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TrussBot: Modeling, Design, and Control of a
Compliant, Helical Truss of Tetrahedral Modules

Yuhong Qin*, Linda Ting*, Celestina Saven*, Yumika Amemiya,
Michael Tanis, Randall D. Kamien, Cynthia Sung

Abstract— Modular and truss robots offer the potential
of high reconfigurability and great functional flexibility, but
common implementations relying on rigid components often
lead to highly complex actuation and control requirements.
This paper introduces a new type of modular, compliant robot:
TrussBot. TrussBot is composed of 3D-printed tetrahedral
modules connected at the corners with compliant joints. We
propose a truss geometry, analyze its deformation modes, and
provide a simulation framework for predicting its behavior
under applied loads and actuation. The TrussBot is geomet-
rically constrained, thus requiring compliant joints to move.
The TrussBot can be actuated through a network of tendons
which pinch vertices together and apply a twisting motion due
to the structure’s connectivity. The truss was demonstrated in
a physical prototype and compared to simulation results.

I. INTRODUCTION

Modular robots are systems of coordinated modules that
can be designed for a wide variety of applications because of
their scalability, reconfigurability, versatility, fault-tolerance,
and mass reproducibility [1]. By definition, a modular system
is composed of many smaller individual elements known as
modules. Parameterization of a modular system involves both
the size and shape of the individual modules and the total
number of modules in the system; thus, the space of possible
modular configurations is exponentially large and interesting
to explore. A high degree of redundancy and morphability
are inherent to modular systems, as demonstrated by sys-
tems like HexaMorph [2], M-TRAN [3], ATRON [4], and
Miche [5]. Typically, these modular systems make use of
regular geometries like tetrahedra [2], [6], cubes [5], [7],
and rhombic dodecahedra [8] because these space-filling
geometries provide a foundation for the construction of solid
and more robust structures.

Simple tetrahedral robots with the ability to manipulate
edge length have been able to achieve both walking gaits [9]
and rolling gaits [10], [11]. When combined into full recon-
figurable systems where truss members can be individually
controlled [12], [13] and the connectivity changed [14], these
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robots achieve a range of morphological versatility rivaling
other existing unit-based modular systems. For example, the
Tetrobot system consists of spherical joints and rigid bar
components in a modular configuration [15]. The system
can be reassembled and reconfigured as arms, platforms, and
walking machines under various loading conditions. How-
ever, the Tetrobot’s motion dynamics were not thoroughly
explored or understood.

Module rigidity introduces significant planning complex-
ities, leading to complicated reconfiguration plans and, in
some cases, configurations that can not be achieved at
all [14]. Compliance can greatly simplify control [16]. Mod-
ular systems with compliant actuators are able to reconfigure
autonomously or manually [17], climb surfaces [18], travel
over terrain [19]–[22], and act as manipulators [23]. Similar
advantages are found in flexible truss robots [24]–[26].

We are interested in understanding the behavior of compli-
ant, modular, tetrahedral trusses and their ability to achieve
a variety of motions, including basic locomotion and ma-
nipulation, when combined into different configurations. In
the examples above, in order to prevent the robot from
performing undesirable motions, it is necessary to structure
the robot to limit degrees of freedom and control modes
of deformation. This is done by overconstraining the truss
and relying on element compliance to move. We focus on
a particular truss geometry, a series of spherical four-bars,
which has limited degrees of freedom in its rigid form,
but is able to demonstrate additional rotation and twisting
when the joints are compliant. The resulting TrussBot system
consists of N rigid tetrahedron modules connected at their
vertices. We analyze the effect of motors and tendons, which
contract or release to deform the truss along desired degrees
of freedom. The contributions of this paper include:

• a robust model for TrussBot, a vertex-connected truss
of tetrahedral modules,

• a deformation analysis of TrussBot identifying major
degrees of freedom,

• simulations of the truss under tendon driven control, and
• experimental comparisons of simulation results to a

physical hardware.
The result is a compliant truss that is able to bend and twist
inside out continuously, even with only limited angle range
at the joints, similarly to [27], but with greater controllability.

