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ABSTRACT

Graph contrastive learning (GCL), as an emerging self-supervised learning tech-
nique on graphs, aims to learn representations via instance discrimination. Its
performance heavily relies on graph augmentation to reflect invariant patterns that
are robust to small perturbations; yet it still remains unclear about what graph
invariance GCL should capture. Recent studies mainly perform topology augmen-
tations in a uniformly random manner in the spatial domain, ignoring its influence
on the intrinsic structural properties embedded in the spectral domain. In this
work, we aim to find a principled way for topology augmentations by exploring the
invariance of graphs from the spectral perspective. We develop spectral augmen-
tation which guides topology augmentations by maximizing the spectral change.
Extensive experiments on both graph and node classification tasks demonstrate the
effectiveness of our method in unsupervised learning, as well as the generalization
capability in transfer learning and the robustness property under adversarial attacks.
Our study sheds light on a general principle for graph topology augmentation.

1 INTRODUCTION

Graph neural networks (GNNs) (Kipf & Welling, 2017; Veličković et al., 2018; Xu et al., 2019) have
advanced graph representation learning in a (semi-)supervised manner, yet it requires supervised
labels and may fail to generalize (Rong et al., 2020). To obtain more generalizable and transferable
representations, the self-supervised learning (SSL) paradigm emerges which enables GNNs to learn
from pretext tasks constructed on unlabeled graph data (Hu et al., 2020c;b; You et al., 2020b; Jin
et al., 2020a). As a state-of-the-art SSL technique, graph contrastive learning (GCL) has attracted the
most attention due to its remarkable empirical performance (Velickovic et al., 2019; Zhu et al., 2020;
Hassani & Khasahmadi, 2020; You et al., 2021; Suresh et al., 2021; Thakoor et al., 2021).

A typical GCL method works by creating augmented views of the input graph and learning rep-
resentations by contrasting related graph objects against unrelated ones. Different contrastive ob-
jects are studied on graphs, such as node-node (Zhu et al., 2020; 2021; Peng et al., 2020), node-
(sub)graph (Veličković et al., 2019; Hassani & Khasahmadi, 2020; Sun et al., 2019) and graph-
graph (Bielak et al., 2021; Thakoor et al., 2021; Suresh et al., 2021) contrastive pairs. The goal of
GCL is to capture graph invariance by maximizing the congruence between node or graph representa-
tions in augmented views. This makes graph augmentation one of the most critical designs in GCL,
as it determines the effectiveness of the contrastive objective. However, despite that various GCL
methods have been proposed, it remains a mystery about what graph invariance GCL should capture.

Unlike images, which can be augmented to naturally highlight the main subject from the background,
it is less obvious to design the most effective graph augmentation due to the complicated topology
structure of diverse nature in different graphs (e.g., citation networks (Sen et al., 2008), social
networks (Morris et al., 2020), chemical and biomedical molecules (Li et al., 2021; Hu et al., 2020b)),
as discussed in the survey (Ding et al., 2022). We argue that an ideal GCL encoder should preserve
structural invariance, and an effective augmentation focuses on perturbing edges leading to large
changes in structural properties; and by maximizing the congruence across the resulting views,
information about sensitive or friable structures will be minimized in the learned representations.

Most existing works perform topology augmentations in a uniformly random manner (Zhu et al., 2020;
Thakoor et al., 2021), which achieves a certain level of empirical success, but is far from optimal:
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recent studies show that perturbations on different edges post unequal influence on the structural
properties (Entezari et al., 2020; Chang et al., 2021a) while the uniformly random edge perturbation
ignores such differences. Such a discrepancy suggests an opportunity to improve the common uniform
augmentation by considering structural properties to better capture structural invariance. Since graph
spectrum summarizes many important structural properties (Chung & Graham, 1997), we propose to
preserve spectral invariance as a proxy of structural invariance, which refers to the invariance of the
encoder’s output to perturbations on edges that cause large changes on the graph spectrum.

To realize the spectral invariance, we focus on designing a principled augmentation method from
the perspective of graph spectrum, termed SPectral AugmentatioN (SPAN). Specifically, we search
for topology augmentations that achieve the largest disturbance on graph spectrum. By identifying
sensitive edges whose perturbation leads to a large spectral difference, SPAN allows the GNN encoder
to focus on robust spectrtal components (which can be hardly affected by small edge perturbations)
and to reduce its dependency on instable ones (which can be easily affected by the perturbation).
Therefore, the learned encoder captures the minimally information about the graph (Tishby et al.,
2000; Tian et al., 2020) for downstream tasks.

We provide an instantiation of GCL on top of the proposed augmentation method SPAN, which can
also be easily paired with different GCL paradigms as it only requires a one-time pre-computation
of the edge perturbation probability. The effectiveness of SPAN is extensively evaluated on various
benchmark datasets, which cover commonly seen graph learning tasks such as node classification,
graph classification and regression. The applicability of SPAN is tested under various settings
including unsupervised learning, transfer learning and adversarial learning setting. In general, SPAN
achieves remarkable performance gains compared to the state-of-the-art baselines. Our study can
potentially open up new ways for topology augmentation from the perspective of graph spectrum.

2 RELATED WORKS

Graph Contrastive Learning (GCL) leverages the InfoMax principle (Hjelm et al., 2018) to
maximize the correspondence between related objects on the graph such that invariant property across
objects is captured. Depending on how the positive objects are defined, one line of work treats
different parts of a graph as positive pairs, while constructing negative examples from a corrupted
graph (Hu et al., 2020b; Jiao et al., 2020; Veličković et al., 2019; Peng et al., 2020; Sun et al., 2019).
In such works, contrastive pairs are defined as nodes (Veličković et al., 2019) or substructures (Sun
et al., 2019) v.s. the entire graph, and the input graph v.s. reconstructed graph (Peng et al., 2020).
The other line of works exploit graph augmentation to generate multiple views, which enable more
flexible contrastive pairs (Thakoor et al., 2021; Bielak et al., 2021; Suresh et al., 2021; You et al., 2021;
Feng et al., 2022; Ding et al., 2022). By generating augmented views, the GNN model is encouraged
to encode crucial graph information invariant to different views. In this work, we focus on topology
augmentation. As a parallel effort in self-supervised learning, augmentation-free techniques (Lee
et al., 2022; Wang et al., 2022) avoid augmentation but require special treatments (e.g., kNN search
or clustering) to obtain positive and negative pairs, which is out scope of this work.

Graph Topology Augmentation. The most widely adopted topology augmentation is the edge
perturbation following uniform distribution (Zhu et al., 2020; Thakoor et al., 2021; Bielak et al.,
2021; You et al., 2020a). The underlying assumption is that each edge is equally important to the
property of the input graph. However, a recent study shows that edge perturbations do not post
equal influence to the graph spectrum (Chang et al., 2021a) which summarizes a graph’s structural
property. To better preserve graph property that has been ignored by uniform perturbations, domain
knowledge from network science is leveraged by considering the importance of edges measured
via node centrality (Zhu et al., 2021), the global diffusion matrix (Hassani & Khasahmadi, 2020),
and the random-walk based context graph (Qiu et al., 2020). While these works consider ad-hoc
heuristics, our method targets at the graph spectrum, which comprehensively summarizes global
graph properties and plays a crucial role in the spectral filter of GNNs. To capture minimally sufficient
information from the graph and remove redundancy that could compromise downstream performance,
adversarial training strategy is paired with GCL for graph augmentation Suresh et al. (2021); You
et al. (2021); Feng et al. (2022), following the information bottleneck (IB) (Tishby et al., 2000) and
InfoMin principle (Tian et al., 2020). While the adversarial augmentation method requires frequent
back-propagation during training, our method realizes a similar principle with a simpler but effective
augmentation by maximizing the spectral difference of views with only one-time pre-computation.
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3 PRELIMINARIES

Notations. We focus on connected undirected graphs G = (X,A) with n nodes and m edges, where
X ∈ Rn×d describes node features, and A ∈ Rn×n denotes its adjacency matrix such that Aij = 1 if
an edge exists between node i and j, otherwise Aij = 0. The unnormalized Laplacian matrix of the
graph is defined as Lu = D−A, where D = diag(A1n) is the diagonal degree matrix with entry
Dii =

∑n
i=1 Aij and 1n being an all-one vector with dimension n. The normalized Laplacian matrix

is further defined as Lnorm = Lap(A) = In −D−1/2AD−1/2, where In is an n× n identity matrix.

Graph Spectrum. Graph representation learning can be viewed as graph signal processing (GSP).
The graph shift operator (GSO) in GSP commonly adopts the normalized Laplacian matrix Lnorm

and admits an eigendecomposition as Lnorm = UΛU⊤. The diagonal matrix Λ = eig(Lnorm) =
diag(λ1, . . . , λn) consists of the real eigenvalues which are known as graph spectrum, and the
corresponding U = [u1, . . . ,un] ∈ Rn×n collecting the orthonormal eigenvectors are the spectral
bases. Graph spectrum plays a significant role in analyzing and modeling graphs, as discussed in
Appendix A. On one hand, it comprehensively summarizes important graph structural properties,
including connectivity (Chung & Graham, 1997), clusterability (Lee et al., 2014) and etc. On the
other hand, as the essence of GNNs, spectral filter is defined on the graph spectrum to manipulate
graph signals in various ways, such as smoothing and denoising (Schaub & Segarra, 2018).

Graph Representation Learning. Given a graph G ∈ G, the goal of node representation learning
is to train an encoder fθ : G → Rn×d′

, such that fθ(G) produces a low-dimensional vector for
each node in G which can be served in downstream tasks, such as node classification. One can
further obtain a graph representation by pooling the set of node representations via a readout function
gϕ : Rn×d′ → Rd′

, such that gϕ(fθ(G)) outputs a low-dimensional vector for graph G which can be
used in graph-level tasks. We use Θ to denote all the model parameters.

Graph Contrastive Learning by Topology Augmentation. GCL methods generally apply graph
augmentation to perturb the input graph and decrease the amount of information inherited from the
original graph; then they leverage the InfoMax principle (Hjelm et al., 2018) over the perturbed graph
views such that an encoder is trained to capture the remaining information. Given a graph G ∈ G with
adjacency matrix A, we denote a topology augmentation scheme as T (A) and a sampled augmented
view as t(A) ∼ T (A). GCL with two-branch augmentation can be formulated as follows:

GCL : min
Θ
LGCL(t1(A), t2(A),Θ), s.t. ti(A) ∼ Ti(A), i ∈ {1, 2} (1)

where the contrastive loss LGCL measures the disagreement between representations from contrastive
positive pairs. The topology augmentation scheme determines a distribution from which perturbed
graphs are sampled in augmented views, and its detailed formulation will be presented in Section 5.

