ON ZEROS, BOUNDS, AND ASYMPTOTICS FOR ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE

D. S. LUBINSKY

Abstract

Let μ be a measure on the unit circle that is regular in the sense of Stahl Totik, and Ullmann. Let $\left\{\varphi_{n}\right\}$ be the orthonormal polynomials for μ and $\left\{z_{j n}\right\}$ their zeros. Let μ be absolutely continuous in an arc Γ of the unit circle, with μ^{\prime} positive and continuous there. We show that uniform boundedness of the orthonormal polynomials in subarcs of Γ is equivalent to $n\left(1-\left|z_{j n}\right|\right)$ being bounded away from 0 . If in addition as $n \rightarrow \infty, n\left(1-\left|z_{j n}\right|\right) \rightarrow \infty$, then $\left|\varphi_{n}\right|^{2} \mu^{\prime} \rightarrow 1$ uniformly.

Research supported by NSF grant DMS1800251

1. Main Results

Let μ be a finite positive Borel measure on $[-\pi, \pi$) (or equivalently on the unit circle) with infinitely many points in its support. Then we may define orthonormal polynomials

$$
\varphi_{n}(z)=\kappa_{n} z^{n}+\ldots, \kappa_{n}>0
$$

$n=0,1,2, \ldots$ satisfying the orthonormality conditions

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \varphi_{n}(z) \overline{\varphi_{m}(z)} d \mu(\theta)=\delta_{m n}
$$

where $z=e^{i \theta}$. We denote the zeros of φ_{n} by $\left\{z_{j n}\right\}_{j=1}^{n}$. They lie inside the unit circle, and may not be distinct.

We shall often assume that μ is regular in the sense of Stahl, Totik and Ullmann [14], so that

$$
\lim _{n \rightarrow \infty} \kappa_{n}^{1 / n}=1
$$

This is true if for example $\mu^{\prime}>0$ a.e. in $[-\pi, \pi)$, but there are pure jump and pure singularly continuous measures that are regular.

Many aspects of the zeros $\left\{z_{j n}\right\}$ have been studied down the years: their asymptotics, their distribution (often when projected onto the unit circle), "clock spacing" of zeros of paraorthogonal polynomials, See

In a very interesting recent paper, Bessonov and Denisov [?] showed that the distance of the zeros to the unit circle is intimately related to asymptotics of orthogonal polynomials. The following is a reformulation of one of their results:

Theorem

Let μ be a measure on the unit circle satisfying the Szegő condition

$$
\int_{-\pi}^{\pi} \log \mu^{\prime}\left(e^{i t}\right) d t>-\infty
$$

Date: December 12, 2020.

For almost every ζ with $|\zeta|=1$, the following are equivalent:
(I)

$$
\lim _{n \rightarrow \infty}\left|\varphi_{n}(\zeta)\right|^{2} \mu^{\prime}(\zeta)=1
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\inf _{1 \leq j \leq n}\left|\zeta-z_{j n}\right|\right)=\infty \tag{II}
\end{equation*}
$$

We prove related equivalences for local bounds and asymptotics but for more general regular, rather than Szegő, measures:

Theorem 1.1

Let μ be a finite positive Borel measure on the unit circle that is regular in the sense of Stahl, Totik, and Ullmann. Let Δ be an arc of the unit circle in which μ is absolutely continuous, while μ^{\prime} is positive and continuous there. The following are equivalent:
(I) In every proper subarc Γ of Δ,

$$
\lim _{n \rightarrow \infty}\left(\inf \left\{n\left(1-\left|z_{j n}\right|\right): z_{j n} \neq 0, \frac{z_{j n}}{\left|z_{j n}\right|} \in \Gamma\right\}\right)=\infty
$$

(II) In every proper subarc Γ of Δ, as $n \rightarrow \infty$, uniformly for $\zeta \in \Gamma$,

$$
\lim _{n \rightarrow \infty}\left|\varphi_{n}(\zeta)\right|^{2} \mu^{\prime}(\zeta)=1
$$

Theorem 1.2

Assume the hypotheses of Theorem 1.1. The following are equivalent:
(I) In every proper subarc Γ of Δ, there exists $C_{1}>0$ such that for $n \geq 1$,

$$
\inf \left\{n\left(1-\left|z_{j n}\right|\right): z_{j n} \neq 0, \frac{z_{j n}}{\left|z_{j n}\right|} \in \Gamma\right\} \geq C_{1}
$$

(II) In every proper subarc Γ of Δ, there exists $C_{2}>0$ such that for $n \geq 1$,

$$
\left\|\varphi_{n}\right\|_{L_{\infty}(\Gamma)} \leq C_{2}
$$

This paper is organized as follows: in Section 2, we present more background as well as more equivalences. ...

We close this section with more notation. We let

$$
\varphi_{n}^{*}(z)=z^{n} \overline{\varphi_{n}\left(\frac{1}{\bar{z}}\right)}
$$

The nth reproducing kernel for μ is

$$
\begin{equation*}
K_{n}(z, u)=\sum_{j=0}^{n-1} \varphi_{j}(z) \overline{\varphi_{j}(u)} \tag{1.1}
\end{equation*}
$$

The Christoffel-Darboux formula asserts that

$$
\begin{equation*}
K_{n}(z, u)=\frac{\overline{\varphi_{n}^{*}(u)} \varphi_{n}^{*}(z)-\overline{\varphi_{n}(u)} \varphi_{n}(z)}{1-\bar{u} z} \tag{1.2}
\end{equation*}
$$

We let

$$
\begin{equation*}
R_{n}(z)=\sum_{j=1}^{n} \frac{1-\left|z_{j n}\right|^{2}}{\left|z-z_{j n}\right|^{2}} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{n}(z)=\frac{z \varphi_{n}^{\prime}(z)}{n \varphi_{n}(z)} \tag{1.4}
\end{equation*}
$$

Throughout C, C_{1}, C_{2}, \ldots denote positive constants independent of n, z, t and polynomials P of degree $\leq n$. The same symbol need not denote the same constant in different occurrences. For sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ of non-zero real numbers, we write

$$
x_{n} \sim y_{n}
$$

if there exists $C>1$ such that

$$
C^{-1} \leq x_{n} / y_{n} \leq C \text { for } n \geq 1
$$

2. Background and Further Results

Parts of the following theorem appear in Theorem 1.2 in [?], notably (b), (d), (e), while weaker forms of (a), (f) appear there.