This paper is organized as follows. Section II introduces
the model used to predict and visualize the motion of the
truss. Section III describes how we use the model to simulate
the TrussBot motion. Section IV describes the design, fabri-



Fig. 1. Top: One unit of the TrussBot consists of four tetrahedra forming
a spherical four-bar linkage. Bottom: Diagram of connections in TrussBot.
Each tetrahedron is shown as a black triangle and vertex connections are
drawn as red dotted lines. Here, two four-bars are shown connected in series.

cation, and hardware specifications for building the TrussBot.
Section V includes the analysis of the TrussBot’s degrees
of freedom, deformation modes, and how the hardware
implementation compares to the software simulation. We
conclude with limitations and future work in Section VI.

II. TRUSSBOT MODEL

The underlying structure of the TrussBot is a chain of
spherical four-bar linkages. Fig. 1 shows the basic linkage.
Four modules are connected at the vertices to form the four-
bar linkage with equal side lengths. Two modules are also
connected diagonally opposite each other, constraining the
vertices of the four-bar to move on the surface of a sphere
centered on this vertex. To generate a full truss, four-bar
metamodules are linked in series. The resulting truss is a
helix structure with a twist of approximately one full rotation
every 14 modules. The TrussBot is modular in that four-bar
metamodules or individual modules can be added or removed
to lengthen or shorten the truss. Additional modules can be
connected in other ways to decouple the units or add extra
degrees of freedom.

A. Definitions

The TrussBot is constructed out of N tetrahedral modules.
Each tetrahedron Ti : i ∈ {1, 2, . . . , N}, is a regular convex
polyhedron with four triangular sides. Let the vector pi

a =
[xi

a, y
i
a, z

i
a]

ᵀ be the 3D coordinates of the ath vertex of
tetrahedron Ti, where a ∈ {1, 2, 3, 4}. An edge e = (pi

a,p
i
b)

connects every pair of vertices in Ti.
To track the TrussBot’s configuration, let

Vi =
{
pi
a : ∀a ∈ {1, 2, 3, 4}

}
be the set of all vertices

and E i = {(pi
a,p

i
b) : a < b ∈ {1, 2, 3, 4}} be the set of

all edges in Ti. The TrussBot is a graph G = (T , C),
where each node Ti ∈ T is a module, and a connection
c = (pi

a,p
j
b) ∈ C connects vertex pi

a to vertex pj
b. Then

Fig. 2. Deformation modes. Black lines represent the original positions of
edges, and colored lines represent new positions.

N = |T | is the total number of tetrahedral modules, and
M = |C| is the total number of connections. The set
V = ∪iVi is the set of all vertices, and E = ∪iE i is the set
of all edges. The total number of vertices |V| = 4N and
edges |E| = 6N . Sample numbering is shown in Fig. 1.

The state of a TrussBot G is denoted as
q = [p1ᵀ

1 ,p1ᵀ
2 , . . .pNᵀ

4 ]ᵀ, a 12N × 1 column vector
containing the position of every vertex pi ∈ V . Let ∆q and
q̇ represent the displacement and velocity of G, respectively.

B. Rigidity Analysis

The rigidity matrix R offers insight into the degrees of
freedom (DoF) when there is no deformation in the robot’s
geometry [28]. We construct a rigidity matrix R of size
(6N + 3M)× (12N)

∀ek ∈ (pi
a,p

j
b) ∈ E ∪ C : R(k,4i+a) = (pi

a − pj
b)

ᵀ

R(k,4j+b) = (pj
b − pi

a)
ᵀ

(1)

where we use the simplified notation that R(k,c) is the kth
row elements contained in the 3-column block including
columns 3c to 3c+ 2. The kth row of R represents the kth
edge of the truss. Each three-column block represents x, y,
and z coordinate constraints on the endpoints of that edge.

If the truss is moving with velocity q̇, then Rq̇ represents
the change in lengths of the edges. It follows that the
nullspace of R includes velocities that maintain the rigidity
of the truss, and the dimensionality of the nullspace is
the number of DoF of the truss. It should be noted that
the vertices in a connection c ∈ C are actually coincident
in a rigid truss, meaning that rows in the rigidity matrix
corresponding to these connections will be near-0 and are
unlikely to appear in the matrix. We therefore replace each
row corresponding to a connection c with 3 rows

∀ck = (pi
a,p

j
b) ∈ C : Rk,4i+a = I3

Rk,4j+b = −I3
(2)

That is, we constrain the x, y, and z velocities of the vertices
forming the connection to be equal.