4 STRUCTURAL INVARIANCE MATTERS IN GCL

Structural Invariance. Despite that multiple topology augmentation methods have been proposed,
little effort is made to answer a fundamental question: what invariance information should GCL
capture? We argue that an ideal GCL encoder should preserve structural invariance, which is defined
as the invariance of the encoder’s output when perturbing a constrained number of edges that cause
large changes to the structural properties of the input graph:

LGCL(A, t(A),Θ) ≤ σ, s.t. t(A) = argmax∥A−t(A)∥1≤ϵD(p(A), p(t(A))) (2)

where D(·, ·) is a distance metric, and p(·) can be defined as a vector-valued function of the graph’s
structural properties, such as the diameter of the graph, whether the graph is connectivity, the
clustering coefficient, etc. One may focus on particular properties when designing the function p(·).
To realize structural invariance via GCL, effective augmentation should focus on sensitive edges
whose perturbation can easily cause large property change. Then by minimizing the contrastive loss
LGCL, the edges causing structural instability are regarded as noise, and the information related to
these edges will be ignored by the encoder, inspired by the InfoMin principle (Tian et al., 2020).

Capturing structural invariance requires the topology augmentation to identify the sensitivity of edges
to the structural properties, while the augmentation with uniformly random edge perturbation fails
to realize this. The discrepancy motivates the following pre-analysis to demonstrate a potential
opportunity of improvement upon uniform perturbation.
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Figure 1: Comparison between uniform
and clustered augmentations.

Pre-analysis. We apply GRACE (Zhu et al., 2020) on the
Cora dataset, and compare the original uniformly random
augmentation in GRACE with a simple heuristic based on
the clustering property of nodes. We take the clustering
property as an example to demonstrate our insight, as it
is an intuitive manifestation among many structural prop-
erties. To be more specific, we compare two topology
augmentation heuristics: 1) uniform augmentation that
removes edges uniformly random; 2) clustered augmen-
tation that flips edges between different node clusters with
a larger probability, which can cause large changes to the
clustering property of the graph suggested by recent studies (Chiplunkar et al., 2018; Lin et al., 2021).
We use the original graph in one augmentation branch, and compare GCL performance under the
uniform or the clustered augmentation in the other branch. More experiment details are provided in
Appendix C.1. The downstream node classification performance evaluated by F1 score is compared
in Figure 1a. We can clearly observe that under the same perturbation budget indicated by the x-axis,
the cluster-based strategy achieves better performance on the downstream task. The performance gap
between these two simple strategies suggests a distinct opportunity to improve over the uniformly
random augmentation by considering structural invariance.

From Structural Invariance to Spectral Invariance. Directly capturing structural invariance for
GCL is nontrivial, as it requires simultaneous characterization of multiple structural properties.
Fortunately, recent studies show that graph spectrum is a comprehensive summary of many graph
structural properties (Chung & Graham, 1997; Lee et al., 2014), including clustering, connectivity
and etc. For example, the change on clustering property (by perturbing inter-cluster edges) can be
reflected on the graph spectrum: 1) empirically, Figure 1b compares the spectral change (measured
by the L2 distance of graph spectrum between the original and the augmented graph), and we can
observe a larger spectral change for the cluster-based augmentation; 2) theoretically, we can also
prove that the edge flips between different clusters causing larger clustering change result in larger
spectral change, as discussed in Appendix D.6. Therefore, we can use graph spectrum as a ladder to
capture structural properties, and propose spectral invariance as a proxy of structural invariance.

Spectral invariance requires the encoder’s output to stay similar when perturbing edges that cause
large changes to the graph spectrum. Formally, it is defined as:

LGCL(A, t(A),Θ) ≤ σ, s.t. t(A) = argmax∥A−t(A)∥1≤ϵD(eig(Lap(A)), eig(Lap(t(A)))) (3)

where the distance between two graph structures is measured on the graph spectrum. An effective
topology augmentation should pay more attention to sensitive edges that introduce large disturbances
to the graph spectrum, whose influence should then be eliminated by contrastive learning. Unlike the
proof-of-concept cluster-based heuristic, we aim on designing a principled augmentation by directly
maximizing the spectral change.

5 SPECTRAL AUGMENTATION ON GRAPHS

In this section, we introduce our SPectral AugmentatioN (SPAN) on graph topology to preserve
spectral invaraince in GCL. We first define the edge perturbation based topology augmentation
scheme determined by a Bernoulli probability matrix. Based on that, we formulate our augmentation
principle as a spectral change maximization problem.

Edge Perturbation Based Augmentation Scheme. We focus on topology augmentation using
edge perturbation. Following the GCL formulation in Eq. 1, we define topology augmentation
T (A) as a Bernoulli distribution B(∆ij) for each entry Aij . All Bernoulli parameters constitute
a probability matrix ∆ ∈ [0, 1]n×n. We can sample an edge perturbation matrix E ∈ {0, 1}n×n,
where Eij ∼ B(∆ij) indicates whether to flip the edge between node i and j, and the edge is flipped
if Eij = 1 otherwise remaining unchanged. A sampled augmented graph is then obtained via:

t(A) = A+C ◦E, C = Ā−A (4)

where Ā is the complement matrix of the adjacency matrix A, calculated by Ā = 1n1
⊤
n − In −A,

with (1n1
⊤
n − In) denoting the fully-connected graph without self-loops. Therefore, C = Ā−A ∈

{−1, 1}n×n denotes legitimate edge adding or removing operations for each node pair: edge adding
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between node i and j is allowed if Cij = 1, and edge removing is allowed if Cij = −1. Taking the
Hadamard product C ◦E finally gives valid edge perturbations to the graph.

Since E is a matrix of random variables following Bernoulli distributions, the expectation of sampled
augmented graphs in Eq. 4 is E[t(A)] = A +C ◦∆. Therefore, the design of ∆ determines the
topology augmentation scheme. Taking uniformly random edge removal as an example, the entry
∆ij is set as a fixed dropout ratio if Cij = −1; and 0 otherwise. While we focus on edge perturbation,
an extension of the proposed principle to node dropping augmentation is discussed in Appendix E.

Spectral Change Maximization. Motivated by our observation in Section 4, instead of setting
fixed values for ∆ as in uniform perturbation, we propose to optimize it guided by graph spectrum.
Specifically, we aim to search for ∆ that in expectation maximizes the spectral difference between
the original graph and the augmented graph. Note that while the perturbations are sampled from ∆
via the resulting Bernoulli distributions, ∆ on all edges is jointly optimized. Denoting the normalized
Laplacian matrix of A as Lap(A), the graph spectrum can be calculated by Λ = eig(Lap(A)). We
formulate the following problem to search for the desired ∆ in a single augmentation branch:

Single-way scheme SPANsingle: max
∆∈S

∥eig(Lap(A+C ◦∆))− eig(Lap(A))∥22 (5)

where S = {s|s ∈ [0, 1]n×n, ∥s∥1 ≤ ϵ} and ϵ controls the perturbation strength. By solving Eq. 5,
we obtain the optimal Bernoulli probability matrix ∆∗, from which augmented views are sampled
that in expectation differ the most from the original graph in graph spectrum. Eq. 5 only provides
one augmented view; to further introduce flexibility for a two-branch augmentation framework and
enlarge the spectral difference between the resulting two views, we extend Eq. 5 as follows:

Double-way SPANdouble: max
∆1,∆2∈S

∥eig(Lap(A+C ◦∆1))− eig(Lap(A+C ◦∆2))∥22 (6)

where ∆i is the Bernoulli probability matrix for augmentation branch i’s scheme Ti(A) in Eq. 1.
Note that Eq. 5 is a special case of Eq. 6 when setting ∆2 = 0. Eq. 6 gives better flexibility yet
also makes the optimization problem harder to solve; thus based on triangle inequality, we maximize
its lower bound instead: max∆1,∆2∈S ∥eig(Lap(A+C ◦∆1))∥22 − ∥eig(Lap(A+C ◦∆2))∥22.
Therefore, ∆1 and ∆2 can be independently optimized towards opposite directions: maximizing the
spectral norm in one branch, while minimizing it in the other, which leads to the final objective:

Opposite-direction scheme SPANopposite : max
∆1∈S

LGS(∆1), and min
∆2∈S

LGS(∆2) (7)

where LGS(∆) = ∥eig(Lap(A+C ◦∆))∥22 measures the Graph Spectral norm under augmentation
scheme with ∆. For scheme T1(A), ∆1 produces views that overall have larger spectral norm than
the original graph, while for T2(A), ∆2 produces views with smaller spectrum. We can understand
them as setting a spectral boundary for the input graph such that the encoder is trained to capture
information that is essential and robust regarding perturbations within this region.

Optimizing ∆1 and ∆2. Eq. 7 can be solved via projected gradient descent (for ∆2) or ascent (for
∆1). Taking ∆2 as an example, its update works as follows:

∆
(t)
2 = PS [∆

(t−1)
2 − ηt∇LGS(∆

(t−1)
2 )] (8)

where ηt > 0 is the learning rate for step t, and PS(a) = argmins∈S∥s− a∥22 is the projection
operator at a over the constraint set S . The gradient ∇LGS(∆

(t−1)
2 ) can be calculated via chain rule,

with a closed-form gradient over eigenvalues: for a real and symmetric matrix L, the derivatives of its
k-th eigenvalue λk is ∂λk/∂L = uku

⊤
k (Rogers, 1970), where uk is the corresponding eigenvector.

Note that the derivative calculation requires distinct eigenvalues, which does not hold for graphs
satisfying automorphism (Godsil, 1981). To avoid such cases, we add a small noise term to the
adjacency matrix1, e.g., A+C ◦∆+ ε× (N+N⊤)/2, where each entry in N is sampled from
a uniform distribution U(0, 1) and ε is a very small constant. Such a noise addition will almost
surely break the graph automorphism, thus enabling a valid gradient calculation of eigenvalues. The
convergence of optimizing opposite ∆1 and ∆2 is empirically shown in Appendix D.7. Meanwhile,
the behavior of spectral augmentation in the spatial domain is analyzed in Appendix D.6.

