In recent years, the apparent difficulty of the Subset Sum problem has fueled work on variants and related
settings. In 2010, [HGJ10] made a significant breakthrough by showing that Subset Sum could be solved in
time O*(29337") in the average case under a reasonable heuristic assumption.” Subsequent works, including
[BCJ11, Bohll, BBSS20], refined what became known as the representation technique, and whittled the average-
case exponent down to O*(2°-283") under heuristic assumptions. This new technique inspired a flurry of results in
related settings, including better time-space tradeoffs [AKKM13, DDKS12], a faster polynomial-space algorithm
[BGNV18], and fast algorithms for large classes of sufficiently “random-like” instances [AKKN15, AKKN16].

In 2019, [MNPW19] used the representation technique to establish an O*(3%4%8")-time worst-case algorithm
for Fqual Subset Sum, the Subset Sum variant that asks for two different input subsets with the same sum. This
resolved an open question of Woeginger ([Woe08]), who observed that the Meet-in-the-Middle approach to Equal
Subset Sum runs in time O*(3%°") and asked whether this was a barrier for Equal Subset Sum analogous to the
O*(25") runtime barrier for Subset Sum. Equal Subset Sum is also closely related to the Number Balancing
problem of [KK82|, which can be thought of as the optimization version of Equal Subset Sum.

Both Subset Sum and Equal Subset Sum are special cases of the following more general problem: given a
multiset of input integers, find a linear combination using only coefficients from a small set C' that achieves a
specified target value. Writing [a : b] to denote the set of integers {a,a + 1,...,b}, we define:

" *Columbia University. Email: xichen@cs.columbia.edu

fColumbia University. Email: yj2552@columbia.edu

fColumbia University. Email: t.randolph@columbia.edu

$Columbia University. Email: rocco@cs.columbia.edu

1We use O*(-) notation to suppress factors polylogarithmic in the argument of the function; so the notation “O* (2°-5")” suppresses
poly(n) factors.

2 Although the original paper claims a running time of O*(29-311) a correction of the original analysis gives this O*(20-3377)
runtime; see [BCJ11, Section 2.2| for details.

743 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Problem 1: Generalized Subset Sum (GSS)

Input. An input range bound M, an input vector & = (x1,...,2,) € [0: M —1]", a set C' C Z of allowed
coefficients, and a target integer 7.
Output. A coefficient vector ¢ € C™ such that ¢- & = 7, if one exists.

It is natural to compare the runtime of GSS algorithms to the size of the search space |C|™. There is
a straightforward generalization of Horowitz and Sahni’s Meet-in-the-Middle Algorithm for GSS: partition the
input into two vectors #; and s of length n/2 each, list all partial linear combinations ¢ - #1 and ¢ - Zy by
enumerating all ¢1,¢ € C™/2, and search the lists for a pair of linear combinations such that & - @1 + & - o
achieves the target 7. This can be done in time O*(|C|™/?) by sorting the lists and using two pointers that walk
from opposite ends of the two lists, seeking a pair that sums to the target. The C' = {0, 1} case of this algorithm
is Horowitz and Sahni’s Meet-in-the-Middle algorithm for Subset Sum, and the C' = {0,+1} case (with target
7 =0 and the solution &= 0 disallowed) is the Meet-in-the-Middle algorithm for Equal Subset Sum.

In light of the broad body of work that has been done on the average-case version of the original Subset Sum
problem, it is natural to consider the average-case GSS problem in which the input vector & is uniformly random
over [0 : M — 1]"; this average-case GSS problem is the subject of the current paper. There are two natural
average-case variants of the GSS problem: in the first variant, the target value is obtained by sampling a “hidden”
solution, and hence every instance of this average-case problem variant admits a solution. This variant of the
problem is motivated by cryptographic applications, and corresponds to the average-case variant of Subset Sum
that was studied by [HGJ10, BCJ11] and others; we refer to it as the “cryptographic version” of the average-case
GSS problem. In the second version, which is the one we consider in this work, the target is a fixed value which
does not depend on the draw of random input &. This version, which we refer to as the “balancing version” (see the
formal definition below), has more of the flavor of Equal Subset Sum. Since both yes-instances and no-instances
are possible for this variant, a natural goal that arises in its study is to understand the probability (as a function
of the various parameter settings) that a solution exists. Structural questions of this type have in fact been the
subject of considerable study for the special case of C' = {£1}; see for example [BCP01, Lue98].

1.1 Our Results We consider two families of symmetric coefficient sets, with and without zero. For a fixed
positive integer d € N, we define C'(d) = {£1,+2,...,+d} and Cy(d) = {0,£1,£2,...,£d}. These two sets cover
a wide range of cases, including Equal Subset Sum. We note that while the natural coefficient set corresponding
to Subset Sum is C' = {0,1}, an instance & with target 7 can be easily converted to GSS on C(1) = {£1} by
setting a new target 7/ := 27 — 37, | x5

We consider algorithms for the balancing variant of average-case GSS over either C = C(d) or Cy(d). Given
as input M, 7 and Z € [0 : M — 1]™, such an algorithm either returns “no solution” or a solution ¢ that satisfies
¢ -7 =1 (with @# 0 when C = Cy(d) and 7 = 0). We say an algorithm fails on (M, 7, Z) if it returns “no solution”
but indeed there is a solution; otherwise we say it succeeds.

Our main algorithmic result for (the balancing variant of) average-case GSS is as follows.

Theorem 1 (Algorithm for Average-Case GSS). Fiz any d € N>y and let C = C(d) or Cy(d). For any constant
¢ > 0, there is a randomized algorithm for average-case GSS with running time

1— 22";1 log, (z+ 1)+ %logz(Q)

5~ %5 log. (537

O* (|C|AICHn+Em) T yhere A(z) = max{

Given any M and T with |t| = o(nM), the algorithm succeeds on (M, T, %) with probability at least 1 — =)

when C = Cy(d) and with probability at least 1 — 0, (1) when C = C(d), over the draw of & ~ [0: M — 1]™ and
the randomness of the algorithm.

3Tn fact, our results extend to all scale multiples and translations of C(d) and Co(d). For details, refer to Section 5.1.
4Note that the runtime of our algorithm is independent of the input bound M. This occurs because the probability of a ‘yes’
instance is exponentially small when M = 2«() (refer to Theorems 3 and 4).

744 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A(le)

0.5

04

0.3

0.2 : L L 1 1 1 1 L |C‘

2 3 4 5 6 7 3 9 10
Figure 1: Plot of A. The red points plot A(z) for z € [2: 10].

R N T T B TR

Runtime C(d) O*(|C|O.375n)T O*(‘C‘OAOO”) O*(|c|0.432n) O*(|C|O.458n) O*(‘0|0.479n)
Co(d) O*(|O|O'387")1 O*(‘C‘O-‘“g”) O*(|O|O'441n) O*(|C|O'462") O*(‘C|O.480n)

TOur C(1) case differs from the “cryptographic” average-case Subset Sum problem considered in [HGJ10, BCJ11, Bsh11, BBSS20],
because we consider the “balancing” problem with a fixed offset (for which a solution may or may not exist); see the Introduction
for further discussion.

¥This runtime for Co(1) should be contrasted with the O*(|C|°-483")-time worst-case runtime due to [MNPW19].

Table 1: Runtime of our algorithm for average-case GSS on various coefficient sets.

We note that A(z) = 0.5—(1/z), and thus our algorithm beats the Meet-in-the-Middle runtime of O*(|C|°-5")
by an exponential margin for every constant |C|. Figure 1 plots the function A and Section 1.1 lists our algorithm’s
runtime on various coefficient sets.

As a special case of Theorem 1 we obtain an average-case algorithm for Equal Subset Sum that significantly
improves on the worst-case O*(3%-4887) runtime of [MNPW19):

Corollary 1 (Algorithm for Average-Case Equal Subset Sum). There ezists an algorithm that solves Average-Case
Equal Subset Sum in time O*(3938™) with success probability 1 — e~),

Our algorithm has the additional property that it runs faster on dense instances, i.e., ones for which M
is substantially less than |C|™. Intuitively, this is possible because in this regime there are likely to be many
solutions.

Theorem 2 (Average-Case GSS on Dense Instances). Fiz d € N1, C = C(d) or C = Cy(d), M = |C|*n+o(m)
for some a € (0,1) and an offset T with || = o(Mn). For any constant ¢ > 0, there exists an algorithm that
solves average-case GSS in time

O*(|C|(1A(|C|)n+cn)7

where A is defined as in Theorem 1. The algorithm succeeds with probability at least 1 — e~ for C' = Cy(d)
and with probability at least 1 — 0,(1) for C = C(d).

Crucial ingredients underlying our algorithms are new structural results on the probability that random GSS
instances have solutions. In the context of previous work on closely related questions [BCP01, Lue98|, we believe
that our new structural results may be of independent interest; we explain our new structural results and contrast
them with prior work below.

745 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1.2 Our Techniques To explain our structural and algorithmic results, we begin with some intuition for the
distribution of sums that are achievable using coefficient set C. Consider a uniform random draw of the input
vector & from [0 : M — 1]™. Since the coefficient set C' is symmetric about 0, all elements of the random set
S, := {¢-&: &€ C™} have magnitude O(Mn), and hence intuitively S,, is “tightly concentrated around the
origin”. Consequently, when the offset 7 is not too large (the case of interest for us) it is natural to expect that
a solution ¢- & = 7 is likely to exist if M < |C|™ and is unlikely to exist if M > |C|™. Indeed, a simple counting
argument establishes this for the case that M >> |C|™, but substantially more work is required to rigorously
confirm the above intuition for the M <« |C|™ case. This is accomplished by our structural results, which we
describe next.

1.2.1 Structural Results Our structural results for coefficient set Cy(d) (including zero) and for C(d) (not
including zero) are established using very different techniques. Consider the case of C = Cy(d) first. We are able
to show that for any positive constant € > 0, given M < |C|(*=9" and any fixed integer offset 7 with |7| = o(Mn),
the probability (over a uniform random & ~ [0 : M — 1]") that there exists a solution ¢- & = 7 with ¢ € C" is
exponentially close to 1. See Theorem 4 for a detailed statement of this result. This extremely high probability
that there exists a solution translates directly into the extremely high success probability of our algorithms in
Theorem 1 and Theorem 2.

To establish this structural result, we employ a novel proof strategy that aligns with the intuition sketched
earlier and is based on an iterative analysis. We define random sets S, Ss,... where the set Sy for ¢ € [n] is
given by S, := {¢' - &' : & € C*} with a uniform random & ~ [0 : M — 1]*. We then analyze how these set sizes
|S¢| increase as a function of ¢ by thinking of @1, xs,... as being drawn in succession. We first argue that with
very high probability |Sy| increases rapidly with ¢ until, at some value Ly < n, it reaches a point at which it is
dense on at least one “large” interval that is “close to” the origin. We then argue that at this point it suffices to
draw a few more elements to ensure that some partial solution Zie[Lﬂ c;x; will hit the offset 7 with very high
probability, where Ly > L; and Ly is still less than n. The remaining elements r,41,...,Z, are simply assigned
the 0 coefficient to complete the overall solution. The detailed proof is given in Section 3.4.

Turning to the case of coefficient set C = C(d), it is clear that the absence of the 0 coefficient is a fundamental
obstacle to the previous approach, and indeed we do not know how to achieve an exponentially high success
probability for C = C(d). Instead, to handle this case we use a very different proof strategy that extends the
approach of [BCPO01], who analyzed the C(d) case for d = 1. Their analysis (see [BCP01, Theorem 2.1]) shows
that for any M < 2(1=9" the probability that a uniform random input & ~ [0 : M — 1]* admits a “perfect”
solution ¢ € {£1}" is 1 — 0,,(1), where a “perfect” solution is one satisfying ¢- & = 1if }_,,2; is odd and
satisfying ¢ & = 0if 3, () @i is even.’

We extend the [BCPO01] analysis and establish a similar result for general coefficient sets C' = C(d) for
arbitrary d > 1. We show that for any constant d > 1, if M < |C|(!=)™ then given any fixed integer offset 7 with
|7] = o(Mmn), the probability (over a uniform draw of & from [0 : M — 1]™) that there exists a solution ¢- & = 7
with @ € C™ is 1 — 0,(1). At a high level, our analysis establishing this follows the arguments of [BCP01]; we
write the number of solutions as a random integral over all coefficient vectors, then bound suitable integrals to
characterize the first moment and upper bound the second moment of the relevant random variable. The analysis
requires considerable attention to detail (the domain of integration needs to be broken into three different regions,
with different arguments required for each region); see Theorem 3 for a detailed statement and Appendix C for
the proof.

Remark 1 (Comparison with [Lue98]). It is interesting to compare our structural results Theorem 3 and Theorem 4
with the main structural result of [Lue98]. That work analyzes the probability that given a real-valued vector

X = (Xy,...,X,) drawn uniformly at random from [—1,1]", there exists a coefficient vector § € {0,1}" such
that 6 - X lies within a small range 47 of a specified target value z € [—3.4]. By scaling the X’s, [Lue9g]
implies that if M < k™ where = 21/(2+2In2) &~ 1 297, then for any target 7 € [—%7 %]7 with exponentially high
probability over a uniform draw of @1, ...,x, each from the continuous interval [—M, M], there exists a solution

¢e C(1)" = {£1}" for which |¢- & — 7| < 1/2. While this result has a similar flavor to our Theorem 3, our
Theorem 4, and [BCP01, Theorem 2.1], it is incomparable to all of them (even apart from the fact that it deals

5[BCPO1] further established a range of more refined structural results, but this is the most relevant result for our purposes.