The rigidity analysis reveals that a TrussBot in chain con-
figuration has 3 DoF regardless of the number of modules.
As plotted in Fig. 2, two of the DoFs correspond to modules
at each end rotating about the edge connected to the truss
(left). The third DoF corresponds to motion in the spherical
four-bar (right). Since all of the four-bars in the truss are
linked to one another, the entire chain moves in sync and it
can be said that the main middle section of the robot only



has 1 DoF. When the robot is in the ring configuration, the
additional 3 connections fully constrain the structure, and
the TrussBot is rigidly locked. These insights are promising
since they mean that the physical TrussBot can be actuated
using a small number of actuators.

C. Stiffness Matrix

Practically, it is complex to build rigid connections of
the type modeled in Section II-B while keeping the entire
structure lightweight. A TrussBot is likely to undergo defor-
mations beyond those exposed in the rigidity analysis. As a
result, the chain is not purely 1 DoF. It is therefore interesting
to consider how the low DoF chain and “rigidly locked” ring
structure moves. We observe from Fig. 2 that the main DoF
for the chain involves coupled twisting and axial compression
and that the truss resists bending along the plane of the robot.
We expect similar deformation modes in the ring structure,
i.e., twisting of the truss with radial compression, and very
little bending out of the plane of the ring.

We construct a stiffness matrix K [29], which character-
izes how the truss deforms under external forces. Each edge
e ∈ E is modeled as a linear spring so that

K = AᵀCA (3)

where A is the adjacency matrix representing the truss’s
connectivity and C is a diagonal matrix of spring constants.
A is constructed as follows:

∀ek = (pi
a,p

i
b) ∈ E : A(i,4i+a) =

pi
a − pi

b

||pi
a − pi

b||

A(i,4i+b) =
pi
b − pi

a

||pi
b − pi

a||

(4)

Again we replace the rows corresponding to connections

∀ck = (pi
a,p

j
b) ∈ C : Ak,4i+a = I3

Ak,4j+b = −I3
(5)

to essentially place three springs, one along each of the
coordinate axes of the connection. The adjacency matrix A
is then a (6N + 3M)× 12N matrix.

Let F = [f1
1x, f

1
1y, f

1
1z, . . . f

N
4z ]

ᵀ be the column vector of
forces applied to all vertices pi

a ∈ V along each of the
three coordinate axes and Fi

a = [f i
ax, f

i
ay, f

i
az]

ᵀ be the force
applied to vertex pi

a. The truss’s displacement vector ∆q as
a result of the force is computed as

F = K∆q (6)

Note that due to the truss’s regular structure, the stiffness
matrix K contains N repetitions of a well-defined stiffness
matrix block corresponding to a single four-bar. It is there-
fore simple to construct the stiffness matrix as N changes.

D. TrussBot’s Dominant Deformation Modes

The TrussBot’s DoF and dominant deformation modes
are the eigenvectors of the stiffness matrix K with the
lowest corresponding eigenvalues. Free DoF correspond to
an eigenvalue of zero. For the chain configuration, nine such
eigenvectors exist, 3 translational and 3 rotational rigid body

Fig. 3. Modes of greatest compliance. Red edges are longer than original,
green are the same, and blue are shorter.

motions in 3D space, 2 corresponding to rotation at each
end module, and 1 corresponding to global contraction and
expansion. These results match the rigidity analysis.

In addition to these motions, we observe the directions
in which the truss has the greatest compliance (smallest
non-zero eigenvalues). Fig. 3 shows the modes of greatest
compliance for the chain and the ring. In order of increasing
eigenvalue, the arm performs four-bar expansion, four-bar
contraction, and end rotation. Similarly, the ring experiences
a twisting motion from the chain of four-bars, which causes
some of the units to rotate inwards compared to the others.

III. SIMULATION

To simulate the motion of the truss under actuation, we
numerically integrate over truss deformations as predicted
by the stiffness matrix. A first-order forward Euler method
is used. Forces are exerted on the truss by internal truss mem-
bers during self-collision and with the external environment,
by gravity and friction, and by tendons for actuation. All
forces are modeled as point forces. To reduce accumulated
numerical error in the truss edge lengths and vertex-to-vertex
connections, at each time step, a gradient descent based
search is used to minimize spring potential energy.