Scalability. For T iterations, the time complexity of optimizing such a scheme is O(Tn3) due
to the eigen-decomposition eig(·) in LGS, which is prohibitively expensive for large graphs. To

1The form of (N+N⊤)/2 is to keep the perturbed adjacency matrix symmetric for undirected graphs.
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Figure 2: A GCL instantiation using SPAN. The augmentation scheme is pre-computed, and the
augmented views are sampled from the scheme. The contrastive objective is to maximize the cross-
level mutual information between node and graph representations.

reduce the computational cost, instead of conducting eigen-decomposition on the full graph spectrum,
we appeal to selective eigen-decomposition on K lowest- and highest-eigenvalues via the Lanczos
Algorithm (Parlett & Scott, 1979). We consider both low and high eigenvalues in estimating the
spectral change, because they play important roles in graph analysis and GNN design, as discussed
in Appendix A. More detailed analysis of eigenvalues and the performance when varying K on
real-world graphs are provided in Appendix D.2. Th time complexity is reduced to O(TKn2) 2, and
the empirical running time for pre-computing the augmentation scheme is provided in Appendix D.1
We can further improve the scalability using practical treatments for large graphs (Qiu et al., 2020)
(e.g., ego-nets sampling, batch training), which is left as our future work.

6 DEPLOYING SPAN IN GCL

We provide an instantiation of GCL with the proposed spectral augmentation, termed GCL-SPAN, as
illustrated in Figure 2. Its detailed description can be found in Appendix B. Note that our focus is on
the augmentation, and this GCL instantiation using widely-adopted designs is purposely to showcase
how easily one can plug SPAN in most GCL frameworks.

The augmentation scheme can be first set up by pre-computing the probability matrices ∆1 and ∆2

based on Eq. 7. For each iteration of contrastive learning, we sample two augmented graphs for the
input graph: t1(A) ∼ T (A|∆1) and t2(A) ∼ T (A|∆2). The augmented graphs are then fed into a
GNN encoder fθ, which outputs two sets of node representations H(1),H(2) ∈ Rn×d′

. A readout
pooling function gϕ is applied to aggregate and transform the node representations and obtain graph
representations z(1), z(2) ∈ Rd′

. Following (Velickovic et al., 2019; Hassani & Khasahmadi, 2020),
given training graphs G, we adopt the contrastive objective LGCL that maximizes the cross-level
correspondence between local node and global graph representations, which is to preserve local
similarities and global invariants:

GCL-TAGS : min
θ,ϕ
LGCL(t1(A), t2(A), θ, ϕ) = − 1

|G|
∑
G∈G

(
1

n

n∑
i=1

(
I(H

(1)
i , z(2)) + I(H

(2)
i , z(1))

))
s.t. ti(A) ∼ T (A|∆i), i ∈ {1, 2},∆1 = argmax∆∈S LGS(∆),∆2 = argmin∆∈S LGS(∆) (9)

where I(X1, X2) calculates the mutual information between variables X1 and X2, and it can be
lower bounded by InfoNCE (Van den Oord et al., 2018; Poole et al., 2019). Specifically, denoting
cosine similarity as cos(·, ·), we estimate the mutual information as follows:

I(H
(a)
i , z(b)) = log

exp(cos(H(a)
i , z(b)))∑n

j=1 exp(cos(H̃j , z(b)))
(10)

where a and b index the augmented views, and H̃ is the node representations for negative examples in
the batch. Note that the optimization of augmentation scheme is a one-time pre-computation thus does
not introduce any extra complexity to the contrastive learning process. The proposed augmentation
can be paired with other advanced choices in the contrastive paradigm, such as dynamic dictionary
and moving-average encoder (He et al., 2020; Qiu et al., 2020) to fit different application scenarios.

2Since we only require to precompute ∆1 and ∆2 once, the time complexity is totally acceptable.
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Table 1: Node classification performance in unsupervised setting. The metric is accuracy (%). The
best and second best results are highlighted with bold and underline respectively.

Dataset Cora Citeseer PubMed Wiki-CS Amazon-Computer Amazon-Photo Coauthor-CS

Raw-X 48.93±0.00 50.81±0.00 68.33±0.00 71.98±0.00 73.81±0.00 78.53±0.00 90.37±0.00
S-GCN 81.34±0.35 70.42±0.45 79.82±0.41 77.19±0.12 86.51±0.54 92.42±0.16 93.03±0.31
R-GCN 56.44±0.24 63.52±0.25 73.92±0.32 72.95±0.58 82.46±0.38 90.08±0.48 90.64±0.29

B
as

el
in

es

GRACE 83.33±0.43 72.10±0.54 78.72±0.13 80.14±0.48 89.53±0.35 92.78±0.30 91.12±0.20
BGRL 83.63±0.38 72.52±0.40 79.83±0.25 79.98±0.13 90.34±0.19 93.17±0.30 93.31±0.13
GBT 80.24±0.42 69.39±0.56 78.29±0.43 76.65±0.62 88.14±0.33 92.63±0.44 92.95±0.17
MVGRL 85.16±0.52 72.14±1.35 80.13±0.84 77.52±0.08 87.52±0.11 91.74±0.07 92.11±0.12
GCA 83.67±0.44 71.48±0.26 78.87±0.49 78.35±0.05 88.94±0.15 92.53±0.16 93.10±0.01
GMI 83.02±0.33 72.45±0.12 79.94±0.25 74.85±0.08 82.21±0.31 90.68±0.17 91.08±0.56
DGI 82.34±0.64 71.85±0.74 76.82±0.61 75.35±0.14 83.95±0.47 91.61±0.22 92.15±0.63

GCL-SPAN 85.86±0.57 72.76±0.63 81.54±0.24 82.13±0.15 90.09±0.32 93.52±0.26 93.91±0.24

7 EXPERIMENTS

Experiment Setup: We perform evaluations for node classification, graph classification and regres-
sion tasks under unsupervised learning, transfer learning and adversarial attack settings. Following
prior works (Zhu et al., 2021; Thakoor et al., 2021; Veličković et al., 2019) , we use GCN (for node
prediction tasks) and GIN (for graph prediction tasks) as the base encoder fθ for all methods to
demonstrate the performance gain from contrastive learning. We adopt the following evaluation
protocol for downstream tasks (Suresh et al., 2021): based on the representations given by the encoder,
we train and evaluate a Logistic classifier or a Ridge regressor. We repeat our experiments for 10
times and report the mean and standard derivation of the evaluation metrics. The experimental details
about datasets, baselines and configurations can be found in Appendix C.

7.1 UNSUPERVISED LEARNING

To evaluate the quality of learned representations, a linear model is trained for the downstream tasks
using these learned representations as features and the resulting prediction performance is reported.
The effectiveness of SPAN is evaluated on both node- and graph-level prediction tasks.

Node Classification Task. We first evaluate the effectiveness of SPAN on node classification
datasets ranging from citation networks to co-purchase networks. We compare against GCL methods
that augment topology with uniformly random edge perturbation (e.g., GRACE (Zhu et al., 2020),
BGRL (Thakoor et al., 2021), GBT (Bielak et al., 2021)), centrality (GCA (Zhu et al., 2021)),
diffusion matrix (MVGRL (Hassani & Khasahmadi, 2020)) and the original graph (e.g., GMI (Peng
et al., 2020) and DGI (Veličković et al., 2019)). As a reference, we also consider a fully semi-
supervised GCN (S-GCN), a randomly initialized untrained GCN (R-GCN) and using the raw node
features as node representations (Raw-X). All the methods exploit a 2-layer GCN as backbone and a
downstream linear classifier with the same hyper-parameters for a fair comparison. We adopt random
feature masking in SPAN, following the setup in SOTA works (Zhu et al., 2021; Bielak et al., 2021).

Table 1 compares the instantiation GCL-SPAN with baselines. Comparing GCL-SPAN with MVGRL
and GCA which augment graphs via domain knowledge (e.g., node centrality or graph diffusion),
the performance gain suggests the advantage of the spectral augmentation over previous domain-
knowledge based heuristics. Meanwhile, SPAN is shown to be more effective than the uniformly
random augmentation adopted in GRACE, BGRL and GBT. To demonstrate the direct gain of SPAN,
we also compare the performance of directly plugging our proposed augmentation into several existing
frameworks in Appendix D.3; and to compare the effectiveness of different augmentation schemes,
we compare the performance when using different augmentation schemes for our GCL instantiation
in Appendix D.5. These experiments show promising improvement by our proposed SPAN.
Graph Prediction Task. We test on multiple graph classification and regression datasets ranging
from social networks, chemical molecules to biological networks. We compare SPAN with five GCL
methods including InfoGraph (Sun et al., 2019), GraphCL (You et al., 2020a), MVGRL (Hassani
& Khasahmadi, 2020), AD-GCL (with fixed regularization weight) (Suresh et al., 2021) and JOAO
(v2) (You et al., 2021). We use a 5-layer GIN encoder for all methods, including a semi-supervised
S-GIN and a randomly initialized R-GIN. A readout function with a graph pooling layer and a 2-layer
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Table 2: Graph representation learning performance in unsupervised setting. TOP shows the biochem-
ical and social network classification results on TU datasets (measured by accuracy%). BOTTOM
shows the regression (measured by RMSE) and classification (measured by ROC-AUC%) results on
OGB datasets. The best and second best results are highlighted with bold and underline respectively.