Theorem 2.1

Let μ be a finite positive Borel measure on the unit circle that is regular in the sense of Stahl, Totik, and Ullmann. Let Δ be an arc of the unit circle in which μ is absolutely continuous, while μ^{\prime} is positive and continuous there. Let Γ be a proper subarc of Δ. The following are equivalent: in every proper subarc Γ of Δ,
(a) Uniformly in Γ,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\varphi_{n}(z)\right|^{2} \mu^{\prime}(z)=1 \tag{2.1}
\end{equation*}
$$

(b) Uniformly in Γ,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} R_{n}(z)=1 \tag{2.2}
\end{equation*}
$$

(c) Uniformly in Γ,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Re}\left(\frac{z \varphi_{n}^{\prime}(z)}{n \varphi_{n}(z)}\right)=1 \tag{2.3}
\end{equation*}
$$

(d) Uniformly in Γ,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{z \varphi_{n}^{\prime}(z)}{n \varphi_{n}(z)}=1 \tag{2.4}
\end{equation*}
$$

(e) Uniformly in Γ,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\varphi_{n}\left(z e^{i \pi / n}\right)}{\varphi_{n}(z)}=-1 \tag{2.5}
\end{equation*}
$$

(f) Uniformly for $z \in \Gamma$ and u in compact subsets of \mathbb{C},

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\varphi_{n}\left(z\left(1+\frac{u}{n}\right)\right)}{\varphi_{n}(z)}=e^{u} \tag{2.6}
\end{equation*}
$$

(g)

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\inf \left\{n\left(1-\left|z_{j n}\right|\right): z_{j n} \neq 0, \frac{z_{j n}}{\left|z_{j n}\right|} \in \Gamma\right\}\right)=\infty \tag{2.7}
\end{equation*}
$$

(h) Uniformly for $z \in \Gamma$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{j=1}^{n} \frac{1}{\left|z-z_{j n}\right|^{2}}=0 \tag{2.8}
\end{equation*}
$$

Theorem 2.2

Let μ satisfy the hypotheses of Theorem 2.1. The following are equivalent: in every proper subarc Γ of Δ,
(a)

$$
\begin{equation*}
\sup _{n \geq 1}\left\|\varphi_{n}\right\|_{L_{\infty}(\Gamma)}<\infty \tag{2.9}
\end{equation*}
$$

(b) There exist $n_{0}, C>0$ such that for $n \geq n_{0}$, and $z \in \Gamma$,

$$
\begin{equation*}
\frac{1}{n} R_{n}(z) \geq C \tag{2.10}
\end{equation*}
$$

(c) There exist $n_{0}, C>0$ such that for $n \geq n_{0}$, and $z \in \Gamma$,

$$
\begin{equation*}
\left|\operatorname{Re}\left(\frac{z \varphi_{n}^{\prime}(z)}{n \varphi_{n}(z)}-\frac{1}{2}\right)\right| \geq C \tag{2.11}
\end{equation*}
$$

(d) There exist $n_{0}, C>0$ such that for $n \geq n_{0}$, and $z \in \Gamma$,

$$
\begin{equation*}
\left|\operatorname{Re}\left(\frac{\varphi_{n}\left(z e^{ \pm i \pi / n}\right)}{\varphi_{n}(z)}\right)\right| \geq C \tag{2.12}
\end{equation*}
$$

(e) There exist $n_{0}, C>0$ such that for $n \geq n_{0}$, and $z \in \Gamma$,

$$
\begin{equation*}
\inf \left\{n\left(1-\left|z_{j n}\right|\right): z_{j n} \neq 0, \frac{z_{j n}}{\left|z_{j n}\right|} \in \Gamma\right\} \geq C \tag{2.13}
\end{equation*}
$$

(f) There exist $n_{0}, C>0$ such that for $n \geq n_{0}$, and $z \in \Gamma$

$$
\begin{equation*}
\sup _{\zeta \in \Gamma, n \geq 1} \frac{1}{n^{2}} \sum_{j=1}^{n} \frac{1}{\left|z-z_{j n}\right|^{2}} \leq C \tag{2.14}
\end{equation*}
$$

3. Preliminary Lemmas

Throughout, we assume the hypotheses of Theorem 1.1. We first recall some asymptotics for Christoffel functions and universality and local limits.

Lemma 3.1

Let Γ be a proper subarc of Δ.
(a) Uniformly for $z \in \Gamma$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} K_{n}(z, z) \mu^{\prime}(z)=1 \tag{3.1}
\end{equation*}
$$

(b) Uniformly for $z \in \Gamma$ and a, b in compact subsets of \mathbb{C},

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{K_{n}\left(z\left(1+\frac{i 2 \pi a}{n}\right), z\left(1+\frac{i 2 \pi \bar{b}}{n}\right)\right)}{K_{n}(z, z)}=e^{i \pi(a-b)} \mathbb{S}(a-b) . \tag{3.2}
\end{equation*}
$$