A. Tendon Actuation

Let D be the set of all tendons on the TrussBot. Each
tendon tk = (pi

a,p
j
b) ∈ D has a maximum length lk.

∀tk = (pi
a,p

j
b) ∈ D s.t.

∥∥∥pi
a − pj

b

∥∥∥ > lk :

Fi
a −= γt(p̂

j
b − pi

a)

Fj
b += γt(p̂i

a − pj
b)

(7)

where γt > 0 is the tendon stiffness.

B. Collision Detection

Potential collisions are detected with a modified Gilbert-
Johnson-Keerthi (GJK) distance algorithm [30]. GJK com-
putes a Minkowski difference between two polyhedra and
iteratively checks simplices on this difference to find the min-
imum distance dij between the two. The resulting simplex is
used to find the point pi on Ti closest to Tj and the point



pj on Tj closest to Ti. Let the sets of vertices closest to
pi and pj be Vpi ⊂ Vi and Vpj ⊂ Vj , and let pci and pcj
be the centroids of T i and T j , respectively. Let fij be the
deterring force applied to Ti and fji be the deterring force
applied to Tj .

fij =

{
β(dij)( ̂pci − pcj) dmin < dij < dmax

0 otherwise
(8)

fji = −fij (9)

where dmin and dmax are constants denoting the minimum
and maximum distances between which collision forces will
be applied, and the barrier function β(d) is defined as

β(d) =

(
d− dmin

d

)2

−
(
dmax − dmin

dmax

)2

(10)

The forces fij and fji are distributed equally to vertices in
Vpi and Vpj , respectively.

∀pi
a ∈ Vpi : F

i
a += γβ

fij
|Vpi|

∀pj
b ∈ Vpj : F

j
b += γβ

fji
|Vpj |

(11)

where γβ > 0 controls the strength of the collision forces.

C. Gravitational Forces

For a module Ti with mass m, the gravitational force is

∀pi
a ∈ Vi : Fi

a +=
m

|Vi|
[0, 0,−9.81] (12)

D. Normal Forces

Normal forces are modeled as collision avoidance forces
between the truss and some environmental surface. Let d
be the distance between some vertex pi

a and a surface with
normal n̂. Let N = [n1

1x, n
1
1y, n

1
1z, . . . n

N
4z]

ᵀ be the column
vector of normal forces applied to all vertices and Ni

a =
[ni

ax, n
i
ay, n

i
az]

ᵀ be the normal force applied to vertex pi
a.

Ni
a = γnβ(d)n̂ (13)

∀pi
a ∈ V : Fi

a += Ni
a (14)

where γn > 0 is a constant, and it is tuned to offset
the gravitational force and ensure correct movements when
simulated on the ground.

E. Friction Forces

Friction forces are directed opposite to the net applied
force and perpendicular to the normal force acting on the
truss. At every time step, the initial expected displacement
∆q is calculated using the applied forces F without friction.
Let the expected displacement of pi

a be ∆qi
a. If there is a

nonzero normal force Ni
a acting on pi

a, we apply friction.

∀pi
a ∈ V : Fi

a +=

̂(∆qi
a − projNi

a
∆qi

a)min

(∥∥∥Fi
a − projNi

a
Fi

a

∥∥∥ , µs

∥∥Ni
a

∥∥
)

(15)

where µ > 0 is the coefficient of friction.

Fig. 4. Top: A constructed TrussBot consisting of 31 modules. Ten actuated
modules contain motors to wind and unwind five pairs of tendons. Bottom:
Close-up of a battery module (left) and an actuated module (right).

IV. HARDWARE

We built a physical prototype of the simulated TrussBot
(Fig. 4). Each module is constructed from six spring steel
bars connected by four 3D printed corner pieces. The spring
steel bars are 1/8” in diameter and 1-3/8” long (McMaster
part #98296A886). Each corner has a hole at the tip and a
hook on the inside for a rubber band to be threaded through
to connect to another module. This creates a compliant and
flexible joint. The side length of the tetrahedron module is
57.5 mm. Fig. 4 shows a close-up of the module construction.