746 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

with continuous rather than discrete random variables). The exponentially high probability bound that it gives
is similar to the Theorem 4 bound and is better than the 1 — 0, (1) probability bound of [BCP01, Theorem 2.1],
but the quantitative bound M < k™ that it requires is worse than the bound allowed by [BCP01, Theorem 2.1].
We note that unlike the result implicit in [Lue98|, both Theorem 3 and Theorem 4 apply to general coefficient
sets C, and that both Theorem 3, Theorem 4 and [BCP01, Theorem 2.1] allow the “correct” range of values for
M, i.e., M is allowed to be as large as |C|!=9". (Having this “correct” range of values for M is essential for our
ultimate purpose of developing average-case GSS algorithms. Otherwise, there would be a wide range of values
for M to which no strong structural result would apply.)

1.2.2 Algorithmic Results Intuitively, our structural results tell us the parameter settings for which
average-case GSS instances are likely to have solutions and what those solutions will look like. This allows
us to prove the correctness of our algorithm, which combines new preprocessing ideas with an approach based on
the representation technique.

The Representation Technique. The representation technique works by constructing many partial candidate
solutions and filtering them in a way that reduces the search space while retaining at least one way of constructing
a solution. For example, the key observation of [HGJ10] is that any Subset Sum solution of size n/2 can be
decomposed into Q*(20-°7) “solution pairs”, each consisting of two disjoint sets of size n/4. Since there are
(n7/’ 4 = ©%(2°81™) input subsets of size n/4, this means that (under sufficiently strong assumptions on the
input) hashing these subsets in a way that ensures solution pairs hash to the same value reduces the search space
to O*(20-811n=0:5n) — (§*(20-311n) elements, from which a solution can be recovered using Meet-in-the-Middle.

For C' larger than {0, 1}, the representation approach considers partial candidate solutions that assign nonzero
coefficients to some input elements. For example, [MNPW19] consider C' = {0, £1} and partial candidate solutions
that pick out approximately n/6 coefficients matched with each of 1 and —1. However, this approach works only
for yes-instances with a significant number of 0 coeflicients. We show how to circumvent the problem for general
C by “translating” GSS instances so that any ¢ € C' can play the role of the 0 coefficient.

At a high level, since instances in which M > |C |(1+6)" are extremely unlikely to have a solution, we can
simply ignore such instances. On the other extreme, we show how to “shrink” instances for which M < |C |(1_€)"
for any constant € while preserving the existence of a solution. (The “shrinking” also gives an improved runtime
for our algorithm). Thus, we can focus on a narrow range of values for M. For such instances, we simulate a
hash based on the signature, or partial sum, of a partial candidate solution in such a way that the two halves of a
genuine solution are guaranteed to hash to the same value. We prove a result (Lemma 4) which guarantees that
with high probability many partial solutions have distinct signatures and thus removes the need for any heuristic
assumptions. Finally, we use a dynamic programming approach to simulate the signature-based hash, sample
elements, and recover a solution. Section 4 presents our algorithm with preprocessing, correctness and runtime
proofs.

1.3 Organization Section 2 establishes useful notation and preliminaries. Our structural results are in
Section 3 and our algorithmic results are in Section 4. Finally, Section 5 gives average-case reductions from
GSS to (Generalized) Number Balancing as well as versions of our structural results in this setting.

2 Notation and Preliminaries

Given an n-dimensional vector & and T' C [n], we write Zr to denote the |T'|-dimensional vector obtained as the
projection of ¥ onto indices ¢ € T.
When written without a specified base, log(-) denotes the base-2 logarithm.

Parameter assumptions. In the proofs below, we consider M = |C|*™). When M = |C|°(™), standard
dynamic programming techniques solve GSS in subexponential time.

Big-O notation. An asterisk added to big-O notation (O*,Q*, and Q*) indicates the suppression of factors

GSeveral challenges arise in making these ideas precise, including efficiently simulating the hash function and proving that
randomness in the input results in candidate solutions that are favorably distributed with high probability. For a more detailed

introduction to the representation technique for Subset Sum, see [BCJ11, Section 2.2].

747 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

polylogarithmic in the argument of the function. For example, O*(n) ignores polylog(n) factors and O*(2")
ignores poly(n) factors.

Set notation. We write [a : b] for the set of integers {a,a + 1,...,b}. This notation is simplified to [a] for
{1,2,...,a}. We write ¥(S5) as shorthand for the sum) _¢s, @S as shorthand for the multiset {as : s € S},
and S + « as shorthand for the multiset {s +a : s € S}. For e € (0,1) and b > 1, we write a € b'*¢ to indicate
a €< [bl—e7 b1+6].

Probability notation. Random variables like x; are written in boldface. For a finite set of vectors S, we write
“& ~ S” to indicate that vector & is sampled uniformly at random from S.

Combinatorics. Recall the definition of multinomial coefficients:

<a1n, 0427:. N ,amn) = (aln)!(agngb'! . (amn)!

for nonnegative ay, ao, ..., ay, such that Zie[m] a; = 1 and a;n’s are integers for all 7. Stirling’s approximation
tells us that n! = ©*(n™e~™). Substituting yields the helpful approximation

n
2.1 _ (__)*(fain) — OF 2H(a1,a2,...,am)n ,
(2.1) (aln, asn, ... ,amn) _y] % ()

where H(on,02,...,00) = = c(m @i l0gy(i) denotes the entropy function. We write H(a) for the binary
entropy function H(a,1 — «).

3 Structural Results

This section presents our structural results, which characterize when average-case GSS instances are likely to have
a solution in terms of M, n, 7 and |C|.

3.1 The C =C(1) Case The C = C(1) = {£1} case has been studied in previous work by Borgs, Chayes and
Pittel [BCPO1]. Their results precisely determine the parameters of a phase transition within a subexponential
window around 2" /+/n and prove that solutions exist with probability 1—o0, (1) for M below the window and o, (1)
above. For our purposes, precisely pinning down the phase transition window is less important than establishing
regions within which solutions are either very likely or very unlikely to exist, so we present a corollary of their
analysis ([BCPO01, Theorem 2.1]) which features a larger window but more flexibility in the offset. The proof can
be found in Appendix A.

Corollary 2 (GSS Solution Probability on C(1) [BCPO1]). Let C = C(1) and fiz any positive constant € > 0.
For & = (x;)ie[n) ~ [0: M — 1]" and any integer T satisfying |7| = o(Mn), we have

>1—o0,(1) if M <|C|(=n

Pr3cecm:aceinrri) {< 2CI" /M if M > |C|"

Note that & - ¢ has the same parity as } -, @; for every ¢ € {£1}". So the parity of 3, ; determines a

i€[n
single possible target in {7, 7 + 1}.

3.2 The C =C(d), d > 1 Case The proof of [BCP01] can be further extended to the case of C(d) with a
general d > 1. We prove the following theorem in Appendix C:

Theorem 3 (GSS Solution Probability for C(d), d > 1). Let C = C(d) for a fized integer d > 1 and fix any
constant € > 0. For & ~ [0: M — 1]" and any integer T satisfying |7| = o(Mn), we have

5 o >1- On(l) if M < |C‘(1_E)n
Pr EIcEC":m-c:T})
2 <jer/M M= (O,

748 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Generalizing the proof strategy of [BCPO1] to C(d) significantly complicates the analysis but does not
substantially change the underlying intuition. Notably, [BCP01] confronted a parity issue in their case of C(1):
no solution summing to a target 7 that has parity different from the sum of inputs is possible. Our analysis
explains the parity issue as a result of constructive interference in the integrand of the solution-counting function
and demonstrates that no such issues occur for C'(d) when d > 1 (compare the & - ¢ € {r,7 + 1} in Corollary 2
and & - ¢ = 7 in Theorem 3).

This proof approach has the advantage that it neatly bounds the first and second moments of the number of
solutions, not just the probability that a solution exists. However, the probability that a solution exists in the
M<|C |(1’6)" regime will correspond to the failure probability of our algorithm later, so it is desirable to have
a sharper bound than the 1 — 0,(1) given by Corollary 2 and Theorem 3. We achieve this in the C' = Cy(d) case
by using a new approach described in the next subsection.

3.3 The C = Cy(d) Case When the coefficient set contains 0, we analyze the probability that a solution
exists by considering a process in which a set of “achievable targets” is grown as input numbers xq,xs,... are
revealed one by one. Once the set of achievable targets contains 7, the existence of a solution is ensured since
any remaining input elements can be assigned the 0 coefficient. The structural result that we prove in this way is
analogous to Theorem 3, but with exponentially small failure probability for small M. Moreover, the argument
is shorter, more elementary, and more intuitive.

Theorem 4 (GSS Solution Probability for C = Cy(d)). Let C = Cy(d) for some fized d € N, and fix any constant
€>0. For & ~[0: M —1]" and any integer T satisfying || = o(Mn), we have

>1-— e—ﬂ(n) ZfM < |C|(1—e)n

Pr EIEEC":Q_:'-E:T]{)
: <lep/M M |Cl
3.4 Proof of Theorem 4 We first give the simple upper bound in the case when M > |C|™, which is just a
union bound. Any fixed not-all-zero ¢ € C™ has ¢; # 0 for some i € [n]. Conditioning on any outcome of &\ (5}
from [0 : M —1]"~1, #- &= 7 holds for at most one outcome of x; and thus occurs with probability at most 1/M.
Union-bounding over all ¢ € C™ gives the claimed upper bound of |C|"/M.

In the rest of the section, we focus on the case when M < |C|(*=9™ for some positive constant ¢ > 0. Let
d € N be a constant with C = Cy(d), and let 7 be the target integer with |7| = o(Mn). For convenience we
assume in the proof that 7 # 0; it will become clear at the end that the same proof works for 7 = 0. We start
with some notation and a high-level overview of the proof.

Given 7 € [0: M — 1], we define the set S(&) of targets achievable with & to be

S(@) = {z-c:ceC'}.

When ¢ =0 and Z is the empty vector, S(Z) = by default. Given Z € [0: M — 1], note that

81

0}
S(Zpy) € S(@p) € € S(T)

and & admits a solution if and only if S(Z[,)) = S(Z) contains 7.” Let

62

m = [Tn—i—logmM—‘ and m' = Kl—%)n—‘, WithT:m.

Using log|c) M < (1 — €)n, we have m’ —m > en/3.
Our proof considers the evolution of the set Sy := S(1, ..., ®¢) as we draw each input element x; ~ [0 : M —1]
for £ = 1,...,n sequentially. It proceeds in three steps:

1. Show that with high probability over the draw of the first m elements, S,, occupies a constant fraction of
some length-M interval not too far from the origin. (Lemma 1).

This is the reason why we assumed 7 # 0; when 7 = 0 we need the extra condition that 0 € S(Z) can be obtained by a not-all-zero

c.

749 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2. Assuming the event in item 1 happens, show that with high probability over the draw of the next m’ —m
elements, S, occupies a constant fraction of a length-M interval that contains 7. (Lemma 2).

3. Assuming the event in item 2 happens, show that 7 € S,, with high probability over the draw of the last
n —m’ elements.

Among these three steps, the first step is the most challenging.
Before stating Lemma 1, we give one more definition about what we meant by “not too far from the origin.”
Given & € [0: M — 1], we define the set of large targets achievable with & as

B(Z) == {w € S(@) : Jw| > enM/8}.

The following simple claim shows that B(Z) cannot be too large:
Claim 1. For any £ € [0:n] and & € [0 : M — 1], we have

’n

)| < £, 2 _67 — 2 9 —2771.

5@ < 01 2exp (15) =[c12(C]

Proof. The case with ¢ = 0 is trivial given B(Z) =). For £ > 1, let independent random variables yi,...,y, be
such that Prly; = cz;] = 1/|C]| for each ¢ € C. Letting y = >~ ¥i, we have

B(Z)]
lelk

<Pr [\y| > enM/S}
Y

and the claim follows from an application of the Hoeffding inequality (and ¢ < n). O
We prove Lemma 1 for the first step:
Lemma 1 (Dense Interval Lemma). With probability 1 — e~ ™) over & ~ [0: M — 1]™, S(£) \ B(&) occupies at
least y-fraction of some length-M interval with
2

.
2 — T

i.e., there exists a length-M interval I such that |I N (S(Z)\ B(€))| > yvM.

Proof. We use the following claim to establish the lemma:

Claim 2. Let ¢ € [m] and let if € [0 : M — 1]*=1 be a vector such that |I N (S(5) \ B(¥))| < ¥M for any length-M
interval I. When z ~ [0 : M — 1], we have
[S(F o 2)|

IS@ > (1—-7/4)|C|

with probability at least 1 — 7/4.

We delay the proof of the claim and use it to prove the lemma first. Consider the experiment of drawing
T1, %2y ..., Ly ~ [0: M — 1] in turn, with Sy = S(x1,...,2,) and B, = B(x1,...,2,) for each £ € [0 : m] (so
So = {0} and By = 0). For each £ € [m], let X, denote the indicator random variable that is set to 1 if either
[TN(Se—1\ Be—1)| > vM for some length-M interval I or

|Se]
(3.3) > (1—-7/4)|C|.
|Sel
Then conditioning on any outcome of (x1,...,ax¢_1) it follows from Claim 2 that the probability of X, = 1 is at

least 1 — 7/4. By Chernoff bound we have the probability of ., X¢ > (1 —7/2)m is 1 — e~ We show
that when this occurs we must have |1 N (S \ By)| > vM for some length-M interval I for some ¢ € [m], which
implies the same for S,, \ B,, given that Sy C S,,.

750 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

To this end we assume for a contradiction that this is not the case for any ¢ € [m]. Then every Xy = 1 implies
(3.3). Given that we always have Sy_; C Sy, we have

‘Sm| > ((1 _ T/4)‘C|)(17T/2)m > |C|m|C|7(T/2)m67(T/2)m > M - ‘C|T7l*7'm - M- 29(71)’

Here the second step used 1 — 7/4 > e~ T/?

e < 3 < |C]. On the other hand, by Claim 1,

for our small 7. The third step used m = [rn + log M| and

|B| < |C|™-2|C|72™ < M.