(c) Let $\left\{\zeta_{n}\right\} \subset \Gamma$. Assume that

$$
\begin{equation*}
\sup _{n \geq 1} \frac{1}{n}\left|\sum_{j=1}^{n} \frac{1}{\zeta_{n}-z_{j n}}\right|<\infty \text { and } \sup _{n \geq 1} \frac{1}{n^{2}} \sum_{j=1}^{n} \frac{1}{\left|\zeta_{n}-z_{j n}\right|^{2}}<\infty . \tag{3.3}
\end{equation*}
$$

From every infinite sequence of positive integers, we can choose an infinite subsequence \mathcal{S} such that uniformly for u in compact subsets of \mathbb{C},

$$
\begin{equation*}
\lim _{n \rightarrow \infty, n \in \mathcal{S}} \frac{\varphi_{n}\left(\zeta_{n}\left(1+\frac{u}{n}\right)\right)}{\varphi_{n}\left(\zeta_{n}\right)}=e^{u}+C\left(e^{u}-1\right) \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
C=\lim _{n \rightarrow \infty, n \in \mathcal{S}}\left(\frac{\zeta_{n}}{n} \frac{\varphi_{n}^{\prime}\left(\zeta_{n}\right)}{\varphi_{n}\left(\zeta_{n}\right)}-1\right), \tag{3.5}
\end{equation*}
$$

Proof
(a) See for example [13, p. 123, Thm. 2.16.1].
(b) See for example [7, Thm. 6.3, p. 559].
(c) This follows immediatley from Theorem 1.3 in [?] as we have the universality limit () We note that there was a mistake in Lemma 4.2(a) in [?] that was corrected in []. However, the mistake did not affect Theorem 1.3 there.

Many of the assertions in the following lemma appear in the proof of Theorem 1.1 and 1.2 in [?], but we include proofs for the reader's convenience. We also note there was an error in Lemma 4.2(a) there, leading to an error in Lemma 4.3(d) and a gap in the proof of Theorems 1.1 and 1.2 of [?], but this was corrected in []. Recall that R_{n} and g_{n} were defined by (), ().

Lemma 3.2
Let Γ be a proper subarc of Δ.
(a) For $|z|=1$,

$$
\begin{equation*}
\frac{1}{n} R_{n}(z)=\operatorname{Re}\left[2 g_{n}(z)-1\right] . \tag{3.6}
\end{equation*}
$$

(b) Uniformly for $z \in \Gamma$, and fixed real α,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Im}\left[e^{i \pi \alpha} \varphi_{n}(z) \overline{\varphi_{n}\left(z e^{2 \pi i \alpha / n}\right)}\right] \mu^{\prime}(z)=-\sin \pi \alpha \tag{3.7}
\end{equation*}
$$

(c) Uniformly for $z \in \Gamma$, and fixed real α,

$$
\lim _{n \rightarrow \infty}\left\{\begin{array}{c}
\operatorname{Re}\left[e^{\pi i \alpha} \varphi_{n}(z) \overline{\varphi_{n}\left(z e^{2 \pi i \alpha / n}\right)}\right] \frac{1}{n} R_{n}\left(z e^{2 \pi i \alpha / n}\right) \mu^{\prime}(z) \tag{3.8}\\
-(2 \sin \pi \alpha)\left(\operatorname{Im} g_{n}\left(z e^{2 \pi i \alpha / n}\right)\right)
\end{array}\right\}=\cos \pi \alpha
$$

(d) Uniformly for $z \in \Gamma$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} R_{n}(z)\left|\varphi_{n}(z)\right|^{2} \mu^{\prime}(z)=1 \tag{3.9}
\end{equation*}
$$

(e) Uniformly for $z \in \Gamma$, and fixed real α,

$$
\begin{equation*}
\Rightarrow \frac{\varphi_{n}\left(z e^{2 \pi i \alpha / n}\right)}{\varphi_{n}(z)}(1+o(1))+g_{n}(z) 2 i e^{-\pi i \alpha} \sin \pi \alpha=1+o(1) . \tag{3.10}
\end{equation*}
$$

Proof

(a) Elementary manipulation shows that

$$
\frac{1-\left|z_{j n}\right|^{2}}{\left|z-z_{j n}\right|^{2}}=2 \operatorname{Re}\left(\frac{z}{z-z_{j n}}\right)-1
$$

Dividing by $2 n$ and adding for $j=1,2, \ldots, n$ gives ().
(b) Let $\zeta=z e^{2 \pi i \alpha / n}$. The Christoffel-Darboux formula and universality limit () (as well as the uniformity of that limit) give uniformly for α in compact subsets of \mathbb{C},

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{\overline{\varphi_{n}^{*}(z)} \varphi_{n}^{*}(\zeta)-\overline{\varphi_{n}(z)} \varphi_{n}(\zeta)}{[1-\bar{z} \zeta] K_{n}(z, z)} \\
= & \lim _{n \rightarrow \infty} \frac{K_{n}(\zeta, z)}{K_{n}(z, z)} \\
= & \lim _{n \rightarrow \infty} \frac{K_{n}\left(z\left(1+\frac{2 \pi i \alpha}{n}[1+o(1)]\right), z\right)}{K_{n}(z, z)}=e^{i \pi \alpha} \mathbb{S}(\alpha) . \tag{3.11}
\end{align*}
$$

Here by (4.10),

$$
\lim _{n \rightarrow \infty}[1-\bar{z} \zeta] K_{n}(z, z)=-2 \pi i \alpha \mu^{\prime}(z)^{-1}
$$

Thus

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left[\overline{\varphi_{n}^{*}(z)} \varphi_{n}^{*}(\zeta)-\overline{\varphi_{n}(z)} \varphi_{n}(\zeta)\right] \mu^{\prime}(z) & =-2 \pi i \alpha e^{i \pi \alpha} \mathbb{S}(\alpha) \\
& =-2 i e^{\pi i \alpha} \sin \pi \alpha=1-e^{2 \pi i \alpha} \tag{3.12}
\end{align*}
$$

