ON ZEROS, BOUNDS, AND ASYMPTOTICS FOR
ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE
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ABSTRACT. Let u be a measure on the unit circle that is regular in the sense of
Stahl Totik, and Ullmann. Let {¢,,} be the orthonormal polynomials for p and
{zjn} their zeros. Let u be absolutely continuous in an arc I' of the unit circle,
with p/ positive and continuous there. We show that uniform boundedness
of the orthonormal polynomials in subarcs of I' is equivalent to n (1 — |zjn])
being bounded away from 0. If in addition as n — oo, n (1 — |z, |) — oo, then
|,.|? ' — 1 uniformly.
Research supported by NSF grant DMS1800251

1. MAIN RESULTS

Let p be a finite positive Borel measure on [—m, ) (or equivalently on the unit
circle) with infinitely many points in its support. Then we may define orthonormal
polynomials

Op (2) = kp2" + .. kn >0,
n =0,1,2,... satisfying the orthonormality conditions

1 ™
| 60 () 20 D (0) = Suun,
™ —T

where z = €,

We denote the zeros of ¢,, by {Zjn}?:y They lie inside the unit
circle, and may not be distinct.

We shall often assume that p is regular in the sense of Stahl, Totik and Ullmann
[14], so that

lim /@71/" =1.
n—oo

This is true if for example p’ > 0 a.e. in [—7,7), but there are pure jump and pure
singularly continuous measures that are regular.

Many aspects of the zeros {z;,} have been studied down the years: their as-
ymptotics, their distribution (often when projected onto the unit circle), "clock
spacing" of zeros of paraorthogonal polynomials, .... . See

In a very interesting recent paper, Bessonov and Denisov [?] showed that the
distance of the zeros to the unit circle is intimately related to asymptotics of or-
thogonal polynomials. The following is a reformulation of one of their results:

Theorem
Let p be a measure on the unit circle satisfying the Szegd condition

/ log i (") dt > —oo0.
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For almost every ¢ with |(| =1, the following are equivalent:
(1)
lim_|g,, (O ' (¢) = 1.

n—oo

(1)
lim ( inf |C—zm|) = 00.

n—oo \1<j<n

We prove related equivalences for local bounds and asymptotics but for more
general regular, rather than Szeg®, measures:

Theorem 1.1

Let p be a finite positive Borel measure on the unit circle that is regular in the
sense of Stahl, Totik, and Ullmann. Let A be an arc of the unit circle in which p
is absolutely continuous, while 1’ is positive and continuous there. The following
are equivalent:

(1) In every proper subarc T of A,

lim (inf {n(l —|zjnl) : 2jn #0, |277"| c I‘}) = 00.

(II) In every proper subarc T' of A, as n — oo, uniformly for ( € T,

lim o, (OF 4/ (¢) = 1.

Theorem 1.2
Assume the hypotheses of Theorem 1.1. The following are equivalent:
(I) In every proper subarc T of A, there exists Cy1 > 0 such that for n > 1,

inf{n(l —zn]) t 2 £ 0, 222 € r} > .

|2jn

(II) In every proper subarc T' of A, there exists Cy > 0 such that for n > 1,

||%0n||Loo(r) < Cs.

This paper is organized as follows: in Section 2, we present more background as
well as more equivalences. ...
We close this section with more notation. We let

oy (2) = Z"%(i)-

The nth reproducing kernel for p is

n—1

(1.1) Ko (zu) =0 (2)¢; (u).
=0

The Christoffel-Darboux formula asserts that

_ on ey, (2) — @, (W), (2)
(1.2) K, (z,u) = [ .
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We let
(1.3) R () = 3 Ll

. ~ = 5

=1 |2 = 2]
and
2y (2)

1.4 = .
(149) g () = 2o

Throughout C,C1,Cs,... denote positive constants independent of n,z,t and
polynomials P of degree < n. The same symbol need not denote the same constant
in different occurrences. For sequences {z,},{y,} of non-zero real numbers, we
write

Tp ~ Yn

if there exists C > 1 such that

C ' <z, y, <Cforn>1.

2. BACKGROUND AND FURTHER RESULTS

Parts of the following theorem appear in Theorem 1.2 in [?], notably (b), (d),
(e), while weaker forms of (a), (f) appear there.