Dataset Biochemical Molecules Social Networks

NCI1 PROTEINS MUTAG DD COLLAB RDT-B RDT-M5K IMDB-B IMDB-M

S-GIN 78.27±1.35 72.39±2.76 90.41±4.61 74.87±3.56 74.82±0.92 86.79±2.04 53.28±3.17 71.83±1.93 48.46±2.31
R-GIN 62.98±0.10 69.03±0.33 87.61±0.39 74.22±0.30 63.08±0.10 58.97±0.13 27.52±0.61 51.86±0.33 32.81±0.57

B
as

el
in

es

InfoGraph 68.13±0.59 72.57±0.65 87.71±1.77 75.23±0.39 70.35±0.64 78.79±2.14 51.11±0.55 71.11±0.88 48.66±0.67
GraphCL 68.54±0.55 72.86±1.01 88.29±1.31 74.70±0.70 71.26±0.55 82.63±0.99 53.05±0.40 70.80±0.77 48.49±0.63
MVGRL 68.68±0.42 74.02±0.32 89.24±1.31 75.20±0.55 73.10±0.56 81.20±0.69 51.87±0.65 71.84±0.78 50.84±0.92
AD-GCL 69.67±0.51 73.59±0.65 89.25±1.45 74.49±0.52 73.32±0.61 85.52±0.79 53.00±0.82 71.57±1.01 49.04±0.53
JOAO 72.99±0.75 71.25±0.85 85.20±1.64 66.91±1.75 70.40±2.21 78.35±1.38 45.57±2.86 71.60±0.86 51.14±0.69

GCL-SPAN 71.43±0.49 75.78±0.41 89.12±0.76 75.78±0.52 75.01±0.45 83.62±0.64 54.10±0.49 73.65±0.69 52.16±0.72

Dataset Regression (Metric: RMSE) Classification (Metric: ROC-AUC%)

molesol mollipo molfreesolv molbace molbbbp molclintox moltox21 molsider

S-GIN 1.173±0.057 0.757±0.018 2.755±0.349 72.97± 4.00 68.17±1.48 88.14±2.51 74.91±0.51 57.60±1.40
R-GIN 1.706±0.180 1.075±0.022 7.526±2.119 75.07±2.23 64.48±2.46 72.29±4.15 71.53±0.74 62.29±1.12

B
as

el
in

es

InfoGraph 1.344±0.178 1.005±0.023 10.005±4.819 74.74±3.64 66.33±2.79 64.50±5.32 69.74±0.57 60.54±0.90
GraphCL 1.272±0.089 0.910±0.016 7.679±2.748 74.32±2.70 68.22±1.89 74.92±4.42 72.40±1.01 61.76±1.11
MVGRL 1.433±0.145 0.962±0.036 9.024±1.982 74.20±2.31 67.24±1.39 73.84±4.25 70.48±0.83 61.94±0.94
AD-GCL 1.217±0.087 0.842±0.028 5.150±0.624 76.37±2.03 68.24±1.47 80.77±3.92 71.42±0.73 63.19±0.95
JOAO 1.285±0.121 0.865±0.032 5.131±0.722 74.43±1.94 67.62±1.29 78.21±4.12 71.83±0.92 62.73±0.92

GCL-SPAN 1.218±0.052 0.802±0.019 4.531±0.463 76.74±2.02 69.59±1.34 80.28±2.42 72.83±0.62 64.87±0.88

MLP is applied to generate graph representations. We adopt the given data split for OGB dataset, and
use 10-fold cross validation for TU dataset as it does not provide such a split.

Table 2 summarizes the graph prediction performance. GCL-SPAN gives the best results on 13
out of 17 datasets, of which 10 are significantly better than others. Compared with GraphCL and
JOAO which select the best combination of augmentations for each dataset from a pool of methods
including edge perturbation, node dropping and subgraph sampling, GCL-SPAN using only edge
perturbation based augmentation still outperforms them. This suggests the effectiveness of graph
spectrum in guiding topology augmentation. Compared with MVGRL, our performance gain mainly
comes from the augmentation scheme, as these two methods share similar contrastive objectives,
and our augmentation guided by graph spectrum is clearly more effective than the widely adopted
uniformly random augmentation. While AD-GCL and GCL-SPAN follow a similar principle to
remove edges that carry non-important and redundant information, GCL-SPAN is more flexible since
the augmentation scheme is optimized in an independent pre-computation step without interfering
with the contrastive learning procedure.

7.2 TRANSFER LEARNING

This experiment evaluates the generalizability of the GNN encoder, which is pre-trained on a source
dataset and re-purposed on a target dataset. Table 3 reports the performance on chemical and

Table 3: Graph classification performance in transfer learning setting on molecular classification
task. The metric is ROC-AUC%. The best and second best results are shown in bold and underline.

Dataset Pre-Train ZINC-2M PPI-306K

Fine-Tune BBBP Tox21 SIDER ClinTox BACE HIV MUV ToxCast PPI

No-Pre-Train-GIN 65.8±4.5 74.0±0.8 57.3±1.6 58.0±4.4 70.1±5.4 75.3±1.9 71.8±2.5 63.4±0.6 64.8±1.0

B
as

el
in

es

InfoGraph 68.8±0.8 75.3±0.5 58.4±0.8 69.9±3.0 75.9±1.6 76.0±0.7 75.3±2.5 62.7±0.4 64.1±1.5
GraphCL 69.7±0.7 73.9±0.7 60.5±0.9 76.0±2.7 75.4±1.4 78.5±1.2 69.8±2.7 62.4±0.6 67.9±0.9
MVGRL 69.0±0.5 74.5±0.6 62.2±0.6 77.8±2.2 77.2±1.0 77.1±0.6 73.3±1.4 62.6±0.5 68.7±0.7
AD-GCL 70.0±1.1 76.5±0.8 63.3±0.8 79.8±3.5 78.5±0.8 78.3±1.0 72.3±1.6 63.1±0.7 68.8±1.3
JOAO 71.4±0.9 74.3±0.6 60.5±0.7 81.0±1.6 75.5±1.3 77.5±1.2 73.7±1.0 63.2±0.5 64.0±1.6

GCL-SPAN 70.0±0.7 78.0±0.5 64.7±0.5 80.7±2.1 79.9±0.7 77.8±0.6 73.8±0.9 64.2±0.4 70.0±0.8
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Table 4: Node classification performance on Cora in adversarial attack setting (measured by accu-
racy%). The best and second best results are highlighted with bold and underline respectively.

Attack Clean Random DICE GF-Attack Mettack

Ratio σ 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2

S-GCN 81.34±0.35 81.11±0.32 80.02±0.36 79.42±0.37 78.37±0.42 80.12±0.33 79.43±0.32 50.29±0.41 31.04±0.48

B
as

el
in

es

GRACE 83.33±0.43 83.23±0.38 82.57±0.48 81.28±0.39 80.72±0.44 82.59±0.35 80.23±0.38 67.42±0.59 55.26±0.53
BGRL 83.63±0.38 83.12±0.34 83.02±0.39 82.83±0.48 81.92±0.39 82.10±0.37 80.98±0.42 70.23±0.48 60.42±0.54
GBT 80.24±0.42 80.53±0.39 80.20±0.35 80.32±0.32 80.20±0.34 79.89±0.41 78.25±0.49 63.26±0.69 53.89±0.55
MVGRL 85.16±0.52 85.28±0.49 84.21±0.42 83.78±0.35 83.02±0.40 83.79±0.39 82.46±0.52 73.43±0.53 61.49±0.56
GCA 83.67±0.44 83.33±0.46 82.49±0.37 82.20±0.32 81.82±0.45 81.83±0.36 79.89±0.47 58.25±0.68 49.25±0.62
GMI 83.02±0.33 83.14±0.38 82.12±0.44 82.42±0.44 81.13±0.49 82.13±0.39 80.26±0.48 60.59±0.54 53.67±0.68
DGI 82.34±0.64 82.10±0.58 81.03±0.52 80.48±0.38 79.89±0.43 81.30±0.54 79.88±0.58 71.42±0.63 63.93±0.58

GCL-SPAN 85.86±0.57 86.29±0.52 86.21±0.78 85.52±0.59 84.30±0.63 85.08±0.77 84.28±0.82 77.28±0.82 69.92±0.83

biological graph classification datasets from (Hu et al., 2020b). Appendix C.5 studies an even
more challenging setting (Qiu et al., 2020) where the encoder is pre-trained on social networks and
transferred to multiple out-of-domain tasks. A reference model without pre-training (No-Pre-Train-
GIN) is compared to demonstrate the gain of pre-training. GCL-SPAN is shown to be more effective
in learning generalizable encoders, which supports our augmentation principle: by perturbing edges
that cause large spectral changes, the encoder is pre-trained to ignore unreliable structural information,
such that the relationship between such information and downstream labels can be removed to mitigate
the overfitting issue. The generalizability of the GNN encoder on molecule classification depends
on the structural fingerprints such as subgraphs (Duvenaud et al., 2015). JOAO and GraphCL using
subgraph sampling augmentation is outperformed by GCL-SPAN, which suggests that the graph
spectrum could be another important fingerprint to study chemical and biological molecules.

7.3 ADVERSARIAL ROBUSTNESS

This setting demonstrates the robustness of GCL when the input graph is adversarially poisoned.
The augmentation scheme is optimized and the representations are learned from graphs poisoned by
different structural attack strategies, including Random (which randomly flips edges), DICE (Waniek
et al., 2018) (which deletes edges internally and connects nodes externally across classes), GF-
Attack (Chang et al., 2020) (which maximizes a low-rank matrix approximation loss) and Met-
tack (Zügner & Günnemann, 2019) (which maximizes the training loss via meta-gradients). We test
the perturbation ratios σ ∈ {0.05, 0.2}: σ ×m edges are flipped for a graph with m edges.

Table 4 reports the node classification performance under the adversarial attacks. The encoders
learned by GCL methods with graph augmentations are generally more robust to perturbed graphs
compared with S-GCN. GCL-SPAN outperforms baselines with a clear margin, which demonstrates
a good property of SPAN: even though it is not explicitly designed for adversarial robustness, the
encoder can stay invariant to the adversarially perturbed graph if its spectrum falls into the range
captured by the opposite-direction augmentation scheme. Compared with the parallel efforts in
designing robust GNNs (Entezari et al., 2020; Zhu et al., 2019; Jin et al., 2020b), we provide a new
insight using graph spectrum as a tool to study graph invariance under perturbations.

8 CONCLUSION

In this work, we proposed a principled spectral augmentation scheme which generates topology
augmentations by perturbing graph spectrum. Our principle is that a well-behaving GNN encoder
should preserve spectral invariance to sensitive structures that could cause large changes on graph
spectrum. To achieve this goal, we search for the augmentation scheme that would mostly change
the graph spectrum of the input graph, which further leads to an opposite-direction augmentation
scheme that changes the graph spectrum towards opposite directions in two views. The proposed
augmentation can be paired with various GCL frameworks, and the extensive experiments demonstrate
the performance gain by the proposed augmentation method. Currently we only focus on topology
augmentation, and ignore its interplay with node features, which is another important dimension in
GCL. Recent studies show the relationship between graph homophily/heterophily and GNNs, which
suggests a future effort to explore the alignment between graph topology and node features in GCL.
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A A REVIEW OF GRAPH SPECTRUM

Graph spectrum plays a significant role in analyzing graph property (e.g., connectivity, cluster
structure, diameter etc.) and is the foundation of spectral filters in GNNs. This motivates us to guide
our proposed topology augmentation method using graph spectrum.