3D printed mounts for various electronic components
attach to the passive modules. The mounts can be slotted
and clipped in place without disassembling the structure. The
motor mounts hold Turnigy TGY-1370A servomotors. 3D
printed spools 6.3 mm in diameter are attached to the motor
outputs and allow the motors to wind and unwind tendons
on the truss. Each mount also has a snap on cap to hold the
motor in place and direct the tendon directly into the spool.
Other mounts hold batteries and a Teensy 3.2 control board.

To actuate the system, tendons (Berkley Trilene XL 0.008-
inch diameter fishing line) are attached with one end fixed
at a spool and the other end fixed to the other connecting
modules. Position control on the servos turn the spools to
contract and release the tendons to the desired lengths.

Due to the simplicity of the design, assembling a single
module takes 4 hours of printing time and a few minutes
of assembly. Assembling an entire truss takes an additional
1-2 hours, depending on the number of modules, and the
modules can easily be connected and disconnected by hook-
ing or unhooking the rubber bands.



Fig. 5. Gripper with 8 modules and 2 tendons. Left: open configuration.
Right: closed configuration.
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Fig. 6. Comparison of gripper opening in simulation vs experiments over
3 trials. Tracked points are labeled in Fig. 5.

V. EXPERIMENTAL RESULTS

We tested three different configurations of varying com-
plexity. The simulation was implemented MATLAB and
run on a computer with Intel i7-6700 CPU and 16 GB
memory. The following simulation parameters were used:
edge stiffness ck = 100, joint stiffness ck = 0.14, tendon
stiffness γt = 50, barrier strength γβ = 1.0, normal force
barrier strength γn = 0.7, and friction coefficient µ = 0.15.
A time step of 0.05 s was used in the numerical integration.

A. 1-DoF Gripper

The simplest demonstration is a gripper consisting of 8
modules connected in a chain. As previously discussed, the
truss is theoretically 1 DoF in the center with two freely-
hanging tetrahedra on either end. Two antagonistic actuators
are required to open and close the gripper. A long tendon
on the outside opens the gripper and a short tendon on the
inside closes the gripper. The physical structure is in Fig. 5.

Figure 6 shows a comparison of the simulation and 3
experimental tests on the gripper design. For 2311 time steps,
the simulation took 25 s. We tracked the locations of 6
points on the inside of the gripper via a camera oriented
perpendicular to the plane of the gripper. The points from
the physical test and the simulation were transformed so
that the center bar C-D was kept still. As predicted, in
the physical device, points B and E followed arcs centered
about C and D, respectively, as the gripper open and closed.
Points A and F, which are on the free modules at the
end, do not match between the simulation and the physical
experiments. In experiments, in the absence of any external
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Fig. 7. Top: Diagram of truss with central skeleton highlighted. These
points were used to track segment lengths over actuation cycles. Mid-
dle: Three configurations achievable with this truss. Bottom: Experimental
results show the two chains are able to contract independently.

forces, these tetrahedra tended to rotate with the modules that
they were connected to (resulting in points A and F following
large arcs), whereas in simulation, these tetrahedra tended to
remain in the same orientation since there were no external
forces on them (resulting in points A and F following lines).
Practically, this extra degree of freedom provided additional
compliance for the gripper when picking up different objects,
as shown in Fig. 5. In the future, more accurate prediction of
these points could be achieved by adding a torsional stiffness
to the vertex connections.

B. 2-DoF Chain

A 2-DoF chain configuration is composed of two chains
of 5 modules each connected at two points. Two vertices
are left free on the middle modules, decoupling the two
chains. Tendons were added to both chains, allowing both to
bend and contract. Figure 7 shows the truss and the various
achievable configurations: half-actuated (only one tendon
contracted), S-curve (chains bending in different directions,
and C-curve (chains bending in the same direction).