Theorem 2.1

Let p be a finite positive Borel measure on the unit circle that is reqular in the
sense of Stahl, Totik, and Ullmann. Let A be an arc of the unit circle in which u is
absolutely continuous, while p' is positive and continuous there. Let T' be a proper

subarc of A. The following are equivalent: in every proper subarc T' of A,
(a) Uniformly in T,

(2.1) lim [, (2)% /() = 1.
(b) Uniformly in T,

(2.2) lim an (z) =1.

n—oo n

(¢) Uniformly in T,
(2.3) lim Re (w/"(z)) = 1.

oo\ Ny, (2)
(d) Uniformly in T,

/

oy 2P0 (2) _
(2.4) Jim S

(e) Uniformly in T,

o, (Zeifr/n) B

2.5 lim —1.

(22 N

(f) Uniformly for z € T and u in compact subsets of C,
14

(2.6) tim G042

n—oo ¢, (2)
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(9)
(2.7) lim (inf {n(l —|zjnl) : 2jn # 0, Zin_ ¢ F}) = o0.

(h) Uniformly for z € T,

1 1
(2.8) lim — Y ———— =0.

Theorem 2.2
Let p satisfy the hypotheses of Theorem 2.1. The following are equivalent: in every
proper subarc T' of A,

(a)

(2.9) sup [lo, ||,y < oo
n>1

(b) There exist ng, C > 0 such that for n > ng, and z € T,

1
(2.10) R (2) 2 C.
(¢) There exist ng,C > 0 such that for n > ng, and z € T,
! 1
(2.11) ’Re (z‘p” (2) _ )‘ > C.
ney (2) 2

(d) There exist ng,C > 0 such that for n > ng, and z € T,

. (Pn(zeiiﬂ—/n)
R( on () )

(e) There exist ng,C > 0 such that for n > ng, and z € T,

(2.12) > C.

(2.13) inf {n(l —zjnl) ¢ 2gn £ 0, 22 € F} > (.

B
(f) There exist ng,C > 0 such that for n > ng, and z € T

n

(2.14) sup 1 Z _ <C.

¢cern>1n? ol ,zjn|2 B

3. PRELIMINARY LEMMAS

Throughout, we assume the hypotheses of Theorem 1.1. We first recall some
asymptotics for Christoffel functions and universality and local limits.

Lemma 3.1
Let T be a proper subarc of A.
(a) Uniformly for z € T,

(3.1) lim LK, (2,2) ' (2) = 1.

n—oo N
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ot

(b) Uniformly for z € T and a,b in compact subsets of C,

K, (z(1+ 2z2) (14 i2zb
(3.2) lim ( 0+ =) ( - >)
n—oo K, (z,2)

(c) Let {¢,} CT. Assume that

= im0 (g — b).

1| 1 I o 1
(3.3) sup — ————| <00 and sup — Z ——5 <0
21| G = Zn 217 TG = 2l
From every infinite sequence of positive integers, we can choose an infinite subse-

quence S such that uniformly for u in compact subsets of C,

o, (G 1+ )
3.4 lim ———————"==¢e"+C(e"-1),
( ) n—oo,neS Pn (Cn) ( )
where

. Cn 1 (C) )

3.5 C= lim (20722t 1),
( ) n—oo,neS ( n @, (Cn)
Proof

(a) See for example [13, p. 123, Thm. 2.16.1].
(b) See for example [7, Thm. 6.3, p. 559].
(c) This follows immediatley from Theorem 1.3 in [?] as we have the universality
limit ( ) We note that there was a mistake in Lemma 4.2(a) in [?] that was corrected
in [ ]. However, the mistake did not affect Theorem 1.3 there. W

Many of the assertions in the following lemma appear in the proof of Theorem
1.1 and 1.2 in [?], but we include proofs for the reader’s convenience. We also note
there was an error in Lemma 4.2(a) there, leading to an error in Lemma 4.3(d) and
a gap in the proof of Theorems 1.1 and 1.2 of [?], but this was corrected in [ |].
Recall that R,, and g,, were defined by (), ().