Graph Spectrum and Graph Property. The graph spectrum summarizes important properties
related to a graph’s global structure, which has been studied in graph spectral theory. We list some
widely discussed properties revealed by graph spectrum to support our design: graph spectrum can
be used as a comprehensive proxy for capturing graph properties in GCL.

• Algebraic connectivity (Chung & Graham, 1997), also known as Fiedler eigenvalue, of a graph is
the second-smallest eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix.
This eigenvalue is greater than 0 if and only if the graph is a connected graph. A corollary is
that the number of times 0 appears as an eigenvalue in the Laplacian is the number of connected
components in the graph. The magnitude of this value reflects how well connected the overall
graph is.

• Diameter of a graph can be upper and lower bounded from its spectrum (Chung & Graham, 1997).
If the graph has r distinct eigenvalues, its diameter d is at most r − 1. Meanwhile, if the graph
has m edges and n nodes, we can bound the diameter by the first and second smallest non-zero
eigenvalues as 1/2mλ1 ≥ d ≥ 4/nλ2. For all k ≥ 2, we also have d ≤ k log n/λk.

• Clusterability of a graph reveals how easy it is to partition the graph, which can be captured by
the differences between the smallest successive eigenvalues of connected graphs. The difference
between the first two eigenvalues, often referred to as the spectral gap, upper and lower bounds
the graph expansion and conductance by the Cheeger inequality (Kahale, 1995). Nevertheless,
analogous results also hold for higher-order eigenvalues (Lee et al., 2014).

• Diffusion distance (Hammond et al., 2013) between two nodes vi and vj can be defined as
D(vi, vj) = ∥[ϕ(L)]i,: − [ϕ(L)]j,:∥22 =

∑n
l=1 ϕ(λl)

2(ul[i]− ul[j])
2, where ϕ(L) = Uϕ(Λ)U⊤

and ϕ(x) is a decreasing kernel function such as ϕ(x) = e−tx. Therefore, a map that sepa-
rates nodes with a specific diffusion distance is obtained when embedding graph nodes using
eigenvectors.

Graph Spectrum and GNNs. By viewing GNN models from a signal processing perspective, the
normalized Laplacian Lnorm serves as a graph shift operator and defines the frequency domain of
a graph. As a result, its eigenvectors U can be considered as the graph Fourier bases, and the
eigenvalues Λ (a.k.a., graph spectrum) correspond to the frequency components. Take one column
of node features X as an example of graph signal, which can be compactly represented as x ∈ Rn.
The graph Fourier transform of graph signal x is given by x̂ = U⊤x and the inverse graph Fourier
transform is then x = Ux̂. The graph signals in the Fourier domain are filtered by amplifying or
attenuating the frequency components Λ.

At the essence of GNNs is the spectral convolution, which can be defined as the multiplication of a
signal vector x with a spectral filter gϕ in the Fourier domain (Defferrard et al., 2016):

gϕ(L) ⋆ x = g(UΛU⊤)x = Ugϕ(Λ)U⊤x (11)

The filter gϕ defines a smooth transformation function of the graph spectrum. One can apply a
spectral filter and graph Fourier transformation to manipulate graph signals in various way, such as
smoothing and denoising (Schaub & Segarra, 2018), abnormally detection (Miller et al., 2011) and
clustering (Wai et al., 2018). Here we show how the spectral convlution is defined in two popular
GNNS used in our experiments: GCN (Kipf & Welling, 2017) and GIN (Xu et al., 2019).

The vanilla GCN (Kipf & Welling, 2017) is a first-order approximation of Chebyshev polynomial
filter (Hammond et al., 2011) with gϕ(Λ) = (2 − Λ)ϕ , and the corresponding convolution for
d-dimensional signal X is:

gGCN
ϕ (L) ⋆X = U(2−Λ)U⊤XΦ = (In +D−1/2AD−1/2)XΦ = D̃−1/2ÃD̃−1/2XΦ (12)

where Φ ∈ Rd×d′
is the matrix of spectral filter parameters, and a renormalization trick In +

D−1/2AD−1/2 → D̃−1/2ÃD̃−1/2 is applied by adding self-loop Ã = A+ In. GIN (Xu et al.,
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2019) with equal discriminative power as WL test designs spectral convolution as:

gGIN
ϕ (L) ⋆X = U(2 + ϵ−Λ)U⊤XΦ = (In(1 + ϵ) +D−1/2AD−1/2)XΦ (13)

where ϵ can be a learnable parameter or a fixed scalar. Since the spectral filters gϕ(Λ) are the key in
graph convolutions to encode graph signals that are transformed in the Fourier domain. The output of
the spectral filters is then transformed back to the spatial domain to generate node representations.
Therefore, we aim to augment graphs to influence the graph spectrum and the filtered graph signals,
such that the encoder with altered spectral filters is encouraged to stay invariant to such perturbations
through GCL.

Some recent literature has shown that graph spectrum is closely related to GNNs’ performance. For
example, it is proved that the generalization gap of a single layer GCN model trained via T -step
SGD is O(λ2T

n ), where λn is the largest eigenvalue of graph Laplacian (Verma & Zhang, 2019).
Meanwhile, Weinberger et al. (2006) proved that a generalization estimate is inversely proportional
to the second smallest eigenvalue of the graph Laplacian λ2. More recent works (Chang et al., 2021b;
Luan et al., 2021; Bo et al., 2021) reveal that both low and high eigenvalues are important for better
graph representation learning to capture both smoothly varying signals and diversified information.

B ALGORITHM OF DEPLOYING SPAN IN GCL

Algorithm 1 illustrates the detailed steps of deploying SPAN in an instantiation of GCL. Note that
only one training graph is included (e.g., L = 1) for node representations learning, and multiple
graphs are used (e.g., L ≥ 2) for graph representation learning.

C EXPERIMENT SETUP DETAILS

This section includes the detailed setup for all experiments, including the procedure of conducting
pre-analysis, datasets, baselines, and hyper-parameter settings. The experiments were performed on
Nvidia GeForce RTX 2080Ti (12GB) GPU cards for most datasets, and RTX A6000 (48GB) cards for
PubMed and Coauthor-CS datasets. Optimizing memory use for large graphs will be our future work.

C.1 PRE-ANALYSIS EXPERIMENT OF FIGURE 1

We now introduce the detailed information to reproduce Figure 1 on Cora. This experiment is to show
that uniformly random edge perturbation adopted in many GCL methods is not effective enough
to capture structural invariant regarding essential graph properties. In contrast to the uniform edge
perturbation, we created a cluster based strategy as follows: We first grouped the edges among
nodes by whether the end nodes belong to the same cluster (which is given by the spectral clustering
algorithm). For inter-cluster edges, we assign a larger removing probability, while for intra-cluster
edges we assign a smaller removing probability. Note that in expectation, we remove the same
amount of edges as the uniformly random strategy, but allocate different probabilities to these two
groups of edges.

Specifically, an edge removing ratio σ indicated by the x-axis of Figure 1 represents the augmentation
strength: for an input graph with m edges, we remove σ ·m edges to generate an augmented graph.
For the uniformly random augmentation method (Uniform), each edge is assigned an equal removing
probability as σ; for the cluster-based augmentation heuristic (Clustered), given minter inter-cluster
edges and mintra = m−minter intra-cluster edges, we increase the removing probability of each inter-
cluster edge as σinter = min{1.2σ, σ ·m/minter}, and the removing probability of each intra-cluster
edge is decreased to σintra = (σ ·m − σinter ·minter)/mintra to make sure that in expectation σ ·m
edges are removed as in the uniform strategy.

When conducting the contrastive learning procedure, one augmentation branch used the original
graph, and the other branch adopted either the uniform or the clustered strategy with a random feature
masking with ratio 0.3. For these two GCL methods based on different augmentation strategies, the
experiment setup is as follows: both methods used a GCN encoder with the same architecture and
hyper-parameters (e.g., 2 convolutional layers with the embedding dimension of 32). Both performed
1000 training iterations to obtain node representations, whose quality was evaluated by using them as
features for a downstream linear Logistic classifier.
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Algorithm 1: Deploying SPAN in an instantiation of GCL
Input :Data {Gl = (Xl,Al) ∼ G|l = 1 · · · , L}; GNN encoder fθ; Readout function gϕ.
Params :Augmentation optimization step M and learning rate η;

Contrastive learning step N and learning rate β.
Output :Trained encoder fθ∗ and readout function fϕ∗ .

1 /* Lower-level optimization for augmentation scheme in Eq. 9 */
2 for each graph l← 1 to L do
3 Initialize Bernoulli parameters for each graph: ∆(0)

l,1 ∈ [0, 1]n×n,∆
(0)
l,2 ∈ [0, 1]n×n;

4 for t← 1 to M do
5 /* Optimize one direction of scheme: max∆∈S LGS(∆) */

6 LGS(∆
(t−1)
l,1 ) = ∥eig(Lap(A+C ◦∆(t−1)

l,1 ))∥22;

7 ∆
(t)
l,1 ← PS [∆

(t−1)
l,1 + η∇LGS(∆

(t−1)
l,1 )];

8 /* Optimize the other direction of scheme: min∆∈S LGS(∆)

*/
9 LGS(∆

(t−1)
l,2 ) = ∥eig(Lap(A+C ◦∆(t−1)

l,2 ))∥22;

10 ∆
(t)
l,2 ← PS [∆

(t−1)
l,2 − η∇LGS(∆

(t−1)
l,2 )] based on Eq. 8;

11 end
12 ∆l,1 ←∆

(M)
l,1 ,∆l,2 ←∆

(M)
l,2 ;

13 end
14 /* Upper-level optimization for contrastive learning in Eq. 9

*/
15 Initialize encoder and readout function: θ(0), ϕ(0);
16 for t← 1 to N do
17 Sample a batch of graphs {G1, · · · , GQ};
18 /* Sample augmented views for this graph based on Eq. 4 */
19 for l← 1 to Q do
20 Sample perturbations from Bernoulli distributions: El,1 ∼ B(∆l,1),El,2 ∼ B(∆l,2);
21 Calculate topology augmentations: Al,1 = A+C ◦El,1,Al,2 = A+C ◦El,2;
22 Randomly mask node features to obtain Xl,1,Xl,2 following (Zhu et al., 2021; Bielak

et al., 2021) if applicable;
23 Two graph views are generated as Gl,1 = (Xl,1,Al,1), Gl,2 = (Xl,2,Al,2)
24 end
25 /* Optimize contrastive objective minθ,ϕ LGCL */

26 Define L(Gl,1, Gl,2, θ, ϕ) =
1
n

∑n
i=1

(
I(H

(1)
i , z(2)) + I(H

(2)
i , z(1))

)
for Gl;

27 Calculate objective: LGCL(θ
(t−1), ϕ(t−1)) = − 1

Q

∑Q
l=1 L(Gl,1, Gl,2, θ

(t−1), ϕ(t−1));
28 Update the encoder: θ(t) ← θ(t−1) − β∇θLGCL(θ

(t−1), ϕ(t−1));
29 Update the readout function: ϕ(t) ← ϕ(t−1) − β∇ϕLGCL(θ

(t−1), ϕ(t−1));
30 end

Output :Encoder fθ(N) and readout function hϕ(N)
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Table 5: Node classification dataset. The metric is accuracy.