The tendons can be contracted simultaneously or in se-
quence, and each chain bends independently of the other.
We constructed the same chain with the physical TrussBot
modules and contracted the tendons to achieve the various
shapes. The bottom plot of Fig. 7 shows the lengths of the
left and right chains as first the right tendon and then the
left tendon is pulled by the motor. When the right tendon
is actuated, only the right chain contracts, resulting in a
reduction in length of 34.6% compared to the left chain’s
4.6%. When the left tendon is actuated afterwards, only the
left chain contracts 14.5% compared to the right chain’s 1.8%
expansion. Thus, the two chains are decoupled in the physical
truss, matching the simulation predictions.



actuation step 0 actuation step 0.5 actuation step 1 actuation step 2 actuation step 3 actuation step 4 actuation step 5

0 s 19 s 93 s 140 s 170 s 303 s 446 s

Fig. 8. Top: Snapshots of the ring simulation over an actuation cycle. Frames from actuation steps 0 to 1 show the Trussbot’s deformation under the
first pair of tendon contraction, actuation steps 1, 2, 3, 4, and 5 show the start of the second, third, fourth, fifth, and first pairs of tendon contraction,
respectively. Bottom: Snapshots of the TrussBot over 4 actuation cycles. Frames from 0 s to 140 s show the TrussBot’s deformation over a single cycle.
Frames at 170 s, 303 s, and 446 s show the resulting TrussBot at the end of cycles 2, 3, and 4, respectively. The TrussBot follows a periodic configuration
change.

Fig. 9. The ring’s twist angle over 5 cycles of actuation. Each pair of
tendons takes 1 actuation step to contract.

C. Ring

Finally, TrussBot can be configured as a ring (Fig. 4),
which allows the truss to twist in on itself. The ring config-
uration is actuated using five pairs of actuators, as labeled
in Fig. 4, which were designed by manually manipulating
the simulation and physical prototype. The ring forms a
triangular shape, and each tendon pair locates at the two tri-
angular sides before contracting. The tendon pairs actuate in
sequence, with each pair releasing as the next one contracts.

We simulated this design and actuation sequence and
tracked it over 5 cycles of the control pattern, or 1200 time
steps. The simulation took 196.7 s. Figure 8 shows snapshots
of the truss over time, as compared to the physical model.
The motion shows that the robot is able to twist inside out
using the designed actuation pattern. Figure 9 shows the
simulated twist angle of the ring, computed by tracking a
single edge’s orientation with respective to the ground plane
over the course of the simulation. The degree of twist per
cycle is consistent, with the edge rotating a full 360 degrees
per cycle. That is, the simulated TrussBot turns inside out
after one cycle of the control pattern. During the course of the
simulation the centroid showed no translation or net rotation
on the ground. The experimental hardware matched these

predictions. It was able to replicate the twisting motion using
the 5 tendon pairs, with each full actuation cycle taking 170 s.

VI. CONCLUSION

This paper describes a modular tetrahedral truss with com-
pliant joints, TrussBot. We present an analysis of the truss’s
main deformation modes and a simulation of its motion
under tendon-driven control. We additionally demonstrate a
hardware prototype of the TrussBot, which is easy to assem-
ble and reconfigure into trusses of different topology. The
physical platform, when compared to simulations, was able
to execute the simulated control strategies and demonstrate
the same predicted motions.

There are many potential directions for future work on
this project. The unique geometry and movement of the
TrussBot lend it to a variety of applications as a gripper,
arm, crawler, and climber. The twisting motion of the ring,
for example, would allow it to climb pipes without requiring
continuous rotation joints at any of the hinges. Previous
iterations of pole climbing robots make use of rollers [31],
[32], pneumatic cylinders [18], [33], or grippers [34] to
facilitate climbing. One of the few existing modular pole
climbing systems is the Climbot [34], which is composed
of two types of joint modules and one gripper module. The
TrussBot’s actuation method is simpler compared to these
existing systems. The modularity of the TrussBot also means
that it can be easily reconfigured to interact with many
other geometries of objects. Future work includes scaling the
TrussBot, both in the number of modules per TrussBot and
the sizes of modules, and testing it on a climbing task. We
are also interested in discovering how varying the size and
shape will affect the actuation patterns and control strategies,
particularly in cases such as gripper where free unactuated
degrees of freedom exist. Another area of future study is how
the computational model can be used to design and optimize
the actuation pattern for future applications.