As a result, we have |S,, \ B,,| > M -2%") a contradiction with the trivial upper bound of enM/4 for |S,, \ B,,|
by definition. We prove Claim 2 in the rest of the proof:

Proof of Claim 2. Fix an ¢ € [m] and i € [0 : M — 1]*=! such that [I N (S(¥) \ B(#)| < ¥M for any length-M
interval I. Let z ~ [0 : M — 1], and we consider the quantity |C| - |S(¥)| — |S(¥ ¢ z)| as a random variable. It is
easy to see that this random variable is nonnegative (as each element in S(%) gives rise to at most |C| elements
in S(§o z)). We will show that

2
(3.4) B (0] 15@)| - 15G7° 2)] <15 - (2AC1M -+ [B@)) - ST

We show (3.4) by upper-bounding the number of “collisions” that occur when we derive elements in S(7 o 2).
Namely, consider the pairs (w,¢) for w € S(¢) and ¢ € C. If every two distinct pairs (w,c) # (w', ') were to
evaluate to w + ¢z # w' 4 ¢z, then there is no collision and we would have |S(g o z)| = |C| - |S(7)|. In general
|C| - |S(H)] — |S(¥ o z)| is at most the number of collisions.

To bound the number of collisions, we observe that a necessary condition for w + cz = w’ + ¢’z to happen
is |w — w'| < 2dM since ¢, € C = {0,+1,...,+d} and z € [0 : M — 1]. Below we bound the number of pairs
(w,c) # (w', ') such that |w —w'| < 2dM:

e Clearly, there are at most |S(%)| possibilities for w and at most |C|? possibilities for ¢ and ¢'.

e By assumption, S(%) \ B(¥) does not occupy a v fraction of any length-M interval. Hence the interval
[w — 2dM,w + 2dM| contains at most 4dM - v many elements in S(¢) \ B(%). Moreover, this interval
trivially has at most |B(%)| many elements in B(%). So in total there could be at most 4dM - v + |B(%)]
elements w’ € S(y) such that |w —w'| < 2dM.

As a result, the number of pairs (w,¢) # (w', ') with |w — w'| < 2dM is at most
S@)-1CP2 - (2ACIM -+ 1B@)]).

Then (3.4) follows as each pair leads to a collision with probability at most 1/M over z ~ [0 : M — 1].
Using Claim 1 and our choice of m, we have

(3.5) B < |CI™ - 2/C|72™ < M - 2|07 < |C|M - .

Combining (3.4) and (3.5) together (and using our choice of 7 in (3.2)), we have

C]- 2

16

S@o) N ler? _
B o1~ BTN < (cwr o+ 15@1) - K <3084 -

Given that the random variable in the expectation is nonnegative, we have from Markov that

pe (572

ST < il < 5

The claim follows.

This finishes the proof of the Dense Interval Lemma.

751 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Next we prove the lemma for Step 2:

Lemma 2 (Interval Shifting Lemma). Let & € [0: M — 1]™ be such that S(Z) \ B(Z) occupies at least y-fraction
of some length-M interval. Let ¢ ~ [0 : M —1]™ ~™. Then with probability at least 1 — e~ S(F o §) occupies
v-fraction of some length-M interval that contains 7.

Proof. Let I = [, e + M) C [—enM/8,enM /8] be a length-M interval such that J := I N (S(Z) \ B(Z)) satisfies
|J| > vM. Assume without loss of generality that 7 ¢ I and 7 < «. As || = o(Mn), we have 0 < a—7 < enM /7.

For y1,...,Ym'—m ~ [0 : M — 1], it follows from Hoeflding inequality (note that the sum has expectation
(m'—m)(M —1)/2> (M — 1) -en/6 as m’ —m > en/3) that

Z Yy, > enM/7>a—T.
i€[m/—m)]
When this happens, we let £ be the smallest index such that
b= Z Y >a—T
i€[f]

so 8 — M < a— 7. On the one hand S(Z o %) occupies at least v-fraction of [— 8, — 4+ M] since it contains
J after shifting down by 5. On the other hand, we have 7 > o — f and 7 < o — 8 + M. This finishes the proof
of the lemma. O

Now we are ready to conclude the proof of Theorem 4. Combining Lemma 1 and Lemma 2 we have
with probability at least 1 — e~ over & ~ [0 : M — 1]™, S(£) contains at least y-fraction of a length-M
interval that contains 7. Fix such a & € [0 : M — 1]™. We draw the next n — m’ = Q(n) random elements

T4y &y ~ [0 0 M —1]. For each such x;, there is at least a + probability that either w + x; = 7 or
w—x; = 7 for some w € S§(Z). When this happens for some i, we get a solution by setting coefficients ¢1, .. ., ¢
to achieve w in the sum over Z, setting c¢; to be either 1 or —1 accordingly, and setting every other ¢,/ 41,...,¢n

to be 0. The probability that all n —m’ such x;’s fail to yield a solution is at most (1 —)%™ = =2 (Note
that the same proof works for the case when 7 = 0 since during Step 3, we always get a not-all-zero solution with
at least one {+1}-coefficient when the event happens for some ;.)

Taking a union bound over the failure probability at each of the three steps, we get that there is a solution
with probability 1 — e~ when M < |C’\(1_E)". This finishes the proof of Theorem 4.

4 Algorithmic Results

This section proves Theorem 1. Using structural results from the previous section, we start by showing that it
suffices to design an algorithm for the core case when M € |C\(1if)” for a small positive constant e.

4.1 Reduction to the Core Problem We start with some notation. Given C' = C(d) or Cy(d) for some fixed
d € N>1, a solution profile 1 = (my)wec is a tuple of nonnegative integers that sum to n. For an input vector
Z=(x1,...,2,), a target offset 7 and a (solution) profile 7, we say ¢ € C™ is a solution to GSS under the profile
m if ¢- ¥ = 7 and the number of occurrences of w in vector ¢ is m,, for each coefficient w € C.

Our goal of this section is to prove the following theorem for the problem of solving GSS under a given profile:

Theorem 5. Fiz any d € N>q and let C = C(d) or Co(d). For any sufficiently small constant £ > 0, there is a
constant € > 0 and a randomized algorithm with running time \C|A(|C|)”+5” that has the following performance
guarantee. Given any M € |C|F)" 1 with |7| = o(nM) and a profile 7, the algorithm succeeds® on (M, T, T, %)
with probability at least 1 — e~ (over the draw of & ~ [0 : M — 1]" and the randomness of the algorithm,).

We first use Theorem 5 and our structural results to prove Theorem 1; the proof of Theorem 2 is similar and
can be found in Appendix B. The intuition is that if M > |C|(}T9™ then most likely there is no solution but if
M < |C](1=9" then we can reduce the instance size to n’ so that M falls inside the window |C|*%9" and the
algorithm of Theorem 5 applies.

8Similar to the original GSS problem, an algorithm fails if it returns “no solution” but indeed there is a solution under the given

profile .

752 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Proof of Theorem 1 assuming Theorem 5. Fix a constant ¢ > 0 as in the statement of Theorem 1. We will show
an algorithm for average-case GSS with running time |C|A(IC€D"+¢" assuming Theorem 5. Set € < ¢/2 to be
sufficiently small that Theorem 5 holds, and let € > 0 be the constant determined by ¢ in Theorem 5. We begin
by considering C' = Cy(d) and split into three cases based on the size of M.

First, if M > |C|(**9)" then it follows from Theorem 4 that the probability of having a solution is e~(")
and thus returning “no solution” achieves overall success probability 1 — e~?(™). Next, if M € |C|+9)™ then we
run the algorithm in Theorem 5 for every profile 7 and return any solution it finds; we return “no solution” if
no solution is found for any profile 7. Given that there are only polynomially many profiles (since d is fixed),
the success probability remains 1 — e~ by a union bound and the running time only goes up by a polynomial
factor.

Finally we consider the case when M < |C|(1=9" but M = |C|*™). Let n’ = Q(n) be an integer such that M
is between |C|(1=97" and |C|(1=</2"" and note that 7 still satisfies |7| = o(n’M) given n’ = Q(n). We run the
algorithm in Theorem 5 on the first n’ input integers & = (x1,...,x,) and try all possible profiles. It follows
from Theorem 4 that there is a solution with probability at least 1 — e~2n") — 1 — =) and thus a solution will
be found by the algorithm of Theorem 5 with probability 1 — e~("), Given that C' = Cy(d), any solution to &’
can be extended to obtain a solution to & by assigning the 0 coefficient to the remaining inputs. So in this case
our algorithm finds a solution to & with probability 1 — e=(").

Second, consider C' = C(d). The first two cases, M > |C|(7+9)" and M € |C|#9)" are similar, except that
in the second case by answering “no solution” we achieve only a success probability of 1 — 0,(1) by Corollary 2
and Theorem 3; the success probability in the first case remains 1 —e~("). The main difference occurs in the last
case, as we can no longer extend a solution to &' to a solution to & by setting the coefficients of every other input
integer to be 0. Instead, we can shrink the input instance as follows. Reveal the last n —n’ input integers one by
one. For each input x;, i € [’ + 1 : n], perform the following operation: if the current target 7 is positive, assign
—1 to «; and subtract it from 7 to create a new target. If the current target 7 is negative, assign +1 to x; and
add it to 7 to create a new target. After this procedure, we are left with n’ random numbers &' = (x1,...,x,)
and a new offset 7/ with |7/| = o(n’ M) such that any solution to (&,) can be extended to a solution to (&, 7).
By Theorem 3, there is a solution with probability at least 1 — 0, (1) over the randomness of &’ in the C = C(d),
d > 1 case. By Corollary 2, there is a solution with probability at least 1 — 0,,(1) over the randomness of &' in the
C = C(1) case if), x; has the same parity as 7, as the shrinking procedure preserves the parity of >, ; —7. This
implies that running the algorithm of Theorem 5 on @' and 7’ for all profiles 7 finds a solution with probability
at least 1 — 0,,(1), which can be extended to a solution to & and 7. O

4.2 Algorithm Overview We give an overview of our algorithmic approach for Theorem 5 and the underlying
definitions and ingredients required for the proof. For the rest of the section, we consider d to be a fixed integer
with C' = C(d) or Cp(d). § > 0 will denote a sufficiently small constant and € := ¢(J) > 0 a smaller constant that
depends on 4, defined later in the proof. Our goal is to give an algorithm for GSS with a solution profile = that
runs in time |C|AICDn+O6) and has success probability 1 — =™ when M € |C|(**9) and |7| = o(nM).

4.2.1 Terminology and Key Notions For the rest of the proof, the coefficient set D := D(z) denotes a
translation of the coefficient set C' by some nonzero z € C, i.e., D = {w — z : w € C'}. Note that we always have
0 € D whether C = Cy(d) or C(d).

Given D = D(z) for a certain nonzero z € C, we define input partitions and half partitions:

Definition 1. A solution profile with respect to D is a tuple of nonnegative integers (o,)wep that sum to n.
An input partition of [n] with respect to D is a tuple of pairwise disjoint sets S := (Sy)wep With union [n]. We
say S corresponds to the solution profile o if |S,,| = oy, for all w € D. The size of a solution profile o is given by
lo| :=n — o¢; similarly the size of an input partition S is given by [S| := 3", ¢ p\ 10y [Swl-

Definition 2 (Half-partitions). Given a solution profile o with respect to D, a half-partition that corresponds to
o is a tuple of sets T := (T%)wep\ {0} that satisfies the following conditions:

1. |Ty| = 0w/2 for w € D\ {0} if o, is even.

2. |Ty| = (0w +1)/2 or (6 — 1)/2 for w € D\ {0} if o, is odd.

753 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Given an input partition S that corresponds to o, we say T is a half-partition of S if T3, C .S, for all w € D\ {0}.
Two half-partitions T = (T)wep\{o} and T’ := (T},)wep\{o} of S are called a matching pair of S if for every
w € D\ {0}, T, and T}, are disjoint and their union is S,,.

Given a half-partition T = (T)wep\fo} and an input partition S = (Sy)wep, their signatures under the
input vector T are defined as

sig(T,) : Z w - (Zml) and sig(S,Z) : Z w - (Z Z)

weD\{0} €Ty weD\{0} 1€Sy

For a fixed input partition S, we let A(S) denote the set of all half-partitions of S. Let B(c) denote the set
of all half-partitions that correspond to o. For brevity, we write a := a(o) = |A(S)|, as a is the same for all S
corresponding to o, and b := b(c) = |B(c)| when o is clear from context.

4.2.2 High-Level Algorithm Sketch Let 7 be the input solution profile with respect to C' = Cy(d) or C(d).
Our algorithm starts by picking a nonzero z € C' and translating the coefficient set to D = C' — z. We can use 7
to induce a solution profile o with respect to D, where o, = w4, for each w € D. Our goal is now to find an
input partition S (with respect to D) that corresponds to o such that

(4.6) sig(S,) =7 —z- Z x;.

i€[n]

We set z = max_/cc\ (0} Tz, in order to minimize the size |o| of solution profile ¢. This is natural because

it allows us to focus on small-size candidate solutions (input partitions) after the translation. When C = C(d),

there exists a z € C such that the translated profile o has size |o| < |C‘V|C_|1n by the pigeonhole principle. And

when C' = Cy(d), this is not possible in general because 7y can be large. (Looking ahead, we require z # 0 for our
proof of Lemma 4). To this end, we prove the following technical lemma, which states that if mo > (& or + d)n then
there is no solution with probability at least 1 — e (")

in which case we can choose z € C such that o satisfies

cl—-1 & >
4.7 ol < + n
4.7 i (|0| o1

Lemma 3. Suppose M € |C|*9™ for some sufficiently small constant ¢ = ¢(8) > 0. If mo > (|—é‘ + d)n, then
&~ [0: M —1]" has no solution with probability at least 1 — e=?(").