Data Name #Nodes #Edges #Features #Classes Cluster Coefficient

Cora 2,708 5,278 1,433 7 0.2407
Citeseer 3,327 4,552 3,703 6 0.1415
PubMed 19,717 44,324 500 3 0.0602

Wiki-CS 11,701 215,863 300 10 0.4527
Amazon-Computers 13,752 245,861 767 10 0.3441
Amazon-Photos 7,650 119,081 745 8 0.4040
Coauthor-CS 18,333 81,894 6,805 15 0.3425

Table 6: TU Benchmark Datasets (Morris et al., 2020) for graph classifcation task in unsupervised
learning setting. The metric used for classification task is accuracy.

Data Type Name #Graphs Avg. #Nodes Avg. #Edges #Classes

Biochemical Molecules

NCI1 4,110 29.87 32.30 2
PROTEINS 1,113 39.06 72.82 2
MUTAG 188 17.93 19.79 2
DD 1,178 284.32 715.66 2

Social Networks

COLLAB 5,000 74.5 2457.78 3
REDDIT-BINARY 2,000 429.6 497.75 2
REDDIT-MULTI-5K 4,999 508.8 594.87 5
IMDB-BINARY 1,000 19.8 96.53 2
IMDB-MULTI 1,500 13.0 65.94 3

Figure 1a reports the mean and standard derivation of F1 score for 10 runs with different random
seeds, which measures the downstream task performance. Meanwhile, we calculated the eigenvalues
of the normalized Laplacian matrix of the input graph (Λ), the augmented graphs with uniform
strategy (Λ′

uniform) and the augmented graphs with clustered strategy (Λ′
clustered). Figure 1b reports

the L2 distance of eigenvalues between the input and augmented graphs (e.g., ∥Λ−Λ′
uniform∥2 and

∥Λ−Λ′
clustered∥2) to measure the spectral change.

C.2 SUMMARY OF DATASETS

The proposed SPAN is evaluated on 25 graph datasets. Specifically, for the node classification
task, we included Cora, Citeseer, PubMed citation networks (Sen et al., 2008), Wiki-CS hyper-
link network (Mernyei & Cangea, 2020), Amazon-Computer and Amazon-Photo co-purchase net-
work (Shchur et al., 2018), and Coauthor-CS network (Shchur et al., 2018). For the graph classifica-
tion and regression tasks, we employed TU biochemical and social networks (Morris et al., 2020),
Open Graph Benchmark (OGB) (Hu et al., 2020a) and ZINC (Hu et al., 2020b; Gómez-Bombarelli
et al., 2018) chemical molecules, and Protein-Protein Interaction (PPI) biological networks (Hu et al.,
2020b; Zitnik & Leskovec, 2017). We summarize the statistics of these datasets and briefly introduce
the experiment settings on them.

• A collection of datasets were used to evaluate node classification performance in both unsupervised
learning and adversarial attack settings, and Table 5 summarizes the statistics of these datasets.
Cora, Citeseer, PubMed citation networks (Sen et al., 2008) contain nodes representing documents
and edges denoting citation links. The task is to predict the research topic of a document given its
bag-of-word representation. Wiki-CS hyperlink network (Mernyei & Cangea, 2020) consists of
nodes corresponding to Computer Science articles, with edges based on hyperlinks. The task is
to predict the branch of the field about the article using its 300-dimension pretrained GloVe word
embeddings. Amazon-Computer, Amazon-Photo co-purchase networks (Shchur et al., 2018)
have nodes being items and edges representing that two items are frequently bought together. Given
item reviews as bag-of-word node features, the task is to map items to their respective item category.
Coauthor-CS network (Shchur et al., 2018) contains node to be authors and edges to be co-author
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Table 7: OGB chemical molecular datasets (Hu et al., 2020a) for both graph classification and
regression tasks in unsupervised learning setting. The evaluation metric used for regression task is
RMSE, and for classification is ROC-AUC.

Task Type Name #Graph Avg. #Nodes Avg. #Edges #Tasks

Regression
ogbg-molesol 1,128 13.3 13.7 1
ogbg-molipo 4,200 27.0 29.5 1
ogbg-molfreesolv 642 8.7 8.4 1

Classification

ogbg-molbace 1,513 34.1 36.9 1
ogbg-molbbbp 2,039 24.1 26.0 1
ogbg-molclintox 1,477 26.2 27.9 2
ogbg-moltox21 7,831 18.6 19.3 12
ogbg-molsider 1,427 33.6 35.4 27

Table 8: Biological interaction and chemical molecular datasets (Hu et al., 2020b) for graph classifi-
cation task in transfer learning setting. The evaluation metric is ROC-AUC.

Data Type Stage Name #Graph Avg. #Nodes Avg. #Degree

Protein-Protein Interaction Networks Pre-training PPI-306K 306,925 39.82 729.62

Fine-tuning PPI 88,000 49.35 890.77

Chemical Molecules

Pre-training ZINC-2M 2,000,000 26.62 57.72

Fine-tuning

BBBP 2,039 24.06 51.90
Tox21 7,831 18.57 38.58

SIDER 1,427 33.64 70.71
ClinTox 1,477 26.15 55.76

BACE 1,513 34.08 73.71
HIV 41,127 25.52 54.93

MUV 93,087 24.23 52.55
ToxCast 8,576 18.78 38.52

relationship. Given keywords of each author’s papers, the task is to map authors to their respective
field of study. All of these datasets are included in the PyG (PyTorch Geometric) library3.

• Two sets of datasets were used to evaluate graph prediction tasks under the unsupervised learning
setting. TU Datasets (Morris et al., 2020) provides a collection of benchmark datasets, and we
used several biochemical molecules and social networks for graph classification as summarized
in Table 6. The data collection is also included in the PyG library following a 10-fold evaluation
data split. We used these datasets for evaluation of the graph classification task in unsupervised
learning setting. Open Graph Benchmark (OGB) (Hu et al., 2020a) contains datasets for chemical
molecular property classification and regression tasks, which are summarized in Table 7. This data
collection can be load via the OGB platform 4, and we used its processed format available in PyG
library.

• A set of biological and chemical datasets were used to evaluate graph classification task under the
transfer learning setting, summarized in Table 8. Following the transfer learning pipeline in (Hu
et al., 2020b), an encoder was first pre-trained on a large biological Protein-Protein Interaction
(PPI) network or ZINC chemical molecule dataset, and then was evaluated on small datasets from
the same domains.

C.3 SUMMARY OF GCL BASELINES

We compared GCL-SPAN against seven self-supervised learning baselines for node representation
learning, including GRACE (Zhu et al., 2020), its extension GCA (Zhu et al., 2021), BGRL (Thakoor

3https://pytorch-geometric.readthedocs.io/en/latest/index.html
4https://ogb.stanford.edu/docs/graphprop/
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et al., 2021), GBT (Bielak et al., 2021), MVGRL (Hassani & Khasahmadi, 2020), GMI (Peng et al.,
2020) and DGI (Veličković et al., 2019). Meanwhile, five baselines designed for graph representation
learning were compared, including InfoGraph (Sun et al., 2019), GraphCL (You et al., 2020a),
MVGRL (Hassani & Khasahmadi, 2020), AD-GCL (with fixed regularization weight) (Suresh et al.,
2021) and JOAO (v2) (You et al., 2021). In the contrastive objective design of these methods, different
contrastive modes are adopted to compare node-level or graph-level representations. We summarize
them based on their contrastive modes as follows:

• Node v.s. node mode specifies the contrastive examples as node pairs in a local perspective,
which focuses on node-level representation learning to serve node prediction tasks. In particular,
GRACE (Zhu et al., 2020) employs uniformly random edge removing to generate two views,
and treats the same node from two views as positive pairs, and all the other nodes as negatives.
GCA (Zhu et al., 2021) extends GRACE (Zhu et al., 2020) with an adaptive augmentation consid-
ering the node centrality. BGRL (Thakoor et al., 2021) adopts uniformly random edge removing
augmentation and applies a bootstrapping (Grill et al., 2020) framework to avoid collapse without
negative sampling. GBT (Bielak et al., 2021) uses uniformly random edge removing as graph
augmentation and a Barlow-twins (Zbontar et al., 2021) objective to avoid collapse without requir-
ing negative sampling. GMI (Peng et al., 2020) maximizes a general form of graphical mutual
information defined on both features and edges between nodes in input graph and reconstructed
output graph.

• Graph v.s. node mode takes graph and node pairs as contrastive examples to decide whether they
are from the same graph, which obtains both node- and graph-level representations. In particular,
MVGRL (Hassani & Khasahmadi, 2020) maximizes the mutual information between the local
Laplacian matrix and a global diffusion matrix, which obtains both node-level and graph-level
representations that can serve for both node and graph prediction tasks. DGI (Veličković et al.,
2019) proposes to maximize the mutual information between representations of local nodes and
the entire graph, in contrast with a corrupted graph by node shuffling. InfoGraph (Sun et al.,
2019) aims to maximize the mutual information between the representations of entire graphs and
substructures (e.g., nodes, edges and triangles) with different granularity, and it is evaluated on
graph-level prediction tasks.

• Graph v.s. graph mode treats contrastive examples as graph pairs from a global perspective, which
mainly targets on graph-level representation learning for graph prediction tasks. Specifically,
AD-GCL (Suresh et al., 2021) aims to avoid capturing redundant information during the training
by optimizing adversarial graph augmentation strategies in GCL, and designs a trainable non-
i.i.d. edge-dropping graph augmentation. JOAO (You et al., 2021) adopts a bi-level optimization
framework to search the optimal strategy among multiple types of augmentations such as uniform
edge or node dropping, subgraph sampling. GraphCL (You et al., 2020a) extensively studies graph
structure augmentations including random edge removing, node dropping and subgraph sampling.