Lemma 3.2
Let T be a proper subarc of A.
(a) For |z| =1,
1
(3.6) —R, (2) = Re[2g, (2) — 1].
n
(b) Uniformly for z € T, and fized real «,
(3.7 lim Im [e”o‘cpn (2) o, (ze%ia/")] p (z) = —sinma.
(¢) Uniformly for z € T, and fized real «,

(3.8)  lim Re [em‘a(pn (2) n (Ze%ia/n)} wlin ,(2627”@/") W () = cosTa.
— (2sinma) (Im g, (2€27%/™))

n— oo

(d) Uniformly for z € T,
. 1
(39) Jm SR, (), () (2) = 1
(e) Uniformly for z € T, and fized real «,
o, (ZGQWioz/n)

(3.10) = B (I40(1)) +gn(2)2ie ™ sinta=1+0(1).
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Proof
(a) Elementary manipulation shows that

1— |zjn|? z

—————5 =2Re -1

|z — 2jn] Z = Zjn
Dividing by 2n and adding for j = 1,2, ...,n gives ().
(b) Let ¢ = ze2™@/™. The Christoffel-Darboux formula and universality limit ()
(as well as the uniformity of that limit) give uniformly for « in compact subsets of
C,

on (2)e5 (€)= o (2) 2 (€)

W T L= (T K (21 2)
B nlggo K, (z,2)
K, (z(1+%214+0(1)]), ,
= Hm el KZ (z[,z) r =8 (a).

(3.11)

Here by (4.10),
lim [1 — 2] K, (z,2) = —2miay (z)7".

n—oo

Thus
Jim o7 (2)7, () = 9, (2) 0 ()| W/ (2) = —2miae™ S (a)
(3.12) = 2™ sinTa =1— 2™,

Next, if « is real,

o5 (2)en (Q) = ™0, (2) ¢, ()
so combining this and the last two limits gives

lim e {e™p, (2) 16, (O) = € ™, (2)e, (O} (2) = ~2ie™ sin o
(¢) We go back to (), which holds uniformly for « in compact subsets of C. This
uniformity allows us to differentiate with respect to a: after cancelling a factor of
27i, we obtain

. T o, < TiQ
(3.13) lim (07 GIes () = en () (O)] 24 (2) = —e2m.
Now we again specialize to real «, and use that for |¢| = 1,

e () =n¢" 0, (O = ("7 ()
so that, recalling the definition of g,,

P ()2 = %, (2) 2, (C) - 70 2) 0 Qi (O

Substituting in ( ), and cancelling a factor of e
(3.14)
Tim [0, (2) 9, (©) = €0, (2) 2 (O (©) = €™, ()20 () 9 (O] 1 (2) = =™

or

lim_[e™%, (2) i, () — 2Re{™ ¢, (=) 0, (Ogn (O }] ' () = —e™.

n—o0
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Taking real parts,

lim Re [e”“@n (2) ¢, (€) {1 —2gn (C)H = —cosTa.

n—oo

Then using (b),

. { Re [e7%, (2) 9, ()] Re[1 - 29, ()] }N, () = — cos
n—0o0 +2sin o Im gy, (€)

Finally apply (a).
(d) Here we set v = 0, then v = , then a =1 in (c).
(e) From (a),
90 (0 = 2Regn (O) — 90 () = R () + 1 90 (©).

We substitute this in ():

lim [—e%n () @ B (0) + 90 (O) {0, (), 1) — €™, D (0}} i (2) = e

n—oo

Using (d) and (b), we obtain

lim {—e”m #n (2) (I+0(1))+ gn(¢)2i(—sin 7'&'06):| =

e ©n (€)
i M Y ie ™ sinrar| =
= tim |25 (14 0(1) + 40 (02 =1

Because of the uniformity, we can substitute ze =27 for z so that ( = z. W
We now prove parts of Theorems 2.1, 2.2:

Lemma 3.3
(a) The following are equivalent:
(i)
inf{n (1 —|zjn|) : Tjn € J,n >1} > C > 0.