. This allows to focus on the case when 7y < (ICI +d)n,

Proof. This follows from taking a union bound over all solutions corresponding to 7. When my > (ﬁ + 0)n, the

number of candidate solutions is at most O*(2"") where

1 1) 1)
ho—H +5,—,...,—):10g cl— (5,
<|c - e jer—1) T leelel =70

where f is a nonnegative, increasing function on [0, 1]. It follows from holding out one input element corresponding
to a nonzero coefficient that each candidate solution is a solution with probability at most 1/M. Taking the union

over all candidate solutions, we have that for € < f(9), the probability of having a solution under the profile 7 is
e Un), O

From now on, we consider the translated coefficient set D and solution profile o that satisfy the size bound in
(4.7). (Notice that |D| = |C|.) Our goal is to find an input partition that satisfies (4.6) when it exists. However,
even with its relatively small size, the profile o typically still corresponds to an exponential number of input
partitions. Assume that S is an input partition satisfying (4.6). At a high level, our algorithm searches for S
by exploiting the fact that every input partition S with respect to ¢ can be decomposed into a matching pair of
half-partitions (T,T’) in many ways. Lemma 4, which we refer to as the Signature Distribution Lemma, shows
that with high probability over & ~ [0 : M — 1], most half-partitions of S have distinct signatures. Assuming
this event occurs, we need to recover one matching pair of half-partitions in A(S) from the larger search space

754 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Algorithm 1: Skeleton Algorithm for GSS

Constants: C = C(d) or Cy(d), sufficiently small 6 > 0 and smaller € = ¢(5) > 0
Input: M € |C|+9)" 7 # € [0: M —1]", a profile o of D = C — z for some nonzero z € C.
Define a := a(0), b := b(0) as in (4.8) and (4.9)
Define P := min(b*/3a=1/3,a/n)
repeat poly(n) times
Select a prime p € [P,2P] and an integer r € [0 : p — 1] uniformly at random.
If P=a/n,let L1 = {T € B(o) | sig(T,#) = r (mod p)}. If P =b*/3a=1/3, let L, be
a subsample of O*(b/,/ap) elements drawn from this set with replacement.
Let Ly be defined as L; with respect to {T € B(o) | sig(T,Z) =7 — 2>, 2; —r (mod p)}.
Sort L; and Ly by signature and use Meet-in-the-Middle to find a disjoint pair (T, Ts)
satisfying sig(T1, Z) + sig(T2,Z) = 7 — 2>, x; if one exists.
end

B(o). (Note that our bound on the size of o comes into play at this point: a profile o of smaller size would imply
a larger ratio a/b and make our search easier.)

To recover a solution, we exploit the fact that the signatures of any matching pair sum to 7 — 2), ; but at
the same time, by the Signature Distribution Lemma, most half-partitions in A(S) have distinct signatures. We
(virtually) hash the half-partitions based on signature by grouping them into residue classes (which we will refer
to as buckets) modulo a large random prime p with a carefully picked magnitude. After the hash, most buckets
contain a small fraction of the search space. We then sample pairs of buckets whose elements sum to 7 — 2. z;
(mod p) and either subsample from or exhaustively search over the paired buckets to recover a solution.

Algorithm 1 outlines the algorithm in pseudocode. Certain implementation details are deferred to the proofs
of correctness (Proposition 1) and runtime (Proposition 2) to simplify the presentation.

As mentioned earlier, we prove a Signature Distribution Lemma (Lemma 4) in Section 4.3 that shows that
when the instance has a solution, the corresponding input partition almost always decomposes into many pairs
of half-partitions with distinct signatures. (If this condition is false, most matching pairs of half-partitions hash
to the same buckets and the sampling procedure fails.)

It remains to choose a value for the endogenous parameter P that determines the magnitude of our modulus
p. Recall that a := a(o) = |A(S)| counts the number of half-partitions of any input partition S corresponding to
o. We observe that

(4.8) a(o) = ©*(2l91).
Likewise, recall that b := b(0) denotes the maximum number of half-partitions corresponding to o. We have
b(c) = O*(2"") where (writing |o| = an)
e «@ e «@ 2(|C) - 1) @ 2
4.9 h:=H 11—) = &g, AT (1_,),1 .
9 (2(|C|—1) 2(|C1-1) 2) g T 2) 8234

We prove in Section 4.3 that almost all yes-instances have solutions that decompose into half-partitions with
Q(a) distinct signatures. In this case, we expect most residue classes to contain 2(a/p) half-partitions that are
part of matching pairs and O(b/p) half-partitions in total. Setting P = a/n thus ensures that every pair of
residue classes r (mod p) and 7 — 2)", x;7 (mod p) contains (n) matching pairs in expectation. By repeatedly
sampling bucket pairs and using the Meet-in-the-Middle algorithm to search for a matching pair, we recover a
solution.

In fact, for |C] < 3, including the case C' = Cy(1) = {0,%1} that is our primary interest, it is possible to
implement a slightly more efficient sampling procedure. In these cases, we set P = b*/3a~1/3 < a, so that each
residue class pair contains an exponential number of matching pairs in expectation. After choosing a bucket pair,
we then subsample each bucket to create solution lists that are likely to contain at least one matching pair by a
birthday paradox argument. We then use the Meet-in-the-Middle algorithm on the subsampled lists to recover a
solution as before.

755 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

4.2.3 Section Outline In the next subsection we prove the Signature Distribution Lemma. We prove the
correctness of the algorithm in Proposition 1, where we show that for any & that satisfies the conditions of the
Signature Distribution Lemma, Algorithm 1 recovers S with high probability. Finally, the proof of Proposition 2
analyzes the runtime of our algorithm and fills in several implementation details omitted from the pseudocode.

4.3 Signature Distribution Lemma For our approach to work, we need the half-partitions of some solution
S to have many distinct signatures. While we do not know how to guarantee this for worst-case inputs, the
following lemma gives what we need for average-case inputs. Essentially, it says that with very high probability,
a random instance & ~ [0 : M — 1] either has no solutions or has a solution S such that different half-partitions
have many different signatures.

For C = Cy(1), there is a combinatorial argument that shows that signatures are well-distributed in the worst
case (see [MNPW19] for details).” We employ a probabilistic argument that holds for general C.

Lemma 4 (Signature Distribution Lemma). Let C = Cy(d) or C(d) and M € |C|1F9™ for some constant € > 0.
Let o be a solution profile with respect to D = C — z for some z € C'\ {0} with |o| satisfying

-1 s
< .
ol < (cr t |C\—1>”

With probability 1 — e~ (™), & ~ [0 : M — 1] either has no solution S to sig(S,&) = 7 — 2>, x;, or there is a
solution S such that half-partitions of S have at least Q(a(o)) many distinct signatures.

Proof. Let a := a(0) as in (4.8). For the lemma to fail, there must be an input partition S = (Sy)wep that
corresponds to o such that (1) sig(S,Z) =7 — z)_, «; and (2) half-partitions of S have o,(a) distinct signatures
under #. Now fix any input partition S that corresponds to o. We will bound the number of # € [0 : M —1]™ such
that both of the conditions above hold by O(aM™~2). Since there are no more than |C|™ many input partitions
S, the number of such 7 is thus at most

|C‘n . O(aMn—Q) — O*(Mn . |C‘2€TL . 2(—%‘-5-‘0‘%1)71)

1)

< O*(Mn . 2*(@*@*,1*2510%2 ‘CD”%

given that a = ©*(2/°1) = O*(2(1_ﬁ+\c\%l)") and 2" < |C|" < M -|C|". This is an exponentially small fraction
of the input space, which has size M", when both ¢ and § are sufficiently small.

Fixing an input partition S = (S,)wen, we proceed to bound the number of Z that satisfy both conditions
above. We start by showing that the number of & such that half-partitions of S have o(a) distinct signatures is
at most O(aMm™1).

To see this, consider any of the a? pairs of distinct half-partitions of S. With respect to any pair of distinct
half-partitions, there exists an index k& € [n] that appears in exactly one of them. For any fixed Z[,\ (x}, there is
at most one choice of zj that results in both half-partitions having the same signature. As a result, the number
of # that can lead to the same signature is at most M™~!. Union-bounding the number of signature-collisions
over a® distinct pairs of half-partitions of S and M™ instances gives at most a?M™~! signature-collisions in total
over all instances &. This implies that the number of # that have o(a) distinct half-partition signatures, which
happens only if there occur Q(a) signature-collisions, is at most O(aM™~1).

Next we observe that the condition of Z corresponding to o(a) distinct half-partition signatures is independent
of Zg,, as these elements do not affect half-partition signatures at all. On the other hand, Zs, determines whether
the equation

(4.10) sig(S,) =7—z Z x5
i€[n]
holds because its entries appear on the right hand side with a nonzero coefficient z. By holding out any input

element indexed by Sp, we can see that among the O(aM™ ') many input vectors # that have o(a) distinct

Tn fact, this argument can be generalized to Co(d). However, it relies crucially on the existence of the 0 coefficient and a coefficient

set that is symmetric about 0, and thus cannot be easily extended to C(d) or translated instances.

756 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

half-partition signatures, only 1/M-fraction of them can satisfy (4.10). Therefore the number of & that satisfies
both conditions is at most O(aM™?2).
This finishes the proof of the lemma. O

4.4 Correctness and Runtime

Proposition 1 (Correctness of Algorithm 1). Under the setting of Theorem 5, Algorithm 1 succeeds on (M, T, m, &)
with probability at least 1 — e~

Proof. By the Signature Distribution Lemma, we may assume that either Z has no solution or there is an input
partition S such that sig(S, %) =7 — 2 Eie[n] x; and half-partitions of S have Q(a) many distinct signatures. We
assume the latter case because Algorithm 1 never returns false solutions.

We proceed to argue that for most primes p € [P,2P], the signatures of A(S) are distributed over many
residue classes modulo p. To see this, consider any two distinct signatures s, se of elements of A(S). Because
|s1 — s3] < n|C|M =29 and P = 2" the value |s; — sy| is divisible by O, (1) prime factors larger than P.
Moreover, for sufficiently large P, there exist at least P/ log(P) prime integers in the interval [P, 2P]. (This follows
from the Prime Number Theorem. See, e.g., [MNPW19, Lemma 2.1].) Thus for a prime p sampled uniformly at
random from all primes in the interval [P, 2P] we have

Pr [p divides |s; — s2|] = O(log(P)/P).
P

Let o’ = Q(a) be the number of distinct signatures of A(S). The expected number of pairs of half-partitions
whose signatures collide mod p is O(a’?log(P)/P) by linearity of expectation. By Markov’s inequality, there
exists a constant p; such that a randomly selected prime p € [P,2P] corresponds to at most pa’?log(P)/P
signature-collisions with probability at least 1/2. Call such a prime p € [P,2P] with at most p;a’?log(P)/P
signature-collisions a good prime p.

It remains to show that for a good prime p, choosing a uniform random residue r € [p] will allow us to recover
S with inverse polynomial probability. With respect to a good prime p, we define a good residue T to be one that
satisfies the following two conditions:

1. The signatures of at least a’/2p half-partitions in A(S) are equal to r (mod p).

2. The signatures of at most p2bn?/p half-partitions in B(c) are equal to either 7 (mod p) or 7 —7r — 2. ;
(mod p), where b := |B(0o)|, for a constant ps defined below.

Fix a good prime p. We first prove that Q(p/n?) residue classes each contain at least a’/2p half-partition
signatures corresponding to S. To see this, assume for contradiction that at most p/n? residue classes contain at
least a’/2p solution half-partitions (we call such residue classes “large”). Under this assumption, residue classes
that are not large contain fewer than a’/2p solution half-partitions, so at least a’/2 half-partitions must fall into
large residue classes. However, reasoning from the case in which signatures are evenly distributed among large
residue classes, this implies €2(a’?n?/p) signature-collisions, which contradicts the assumption that p is good.

Consider the [p/2] pairs of residue classes defined by (r,7 —r — 2% . ;) for some residue r € [p]. Upon
choosing a good p, Markov’s inequality guarantees that most of the Q(p/n?) residue class pairs that contain a’/2p
matching pairs contain O(bn?/p) half-partitions in total. Thus there exists a constant ps such that 1/2 of these
residue class pairs contain pabn?/p half-partitions in total. In other words, the chance that uniform random p,
r are both good is Q(n~2). We can inflate this probability to 1 — e~ by choosing independent pairs (p,r) a
polynomial number of times as is done in Algorithm 1.

We conclude by proving that Algorithm 1 recovers a solution with very high probability conditioned on the
choice of a good p and r. First, consider the case in which a/n < b*/3a~1/3 in which case the algorithm sets
P = a/n. Thus the residue class pair defined by (r,7 —r — 2z, ;) contains a’/2p = Q(a’n/a) = Q(n) matching
pairs; searching with Meet-in-the-Middle guarantees recovery.

Second, consider the case in which a/n > b2/36=1/3 in which case P = b*/3a=1/3. Let

al

> «
k> —=—
2

al/3 al/3
2p - (

T w)‘m”)

757 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

denote the number of matching pairs in the residue class pair defined by (r,7 —r — 2> . z;). In this case, we
create Ly and Ly by subsampling

2pabn’ /\/ap = O* (b/\/ap)

elements from each residue class uniformly at random with replacement.
In expectation, the number of matching pairs contained in Ly and L5 is thus at least

2pobn® Kp
Jap pabn?

Applying a Chernoff bound implies that both lists contain at least nli\/g = Q(n3/?) half-partitions that are
members of some matching pair with probability 1 — e~ as a /n > p by definition.
In other words, with very high probability L; and Lo each contain

!
rm\/g > na\/ﬁ = Q(nVk)
a 2p\ a

uniform random elements sampled from matching pair sets of size x. This yields a matching pair in our subsample
with probability 1 —e~%(") by the birthday paradox. Searching with Meet-in-the-Middle guarantees recovery. [

> 2nk

CRAS

Proposition 2 (Runtime of Algorithm 1). When fully specified as below, Algorithm 1 runs in time
|C|AMICHn+0Gn) yhere A(2) is defined as in Theorem 1.

Proof. For fixed prime p and residue class r, we start by describing how to generate L, and Lo efficiently.

To sample half-partitions by the residue class of their signature, we construct a n X p dynamic programming
table in which each cell (i,7) € [n] x [p] stores the number of coefficient vectors ¢ € D such that &- z) = j
(mod p). This number is stored as poly(n) different values indicating how many coeflicient vectors match each
partial solution profile 7 = (7,)wep that partitions the integer i. Each cell (i,7) can be filled by consulting the
cells (i — 1,j —wz; (mod p)) for each w € D. As a result, constructing the table takes time O*(p).