C.4 HYPER-PARAMETER SETTING

Training Configuration. We summarize the configuration of our GCL framework, including the
GNN encoder and training parameters. For node representation learning, we used GCN (Kipf &
Welling, 2017) encoder, and set the number of GCN layers to 2, the size of hidden dimension for each
layer to 512. The training epoch is 1000. For graph representation learning, we adopted GIN (Xu
et al., 2019) encoder with 5 layers, which was concatenated by a readout function that adds node
representations for pooling. The embedding size was set to 32 for TU dataset and 300 for OBG
dataset. We used 100 training epochs with batch size 32. In all the experiments, we used the Adam
optimizer with learning rate 0.001 and weight decay 10−5. For data augmentation, we adopted
both edge perturbation and feature masking, whose perturbation ratio σe and σf were tuned by grid
search among {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} based on the validation set. Note that in our
formulation Eq. 9, the augmentation strength ϵ = σe ·m where m is the number of edges in the input
graph.

Evaluation Protocol. When evaluating the quality of learned representations on downstream
tasks in an unsupervised setting, we adopted the evaluation protocol proposed in (Suresh et al.,
2021). Specifically, based on the representations given by the encoder, we trained and evaluated
a Logistic classifier or a Ridge regressor with L2 regularization, whose weight was tuned among
{0.001, 0.01, 0.1, 1.0, 10.0, 100.0} on the validation set for each dataset.
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C.5 OUT-OF-DOMAIN TRANSFER LEARNING

A more challenging transfer learning setting is proposed in (Qiu et al., 2020), which supports
model training on multiple graphs from academic and social networks and transferring to different
downstream tasks for other datasets. We further conducted a transfer learning experiment under such
setting to demonstrate the out-of-domain transferability of our proposed GCL solution GCL-SPAN.
Specifically, we pre-train the encoder on the Yelp dataset (Zeng et al., 2020) which contains 716,847
nodes and 13,954,819 edges; and then the encoder is fine-tuned and evaluated on the US-airport
dataset (Ribeiro et al., 2017) for node classification task and three TU social networks (Morris et al.,
2020) for graph classification task via 10-fold CV. We sample 80,000 2-hop ego-nets from the Yelp
dataset for pre-training, and use node degree as the node feature for all datasets.

Table 9 summarizes the results of downstream classification accuracy. Overall, we can observe
satisfactory performance gain using contrastive learning to pre-train the GIN encoder on Yelp dataset
under such a cross-domain setting. Meanwhile, our proposed method GCL-SPAN outperforms other
contrastive learning methods on three out of four downstream datasets.

Table 9: Node and graph classification performance under out-of-domain transfer learning setting.
The metric is accuracy%. The best and second best results are highlighted with bold and underline
respectively.

Dataset
Pre-Train Yelp

Fine-Tune Node Classification Graph Classification

US-Airport COLLAB RDT-B IMDB-B

No-Pre-Train-GIN 62.42±1.27 74.82±0.92 86.79±2.04 71.83±1.93

B
as

el
in

e MVGRL 63.83±0.97 74.78±0.84 86.24±1.26 73.21±1.54
AD-GCL – 75.11±0.70 88.72±1.53 74.34±1.23
JOAO – 75.35±0.93 87.65±1.72 75.15±1.67

GCL-SPAN 65.21±0.86 76.37±0.73 88.41±1.12 75.89±1.20

D MODEL ANALYSIS

D.1 EMPIRICALLY RUNNING TIME

Recall that the time complexity of augmentation pre-computation is O(TKn2). Table 10 shows
the empirical running time (in seconds) comparison between the pre-computation of the spectrum-
based augmentation scheme and the follow-up contrastive learning iterations. Specifically, in these
experiments, we used K = 1000, and T = 50 for node classification on four representative datasets
with varying node sizes.

Table 10: Empirical running time (in seconds) on four representative node classification datasets with
varying node sizes.

Cora Amazon-Photo Wiki-CS PubMed

#nodes 2, 708 7, 650 11, 701 19, 717

Augmentation pre-computation time (K = 1000, T = 50) 105.4 512.6 893.2 2462.3
Contrastive training time (epoch = 1000) 262.9 887.5 1052.4 1429.2

Compared with the time needed for performing contrastive learning, the pre-computation cost is
comparable and acceptable. For large-scale graphs with higher time and memory complexity, we
can further adopt the widely employed treatments in practice (e.g., ego-nets sampling, augmenting
sampled ego-nets and training in batch), as introduced in GCC (Qiu et al., 2020).

We also want to emphasize that our work is the first step towards effective augmentation for graph
contrastive learning by exploiting the graph spectral property. As promising performance gain is
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observed in our study, the next step is to improve the efficiency where practical treatments for training
in large graphs can be applied.

D.2 INFLUENCE OF CHOOSING EIGENVALUES

Sensitivity of K. To reduce the time complexity of eigen-decomposition when calculating the
spectrum norm LGS(∆), we can approximate the norm by only using the K lowest- and highest-
eigenvalues. The time complexity of optimizing the augmentation scheme in Eq. 7 with T iterations
is O(TKn2). This experiment shows the influence of K to the resulting GCL performance. Since
the graphs encountered in the node prediction tasks are much larger than those in graph prediction
tasks, we used the node classification datasets in Table 5 to conduct this experiment. Specifically, we
test influence of K on four large graphs representing different types of networks: PubMed citation
network, Wiki-CS hyperlink network, Amazon-Computers co-purchase network and Coauthor-CS
network. We tuned K among {50, 100, 200, 500, 1000, 5000} for each of the datasets containing
n ≥ 10, 000 nodes. The other components of GCL maintained the same, except the resulting
augmentation scheme using spectrum norm with different K.
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Figure 3: Node classification performance when choosing K lowest- and highest-eigenvalues
Figure 3 demonstrates the performance of GCL-SPAN on the node classification task when different
K was used to generate the augmentation scheme. The x-axis denotes the value of K with “all”
indicating that all the eigenvalues were used. The performance decreases marginally when we used
a smaller K, and generally when K = 1000 we can still achieve a comparable performance. This
suggests that low and high eigenvalues are already quite informative in capturing graph structural
properties. Similar phenomenon is also discussed in previous works (Lin et al., 2021): small
eigenvalues carry smoothly varying signals (e.g., similar neighbor nodes within the same cluster),
while high eigenvalues carry sharply varying signals (e.g., dissimilar nodes from different clusters).
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Figure 4: Coverage of eigenvalues when choosing K =1k, 5k.

Coverage of K on Graph Spectrum. To show the selection of K still covers a moderate range
of eigenvalues, we show the distribution of eigenvalues on several real-world graphs in Figure 4.
The x-axis denotes the ascending order of n eigenvalues, and y-axis shows the eigenvalue at the
corresponding order. Red vertical lines represents K = 1000 lowest and highest eigenvalues, while
green vertical lines denotes K = 5000. We can observe that K = 1000 can cover a moderate range of
the eigenvalues, and setting larger K = 5000 can well cover most of the eigenvalues. Therefore even
if we only choose these eigenvalues, we can already achieve empirically satisfactory performance
indicated by Figure 3.

D.3 GAIN OF SPAN ON OTHER GCL FRAMEWORKS

In this experiment, we use an ablation study to evaluate the effectiveness of the graph spectrum
guided topology augmentation scheme when applied to different contrastive learning frameworks. We
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focus on GCL for node-level representation learning, as this line of work adopts distinct contrastive
objectives (e.g., bootstrapping in BGRL, and Barlow twins in GBT) and contrastive modes (e.g., node
v.s. node in GRACE, and node v.s. graph in MVGRL), such that we can comprehensively demonstrate
the effectiveness of our proposed augmentation in covering a variety of GCL frameworks.

Specifically, we replace the original uniformly random edge removing augmentation in GRACE,
BGRL, GBT, and the diffusion matrix based augmentation in MVGRL with the proposed spectrum
based augmentation scheme, and use -SPAN as suffix to denote them. Note that MVGRL-SPAN is
basically GCL-SPAN since it uses the same contrastive objective as in MVGRL such that both node-
and graph-level representations are obtained to serve a broader range of downstream tasks.

Table 11: Node classification performance under unsupervised setting. We plug the spectrum based
augmentation to different GCL frameworks, highlighted with suffix -SPAN. The metric is accuracy%.
The best results are highlighted with bold.

Dataset Cora Citeseer PubMed Wiki-CS Amazon-Computer Amazon-Photo Coauthor-CS

GRACE 83.33±0.43 72.10±0.54 78.72±0.13 80.14±0.48 89.53±0.35 92.78±0.30 91.12±0.20
GRACE-SPAN 84.21±0.51 72.87±0.58 79.94±0.22 80.63±0.47 89.95±0.41 92.56±0.34 91.98±0.20

BGRL 83.63±0.38 72.52±0.40 79.83±0.25 79.98±0.13 90.34±0.19 93.17±0.30 93.31±0.13
BGRL-SPAN 84.34±0.42 72.73±0.44 80.78±0.32 81.04±0.22 90.12±0.21 93.58±0.39 93.77±0.21

GBT 80.24±0.42 69.39±0.56 78.29±0.43 76.65±0.62 88.14±0.33 92.63±0.44 92.95±0.17
GBT-SPAN 82.43±0.51 71.12±0.48 80.05±0.49 78.89±0.54 89.04±0.43 92.78±0.43 92.95±0.37

MVGRL 85.16±0.52 72.14±1.35 80.13±0.84 77.52±0.08 87.52±0.11 91.74±0.07 92.11±0.12
MVGRL-SPAN 85.86±0.57 72.76±0.63 81.54±0.24 82.13±0.15 90.09±0.32 93.52±0.26 93.91±0.24

Table 11 shows the results of plugging our augmentation scheme on four types of GCL frameworks.
We can observe that our augmentation scheme does not depend on a particular contrastive objective,
but brings a clear performance gain across different GCL frameworks. Intuitively, our augmentation
captures the essential structural properties by perturbing edges that cause large spectral change.
Therefore, no matter what contrastive objective or mode is used, maximizing the correspondence of
two views encourages the encoder to ignore the information carried by such sensitive edges. This
demonstrates the importance of studying graph spectral properties for graph augmentation.