Next, if α is real,

$$
\overline{\varphi_{n}^{*}(z)} \varphi_{n}^{*}(\zeta)=e^{2 \pi i \alpha} \varphi_{n}(z) \overline{\varphi_{n}(\zeta)}
$$

so combining this and the last two limits gives

$$
\lim _{n \rightarrow \infty} e^{\pi i \alpha}\left\{e^{i \pi \alpha} \varphi_{n}(z) \overline{\varphi_{n}(\zeta)}-e^{-\pi i \alpha} \overline{\varphi_{n}(z)} \varphi_{n}(\zeta)\right\} \mu^{\prime}(z)=-2 i e^{\pi i \alpha} \sin \pi \alpha
$$

(c) We go back to (), which holds uniformly for α in compact subsets of \mathbb{C}. This uniformity allows us to differentiate with respect to α : after cancelling a factor of $2 \pi i$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[\overline{\varphi_{n}^{*}(z)} \varphi_{n}^{* \prime}(\zeta)-\overline{\varphi_{n}(z)} \varphi_{n}^{\prime}(\zeta)\right] \frac{\zeta}{n} \mu^{\prime}(z)=-e^{2 \pi i \alpha} \tag{3.13}
\end{equation*}
$$

Now we again specialize to real α, and use that for $|\zeta|=1$,

$$
\varphi_{n}^{* \prime}(\zeta)=n \zeta^{n-1} \overline{\varphi_{n}(\zeta)}-\zeta^{n-2} \overline{\varphi_{n}^{\prime}(\zeta)}
$$

so that, recalling the definition of g_{n},

$$
\overline{\varphi_{n}^{*}(z)} \varphi_{n}^{* \prime}(\zeta) \frac{\zeta}{n}=e^{2 \pi i \alpha} \varphi_{n}(z) \overline{\varphi_{n}(\zeta)}-e^{2 \pi i \alpha} \varphi_{n}(z) \overline{\varphi_{n}(\zeta) g_{n}(\zeta)}
$$

Substituting in (), and cancelling a factor of $e^{\pi i \alpha}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[e^{\pi i \alpha} \varphi_{n}(z) \overline{\varphi_{n}(\zeta)}-e^{\pi i \alpha} \varphi_{n}(z) \overline{\varphi_{n}(\zeta) g_{n}(\zeta)}-e^{-\pi i \alpha} \overline{\varphi_{n}(z)} \varphi_{n}(\zeta) g_{n}(\zeta)\right] \mu^{\prime}(z)=-e^{\pi i \alpha} \tag{3.14}
\end{equation*}
$$

or

$$
\lim _{n \rightarrow \infty}\left[e^{\pi i \alpha} \varphi_{n}(z) \overline{\varphi_{n}(\zeta)}-2 \operatorname{Re}\left\{e^{\pi i \alpha} \varphi_{n}(z) \overline{\varphi_{n}(\zeta) g_{n}(\zeta)}\right\}\right] \mu^{\prime}(z)=-e^{\pi i \alpha}
$$

Taking real parts,

$$
\lim _{n \rightarrow \infty} \operatorname{Re}\left[e^{\pi i \alpha} \varphi_{n}(z) \overline{\varphi_{n}(\zeta)}\left\{1-2 \overline{g_{n}(\zeta)}\right\}\right]=-\cos \pi \alpha
$$

Then using (b),

$$
\lim _{n \rightarrow \infty}\left\{\begin{array}{c}
\operatorname{Re}\left[e^{\pi i \alpha} \varphi_{n}(z) \overline{\varphi_{n}(\zeta)}\right] \operatorname{Re}\left[1-2 g_{n}(\zeta)\right] \\
+2 \sin \pi \alpha \operatorname{Im} g_{n}(\zeta)
\end{array}\right\} \mu^{\prime}(z)=-\cos \pi \alpha
$$

Finally apply (a).
(d) Here we set $\alpha=0$, then $\alpha=\frac{1}{2}$, then $\alpha=1$ in (c).
(e) From (a),

$$
\overline{g_{n}(\zeta)}=2 \operatorname{Re} g_{n}(\zeta)-g_{n}(\zeta)=\frac{1}{n} R_{n}(\zeta)+1-g_{n}(\zeta)
$$

We substitute this in ():
$\lim _{n \rightarrow \infty}\left[-e^{\pi i \alpha} \varphi_{n}(z) \overline{\varphi_{n}(\zeta)} \frac{1}{n} R_{n}(\zeta)+g_{n}(\zeta)\left\{e^{\pi i \alpha} \varphi_{n}(z) \overline{\varphi_{n}(\zeta)}-e^{-\pi i \alpha} \overline{\varphi_{n}(z)} \varphi_{n}(\zeta)\right\}\right] \mu^{\prime}(z)=-e^{\pi i \alpha}$
Using (d) and (b), we obtain

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left[-e^{\pi i \alpha} \frac{\varphi_{n}(z)}{\varphi_{n}(\zeta)}(1+o(1))+g_{n}(\zeta) 2 i(-\sin \pi \alpha)\right]=-e^{\pi i \alpha} \\
& \quad \Rightarrow \lim _{n \rightarrow \infty}\left[\frac{\varphi_{n}(z)}{\varphi_{n}(\zeta)}(1+o(1))+g_{n}(\zeta) 2 i e^{-\pi i \alpha} \sin \pi \alpha\right]=1
\end{aligned}
$$

Because of the uniformity, we can substitute $z e^{-2 \pi i \alpha}$ for z so that $\zeta=z$.
We now prove parts of Theorems 2.1, 2.2:

Lemma 3.3

(a) The following are equivalent:
(i)

$$
\inf \left\{n\left(1-\left|z_{j n}\right|\right): \tau_{j n} \in J, n \geq 1\right\} \geq C>0
$$