(i)

I 1
sup —5 —s < 00.

cerm>1 12 ]; 1 = 2’
(b) The following are equivalent:
(i) As n — oo,

inf {n (1 —|zjn]) : 7jn € J} — 0
(1)

1 « 1

sup — — =o0(1).

cer n? ; |Cn — Zjn|2
Proof
(a) (i)=-(ii)
We have

n712 Z 1 < c-1! Z 1—|Zjn‘2

2 2
Tin€J |C_Z]'n,| " Tin€J |<_Z-7n|

o (O <Gl O,

IN
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by the old (4.8). Now we know from (4.7) that

[ (O 0 (¢e™/")
so it follows that either

QZ r5 Y ————<C

im/n _
‘r]nEJ ZJ"‘ Tin€J ‘(6 / Z]n|

>1+0(1)

(or possibly both). But because of our hypothesis, for 7;,,¢ € J,

¢ — Zjn ¢ (1 - ei”/")
Cez’ﬂ'/n — . - 1+ Ceiﬂ'/n — .
jn jn
< 14 251n(|77/2n) <cC
— |Zjn

while a similar bound holds for the reciprocal. So for € J,

1 1
I D

TjneJ |C - Z]n|
Then also for the remaining terms,

1 1 Cn
S Y <=0,
n TinJ ¢ — Zj”' n

(OK one might need to worry near the boundary).
(ii)=(1)
Choosing ( = 7, € J gives
1 1
2 = 5 = C,
n? (1= |znl)”  n?|C— znl

by our hypothesis.

(b) (i)=>(ii)

‘We have
1 1— |zjn|? 1
n2 Z n Z 2, 2
(1= 1zl

Tin€J |< Zjn| a =y ¢ — 2jn inf, ecsn

- o(trw)

We can now proceed as in (a).

(b) (if)=(1)

Again, proceed much as in (a). B

4. PROOF OF THEOREM 2.1

Proof of Theorem 2.1
(a)<(b)

This is immediate from Lemma 3.2(d).

(b)=(c)

This is immediate from Lemma 3.2(a).
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(c)=(d)
It is immediate that (d)=(c). Now assume (c) holds. From Lemma 3.2(c) with
o = %, and Lemma 3.2(d),

. n(z)W wi/n
(41)  lim {Im [Wi el fpn((zem/n))’} _9 (Imgn (ze / ))} _0.

Next, using (a) for ¢ = z, ze"™/™

lim |o, (O 1/ (¢) =1,

n—oo

while from 3.2(d) with a = %,

lim Re [gon (2) e, (ze”/”)} w(z)=-1

so that
tin Re | 2 (2)en (G) ] =-1
n=oo | o, (2)| |0y, (2€i™/)]
and hence
lim Im [ P (2) @ ( eiﬂ/n) ] =0.
no e (zeim/m)]
Then
(4.2) 711520 Img, (zem/") =0.

Because of the unformity in z, we may replace ze?™/™ by z. So indeed (c¢)=-(d).
(d) <(e)

From Lemma 3.2(a) with o = %,

©, (zeﬂ'i/n)
i (2)

and so () holds iff g, — 1.
(a)& ()
Let T'; be a proper subarc of A containing I'. Assume first the conclusion () of
(a) holds. We apply Lemma 3.1(c), so must verify there. The first condition in (
) follows immediately from (d). For the second, observe first from Lemma 3.2(d)
and our hypothesis, that

1 1 c 1—|zin|>  C
il Z 72§E Z 7|J |2§—Rn(z)§0.

n2

(1+0(1)) +2gn (2) =1+0(1)

zjn€l'1 |Z o Zj"‘ zjn €l |Z Z]n| n
Next, for z € T, if d is the distance from I" to I'y,
1 1 n
— — < ——=0(1).
;2 7S
n gl |z — 2jn] n?d
Thus
1< 1
) 2 <€

j=1 |Z - Zjn|
and we have the second condition in ( ). From Lemma 3.4, we obtain that every

subsequence of positive integers contains a further subsequence & such that uni-
formly for uw in compact subsets of C, we have ( ), where C is given by ( ). But
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from (d), C' = 0, so the limit is independent of the subsequence, and we have ().

Now conversely assume we have the local limit ( ). Then setting u = iw/n and
using the uniformity,

im/n 14+ i1 1 )
o £ e G R Do)
N ) S on ()
so we have () and hence the result from (x?).