Our dynamic programming table allows us to sample uniformly at random from the set of half-partitions
that correspond to o and have signatures that fall into the residue class r (mod p). To do this, we begin at cell
(n,r) and consider only those coefficient vectors indexed by solution profiles corresponding to half-partitions. We
sample a coefficient w € D, weighting by the number of half-partitions that assign the coefficient w to z,,. We
then consider cell (n — 1,7 — wa,, (mod p)) and continue sampling until a single half-partition is recovered.

Once the table is created, we consider two cases based on the choice of P.

e Case 1: P =a/n. In this case, we sample the entire residue class:

L, ={T € B(o) | sig(T,%) =r (mod p)} and
L, ={T € B(o) | sig(T, &) =7 — 7 — 2)_,x; (mod p)}.

Under the assumption that p is a good prime and r is a good residue class, this takes time
poly(n) - p2bn?/p = O*(b/p). (If there are more than psbn?/p elements in our residue class, we know that r
is not a good residue and abort the loop.)

e Case 2: P =b%/3a1/3, In this case, we sample O*(b/,/ap) half-partitions drawn without replacement to
create Ly and Lo.

The final step of Case 1 is to search L x Lo for a matching pair. The Meet-in-the-Middle procedure takes time
O*(max(|L1],|L2|,ps(L1, L2)), where ps(L1, L) counts the number of pseudosolutions: pairs of half-partitions
(T1,Ty) € Ly x Ly such that sig(T:) +sig(T2) = 7 — 2>, x; but (Ty, T2) is not necessarily a matching pair (due
to overlapping elements). Each pseudosolution must be checked and rejected. Using linearity of expectation over
all distinct pairs of half-partitions in B(c), the expected number of pseudosolutions over a random input & and

choice of p,r is
2
0 <b) L)
Mp p

758 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

where it follows from (4.9) that b is smaller than M € |C|0F9)" by (™). Hence by Markov’s inequality, the
probability that processing pseudosolutions takes time Q(b/p), longer than the time to sample the residue class,
is exponentially small. (If this occurs, the algorithm aborts and returns “no solution”.) In Case 2, the expected
number of pseudosolutions after subsampling is

(i () <o) o)

so processing pseudosolutions takes time O(b/a) with very high probability.
The total runtime is thus the time it takes to create the table plus the time to sample and search for a
matching pair. In Case 1, our runtime is:

(4.11) O*(max(p, b/p)) = O*(max(a,b/a)) = O*(b/a),

where the first equality follows from the fact that p = ©(a/n) in Case 1 and the second equality follows from the
fact that a/n < b*/3a~1/3 in Case 1. In Case 2, our runtime is

(4.12) O* (max(p, b/ﬁ, b/a)) — O*(b2/3a—1/3).

Thus the algorithm has running time at most O*(max(b/a, b*/3a=1/3).
Let a := |o|/n. Recall from (4.8) and (4.9) that a(c) = ©*(2/°l) and that b(c) = O*(2"*), where

n=tt (et et~ 5) = 5 o (M) + (- 5) e (555).

It follows from these two equations that */2a=1/3 < a/n when |C| < 3, and thus we are always in Case 2 when
|C| < 3.

Assuming (4.7) without loss of generality, we have that a satisfies @« < 1 —1/|C| 4+ O(6). Using (4.8) and
(4.9), we have the following bounds on b/a and b*/3a=1/3:

b e 2|1C|—2 2 -« 2
g < 2H1(a)n’ where Hl(a) _ 5 ,10g2 (| |a) + 5 -1og2 <2 — a) -«

and

A a 2C|-2) 2-a 2 @
(a)n — . . 5] T 9
5 <2 , where Ha(a) = 3 log, (o) + 3 log, <2 — a) 3

When |C| > 4, in the range (0,1 — 1/|C| + O(d)] the maximum of H; and Hs (achieved by Hy) is

1 |C|+1
_ < - _
H(1=1/IC]+ 00) < loga Ol + 5 = S

When |C| < 3, in the range (0,1 — 1/|C| 4+ O(9)], the maximum (achieved by H») is

Cl+1 Cl+1
_|3||C’| 102< |2 >+O((52).

logy (|C| + 1) 4+ O(8?).

Hy(1-1/|C|+0(9)) <
Therefore, the runtime of the algorithm is |C|A(M)n+0O(n), O

5 (Generalizations and Related Problems

5.1 Other Coefficient Sets Theorem 1 applies to C' = C(d) and C = Cy(d), but our results can be applied
to GSS on scale multiples and translations of C(d) and Cy(d). To see this, observe that for any integers a, 3, an
instance of GSS on the coefficient set aC + 3 is equivalent to GSS on C with target a1 (t — 8, ;).

5.2 Number Balancing The Number Balancing problem attempts to divide n real numbers in [0, 1] into
two sets in a way that minimizes the difference between the two sums. The problem can be thought of as the
optimization version of GSS on C' = {0,+1}. We introduce the following generalized version.

759 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Problem 3: Generalized Number Balancing (GNB)

Input. A vector §¥ = (y1,¥2,--.,¥yn) € [0,1]™, a coefficient set C' C Z, and a precision ¢ > 0.
Output. A coefficient vector ¢ € C™ that satisfies |¢- ¢] < §, or “no solution” if no solution exists.

In the average-case version of this problem, we consider inputs sampled uniformly at random from [0, 1]. In
[KK82], Karmarkar and Karp demonstrate a linear-time algorithm for worst-case Number Balancing that achieves
precision § = n~%1°8(") However, a solution with exponentially small precision always exists by the pigeonhole
principle. Scaling an average-case GNB instance ¥ by 6! and truncating the result yields a vector of integers
that can be interpreted as an instance & of GSS sampled uniformly from [0 : =1 — 1]”. A solution to & on C'
with target 7 = 0 is then a solution to ¢ on C' with precision dn. This insight yields the following corollary to
Theorem 4 (as well as analogues for Theorem 3 and Corollary 2, omitted here for brevity.)

Corollary 3 (Optimal Precision for GNB with C = Cy(d)). Fiz C = Co(d) and any € > 0, and consider
¥ ~ [0,1]™. Then we have

=1—e2M f5=Q*(|C|-(1-9)

Pr[3ce C": |y & < on]
g <g|Cm if 6 < |C|7™.

Moreover, the reduction from GNB to GSS allows us to use our algorithm to solve average-case GNB on
symmetric coeflicient sets.

Corollary 4 (Algorithm for Average-Case GNB). For any a € (0,1), C = C(d) or C = Cy(d), and any constant
€ > 0, there exists an algorithm that solves average-case GNB with precision |C|™*™ in time

O(|C|aA(|c|)n+En),

where A(n) is defined as in Theorem 1. For uniform random g € [0,1]™, the algorithm is correct with probability
at least 1 — e~ for C' = Cy(d) and 1 — 0,(1) for C = C(d).

Proof. We can convert § ~ [0,1]" into & ~ [0 : n|C|*™ — 1]™ by scaling and then truncating the input. (Note
that this preserves uniform sampling.) Our structural results then guarantee the existence of a solution to this
GSS instance with probability 1 — e~ or 1 — 0,(1) depending on whether C' = Cy(d) or C = C(d)."? If a
solution exists, it corresponds to a GNB solution with precision |C|~*"™ and can be recovered by Algorithm 1 with
probability 1 — e~ in time O(|C|*A(CD+en) by Theorem 2. O

References

[AKKM13] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jussi Maattd. Space—time tradeoffs for subset sum: An
improved worst case algorithm. In International Colloquium on Automata, Languages, and Programming, pages
45-56. Springer, 2013.

[AKKN15] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Subset sum in the absence of concentration.
In 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, 2015.

[AKKN16] Per Austrin, Mikko Koivisto, Petteri Kaski, and Jesper Nederlof. Dense subset sum may be the hardest. 33rd
Symposium on Theoretical Aspects of Computer Science (STACS 2016), pages 13:1-13:14, 2016.

[BBSS20] Xavier Bonnetain, Rémi Bricout, André Schrottenloher, and Yixin Shen. Improved classical and quantum
algorithms for subset-sum. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 633—-666. Springer, 2020.

[BCJ11] Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic algorithms for hard knapsacks. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 364—385.
Springer, 2011.

[BCPO1]| Christian Borgs, Jennifer Chayes, and Boris Pittel. Phase transition and finite-size scaling for the integer
partitioning problem. Random Structures & Algorithms, 19(3-4):247-288, 2001.

I0Tf ' = {£1} and |&|; has odd parity, a solution that achieves target 7 = 1 is fine.

760 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[BGNV18| Nikhil Bansal, Shashwat Garg, Jesper Nederlof, and Nikhil Vyas. Faster space-efficient algorithms for subset
sum, k-sum, and related problems. SIAM J. Comput., 47(5):1755-1777, 2018.

[Boh11l] E. Bohme. Verbesserte subset-sum algorithmen, 2011.

[DDKS12] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Efficient dissection of composite problems, with
applications to cryptanalysis, knapsacks, and combinatorial search problems. In Annual Cryptology Conference,
pages 719-740. Springer, 2012.

[HGJ10] Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 235-256. Springer, 2010.

[HS74] Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knapsack problem. Journal of the
ACM (JACM), 21(2):277-292, 1974.

[KK82] Narendra Karmarkar and Richard M Karp. The differencing method of set partitioning. Computer Science
Division (EECS), University of California Berkeley, 1982.

[Lue98] George S Lueker. Exponentially small bounds on the expected optimum of the partition and subset sum
problems. Random Structures & Algorithms, 12(1):51-62, 1998.

[MNPW19] Marcin Mucha, Jesper Nederlof, Jakub Pawlewicz, and Karol Wegrzycki. Equal-subset-sum faster than the
meet-in-the-middle. In Michael A. Bender, Ola Svensson, and Grzegorz Herman, editors, 27th Annual European
Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs,
pages 73:1-73:16. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019.

[Woe08] Gerhard J Woeginger. Open problems around exact algorithms. Discrete Applied Mathematics, 156(3):397-405,
2008.

A Proof of Corollary 2

Let C = C(1). We first consider the upper bound when M > |C|™ = 2". Given any fixed ¢ € C", conditioned
on any values for xi,xs,...,®,_1, the probability that x, is such that & -¢ € {r,7 + 1} is at most 2/M.
Union-bounding over all coefficient vectors gives the result.

We proceed to prove the lower bound for M < |C|(1=9" = 21=9" for some € > 0. We start with the case in
which |7| < M and then extend our analysis to all 7 such that |7] = o(Mn).

Fix a target 7 such that |7| < M. Let Z, ; denote the expected number of solutions ¢ € C™ of ¢- & = 7 over
& ~ [0: M — 1] In this case, [BCP01] Proposition 3.1 together with M < 2(1=9™ implies the following bounds
on Z, ;:

E[Z..]=p.(1+0(®™")) and E[Z}]=2p,(1+0(n™").

.37
Pr=N\ o M

Note that we cannot directly apply Chebyshev’s inequality to obtain concentration of Z,, ; because of the extra
factor of 2 in E[Znﬁ}z. (The factor of 2 is there because of the observation that Z,, ; can have a solution only
when the sum of & is even, which happens with probability 1/2 over &.)

Since we are interested in the probability of having ¢ € C™ with &-Z € {r,7 + 1}, we have

E[Z,:+ 2] =200(1+007) and E[(Zn; + Znr11)’] = 495 (1+0(n71)),

where p,, is defined as

where the second equation used the fact that E[Z,, ; Z,, ;4+1] = 0, because for any & one can never have a solution
for both 7 and 7 + 1 due to the parity issue. It follows from Chebyshev’s inequality that Z,, . + Z,, -11 > 0 with
probability 1 — 0, (1) (see the beginning of the proof of Theorem 3).

To extend the result to a larger range of offsets, we fix |7| = o(Mn), and assume without loss of generality that
T is positive. Consider the experiment in which input elements @1, x,, ... are revealed one by one and assigned the
“—1” coefficient. We stop at ; when x1+...+x; € [7, 7+ M] for the first time. Standard concentration arguments
show that this process stops with less than en/2 elements revealed with high probability (using |7| = o(Mn)).
When this happens, we reduce the problem to a new GSS instance with target |7/| < M and n’ > (1 —€¢/2)n
elements. The latter implies that M < |C|(1=¢/2"" 5o this reduces to our earlier analysis (with e there replaced

by €/2).

B Proof of Theorem 2

The proof of Theorem 2 is similar to the proof of Theorem 1 and follows a similar intuition: if M < |C|(1—»
for any € > 0, then we can reduce the instance size to n’ so that M falls inside the window |C|(3*9"" and the

761 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

algorithm of Theorem 5 applies. Moreover, shrinking the instance size results in a faster running time.

Proof of Theorem 2. Fix d € N>y, C = C(d) or C = Cy(d), and 7 such that |7|] = o(Mn). Consider
M = |C|*"+°(™) for some a € (0,1). Fix a constant ¢ as specified in the statement of Theorem 2. We proceed to
show an algorithm for average-case GSS with running time |C|*A(CDn+Cn,

As M = |C]™-27%(") we can use the procedures described in the proof of Theorem 1 to create a new instance
&' of average-case GSS with n’ elements, where n’ satisfies

(B.1) |C|(1*€1)n/ <M< |C‘(17€1/2)n/

for a constant €; > 0 that can be made arbitrarily small.

In the C' = Cy(d) case, we can simply set & = &[,/1. In the C' = C(d) case, we perform the shrinking operation
described in the proof of Theorem 1, assigning +1 and —1 coefficients to the elements of &,/ 1.,) and adjusting
the target 7 accordingly. In both cases, we create a new instance &', uniformly distributed over [0 : M — 1]”,,
with a new target 7/ such that |7'| = o(n’ M), and for which any solution can be easily converted to a solution for
.