D.4 ANALYSIS OF PERTURBATION STRENGHTH

The value of ϵ controls the perturbation strength when generating augmented graphs. A larger ϵ
value indicates that more edges will be dropped/added. Specifically, the optimized scheme ∆1,∆2

constrained by ϵ will in expectation perturb ϵ = σe ×m edges in the augmented views, where m
is the number of edges in the input graph and σe is the perturbation rate. To analyze the effect of
perturbation strength ϵ, we tune σe = ϵ/m = {0.1, 0.2, . . . , 0.9}, and compare the proposed spectral
augmentation with uniformly random edge augmentation on the same GCL instantiation shown in
Figure 2. The performance comparison is conducted under unsupervised node classification task.
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Figure 5: Node classification performance when tuning perturbation ratio σe = ϵ/m.

In Figure 5, the x-axis shows the perturbation rate σe, which denotes the perturbation strength ϵ
normalized by total edge number of the graph (e.g. σe = ϵ/m). The performance of spectral
augmentation in general is more stable under different perturbation strength, compared with the
uniformly random augmentation. This demonstrates that our proposed augmentation can better
preserve structural invariance by assigning larger perturbation probability to sensitive edges.

23



Published as a conference paper at ICLR 2023

D.5 GAIN OF SPAN COMPARED WITH OTHER AUGMENTATION SCHEMES

We provide additional experiments by fixing the contrastive learning framework, but varying the
augmentation schemes, including two existing edge perturbation schemes (e.g. the widely used
uniformly random edge perturbation, and the diffusion augmentation proposed in MVGRL (Hassani
& Khasahmadi, 2020)), as well as multiple proposed schemes in this paper (e.g., single-way, double-
way and opposite-direction schemes). We compare these schemes with our GCL instantiation in
Figure 2 on unsupervised node classification tasks.

Table 12: Node classification performance under unsupervised setting. We plug different augmenta-
tion schemes to the GCL instantiation in Figure 2. The metric is accuracy%.

Dataset Cora Amazon-Photo Wiki-CS PubMed

Uniformly random 83.87±0.56 91.78±0.27 79.06±0.31 79.02±0.58
Diffusion augmentation 85.16±0.52 91.74 ±0.07 77.52±0.08 80.13±0.84

Singe-way scheme SPANsingle 84.38±0.42 92.28±0.29 80.76±0.34 80.65±0.31
Double-way scheme SPANdouble 84.93±0.64 91.81±0.33 81.08±0.47 79.43±0.36
Opposite-direction scheme SPANopposite 85.86±0.57 93.52±0.26 82.13±0.15 81.54±0.24

Table 12 shows the comparison. The opposite-direction scheme is shown to be the most effective
augmentation, especially when comparing with the widely used uniformly random augmentation.
The effectiveness of the diffusion augmentation depends on the datasets: it is not even as good as
the uniformly random method on Wiki-CS. The single-way scheme only considers spectrum on
one branch, thus has limited improvement, and the double-way scheme can not well maximize the
spectral difference of two views due to suboptimal solutions to the optimization problem.

D.6 SPATIAL BEHAVIOR OF SPECTRAL AUGMENTATION SPAN

Case Study on Random Geometric Graph. To intuitively show the spatial change caused by
spectral augmentation, we visualize a case study on a random geometric graph in Figure 6. Figure
6a draws the original graph. Figure 6b shows the perturbation probability obtained by maximizing
LGS(∆). Figure 6c illustrates the perturbation probability obtained by minimizing LGS(∆).
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Figure 6: A case study of the spectrum-guided augmentation scheme on a random geometric graph.

We can observe that maximizing the spectral norm assigns larger probability to remove edges bridging
clusters such that the clustering effect becomes more obvious, while minimizing the spectral norm
tends to add edges connecting clusters such that the clustering effect is blurred. Intuitively, such
an augmentation perturbs these spurious edges that can easily affects the structural property (e.g.
clustering) to preserve structural invariant, and the information about these edges are disentangled
and minimized in the learned representations by contrastive learning.

Theorectical Justification. We also provide a theoretical justification which reveals the interplay of
spectral change and spatial change. As derived in Theorem 2 of (Bojchevski & Günnemann, 2019),
given an edge flip ∆wij = (1− 2Aij) ∈ {−1, 1} between node i and j (e.g. if ∆wij = 1, adding
edge (i, j); otherwise removing edge (i, j)), the k-th eigenvalue is changed as λ′

k = λk +∆λk. ∆λk
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can be approximated by:

∆λk = ∆wij(2uki · ukj − λk(u
2
ki + u2

kj)) (14)

where uk is the k-th eigenvector corresponding to the eigenvalue λk. If we only focus on the
magnitude of eigenvalue change, we can obtain:

|∆λk| = |(uki − ukj)
2 + (λk − 1)(u2

ki + u2
kj)| (15)

Remarks. Since the eigenvectors are normalized, we can treat (u2
ki + u2

kj) as a constant as it is a
relatively stable value. Based on the theory in spectral clustering (Ng et al., 2001), if the eigenvectors
of node i and node j have a larger difference (i.e., ∥u.,i − u.,j∥2 is large), these two nodes should
belong to different clusters. The first term in Eq. 15 suggests a larger eigenvalue change, if uki and
ukj have a larger difference. Therefore, flipping the edge between nodes from different clusters (thus
with a larger (uki − ukj)

2) results in a larger spectral change. The second term suggests that such an
effect becomes more obvious for eigenvalues close to 0 or 2.
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Figure 7: A case study of the spectrum-guided augmentation scheme on MUTAG molecular graphs.

Case Study on MUTAG Molecular Graphs. To further investigate the effect of proposed augmen-
tation on real-world graphs, we also visualize the augmentation scheme (perturbation probability
matrices ∆1,∆2) on several MUTAG molecular graphs in Figure 7. Each row shows one molecular
graph with mutagenicity. The first column illustrates the original graph. The second column shows
the perturbation probability obtained by maximizing LGS(∆). The last column illustrates the pertur-
bation probability obtained by minimizing LGS(∆). Node color represents the atom type: yellow,
blue, red and green denotes carbon, nitrogen, oxygen, and hydrogen, respectively.

We can observe that the augmentation scheme assigns high perturbation probability to the edges
across different chemical groups. For example, there is a higher probability to drop/add edges between
NO2 and carbon rings. By contrastive learning, the information about edges blurring the boundary
between NO2 and other atoms is minimized. Therefore, the key functional group NO2 is preserved,
which are shown important for predicting the molecule’s mutagenicity (Debnath et al., 1991; Ying
et al., 2019; Luo et al., 2020).
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D.7 THE CONVERGENCE OF OPTIMIZING THE SPECTRAL AUGMENTATION

In this section, we show how the graph spectrum norm changes as the augmentation optimization
proceeds following Eq. 7. To better show the relative change of graph spectrum compared with
the original graph, we calculate LGS(∆) normalized by the spectrum norm of the original graph,
that is, LGS(∆)/LGS(0) = ∥eig(Lap(A+C ◦∆))∥22/∥eig(Lap(A))∥22. The value of normalized
LGS(∆)/LGS(0) is reported in Figure 8.
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Figure 8: The value of relative spectral change LGS(∆)/LGS(0) when maximizing the spectrum
norm (orange) or minimizing it (blue) via Eq. 7
Based on the graph spectral theory, the eigenvalues are bounded within [0, 2], thus the L2-norm of the
graph spectrum is also bounded by the total number of nodes, For example, the values of the original
spectrum norm LGS(0) for Cora, Amazon-Photo, Wiki-CS and PubMed are 24.88, 22.13, 31.79,
and 65.26 respectively. From Figure 8, we can observe that maximizing LGS(∆) indeed results
in an a larger spectrum norm compared with the original graph (i.e. LGS(∆)/LGS(0) > 1), while
minimizing it achieves a smaller spectrum norm (i.e. LGS(∆)/LGS(0) < 1).

E EXTENSION TO SUPPORT MORE AUGMENTATION TYPES

Table 13: Graph classification performance using node dropping augmentation schemes on the GCL
instantiation in Figure 2. The metric is accuracy%.

Dataset Biochemical Molecules Social Networks

NCI1 PROTEINS COLLAB IMDB-M

Uniformly random node dropping 69.27 ± 0.86 73.40 ± 0.74 75.19 ± 0.67 53.04 ± 0.63
Spectral guided node dropping 70.96 ± 0.77 74.51 ± 0.58 75.65 ± 0.55 53.77 ± 0.61

The proposed principle from the graph spectral perspective can also be extended to node dropping
augmentation. We design a soft node dropping scheme, which assigns a dropping probability to
each node. Different from the edge perturbation scheme, node dropping is sampled from a Bernoulli
distribution B(p), where p ∈ [0, 1]n. We can sample a node dropping vector d ∈ {0, 1}n, where
di ∼ B(p) indicates whether to drop the node i, and the node is dropped if di = 1.

Dropping a node is equivalent to removing all the edges connected to this node. Therefore, we can
extend the operation of node dropping to edge removal. The node dropping probability p implies the
following edge removing probability matrix P:

P =
p · 1⊤ + (p · 1⊤)⊤

2
(16)

where 1 is an all-one vector with dimension n. The node dropping based augmentation scheme can
be then obtained by:

T (A) = A+ (−A) ◦P (17)

where ◦ is an element-wise product. To optimize the node dropping probability vector p, we can
follow Eq. 5 by replacing the edge perturbation scheme A+C ◦∆ with the node dropping scheme:

max
p∈S
∥eig(Lap(A+ (−A) ◦P))− eig(Lap(A))∥22 (18)
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where S = {s|s ∈ [0, 1]n, ∥s∥1 ≤ ϵ} and ϵ controls the node perturbation strength. Following similar
optimization step, the node dropping probability vector p can be obtained. Augmented views are
then sampled from the optimized probability p to drop nodes.

We empirically compared the spectrum guided node dropping augmentation with uniformly random
node dropping strategy. Table 13 reports their prediction accuracy on four graph classification datasets.
We can still observe that the spectral guided node dropping augmentation achieves better performance,
which demonstrates the applicability of our proposed principle on both edge and node augmentation.
To enable more general topology augmentation, the spectral distance of two graphs can be further
extended from L2 distance to distribution divergence, such as Wasserstein distance, to capture the
distributional change of graph spectrum.
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