(ii)

$$
\sup _{\zeta \in \Gamma, n \geq 1} \frac{1}{n^{2}} \sum_{j=1}^{n} \frac{1}{\left|\zeta_{n}-z_{j n}\right|^{2}}<\infty
$$

(b) The following are equivalent:
(i) As $n \rightarrow \infty$,

$$
\inf \left\{n\left(1-\left|z_{j n}\right|\right): \tau_{j n} \in J\right\} \rightarrow \infty
$$

(ii)

$$
\sup _{\zeta \in I} \frac{1}{n^{2}} \sum_{j=1}^{n} \frac{1}{\left|\zeta_{n}-z_{j n}\right|^{2}}=o(1)
$$

Proof

(a) (i) \Rightarrow (ii)

We have

$$
\begin{aligned}
\frac{1}{n^{2}} \sum_{\tau_{j n} \in J} \frac{1}{\left|\zeta-z_{j n}\right|^{2}} & \leq \frac{C^{-1}}{n} \sum_{\tau_{j n} \in J} \frac{1-\left|z_{j n}\right|^{2}}{\left|\zeta-z_{j n}\right|^{2}} \\
& \leq \frac{1}{C n} R_{n}(\zeta) \leq C_{1}\left|\varphi_{n}(\zeta)\right|^{-2}
\end{aligned}
$$

by the old (4.8). Now we know from (4.7) that

$$
\left|\varphi_{n}(\zeta)\right|\left|\varphi_{n}\left(\zeta e^{i \pi / n}\right)\right| \geq 1+o(1)
$$

so it follows that either

$$
\frac{1}{n^{2}} \sum_{\tau_{j n} \in J} \frac{1}{\left|\zeta-z_{j n}\right|^{2}} \leq C \text { or } \frac{1}{n^{2}} \sum_{\tau_{j n} \in J} \frac{1}{\left|\zeta e^{i \pi / n}-z_{j n}\right|^{2}} \leq C
$$

(or possibly both). But because of our hypothesis, for $\tau_{j n}, \zeta \in J$,

$$
\begin{aligned}
\left|\frac{\zeta-z_{j n}}{\zeta e^{i \pi / n}-z_{j n}}\right| & =\left|1+\frac{\zeta\left(1-e^{i \pi / n}\right)}{\zeta e^{i \pi / n}-z_{j n}}\right| \\
& \leq 1+\frac{2 \sin (\pi / 2 n)}{1-\left|z_{j n}\right|} \leq C
\end{aligned}
$$

while a similar bound holds for the reciprocal. So for $\zeta \in J$,

$$
\frac{1}{n^{2}} \sum_{\tau_{j n} \in J} \frac{1}{\left|\zeta-z_{j n}\right|^{2}} \leq C
$$

Then also for the remaining terms,

$$
\frac{1}{n^{2}} \sum_{\tau_{j n} \notin J} \frac{1}{\left|\zeta-z_{j n}\right|^{2}} \leq \frac{C n}{n^{2}}=o(1)
$$

(OK one might need to worry near the boundary).
(ii) \Rightarrow (i)

Choosing $\zeta=\tau_{j n} \in J$ gives

$$
\frac{1}{n^{2}\left(1-\left|z_{j n}\right|\right)^{2}}=\frac{1}{n^{2}\left|\zeta-z_{j n}\right|^{2}} \leq C
$$

by our hypothesis.
(b) $(\mathrm{i}) \Rightarrow$ (ii)

We have

$$
\begin{aligned}
\frac{1}{n^{2}} \sum_{\tau_{j n} \in J} \frac{1}{\left|\zeta-z_{j n}\right|^{2}} & \leq \frac{1}{n} \sum_{\tau_{j n} \in J} \frac{1-\left|z_{j n}\right|^{2}}{\left|\zeta-z_{j n}\right|^{2}} \frac{1}{\inf _{\tau_{j n} \in J} n\left(1-\left|z_{j n}\right|^{2}\right)} \\
& =o\left(\frac{1}{n} R_{n}(\zeta)\right)
\end{aligned}
$$

We can now proceed as in (a).
(b) (ii) \Rightarrow (i)

Again, proceed much as in (a).

4. Proof of Theorem 2.1

Proof of Theorem 2.1

(a) \Leftrightarrow (b)

This is immediate from Lemma 3.2(d).
(b) \Leftrightarrow (c)

This is immediate from Lemma 3.2(a).
$(\mathrm{c}) \Leftrightarrow(\mathrm{d})$
It is immediate that (d) \Rightarrow (c). Now assume (c) holds. From Lemma 3.2(c) with $\alpha=\frac{1}{2}$, and Lemma 3.2(d),

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{\operatorname{Im}\left[\frac{\varphi_{n}(z) \overline{\varphi_{n}\left(z e^{i \pi / n}\right)}}{\left|\varphi_{n}(z)\right|\left|\varphi_{n}\left(z e^{i \pi / n}\right)\right|}\right]-2\left(\operatorname{Im} g_{n}\left(z e^{\pi i / n}\right)\right)\right\}=0 . \tag{4.1}
\end{equation*}
$$

Next, using (a) for $\zeta=z, z e^{i \pi / n}$

$$
\lim _{n \rightarrow \infty}\left|\varphi_{n}(\zeta)\right|^{2} \mu^{\prime}(\zeta)=1,
$$

while from $3.2(\mathrm{~d})$ with $\alpha=\frac{1}{2}$,

$$
\lim _{n \rightarrow \infty} \operatorname{Re}\left[\varphi_{n}(z) \overline{\varphi_{n}\left(z e^{i \pi / n}\right)}\right] \mu^{\prime}(z)=-1
$$

so that

$$
\lim _{n \rightarrow \infty} \operatorname{Re}\left[\frac{\varphi_{n}(z) \overline{\varphi_{n}\left(z e^{i \pi / n}\right)}}{\left|\varphi_{n}(z)\right|\left|\varphi_{n}\left(z e^{i \pi / n}\right)\right|}\right]=-1
$$

and hence

$$
\lim _{n \rightarrow \infty} \operatorname{Im}\left[\frac{\varphi_{n}(z) \overline{\varphi_{n}\left(z e^{i \pi / n}\right)}}{\left|\varphi_{n}(z)\right|\left|\varphi_{n}\left(z e^{i \pi / n}\right)\right|}\right]=0 .
$$

Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Im} g_{n}\left(z e^{\pi i / n}\right)=0 \tag{4.2}
\end{equation*}
$$

Because of the unformity in z, we may replace $z e^{i \pi / n}$ by z. So indeed (c) \Rightarrow (d).
(d) \Leftrightarrow (e)

From Lemma 3.2(a) with $\alpha=\frac{1}{2}$,

$$
\frac{\varphi_{n}\left(z e^{\pi i / n}\right)}{\varphi_{n}(z)}(1+o(1))+2 g_{n}(z)=1+o(1)
$$

and so () holds iff $g_{n} \rightarrow 1$.
(a) \Leftrightarrow (f)

Let Γ_{1} be a proper subarc of Δ containing Γ. Assume first the conclusion () of (a) holds. We apply Lemma 3.1(c), so must verify there. The first condition in () follows immediately from (d). For the second, observe first from Lemma 3.2(d) and our hypothesis, that

$$
\frac{1}{n^{2}} \sum_{z_{j n} \in \Gamma_{1}} \frac{1}{\left|z-z_{j n}\right|^{2}} \leq \frac{C}{n} \sum_{z_{j n} \in \Gamma_{1}} \frac{1-\left|z_{j n}\right|^{2}}{\left|z-z_{j n}\right|^{2}} \leq \frac{C}{n} R_{n}(z) \leq C .
$$

Next, for $z \in \Gamma$, if d is the distance from Γ to Γ_{1},

$$
\frac{1}{n^{2}} \sum_{z_{j n} \notin \Gamma_{1}} \frac{1}{\left|z-z_{j n}\right|^{2}} \leq \frac{n}{n^{2} d}=o(1) .
$$

Thus

$$
\frac{1}{n^{2}} \sum_{j=1}^{n} \frac{1}{\left|z-z_{j n}\right|^{2}} \leq C
$$

and we have the second condition in (). From Lemma 3.4, we obtain that every subsequence of positive integers contains a further subsequence \mathcal{S} such that uniformly for u in compact subsets of \mathbb{C}, we have (), where C is given by (). But
from (d), $C=0$, so the limit is independent of the subsequence, and we have ().
Now conversely assume we have the local limit (). Then setting $u=i \pi / n$ and using the uniformity,

$$
\lim _{n \rightarrow \infty} \frac{\varphi_{n}\left(z e^{i \pi / n}\right)}{\varphi_{n}(z)}=\lim _{n \rightarrow \infty} \frac{\varphi_{n}\left(z\left(1+\frac{i \pi}{n}[1+o(1)]\right)\right)}{\varphi_{n}(z)}=e^{i \pi}=-1
$$

so we have () and hence the result from (x?).
$(\mathrm{f}) \Rightarrow(\mathrm{g})$
This is a consequence of the fact that e^{u} has no zeros. Indeed, if there were a subsequence of zeros $z_{j n}, n \in \mathcal{S}, j=j(n)$, then writing $z_{j n}=\zeta_{n}\left(1+i \alpha_{n} / n\right)$, we have $\alpha_{n}=O(1)$, and by the local limit,

$$
0=\frac{\varphi_{n}\left(\zeta_{n}\left(1+i \alpha_{n} / n\right)\right)}{\varphi_{n}\left(\zeta_{n}\right)}=e^{\pi i \alpha_{n}}+o(1)
$$

leading to a contradiction.
(g) \Leftrightarrow (h)

This is Lemma 3.3.
(h) \Rightarrow (f)

Now

$$
\begin{aligned}
\frac{1}{n} g_{n}^{\prime}(z) & =\frac{1}{n^{2}} \frac{d}{d z}\left(\sum_{j=1}^{n}\left[1+\frac{z_{j n}}{z-z_{j n}}\right]\right) \\
& =-\frac{1}{n^{2}} \sum_{j=1}^{n} \frac{z_{j n}}{\left(z-z_{j n}\right)^{2}}
\end{aligned}
$$

Our hypothesis gives uniformly for $z \in \Gamma$,

$$
\frac{1}{n} g_{n}^{\prime}(z)=o(1)
$$

and hence for $\zeta, z \in \Gamma$ with $|\zeta-z| \leq A / n$,

$$
\left|g_{n}(z)-g_{n}(\zeta)\right|=o(1)
$$

Then from Lemma 3.2(e), with $\zeta=z e^{-i \pi / n}$,

$$
\left|\frac{\varphi_{n}\left(z e^{i \pi / n}\right)}{\varphi_{n}(z)}-\frac{\varphi_{n}(z)}{\varphi_{n}\left(z e^{i \pi / n}\right)}\right|=o(1)
$$

so that in view of (),

$$
\lim _{n \rightarrow \infty} \frac{\varphi_{n}\left(z e^{i \pi / n}\right)}{\varphi_{n}(z)}=-1
$$

Then we have the conclusion of (e) and () gives the result.

