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Abstract. Let µ be a measure on the unit circle that is regular in the sense of
Stahl Totik, and Ullmann. Let {ϕn} be the orthonormal polynomials for µ and
{zjn} their zeros. Let µ be absolutely continuous in an arc Γ of the unit circle,
with µ′ positive and continuous there. We show that uniform boundedness
of the orthonormal polynomials in subarcs of Γ is equivalent to n (1− |zjn|)
being bounded away from 0. If in addition as n→∞, n (1− |zjn|)→∞, then
|ϕn|2 µ′ → 1 uniformly.
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1. Main Results

Let µ be a finite positive Borel measure on [−π, π) (or equivalently on the unit
circle) with infinitely many points in its support. Then we may define orthonormal
polynomials

ϕn (z) = κnz
n + ..., κn > 0,

n = 0, 1, 2, ... satisfying the orthonormality conditions

1

2π

∫ π

−π
ϕn (z)ϕm (z)dµ (θ) = δmn,

where z = eiθ. We denote the zeros of ϕn by {zjn}nj=1. They lie inside the unit
circle, and may not be distinct.

We shall often assume that µ is regular in the sense of Stahl, Totik and Ullmann
[14], so that

lim
n→∞

κ1/n
n = 1.

This is true if for example µ′ > 0 a.e. in [−π, π), but there are pure jump and pure
singularly continuous measures that are regular.

Many aspects of the zeros {zjn} have been studied down the years: their as-
ymptotics, their distribution (often when projected onto the unit circle), "clock
spacing" of zeros of paraorthogonal polynomials, .... . See

In a very interesting recent paper, Bessonov and Denisov [?] showed that the
distance of the zeros to the unit circle is intimately related to asymptotics of or-
thogonal polynomials. The following is a reformulation of one of their results:

Theorem
Let µ be a measure on the unit circle satisfying the Szeg̋o condition∫ π

−π
log µ′

(
eit
)
dt > −∞.
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For almost every ζ with |ζ| = 1, the following are equivalent:
(I)

lim
n→∞

|ϕn (ζ)|2 µ′ (ζ) = 1.

(II)

lim
n→∞

(
inf

1≤j≤n
|ζ − zjn|

)
=∞.

We prove related equivalences for local bounds and asymptotics but for more
general regular, rather than Szegő, measures:

Theorem 1.1
Let µ be a finite positive Borel measure on the unit circle that is regular in the
sense of Stahl, Totik, and Ullmann. Let ∆ be an arc of the unit circle in which µ
is absolutely continuous, while µ′ is positive and continuous there. The following
are equivalent:
(I) In every proper subarc Γ of ∆,

lim
n→∞

(
inf

{
n (1− |zjn|) : zjn 6= 0,

zjn
|zjn|

∈ Γ

})
=∞.

(II) In every proper subarc Γ of ∆, as n→∞, uniformly for ζ ∈ Γ,

lim
n→∞

|ϕn (ζ)|2 µ′ (ζ) = 1.

Theorem 1.2
Assume the hypotheses of Theorem 1.1. The following are equivalent:
(I) In every proper subarc Γ of ∆, there exists C1 > 0 such that for n ≥ 1,

inf

{
n (1− |zjn|) : zjn 6= 0,

zjn
|zjn|

∈ Γ

}
≥ C1.

(II) In every proper subarc Γ of ∆, there exists C2 > 0 such that for n ≥ 1,

‖ϕn‖L∞(Γ) ≤ C2.

This paper is organized as follows: in Section 2, we present more background as
well as more equivalences. ...

We close this section with more notation. We let

ϕ∗n (z) = znϕn

(
1

z̄

)
.

The nth reproducing kernel for µ is

(1.1) Kn (z, u) =
n−1∑
j=0

ϕj (z)ϕj (u).

The Christoffel-Darboux formula asserts that

(1.2) Kn (z, u) =
ϕ∗n (u)ϕ∗n (z)− ϕn (u)ϕn (z)

1− ūz .
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We let

(1.3) Rn (z) =
n∑
j=1

1− |zjn|2

|z − zjn|2

and

(1.4) gn (z) =
zϕ′n (z)

nϕn (z)
.