Set £ < (/2 to be sufficiently small that Theorem 5 holds on &', and let € > 0 be the constant determined by
¢ in Theorem 5. Run the algorithm in Theorem 5 on &' for every profile 7 and return any solution found (or “no
solution” if no solution is found for any profile 7.) Because there are polynomially many solution profiles, this
takes time

O*(|c|Mehn'+eny — o*(|C|(@A)/ A=e)+C/2)nto(n)y

where we use the fact that n’ < /(1 — €;), which follows from Equation (B.1). For sufficiently small €1, this is
dominated by |C|*AICDn+Cn,

Taking a union bound over the chance that the algorithm in Theorem 5 fails on any solution profile yields a
success probability of 1 — e~ on &’. In the C' = Cy(d) case, @ has a solution with probability 1 — e~*(") by
Theorem 4, and thus we solve & with probability 1 — e~ By Theorem 3, there is a solution with probability
at least 1 — 0,,(1) over the randomness of &' in the C' = C(d), d > 1 case. By Corollary 2, there is a solution with
probability at least 1 — 0, (1) over the randomness of &’ in the C'= C(1) case if), x; has the same parity as T,
as the shrinking procedure preserves the parity of). @; — 7. Thus we solve Z with probability 1 — 0, (1) in this
case. O

C Proof of Theorem 3

Here the challenge is again to prove the lower bound; the proof of the upper bound on solution probability is
trivial and follows the same argument as that in the proof of Theorem 4.

To prove the lower bound, consider a coefficient set C' = C(d) for a fixed constant d > 1, M = O*(|C| =)
for a fixed constant € > 0, and a target 7 satisfying |7| = O(M). (We expand our discussion to all 7 such that
|7] = o(Mn) at the end of the subsection.) Define

‘C|n+l/2 62 1 1 1
C.2 = h = E [=s-
(©2) P M\/21nK) oo C? where " g~j0:M—1) LM? 3 2M * 6M?2
11

Because |C| = 2d and Y . ¢* = 2d(d+1)(2d+1) are fixed constants, we have p, = O(
M = O*(|C|(*=9™) for a constant ¢ > 0, we have p,, = |C|*™).
Let Z := Z(M,C,) be the random variable that counts the number of solution vectors ¢ € C" for a random

ATSS instance & ~ [0 : M — 1]™ with target value 7. Our proof of the lower bound on solution probability when
M = O*(|C|(1=9™) generalizes [BCP01, Proposition 3.1], and consists of three parts:

i \/E) Moreover, because

1. Lemma 5 proves that Ez[Z] = p, - (1 £ 0,(1)).
2. Lemma 6 proves that Eg[Z?] < p2 - (14 0,(1)).

3. In the proof of Theorem 3, we use the preceding lemmas to show Z = p,, - (1 £ 0,(1)) with probability
1 —0,(1). The bound for M = O*(|C|(1=") follows.

762 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

f(0)

/\/\/\ AWAV-aVY

—7 /2 \J o \J/ /2

(a) f with M =8, C = C(2).

IC]
g(t)
L /\M/J\ /\—\I/\/__/\/l
e 0 - /2 m

T — /2

(b) g with M =38, C = C(2).

Figure 2: Example plots of f and g. As |C| increases, so does the complexity of the oscillation.

The first two steps are accomplished by expressing Z as an integral written in terms of a certain function
g : [-m, 7] = R to the nth power. In both cases, we show that the mass of g™ is highly concentrated in a region
near the origin and tightly bound the value of the function in this region. In particular, we will employ the
function f: [—-m, 7] = R,

(C.3) FO) = B feos0e)] = 1 cos(it) = o (UMD 1y,

£~[0:M—1) selomi-1] M 2sin(6/2) 2

which is defined almost identically'! to the function f that occurs in the proof of [BCP01, Proposition 3.1]. The
last equality corresponds to [BCP01, Equation (3.11)].

Proof of Theorem 3 (Assuming Lemmas 5 and 6). We have

Es [|2/p0—1]] < \/E [(Z/p—1)’]

:i Es[2?] - Ex [Z]2+(E,3[Z]_pn)2

| /\

1\/E (2] - —l——‘E 1= pn

TThe difference occurs because [BCPO01] consider inputs drawn uniformly from the set [M], while we consider inputs drawn

uniformly from the set [0: M — 1].

763 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

= o, (1).

Here the first step holds since any random variable X satisfies that E[X]? < E[X?], the second step is elementary
algebra, the third step holds since va +b < y/a + Vb for any a,b € R>0, and the last step uses Lemma 5 that
Ez[Z] = pn - (1 £0,(1)) and Lemma 6 that E;,g[ZQ] < p2 (14 0,(1)).

Our instance has a solution unless |Z£/p,, — 1| > 1, which occurs with probability at most o, (1) by Markov’s
inequality. Accordingly, for C' = C(d), d > 1, || = O(M), and M = O*(|C|*=9") for any constant e > 0, we
have

Prz [3ce C":Z-d=1] =1-0,(1).

It remains to consider the full range of targets 7. Consider a randomly sampled GSS instance as above but
with |7| = o(Mn). Without loss of generality, consider 7 > 0 and consider the experiment in which we sample
input elements one by one and assign each the coefficient —1. Each step of this process effectively creates a
new instance with one fewer input element and a smaller target 7/. It is a simple exercise to show that when
7 = o(Mn), our new instance satisfies 7/ = O(M) with high probability after o(n) steps. This establishes the
lower bound on the probability that a solution exists in Theorem 3.

Finally, we consider the upper bound on solution probability. For any coefficient vector ¢ € C", we observe
that it solves at most a 1/M fraction of GSS instances. This follows from the fact that for any fixed set of n — 1
input elements in [0 : M — 1]"~!, there is at most one choice for the last element such that & solves the instance.
Union-bounding over all coefficient vectors yields that the number of instances that admit any solution is at most
|C|™ - M™~1. Dividing by the size of the instance space yields

cl
o

Prg[EIE'GC":if-E':T]S

C.1 Expectation of Z

Lemma 5 (Expectation of Z). Fiz a coefficient set C = C(d) = {£1,£2,...,£d} for some integer d > 1,
M = O*(|C|(1=9)™) for some constant € > 0, and a target T = O(M). For p, and f defined as in Equation (C.2)
and Equation (C.3), we have

BalZ) = o [cos(rt) 90" 0 = o (1% 0,(1),

2 J_.
where the function g(0) := > . f(ch).
For any choice of & ~ [0 : M — 1]™, we observe that

Zz = Z / 10(:307' .de

('GC"

_ o167 Z (H elecjmj))

ceCn jeln]
— —107‘ H (Zeﬂcm) . ’
j€[n] ceC

where the first step chooses an integral to act as an indicator for the event {& - ¢ = 7}, the second step factors
the dot product,'? and the last step exchanges the sum and the product (which is enabled by the special form of
the integrand).

We note that Y . €0® = Ece[d](eicemﬂ' +e~ie0z;) = D celq 2c08(czj) =37 o cos(chz;), by the fact that
C = C(d) = {£1,+£2,...,+£d}, the Euler formula, and cancelling sines. This identity allows us to simplify our
equation for Z to

(C4) —/ cos(70) (ZCOS chx;)) -de.

[n] ceC

TZWe have assumed C = C(d) = {#1,42,...,%d}, so we need not worry about excluding the ji(C) solution. However, we can
generalize this to the case where [I(C) € C™ by subtracting one from this equation.

764 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Since all the x; ~ [0: M — 1] are i.i.d., we can break down the expectation Ez[Z] as follows:

EL[Z] - % / " cos(rf) - (EN[OFAZ By {z;cos(ceg)Dnde

-1 cos(70) - g(6)™ - db,

—T

where the last step follows because f(cfl) = Eg¢po:ar—1)[cos(c0€)] (see (C.3)) and g(0) = > . f(cf). Later we
will see that the mass of this integral is highly concentrated around the origin, where cos(70) - g(8)™ ~ |C|".

Fix any a and b satisfying |C|?>/e < a < b. In the rest of this proof, let us consider sufficiently large n > 6
and M > 20 such that

-b
(C.5) V64In(n)/n <1 < |C| and M > max {Sd-b, 721)@ 5 }
—2a

Then the quantity by below is well defined (as 0 < b/(2M) < 1/d < 1) and satisfies b < by < (7/2) - b.

(C.6) bo := 2M -sin! (%)

To evaluate the expectation Ez[Z], we readopt the approach by [BCP01]| and split its formula into
the following three parts. (Based on (C.5) and (C.6), we notice that y/64In(n)/n < |C| < b < by and

% < (T;/d?l))'b < {5 Hence, for each of these parts, the interval of integration is well defined.)
1 n
(Part I) Ez [Z] = o /9|<\/m cos(70) - g(6)" - do
S

1
(Part II) + — cos(76) - g(6)" - dé

2 V641n(n)/n b,

10| Y—7Fr—, 37!

1

(Part III) cos(70) - g()™ - db.

27 Jiojersg. =)
Below let us quantify (Part I), (Part IT), and (Part III) one by one.
Claim 3. |(Part I)] = p,(1 £ o(1)).

Proof. Following [BCPO1], we set y := M6 and consider |y| < \/641n(n)/n = 0,(1) small enough. In this range,
we observe that

f0) = fly/M) = oo [cos(&(y/M))]

.7 = (1-3v*) - 06",

where the second step uses the Taylor series cos(z) = 1 — $2% &+ O(2*), the third step follows from the definition

k=E¢o0.m—1 5—22 , and the last step converts the (additive) error term into a multiplicative form. We can write
£~ 1y
gly/M) =3 cc fley/M) in a similar form:

gly/M) = (101 = Z(X *)y?) - 1 £ 06"

ceC

= (cl- e - g (X)) - (106,

ceC

765 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

where the last step uses the Taylor series e™* = 1 — z 4+ O(2?). It follows that

(©8) oo/ = e exp (= 5 (3 @)) - (15 Ol

ceC

Based on (C.8), we can evaluate (Part I) as follows:

(Part I) = 271-1M ‘y‘g\/mcos(ty/M) -g(y/M)" - dy
B 2”1M \y\s\/m(l +0(y")) - 9(y/M)" - dy
= 2|§]|; -(1£o0n(1))- /|y|§\/me}(p (_ %(;g)&)(w

e 21[C] Iy
=5 (1+0,(1)) 7S S erf] (C%;c)ln(n)

=pn - (1 £0,(1)) - erf % (Z 02) In(n)

ceC

Here the first step changes variable y = M#. The second step follows as cos(z) = 1 — O(22) and |t| = O(M). The
third step substitutes (C.8). The fourth step follows as O(y? + ny*) = 0,(1) when |y| < \/641In(n)/n. The fifth
step resolves the integral by using the Gaussian error function erf(z). And the last step uses the definition of p,
(see (C.2)).

To finish the proof of Claim 3, it remains to reason about the Gaussian error function erf(z). It is known
that |1 —erf(2)] < e~ for any z € R>. As a consequence, we have

32k

C.9 erf —
(C.9)]

(Z c2) In(n) | = 14032001 (Ceee® = 147328 — 1 40, (1),
ceC

where the second step holds because C' = C(d) = {£1,+2,...,%d} and then |C|7' (3 .o ¢®) > 1, and the last

step holds because k = § — 517 + sz = 2 (1).

Combining everything together completes the proof of Claim 3. O
Claim 4. |[(Part II)| = o(pn)-

Proof. Once again we set y := M6. Recall that (Part IT) considers the range |0| € [7%Wl, bﬁo], namely
ly| € [v/641n(n)/n, bp]. In this range, it turns out that

(C.10) 1F(c0)] = | Fley/M)| < —

v

for any (nonzero) coefficient ¢ € C'. Assuming the truth of (C.10) for the moment, we have

(C11) |wwwmmm2mmmm§L
ceC

for any |y| € [\/641In(n)/n, bo]. Hence, the magnitude of (Part II) is at most

1
2rM Jyyjely/6am(n)/m, bol

|(Part 1) = cos(ty/M) - g(y/M)" - dy

766 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1 n
— . 2by - max l9(y/M)))
2rM <\y|€[\/641n(n)/n, bo]

1 c|
< —
S oot 20,

bo|C"
wMn
= O(pn),

IN

where the first step changes variables using the equality y = M6, the third step applies (C.11), and the last step
holds since by < 7 - b is a constant (see (C.6)) and p,, = O(O (see (C.2)).

Myn
It remains to verify (C.10). Before doing so, we observe that for any |y| < by,
C| bo e[- (x/2)-b _ e[- (w/32) _ =
C.12 |~ < < T
() - 16d-b — d 3

where the second step holds because by < (7/2) - b (see (C.6)) and M > 8d-b (see (C.5)), and the last step holds
because ¢ € C' = C(d) = {£1,£2,...,+d}.
Thus for any |y| < by, we can upper-bound |f(cf)| = |f(cy/M)| as follows.

B _|sin(cy — cy/(2M))
7(eh)| = 17w/ M) = | ey 7oy + 33t
_ sin(cy) 1 — cos(cy) ‘
2M tan(cy/(2M)) 2M
sin(cy) 1 — cos(cy)
<= ‘* 2M
sin(ey)| | 1 — cos(cy)
(C.13) =1y + o0

Here the first step changes variables using the equality y = M#. The second step applies the identity
sin(a — B) = sin(a) cos(f) — sin(3) cos(a). The third step holds since |tan(z)| > |z| for any [z| < § (notice
that |57 < T < 5, see (C.12)). And the last step follows since M > 20 (see (C.5)).

We prove (C.10) for any nonzero ¢ € C and any |y| € [1/641n(n)/n, by] in two cases.

Case I: \/641n(n)/n < |y| < 57;. We know that [sin(z)/z| < e=*/6 for any |2] < T and cos(z) > 1 — 12 for
any z € R. Applying both facts to (C.13) gives

£(e8)| = | Flew/an)| < | 2D L= covey)

cy 40
< e~ é y> 4+ — 1 2y2
- 80
Seiéc2y2
<3V’

1
< —,
/n

where the third step holds since e /6 4 8—102'2 < e=*"/8 for any [z| < 7, the fourth step holds since c € C'is a

nonzero integer, and the last step holds when |y| > /64 1n(n)/n.