5. Proof of Theorem 2.2

Lemma 5.1

Assume

$$
\sup _{n \leq 1}\left\|\varphi_{n}\right\|_{L_{\infty}(\Gamma)}<\infty
$$

then there exists $C>0$ such that for $n \geq 1$ and $z_{j n} \neq 0, \frac{z_{j n}}{\left|z_{j n}\right|} \in \Gamma$

$$
n\left(1-\left|z_{j n}\right|\right) \geq C
$$

Proof

Suppose the conclusion is false. Then we can can choose an infinite subsequence \mathcal{S} of integers, and for $j=j(n) \in \mathcal{S}$,

$$
n\left(1-\left|z_{j n}\right|\right) \rightarrow 0
$$

Write

$$
z_{j n}=\tau_{j n}\left(1+2 \pi i \frac{\alpha_{n}}{n}\right) ; u=\tau_{j n}\left(1+2 \pi i \frac{\bar{v}}{n}\right)
$$

where $v=v(n)$ and $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then from the university limit, uniformly for v in compact sets,

$$
\begin{aligned}
\frac{K_{n}\left(z_{j n}, u\right)}{K_{n}\left(\tau_{j n}, \tau_{j n}\right)} & =e^{i \pi\left(v-\alpha_{n}\right)} \mathbb{S}\left(v-\alpha_{n}\right)+o(1) \\
& =e^{i \pi v} \mathbb{S}(v)+o(1)
\end{aligned}
$$

Next from the Christoffel-Darboux formula,

$$
\begin{equation*}
\overline{\varphi_{n}^{*}\left(z_{j n}\right)} \varphi_{n}(u)=\left\{K_{n}\left(\tau_{j n}, \tau_{j n}\right)\left(1-\bar{u} z_{j n}\right)\right\} \frac{K_{n}\left(z_{j n}, u\right)}{K_{n}\left(\tau_{j n}, \tau_{j n}\right)} \tag{5.1}
\end{equation*}
$$

and setting $u=\tau_{j n}$ so that $v=0$ in both formulas, gives

$$
\begin{align*}
\overline{\varphi_{n}^{*}\left(z_{j n}\right)} \varphi_{n}\left(\tau_{j n}\right) & =K_{n}\left(\tau_{j n}, \tau_{j n}\right)\left(1-\left|z_{j n}\right|\right) \frac{K_{n}\left(z_{j n}, \tau_{j n}\right)}{K_{n}\left(\tau_{j n}, \tau_{j n}\right)} \\
& =o(1)(1+o(1))=o(1) \tag{5.2}
\end{align*}
$$

Now apply the above with $u=\tau_{j n} e^{i \pi / n}$, so that $v=-\frac{1}{2}+o(1)$,

$$
\frac{K_{n}\left(z_{j n}, \tau_{j n} e^{i \pi / n}\right)}{K_{n}\left(\tau_{j n}, \tau_{j n}\right)}=e^{-i \pi / 2} \mathbb{S}\left(\frac{1}{2}\right)+o(1)
$$

while

$$
\begin{aligned}
& \overline{\varphi_{n}^{*}\left(z_{j n}\right)} \varphi_{n}\left(\tau_{j n} e^{i \pi / n}\right) \\
= & \left\{K_{n}\left(\tau_{j n}, \tau_{j n}\right)\left(1-e^{-i \pi / n}\left|z_{j n}\right|\right)\right\} \frac{K_{n}\left(z_{j n}, u\right)}{K_{n}\left(\tau_{j n}, \tau_{j n}\right)} \\
= & \left\{K_{n}\left(\tau_{j n}, \tau_{j n}\right)\left(1-e^{-i \pi / n}+o\left(\frac{1}{n}\right)\right)\right\}\left\{e^{-i \pi / 2} \mathbb{S}\left(\frac{1}{2}\right)+o(1)\right\}
\end{aligned}
$$

so that

$$
\left|\overline{\varphi_{n}^{*}\left(z_{j n}\right)} \varphi_{n}\left(\tau_{j n} e^{i \pi / n}\right)\right| \sim 1
$$

Dividing (5.2) by this, gives

$$
\left|\frac{\varphi_{n}\left(\tau_{j n}\right)}{\varphi_{n}\left(\tau_{j n} e^{i \pi / n}\right)}\right|=o(1)
$$

But from the old (4.7),

$$
\left|\varphi_{n}\left(\tau_{j n} e^{i \pi / n}\right) \varphi_{n}\left(\tau_{j n}\right)\right| \geq 1+o(1)
$$

so

$$
\begin{aligned}
\left|\varphi_{n}\left(\tau_{j n} e^{i \pi / n}\right)\right|^{2} & =\left|\frac{\varphi_{n}\left(\tau_{j n}\right)}{\varphi_{n}\left(\tau_{j n} e^{i \pi / n}\right)}\right|^{-1}\left|\varphi_{n}\left(\tau_{j n} e^{i \pi / n}\right) \varphi_{n}\left(\tau_{j n}\right)\right| \\
& \rightarrow \infty \text { as } n \rightarrow \infty
\end{aligned}
$$

contradicting boundedness.
Proof of Theorem 2.1
(a) \Leftrightarrow (b)

This is immediate from Lemma 3.2(d).
(b) \Leftrightarrow (c)

This is immediate from Lemma 3.2(a).
(c) \Leftrightarrow (d)

This follows from Lemma 3.2(e).
(a) \Rightarrow (e)