REFERENCES

[1] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G. S. Chirikjian, “Modular self-reconfigurable robot
systems [Grand challenges of robotics],” IEEE Robotics & Automation
Magazine, vol. 14, no. 1, pp. 43–52, 2007.

[2] W. Gao, K. Huo, J. S. Seehra, K. Ramani, and R. J. Cipra, “Hex-
amorph: A reconfigurable and foldable hexapod robot inspired by
origami,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2014, pp. 4598–4604.

[3] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and
S. Kokaji, “M-TRAN: Self-reconfigurable modular robotic system,”
Mechatronics, IEEE/ASME Transactions on, vol. 7, no. 4, pp. 431 –
441, 2003.

[4] E. H. Østergaard, K. Kassow, R. Beck, and H. H. Lund, “Design of the
ATRON lattice-based self-reconfigurable robot,” Autonomous robots,
vol. 21, no. 2, pp. 165–183, 2006.

[5] K. Gilpin, K. Kotay, D. Rus, and I. Vasilescu, “Miche: Modular shape
formation by self-disassembly,” International Journal of Robotics
Research, vol. 27, no. 3-4, pp. 345–372, 2008.

[6] P. J. White, C. E. Thorne, and M. Yim, “Right Angle Tetrahedron
Chain Externally-actuated Testbed (RATChET): A Shape Changing
System,” in ASME International Design Engineering Technical Con-
ferences & Computers and Information in Engineering Conference
IDETC/CIE, 2009.

[7] J. W. Romanishin, J. Mamish, and D. Rus, “Decentralized control for
3d m-blocks for path following, line formation, and light gradient
aggregation,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2019, pp. 4862–4868.

[8] M. Yim, Y. Zhang, J. Lamping, and E. Mao, “Distributed control for
3D metamorphosis,” Autonomous Robots, vol. 10, no. 1, pp. 41–56,
2001.

[9] S. M. Motahari-Bidgoli, M. J. Mahjoob, and S. Davaria, “Simulation
and analysis of a TET-walker robot motion,” in RSI/ISM International
Conference on Robotics and Mechatronics (ICRoM), 2014, pp. 914–
919.

[10] J. Wang, , Y. Fei, and Z. Liu, “Locomotion modeling of a triangular
closed-chain soft rolling robot,” Mechatronics, vol. 57, pp. 150–163,
02 2019.

[11] R. Liu, Y. Yao, and Y. Li, “Design and analysis of a deployable
tetrahedron-based mobile robot constructed by Sarrus linkages,” Mech-
anism and Machine Theory, vol. 152, p. 103964, 06 2020.

[12] M. D. Rhodes and M. M. Mikulas, Deployable controllable geom-
etry truss beam. National Aeronautics and Space Administration,
Scientific and Technical Information Branch, 1985.

[13] H. Furuya and K. Higashiyama, “Dynamics of closed linked variable
geometry truss manipulators,” Acta astronautica, vol. 36, no. 5, pp.
251–259, 1995.

[14] A. Spinos, D. Carroll, T. Kientz, and M. Yim, “Variable topology
truss: Design and analysis,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2017, pp. 2717–2722.

[15] G. J. Hamlin and A. C. Sanderson, Tetrobot, ser. Springer International
Series in Engineering and Computer Science. Kluwer Academic
Publishers, 1998, vol. 423.

[16] N. S. Usevitch, Z. M. Hammond, M. Schwager, A. M. Okamura, E. W.
Hawkes, and S. Follmer, “An untethered isoperimetric soft robot,”
Science Robotics, vol. 5, no. 40, 2020.

[17] M. A. Karimi, V. Alizadehyazdi, B. Busque, H. M. Jaeger, and
M. Spenko, “A boundary-constrained swarm robot with granular jam-
ming,” in IEEE International Conference on Soft Robotics (RoboSoft),
2020, pp. 291–296.

[18] Z. M. Ripin, B. S. Tan, A. B. Abdullah, and Z. Samad, “Development
of a low-cost modular pole climbing robot,” in TENCON Proceedings.
Intelligent Systems and Technologies for the New Millennium, vol. 1,
2000, pp. 196–200.

[19] S. Avinash, A. Srivastava, A. Purohit, S. V. Shah, and K. M. Krishna,
“A compliant multi-module robot for climbing big step-like obstacles,”
in IEEE International Conference on Robotics and Automation (ICRA),
2014, pp. 3397–3402.