(f)=(g)

This is a consequence of the fact that e* has no zeros. Indeed, if there were a
subsequence of zeros zj,, n € S, j = j(n), then writing z;, = ¢, (1 +ia,/n), we
have a;, = O (1), and by the local limit,

0=

=e™ 4 o(1).

leading to a contradiction.
(g)=(h)

This is Lemma 3.3.
(h)=(f)

Now

Our hypothesis gives uniformly for z € T,

g (z) =0 ()

and hence for ¢,z € " with |( — z| < A/n,
|90 (2) = gn (O] = 0 (1)

Then from Lemma 3.2(e), with ¢ = ze~""/",

eu (™) op(a) |
0, (2) o, (ze™/m)| o

so that in view of (),
im/n
fi #2271
n—oo i, (2)
Then we have the conclusion of (e) and ( ) gives the result. B

=—1.

5. PROOF OF THEOREM 2.2

Lemma 5.1
Assume

sup ”(pn“Loo(F) < o0,
n<l1
then there exists C' > 0 such that for n > 1 and zj, # 0 Zin T

> zjnl
n(l—|zj|) > C.




ZEROS, BOUNDS, ASYMPTOTICS OF OPUC 11

Proof
Suppose the conclusion is false. Then we can can choose an infinite subsequence S
of integers, and for j = j(n) € S,
n (1~ |zjul) = 0.
Write _
Zjn = Tijn (1 + 27ri%> JU= Tjn (1 + 277@'3)
n n
where v = v (n) and «,, — 0 as n — co. Then from the university limit, uniformly
for v in compact sets,
K, (Zj'mu) im(v—otp)
—_— ™ TS (v — a,) +o(1)
K (Tjn,Tjn)
= ™S (v)4o(l).
Next from the Christoffel-Darboux formula,
K, (Zjn,u)
K, (ij Tjn)

and setting u = 7, so that v =0 in both formulas, gives

(5.1) @5 (2in)en () = { K (Tjn, Tjn) (1 — Uzjn) }

— K, (2jn, Tjn)
n (Zin ) (Tin = K, (Tjn,Tjn) (1 = |2jn R
@5 (2jn )@ (Tjn) (Tjn, Tjn) ( |J|)Kn(7'jm7'jn)

(5.2) o(1)(14+0(1))=0(1).
Now apply the above with u = 7;,e"™/™, so that v = —3 + o(1),

Ky, (2jn, Tjne™™) Cimjae (1
—e 25 (2) 4001
K (Tjn, Tjn) ‘ 2) Tolh:

while
@% (zjn)en (Tjnei”/")
= {Kn (Tjn, Tjn) (1 —enn |Zjn|)} [m
= {Kn (Tjns Tjn) <1 —e M 4o (i))} {e‘”ﬂS (;) +o (1)}
so that

~ 1.

S ()
Dividing (5.2) by this, gives

Pn (Tgn)

©n (Tjneiﬂ—/") =0 (1) .

But from the old (4.7),
>1+4o0(1),

Pn (Tjneiﬂ/n) Pn (Tjn)

SO

—1
Pn (TJTLeiTr/n)
— 00 as n — 00,

. 2
©n (Tjnezw/n)

©n, (Tjnei”/") O (Tjn)
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contradicting boundedness. H

Proof of Theorem 2.1
(a)=(b)
This is immediate from Lemma 3.2(d).
(b)<(c)
This is immediate from Lemma 3.2(a).
(c)=(d)
This follows from Lemma 3.2(e).
(a)=(e)
This follows from Lemma 5.1.
(e)=(f)
This was proved in Lemma 3.3.
(f)=(a)
Assume the result is false. Then can choose a sequence S and for n € S, (,, such
that

Then from ()

1
But then for |¢,, — z,| < n,

1

Then also )
C 1 — ‘Z]n‘
el Bl o L S |
n2 Z |Z — 2 | n Z ‘Z . |2 0()
rin€d 170 T Zjn Tin€J 170 T Zjn
while the tail sum is smaller, so
o(1).
n2 Z Z_]Tll

Then

It follows that if |z, — (,,| < C/n,

2 () Catn (C)

From the old (4.12),

P (Cneiﬂ—//n) _ Pn (Cn)
©n (Cn) @, (Cei//m)

= o(1)
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which forces

n (Cne™ /™)

onGy Lte

which forces

Cnr (C)

nen (Co) o)

which forces from the old (4.9) that

00 (G 1 (C) =1+ 0(1)

which forces

LR (C) =14 0(1).

This contradicts our hypothesis. So uniformly in n and ¢ € J,

1
—R, (C) >C
n
which forces
lenllp. < C
|
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