Case II: ;= < |y| < by. Following (C.13), in this range we have
sin(cy)| 1 — cos(cy)
0)| = M)| < ‘ ‘
£ (eO)| = |f(ey/M)| < o | T @0
767 Copyright © 2022 by STAM

Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[sin(ey)| | 1+ |cos(cy)l
/2 40
2 1
=7t
1

<
— {I/ﬁ’
where the second step applies |y| > 377> the third step holds because [sin(ey)| <1 and |cos(ey)| < 1, and the last

step holds because 2 + - ~ 0.6866 and % =1—o0,(1).

™ 7207
Combining both cases together gives (C.10). This completes the proof of Claim 4. O

Claim 5. |(Part III)| = o(py,).
Proof. Recall that (Part I1I) considers the range || € [%%, 7], in which we have

(C.14) 10 = | (2 D <5+ g < 5

~b 2M ~ a
Here the first inequality holds as [sin((M — 1/2)0)| < 1 and |sin(6/2)| > |sin(2%)| = 55, (see (C.6)), and the

second inequality holds as M > 5% (see (C.5)).

For any ¢ € C and |0] € [2, 7], we know from (C.3) that |f(cf)| = | Egjo.ar—1)[cos(cf€)]| < 1. (Recall that

C = C(d) 2 {#1}.) Applying this fact and (C.14), for any |0| € [2¢, 7] we have

(C.15) 9O < [FO]+ =0+ > [f(ch) < 2+ (0] —2) =|C|t~)
c€C\{*1}

for some constant €; := € (|C],a) € (0,1), where the last step holds since a > |C|?/e > 1 (see (C.5)). Further, we
know that for any integer ¢ € C the function f.(0) := f(cf) is 2m-periodic (see (C.3)). Thus (C.14) implies that

(C.16) {oe [m 2 1f(et)] > 2}‘ < %

This, given that g(0) = > . f(ch), further gives

|C] 2b|C|
.1 H@ —m, 7| :|g(0 —}' < .
(©17) & (-] o(0)] > 1} < 20l
By considering separately the subregion on which |C|/a < |g(8)| < |C]*~¢) and the subregion on which

lg(0)] <|C|/a, the magnitude of (Part IIT) is at most

: /
— cos(76) - g(6)" - dﬁ‘
27 Jiolell,)

1
<

T 27 Jyjgierbe, x)

1 _ 2bo|C |C\"
il (1—ex)n 270 il R
2m (|C M * (a) 2n

(1—e1)n
- O(%) +O(|c}\n)’

|(Part IIT)| =

lg(0)]" - 4o

IN

where the third step applies (C.15) and (C.17), and the fourth step holds since (for the first term) both by and
|C| are constants and (for the second term) a > |C|?/e > |C|? (see (C.5)).

Recall (C.2) that p, = |[C|*™). So the above two terms are upper-bounded by O(|C|~<)" /M) =
o - O(yn - [C]9™) = 0(py) and O(IC|™) = 0n(1) = o(py), respectively.

This completes the proof of Claim 5. O

768 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Proof of Lemma 5. Putting Claims 3 to 5 together completes the proof of Lemma 5 as follows:

Ez[Z] (Part I) + (Part II) + (Part III)
(Part T) £ (|(Part IT)| + |(Part III)))

pn - (1% 0, (1)). O

m

C.2 TUpper Bound on the Second Moment of Z

Lemma 6 (Second Moment of Z). Fiz a coefficient set C = C(d) = {£1,£2,...,+d} for some integer d > 1,
M = O*(|C|(A=9™) for some constant € > 0, and a target T = O(M). For p, and f defined as in Equation (C.2)
and Equation (C.3), we have

1 T ,
Bal2% < 5 [[1660000 d6rdts < 62 (14 0,(1)).

where the function G(61,02) 1= 3" ., .,)ec2 f(c1b1 + c202) for any (01,62) € [, 2.

For any choice of & ~ [0 : M — 1]™, we deduce from (C.4) that

22 = (;ﬂ/_ cos(rd) T (D cos c@wj)-d9>2

j€[n] ceC

=7 2/ / cos(t0y) cos(tb2) H (Z cos(clele)cos(cﬁga:])> -df1d6y
T

Jj€n] (c1,c2)€C?

< 4#2/ / Z cos(c161x;) cos(cabaz;)

j€n] ' (c1,c2)€C?

- df1dbs

47T2 / / H Z (COS(Clele) COS(CQ@QSCJ‘) — sin(clﬁla:j) sin(0292xj)) ‘ . d91d92

JE[n] " (c1,c2)€C?

47T2 / / H Z COS(C191$j +6292mj)

T j€ln] ' (c1,c2)€C?

- df1dbs,

where the last second step holds since C = C(d) = {£1,+£2,...,+d} is a symmetric set and sin(z) is an odd
function, and the last step uses the identity cos(a + 8) = cos(a) cos(f) — sin(a) sin(3).
Since all the &; ~ [0 : M — 1] are i.i.d., the following holds for the second moment Ez[Z?]:

n

2
Z B 47T2 /—77 /;71' [O:E]fol] |:COS(6161£ + 02925)} d61d92
(c1, 62)602
47T2 / / Z f(clel + 0292) - df;dbs
T (er,00)€C?
1 [T
(€15) B m/ / |G(01,02)]" - d1ds,

where the second step uses the definition f(0) = Eg¢jo.a—1j[cos(0€)] (see (C.3)).

Remark 2. We will show that the mass of (C.18) is concentrated around the origin, where |G(61,02)|" ~ |C|*".
Notably, this is not true when C' = C(1), as considered in [BCPO1]. In the C = C(1) case, mass is also
concentrated at the points [+, £7], the corners of the region of integration. This is because the function
G(01,09) = 2(61,02)602 f(c101 + c2603) consists of four simple summands that interfere constructively at this
point. However, when C' = C(d) for any d > 1, interference from other summands ensures that this phenomenon
does not happen.

769 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

We reuse the same constants a, b and by (namely |C|?/e < a < band by = 2M -sin~ ' (32;)) introduced in the
proof of Lemma 5. Define the subregions R), C Ry C [—m,7|? by letting

V/64In(n) /641n(n)72 0o bo bo12
Myn ' Mvyn } and R '_[_MO’ MO}

Similar to the approach of [BCP01], we split the formula (C.18) into the following three parts.

Ry = [—

1
(Part 1) Bal2) < // G (61.6)|" - 6,06,
Q (61,02)€R;
1
(Part 2) + F // ‘G(61702)|n . d91d92
4 (61,02)€ERY\R,,
1
(Part 3) + F // |G(917 92)|n . d91d92
4 (01,02)€[—, w2\ RY

We evaluate (Part 1) and (Part 2) respectively in Claims 6 and 7. (Part 3) is rather tricky; we first prove three
auxiliary results (Claims 8 to 10) and then evaluate it in Corollary 5

Claim 6. (Part 1) = p2 - (14 0,(1)).

Proof. (This proof is similar to the proof of Claim 3.) Following [BCPO1], we set y; := M6, and yo := M6s.
Thus we consider small enough |y1], |y2| < v/641n(n)/n = 0,(1). In this range,

G(y1 /M, y2/M) = Z flexyr /M + cay2 /M)
(c1,c2)€C?

K
— Z (1— §(cly1 +02y2)2) : (1iO(y‘f+y§))
(c1,c2)EC?

EY wec €
= (IC1? ~ [C]- “=£C= - (12 +43)) - (1L Oyt + v)

2
— 0P e (- “EEET 0 +4d)) - (1 008 +)
where the first step changes variables y; = M6; and yo = M#6,, the second step holds since we have
fly/M) = (1 — 5y%) - (1 £ O(y*)) for small |y| (see (C.7)), the third step is elementary algebra (notice that
C =C(d) ={£1,£2,...,+d} is a symmetric set, so the crossing terms 2¢qcay1ya get cancelled), and the last step
uses the approximation e=* = (1 — 2) - (1 £ O(2?)) for small |2|.

As a consequence, the following holds for any |y1], |y2| < /64 1n(n)/n.

nKk C2
Gl My M) = O exp (— 2 (42 442)) - (15 Ol +)
" nEY oo €
(©19) = 0P oxp (= MECS (R4)) (1 (1)

This allows us to bound the magnitude of (Part 1) as follows:

1
(P‘(Lrl, 1) = — // \G(yl/M, yz/M)I” 'dy1dy2
AT2M2 [)y yal <o /60000
lelck // (nmzcecc s s)
T anM? exp (yi +v2)) - dyidye
S ly1l,ly2|<4/641n(n)/n 2|C| ! 2
2
|C]*" 27| C| 395k
= (1+0,(1) ——ZL_ et (2)1
A2 M2 (1+0,(1)) T S er i CEZCC n(n)
770 Copyright © 2022 by SIAM

Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

B |C|2n
T 4w M2

= P2 (1£0,(1)).

Here the first step changes variables y; = M6; and y2 = M6s. The second step substitutes (C.19). The third
step resolves the integral by using the Gaussian error function erf(z). The fourth step uses the approximation of
erf(z) in (C.9), and the last step uses the definition of p,, (see (C.2)).

This completes the proof of Claim 6. O

27|C|

“(1£o0n(1)) - P S

(1 £ 0n(1))?

Claim 7. (Part 2) = o(p2).

Proof. (This proof is similar to the proof of Claim 4.) Once again, we set y; := M6; and yo := M6y. Then
(Part 2) corresponds the range (y1,y2) € Ry \ R, where

R, = [—\/641In(n)/n, \/64In(n)/n)? and Ry = [~bo, bol?.

For each pair (c1,c2) € C?, we define the function Ge, ¢, (y1,y2) 1= $(f(SL + 2¥2) + f(2L — 22)) We will
show that for any pair (c1,c2) € C? and any point (y1,y2) € R\ R, we have

1

nn2

(020) |GC1,C2 (y17y2)| <

Assuming (C.20) for the moment, for any point (y1,y2) € R} \ R we have

|G (01,02)] = |G(y1/M,y2/M)| =

> flay/M+ 023/2/M)‘

(c1,c2)EC?

Z GCl ,C2 (y17 92)

(Cl ,CQ)GCZ
_lop

— W’
where the second step holds since, regarding the definition of G, .,, the mapping (¢1, ¢2) — (c2, —c1) is one-to-one,

and the last step uses (C.20).
Hence, we can upper-bound (Part 2) as follows.

(C.21)

1
(Part 2) = —— // |G(y1/M + ya /M)|™ - dy1dye
Am>M? y1,Y2€R\ R},

1 n
< R (Gy1 /M + yo /M)
= Ax2 M2 | y y1,y2H61;1i%},’y(’\R; |G (y1/M + y2/M)|

C L lo
— 47T2M2 Yy n2
_bylCP

e

=o(p2),

where the first step changes variables y; = M6, and ya = M6,, the third step substitutes (C.21), the fourth step
is elementary algebra (notice that |R;| = 4b3), and the last step holds because by < 5 - b is a constant (see (C.6))

and p, = @(Jl\f\%) (see (C.2)).

It remains to verify (C.20). Before doing so, we observe that for any point (y1,y2) € Ry \ Ry,

ay + Czyz‘ le1] + |ea lea] + o le1] + Jea ™

< by < (r/2) b < ST gy < 2

2M = 2M 0= "96d-b (r/2)-b< d (m/4) < 5
771 Copyright © 2022 by SIAM

Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

where the second step holds because by < (7/2) - b (see (C.6)) and M > 8d-b (see (C
because ¢ € C = C(d) = {£1,£2,...,4d}. Since we always have |“teate| < T j
arguments for (C.13) can be reused, resulting in

.5)), and the last step holds
in the considered range, the

sin(ci1y1 + c2y2) ‘ 1 —cos(c1y1 + c2y2)

C.22 M M)| <
(C.22) |f(c1y1 /M + caya/M)| < P 10

Similarly, for any point (y1,y2) € R, \ Ry, we also have | 2% < T and

sin(cayr — c1y2) ‘ i 1 —cos(cay1 — c1y2)

(C.23) |fe2y1 /M — ery2 /M| < ‘ Coy1 — C1Y2 40

To prove (C.20) for any pair (c,c2) € C? and any point (yi,ys2) € Ry \ Ry, let us do case analysis.
Case 1: When |c1y1 + cayo| > 5. We deduce that

(Gevses (1, 2)] = 5 - [F(exyn /M + oo /M) + F(eamn /M = crya/M)

IN

: (RHS of (C.22) + 1)

(+§6+0
1

= nnz

IN
l\DM—lMM—l[\DM—l

)

where the second step uses (C.22) and the fact that |f(€)] < 1 for any 6 € R (see (C.3)), the third step holds

s1nce |szz |+ = COS(Z) 24 % when |z| > (see the proof of Claim 4, Case II), and the last step holds since
3-(2 +20+1)~08433and _17%(1)

Case 2: When |coy; — c1y2| > g Here we can reapply the arguments for Case 1.

3

Case 3: When |c1y1 + cayo| < § and |cays — c1y2| < §. Combining (C.22) and (C.23) gives

1
(Gerieayrs92)| = 5 - [F(ex /M + oo /M) + [(eapn /M = cryn/M)|
1
<3 (RHS of (C.22) + RHS of (0.23))
1 1 2
. < . —z(c1y1+cay2) ((‘2y1 (‘1y2)
(C.24) <5 (e .).

where the third step holds since |¥| + 1_%65(2) < e /8 for any |z| < % (see the proof of Claim 4, Case I;
notice that |S¥te2V2 | < T apd |-t | < 1)

Let us give a geometric interpretation for (C.24), which is demonstrated in Figure 3. Consider two straight
lines L' : c121 +cozo = 0 and L : ca21 — c129 = 0. By elementary algebra, we can see that the Euclidean distance
d' :=d'(y1,y2) (resp. the Euclidean distance d” := d"’(y1,y2)) from a given point (y1,y2) € R to straight line L’
(resp. straight line L") is given by

leryr + cayol and d' = |cayn — c1y2]
Vet +a Vet

Moreover, L' and L” are perpendicular (by construction), so the Pythagorean theorem ensures that d’? + d'"? =
y3 + y3. Accordingly, the larger distance max{d’, d"} is lower bounded by

(C.26) max{d’, d"} > \/(d?+d"?)/2 =/ (y? +y?)/2 > \/321n(n)/n,

where the first step uses the AM-GM inequality, and the last step holds since (yi,y2) ¢ R; =
—/641n(n)/n, \/641n(n)/n)* (see Figure 3).