[20] A. Bhole, S. H. Turlapati, R. V. S., J. Dixit, S. V. Shah, and K. M.
Krishna, “Design of a robust stair-climbing compliant modular robot
to tackle overhang on stairs,” Robotica, vol. 37, no. 3, p. 428–444,
2019.

[21] N. A. Mansour, T. Jang, H. Baek, B. Shin, B. Ryu, and Y. Kim,
“Compliant closed-chain rolling robot using modular unidirectional

sma actuators,” Sensors and actuators. A. Physical., vol. 310, p.
112024, 2020.

[22] J. Sastra, S. Chitta, and M. Yim, “Dynamic rolling for a modular loop
robot,” International Journal of Robotics Research, vol. 28, no. 6, pp.
758–773, 2009.

[23] G. Hao and X. Kong, “Design and Modeling of a Large-Range
Modular XYZ Compliant Parallel Manipulator Using Identical Spatial
Modules,” Journal of Mechanisms and Robotics, vol. 4, no. 2, 04 2012,
021009.

[24] Y. Seguchi, M. Tanak, T. Yamaguchi, Y. Sasabe, and H. Tsuji,
“Dynamic analysis of a truss-type flexible robot arm,” JSME inter-
national journal. Ser. 3, Vibration, control engineering, engineering
for industry, vol. 33, no. 2, pp. 183–190, 1990.

[25] P. C. Hughes, W. G. Sincarsin, and K. A. Carroll, “Trussarm—a
variable-geometry-truss manipulator,” Journal of Intelligent Material
Systems and Structures, vol. 2, no. 2, pp. 148–160, 1991.

[26] K. Miura, H. Furuya, and K. Suzuki, “Variable geometry truss and its
application to deployable truss and space crane arm,” Acta astronau-
tica, vol. 12, no. 7, pp. 599–607, 1985.

[27] M. S. Moses, M. K. Ackerman, and G. S. Chirikjian, “Origami rotors:
Imparting continuous rotation to a moving platform using compliant
flexure hinges,” in International Design Engineering Technical Con-
ferences and Computers and Information in Engineering Conference,
vol. 55942, 2013, p. V06BT07A037.

[28] J. E. Graver, “Rigidity matroids,” SIAM Journal on Discrete Mathe-
matics, vol. 4, pp. 355–368, 1991.

[29] A. Kassimali, Matrix Analysis of Structures. Cengage Learning, 2011.
[30] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for

computing the distance between complex objects in three-dimensional
space,” IEEE Journal on Robotics and Automation, vol. 4, no. 2, pp.
193–203, 1988.

[31] A. Baghani, M. N. Ahmadabadi, and A. Harati, “Kinematics modeling
of a wheel-based pole climbing robot (UT-PCR),” in IEEE Interna-
tional Conference on Robotics and Automation, 2005, pp. 2099–2104.

[32] A. Sadeghi, H. Moradi, and M. N. Ahmadabadi, “Analysis, simula-
tion, and implementation of a human-inspired pole climbing robot,”
Robotica, vol. 30, no. 2, p. 279–287, 2012.

[33] M. Das, A. Agrawal, A. Sonone, R. Gupta, D. Upadhyay, Y. Rao,
and A. Javed, “Developing a bioinspired pole climbing robot,” in
International Conference on Robotics: Current Trends and Future
Challenges (RCTFC), 2016.

[34] Y. Guan, L. Jiang, H. Zhu, W. Wu, X. Zhou, H. Zhang, and X. Zhang,
“Climbot: A Bio-Inspired Modular Biped Climbing Robot—System
Development, Climbing Gaits, and Experiments,” Journal of Mecha-
nisms and Robotics, vol. 8, no. 2, 01 2016, 021026.


	TrussBot: Modeling, Design, and Control of a Compliant, Helical Truss of Tetrahedral Modules
	Recommended Citation

	TrussBot: Modeling, Design, and Control of a Compliant, Helical Truss of Tetrahedral Modules
	Abstract
	Keywords
	Disciplines
	Author(s)

	TrussBot: Modeling, Design and Control of a Compliant, Helical Truss of Tetrahedral Modules