This follows from Lemma 5.1.
(e) $\Leftrightarrow(\mathbf{f})$

This was proved in Lemma 3.3.
$(\mathrm{f}) \Rightarrow(\mathrm{a})$
Assume the result is false. Then can choose a sequence \mathcal{S} and for $n \in \mathcal{S}, \zeta_{n}$ such that

$$
\left|\varphi_{n}\left(\zeta_{n}\right)\right| \rightarrow \infty
$$

Then from ()

$$
\frac{1}{n} R_{n}\left(\zeta_{n}\right) \rightarrow 0
$$

But then for $\left|\zeta_{n}-z_{n}\right| \leq \frac{C}{n}$,

$$
\frac{1}{n} R_{n}\left(z_{n}\right) \rightarrow 0
$$

Then also

$$
\frac{1}{n^{2}} \sum_{\tau_{j n} \in J} \frac{1}{\left|z_{n}-z_{j n}\right|^{2}} \leq \frac{C}{n} \sum_{\tau_{j n} \in J} \frac{1-\left|z_{j n}\right|^{2}}{\left|z_{n}-z_{j n}\right|^{2}}=o(1)
$$

while the tail sum is smaller, so

$$
\frac{1}{n^{2}} \sum_{j=1}^{n} \frac{1}{\left|z-z_{j n}\right|^{2}}=o(1)
$$

Then

$$
\begin{aligned}
\frac{1}{n} \frac{d}{d z}\left(\frac{z \varphi_{n}^{\prime}(z)}{n \varphi_{n}(z)}\right) & =\frac{1}{n^{2}} \frac{d}{d z}\left(\sum_{j=1}^{n} \frac{z}{z-z_{j n}}\right) \\
& =\frac{1}{n^{2}} \frac{d}{d z}\left(\sum_{j=1}^{n}\left[1+\frac{z_{j n}}{z-z_{j n}}\right]\right) \\
& =-\frac{1}{n^{2}} \sum_{j=1}^{n} \frac{z_{j n}}{\left(z-z_{j n}\right)^{2}}=o(1) .
\end{aligned}
$$

It follows that if $\left|z_{n}-\zeta_{n}\right| \leq C / n$,

$$
\frac{z_{n} \varphi_{n}^{\prime}\left(z_{n}\right)}{n \varphi_{n}\left(z_{n}\right)}-\frac{\zeta_{n} \varphi_{n}^{\prime}\left(\zeta_{n}\right)}{n \varphi_{n}\left(\zeta_{n}\right)}=o(1)
$$

From the old (4.12),

$$
\left|\frac{\varphi_{n}\left(\zeta_{n} e^{i \pi / / n}\right)}{\varphi_{n}\left(\zeta_{n}\right)}-\frac{\varphi_{n}\left(\zeta_{n}\right)}{\varphi_{n}\left(\zeta_{n} e^{i \pi / / n}\right)}\right|=o(1)
$$

which forces

$$
\frac{\varphi_{n}\left(\zeta_{n} e^{i \pi / / n}\right)}{\varphi_{n}\left(\zeta_{n}\right)}=1+o(1)
$$

which forces

$$
\frac{\zeta_{n} \varphi_{n}^{\prime}\left(\zeta_{n}\right)}{n \varphi_{n}\left(\zeta_{n}\right)}=1+o(1)
$$

which forces from the old (4.9) that

$$
\left|\varphi_{n}\left(\zeta_{n}\right)\right|^{2} \mu^{\prime}\left(\zeta_{n}\right)=1+o(1)
$$

which forces

$$
\frac{1}{n} R_{n}\left(\zeta_{n}\right)=1+o(1)
$$

This contradicts our hypothesis. So uniformly in n and $\zeta \in J$,

$$
\frac{1}{n} R_{n}(\zeta) \geq C
$$

which forces

$$
\left\|\varphi_{n}\right\|_{L_{\infty}(J)} \leq C
$$

References

[1] M.U. Ambroladze, On the possible rate of growth of polynomials that are orthogonal with a continuous positive weight. Math. USSR-Sb. 72 (1992), 311-331.
[2] A. Aptekarev, S. Denisov, D. Tulyakov, Steklov's problem of estimating the growth of orthogonal polynomials, Proc. Steklov Inst. Math. 289 (2015), 72-95.
[3] V.M. Badkov, The asymptotic behavior of orthogonal polynomials. (Russian) Mat. Sb. (N.S.) 109(151) (1979), no. 1, 46-59.
[4] P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Institute Lecture Notes, Vol. 3, New York University Press, New York, 1999.
[5] A.B. Kuijlaars and M. Vanlessen, Universality for Eigenvalue Correlations from the Modified Jacobi Unitary Ensemble, International Maths. Research Notices, 30(2002), 1575-1600.
[6] Eli Levin and D.S. Lubinsky, Universality Limits Involving Orthogonal Polynomials on the Unit Circle, Comp. Methods and Function Theory, 7(2008), 543-561.
[7] Eli Levin and D.S. Lubinsky, Universality Limits in the Bulk for Varying Measures, Advances in Mathematics, 219(2008), 743-779.
[8] D.S. Lubinsky, A New Approach to Universality Limits involving Orthogonal Polynomials, Annals of Mathematics, 170(2009), 915-939.
[9] D.S. Lubinsky, Pointwise Asymptotics for Orthonormal Polynomials at the Endpoints of the Interval via Universality, International Maths Research Notices, https://doi.org/10.1093/imrn/rny042.
[10] D.S. Lubinsky, Local Asymptotics for Orthonormal Polynomials in the Interior of the Support via Universality, to appear in Proc. Amer. Math. Soc.
[11] B. Simanek, Universality at an Endpoint for Orthogonal Polynomials with Geronimus-Type Weights, Proc. Amer. Math. Soc, 146(2018), 3995-4007.
[12] B. Simon, Orthogonal Polynomials on the Unit Circle, Parts 1 and 2, American Mathematical Society, Providence, 2005.
[13] B. Simon, Szegö's Theorem and its Descendants, Princeton University Press, Princeton, 2011.
[14] H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge University Press, Cambridge, 1992.
[15] G. Szegő, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, 1975.
[16] V. Totik, Universality and fine zero spacing on general sets, Arkiv för Matematik, 47(2009), 361-391.
[17] V. Totik, Universality Under Szegő's Condition, Canadian Math. Bulletin. 59 (2016), 211224.
[18] M.L. Wong, First and second kind paraorthogonal polynomials and their zeros, J. Approx. Theory, 146(2007), 282-293.

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA., LUBINSKY@MATH.GATECH.EDU