(C.25) d =

772 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

22

\
(y1,92)
d"’ 3
e T _i d’
i
I
: : L—- L' :c121 + 20 =0
I
I 1 .
| 0 !
, I
— | :
i |
I
L S\ i
\LN L CZ1 — C129 = 0

Figure 3: Demonstration for the formula (C.24) > |G, ¢, (Y1,y2)|- The gray region represents the considered
range (y1,%2) € Ry \ R, where R, = [=/64In(n)/n, \/64In(n)/n]* and R, = [~by, bo]*>. The Pythagorean
theorem guarantees that d'? + d'’? = y? + y3.

Putting everything together results in

1 _M 12 c +c2' 12

‘Gc1,c2(y1ay2)‘S(C.24):§,(e 182d iter 4)

< % . (e_i'd/z +8_l d”z)

< % . (e_i'o +e—l-321n(n)/n)

_1 (1+ 1)

= 3 T

1
- nn2’

where the first step applies (C.25), the second step follows since the coefficients ¢1,co € C are nonzero integers,
the third step applies (C.26) and the fact that min{d’, d’} > 0, the fourth step is elementary algebra, and the
last step holds whenever n > 6 (see (C.5)).

Combining all the three cases together gives (C.20). This completes the proof of Claim 7. O

Below we use Claims 8 to 10 (as auxiliaries) to evaluate (Part 3) in Corollary 5. This evaluation together
with Claims 6 and 7 immediately gives Lemma 6.

Claim 8. There exists some constant €3 := e3(|C|,a) > 0 such that, for any (61,02) € [—m, 7>\ R},

1-1
GO0 < 10P ~ T < joree,

773 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

T
R
C
— 0 . p > 21 > 21
- 7.[- a“"'--. .u"::: - 71—
(a) When (c1,c2) = (1,1) (b) When (c1,c2) = (2,1)
Figure 4: The subregion R, ., = {(61,02) € [-m, 7% : (c161 + c26b), (c261 — c162) € [-2¢, 28]~} is the
intersection of the red area (on which (c10; + c262) € [—bﬁo, bﬁ”]o) and the blue area (on which (cef1 — c162) €

[—bﬁo, bﬁo]o) Given any parameters tg,tp € R, by construction a (red) straight line ¢10; 4+ c262 = tg and a

(blue) straight line cof; — ¢102 = tp are vertical. The subregion Ry (namely the dashed square) is excluded from
[, 7). Figures 4a and 4b respectively choose (c1,c2) = (1,1) and (e1,ca) = (2,1).

Proof. Define the function f., ,(01,62) := %(f(0191 + ca6a) + f(caf1 — c163)) for each pair (c1,c2) € C2. Because
|£()] <1 for any § € R (see (C.3)), we also have |fe, c,(01,62)| < 1 for any (1,02) € R?. Recall that |f(6)| < 1
for any 0] € [2, 7] (see (C.14)) and & < (L2 < o (e (C.5) and (C.6)). Since f is 2n-periodic (see (C.3))
only on the 2m-periodic range [—b—‘}, bﬁo}o = Ukez[—bﬁo + 2k, 5’\—2 + 2kn] can we possibly have |f(0)] > é
Regarding the function f, .,, we consider the analogous subregion

RC’[,CQ = {(61,92) S [77‘{',71-}2 : (6191 +(3292), (6291 — (1102) S [*%, %]O}

For any point (01,02) € [—7, 7] \ Re,.co, we have either |f(c101 + c26s)| < % or |f(c2f — c162)| < % or both,
which (together with the fact that |f(6)| < 1 for any § € R) implies

[f(c161 + c202)| + [f(e26h —162)| _ 1+1/a
2 - 2

Because C' = C(d) = {#£1,+2,...,+d} for a fixed integer d > 1, the considered pair-indices (c1,c2) € C?
include both (c1,e2) = (1,1) and (c1,¢2) = (2,1). As shown in Figure 4a, the union of the 2%-neighborhoods of
four points (£, £7) covers R1 1. Also, as shown in Figure 4b, the union of the %}—neighborhoods of four points
(4?", 2?“), (—2?”, %‘), (—4?“, —QT") and (2?", —4?") covers R 1. We must have Ry 1 N R 1 = 0, because the bﬁ" <%
is small enough.

Given the above arguments, we deduce that for any (01,62) € [—m, 7%\ Ry,

(C.27) | fer,e2 (01, 02)] <

G(01,09)| = | D flerbr + cab2)

(c1,c2)€C?

Z fcl,cz (91762)

(c1,e2)€C?

774 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1+1
+ /a+\0|2f1

2

1-1/a

= |02 - —==,
oP -

IN

Here the second step holds since, regarding the definition of f, .,, the mapping (¢, c2) — (c2, —c1) is one-to-one.
The third step uses (C.27), the fact that |f., ¢, (01,62)] < 1 for each pair (c1,c2) € C? and any (01,6,) € R?, and
the fact that Ry N Rayy = 0.

Because a > |C|?/e > 1 (see (C.5)), there must exist some constant e := e3(]C|,a) > 0 such that
|C]? — (1 —1/a)/2 < |C|~<2). This finishes the proof of Claim 8. O

Claim 9. The subregion Q' C [—m,|? defined below has measure at most |Q'| < |C|? - 47be.
/ 2 IC|2
Q= {(61,02) € [=m. 7] |G(61,605)] > = .
Proof. To begin with, we introduce an auxiliary set A, ,, for each ¢; € C' and any offset w € R.
1
(C.28) Aoy = {91 e [=m, 7 : |f(c161 +w)| > g}-

Recall (C.16) that |Ac o < %. Because f is 2m-periodic, regarding any integer ¢; € C, the function

fer (61) := f(c161) is also 2m-periodic. Thus, we also have

2bg
2 A < —
(C.29) el < 21

for any ¢; € C, w € R. It follows that, for any pair (c1,cz) € C?, we have

_ 2. 1 . 2b0 o 47Tb0

Recall that G(01,02) = >, .)ec2 flcbh + c262). Suppose |G(01,62) > |C|?/a, then we must have
|f(c101 + c262)| > 1/a for at least one pair (c1,cp) € C?. Union-bounding the measure (C.30) over all pairs
(c1,¢2) € C? concludes the proof of Claim 9. O

Claim 10. The subregion Q" C [—m,7|? defined below has measure at most |Q"| < |C[* - (%)2.
Q"= {(61,02) € [-m, 72 1 |G(61,62)| > [C] + ¢ }.

Proof. For this proof, we introduce a convenient decomposition of the function G. Observe that G(61,602) =
Y escc 4(01, cada), where

q(01,w) := Z f(c101 + w).

ceC
This allows us to rewrite Q" as

Q"= {(00.02) € [-m.? s | 3 alBh.a6)| > (O] + <.

coeC

As max, g¢(z) < |C|- max, f(z) < |C|, q is upper-bounded by |C|. Thus for any point (61,62) € Q”, there must
exist two distinct coeflicients ¢, ¢h € C such that |q(01, cab2)|, |q(01, chbb2)| > r¢7- In other words, the considered
set Q" is covered by

(C.31) Q< U Que

caFchel

775 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

where
Qa,p = {(91792) € [—m @ : |q(01, ab2)], |q(01, B02)] > |C|}

This definition of @, s suffices because a > |C|*/e (see (C.5)) and thus % <161
To complete the proof, it suffices to show that

2bg\ 2
2 0
(C.32) Qessl < IO+ (32)
for each pair (cg,ch) € C? with ca # c. (Suppose so, then the measure |Q”| can be upper-bounded by
|CI? - maxc, £ [Qey.er | < |CI*- (220)2 using (C.31).)
To show (C.32), fix a pair (c2,ch) € C? such that ¢y # . We observe that

Qesey = {(01,02) € [~m,7]2 01 € (Beos N Bega,) |,

for By, = {6h € [-m, 7] : |q(01,w)] > %} Intuitively, B,, captures the values for which |¢(61,w)| is large.
Because B,, is determined by the function q(61,w) = 3 .~ f(c101 + w), it has a convenient property: for any
w,z € R, By is just the set B, translated by z (mod 27). Figure 5 provides a visual aid for the structure of
this set and the remainder of the proof.

It will be convenient to write |Q., | in terms of the probability that a random point in [, 7
in Qc,,,- We have

]2 is contained

|Qepey| = 4% Pr [01 € (Beyo, N Bcéez)}

91 ,92~[—7T77T]

— 472 . S (BO N B(c’2762)92):|

Pr |:01
91,92/\4[771',71']
(C.33) —472. Pr [91 e BO] . Pr {01 € Ble,—cp)6s

O1~[—7,7] 01,02~ [—m,]

6, GBO].

Here the second step follows from translating both sets by ¢205 (mod 27), which does not change the size of the
intersection. And the last step uses the identity Pr[AN B] = Pr[A] - Pr[B | A].
Given any nonzero integer k and any fixed offset w € [—m, 7], we observe that

(C.34) Pr [we Bro,|= Pr [yeB= 1ol

0s~[—,m] y~[—7,7] 2m

because sampling 02 uniformly from [—, 7] distributes k02 (mod 2) uniformly over [—m, 7]. (C.34) holds for any
nonzero integer k # 0 and any offset w € [—m, 7], so both (conditional) probabilities in (C.33) can be substituted
with (C.34) = |Bo|/(2).

Recall the definition of the set family A., ., in (C.28). Using (C.29) to union-bound (C.33) yields (C.32):

Qeay] = 42 (122)" < (Z|Ac0) <jop- (20)" n

Corollary 5. (Part 3) = o(p2).
Proof. For ease of reference, let us restate the results in Claims 8 to 10:
e Claim 8: |G(61,62))| < |C|=2) for any point (61,62) € [-m, 7]\ Ry.
e Claim 9: The subregion Q' on which |G(61,62)| > |C|?/a has measure at most |C|? - 47be.
e Claim 10: The subregion Q” on which |G(61,62)| > |C| + € has measure at most [C[* - (22)2.

776 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

02

N

=3m | 2w = '

\BZ;Z/J

Figure 5: Visual aid for the proof of Claim 10. For any offset 05 € [—m, 7], the range B(s, _c,)q, is the intersection
of the line segment (—m,602)—(m,02) with the gray regions. The red regions indicate {(61,602) € [—m, 7]? : 61 €
Byn B(Cé—cz)ez}'

%:éﬁ;?ﬁgfﬁgﬁx

Obviously, the three subregions (Q”\ Rj) and (Q'\ Q") and [—, 7]*\Q’ together covers the domain of integration
for (Part 3), namely [—m, 7]*\ Rj. As a consequence, we have

(Part 3) <

ﬂ
)

(/I ﬂ‘>m%MWM%
(01,02)€[—7, 7]2\Q’ (01,02)€Q'\Q"" (01,02)€Q"\ R}

C n / —€2)N "
aﬁﬁﬂ) fﬁmﬂwwuww>wQ)

< s (() +(IC]+)™ |CJ? - 4”b°+|c|<2 o)t (2]\?)2)
(

e) o L)

Here the second step follows from Claim 8 and the definitions of Q' and Q”. The third step applies Claims 9

and 10. The fourth step holds since (for the first term) a > |C|?/e using (C.5) and (for the second/third

terms) both |C| and by are constants. Since M = O*(|C|('=9)") for a constant ¢ > 0, we know from (C.2) that
= 0(|C|>"/(M?>n)) = Q(]C|). Observe that:

e The first term O(€") = 0,(1) = o(p?2).

e The second term O((|C| + €)" - M) = O(p2) - (|C] + €)™ - ‘Clgn, by the definition of p,, (C.2). Then an

upper bound O(p?2) - |C|~ (/Y™ = o(p?) can be inferred from the calculation below.

n n 1
(ICl+¢€) W = O((|C\ +e)"- W)

1
- (te/d)n .
B O(|C| |c|(1+e/2>n>

= o(jc|(e/hm),

777 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 04/24/23 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Here the first step holds because M = O*(|C|*=9") and then (given that ¢ > 0 is a constant)
Mn = O(|C|=¢/»™). The second step holds since |C| + € < |C| - (1 + €/4) < |C|*+/4, given that |C| > 4
(namely C' = C(d) = {£1,...,£d} for some integer d > 1).

e The third term O(|C|?=)" - M~2) = O(p2)-n-|C|~=" = o(p2), given that e; = €2(|C|,n) > 0 is a constant
(see the statement of Claim 8).

Putting everything together completes the proof of Corollary 5. O
Proof of Lemma 6. Putting Claims 6 and 7 and Corollary 5 together, we have
Ez[Z% < (Part 1) 4+ (Part 2) + (Part 3) < pn- (14 0,(1)).

This finishes the proof of Lemma 6. O

778 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Our Results
	Our Techniques
	 Structural Results
	 Algorithmic Results

	Organization

	Notation and Preliminaries
	Structural Results
	 The Case
	 The Case
	 The Case
	Proof of

	Algorithmic Results
	Reduction to the Core Problem
	Algorithm Overview
	Terminology and Key Notions
	High-Level Algorithm Sketch
	Section Outline

	Signature Distribution Lemma
	Correctness and Runtime

	Generalizations and Related Problems
	Other Coefficient Sets
	Number Balancing

	Proof of
	Proof of
	 Proof of
	 Expectation of
	Upper Bound on the Second Moment of