Throughout C,C1, C2, ... denote positive constants independent of n, z, t and
polynomials P of degree ≤ n. The same symbol need not denote the same constant
in different occurrences. For sequences {xn} , {yn} of non-zero real numbers, we
write

xn ∼ yn
if there exists C > 1 such that

C−1 ≤ xn/yn ≤ C for n ≥ 1.

2. Background and Further Results

Parts of the following theorem appear in Theorem 1.2 in [?], notably (b), (d),
(e), while weaker forms of (a), (f) appear there.

Theorem 2.1
Let µ be a finite positive Borel measure on the unit circle that is regular in the
sense of Stahl, Totik, and Ullmann. Let ∆ be an arc of the unit circle in which µ is
absolutely continuous, while µ′ is positive and continuous there. Let Γ be a proper
subarc of ∆. The following are equivalent: in every proper subarc Γ of ∆,
(a) Uniformly in Γ,

(2.1) lim
n→∞

|ϕn (z)|2 µ′(z) = 1.

(b) Uniformly in Γ,

(2.2) lim
n→∞

1

n
Rn (z) = 1.

(c) Uniformly in Γ,

(2.3) lim
n→∞

Re

(
zϕ′n (z)

nϕn (z)

)
= 1.

(d) Uniformly in Γ,

(2.4) lim
n→∞

zϕ′n (z)

nϕn (z)
= 1.

(e) Uniformly in Γ,

(2.5) lim
n→∞

ϕn
(
zeiπ/n

)
ϕn (z)

= −1.

(f) Uniformly for z ∈ Γ and u in compact subsets of C,

(2.6) lim
n→∞

ϕn
(
z
(
1 + u

n

))
ϕn (z)

= eu.
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(g)

(2.7) lim
n→∞

(
inf

{
n (1− |zjn|) : zjn 6= 0,

zjn
|zjn|

∈ Γ

})
=∞.

(h) Uniformly for z ∈ Γ,

(2.8) lim
n→∞

1

n2

n∑
j=1

1

|z − zjn|2
= 0.

Theorem 2.2
Let µ satisfy the hypotheses of Theorem 2.1. The following are equivalent: in every
proper subarc Γ of ∆,
(a)

(2.9) sup
n≥1
‖ϕn‖L∞(Γ) <∞.

(b) There exist n0, C > 0 such that for n ≥ n0, and z ∈ Γ,

(2.10)
1

n
Rn (z) ≥ C.

(c) There exist n0, C > 0 such that for n ≥ n0, and z ∈ Γ,

(2.11)

∣∣∣∣Re

(
zϕ′n (z)

nϕn (z)
− 1

2

)∣∣∣∣ ≥ C.
(d) There exist n0, C > 0 such that for n ≥ n0, and z ∈ Γ,

(2.12)

∣∣∣∣∣Re

(
ϕn
(
ze±iπ/n

)
ϕn (z)

)∣∣∣∣∣ ≥ C.
(e) There exist n0, C > 0 such that for n ≥ n0, and z ∈ Γ,

(2.13) inf

{
n (1− |zjn|) : zjn 6= 0,

zjn
|zjn|

∈ Γ

}
≥ C.

(f) There exist n0, C > 0 such that for n ≥ n0, and z ∈ Γ

(2.14) sup
ζ∈Γ,n≥1

1

n2

n∑
j=1

1

|z − zjn|2
≤ C.

3. Preliminary Lemmas

Throughout, we assume the hypotheses of Theorem 1.1. We first recall some
asymptotics for Christoffel functions and universality and local limits.

Lemma 3.1
Let Γ be a proper subarc of ∆.
(a) Uniformly for z ∈ Γ,

(3.1) lim
n→∞

1

n
Kn (z, z)µ′ (z) = 1.
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(b) Uniformly for z ∈ Γ and a, b in compact subsets of C,

(3.2) lim
n→∞

Kn

(
z
(
1 + i2πa

n

)
, z
(

1 + i2πb̄
n

))
Kn (z, z)

= eiπ(a−b)S (a− b) .

(c) Let {ζn} ⊂ Γ. Assume that

(3.3) sup
n≥1

1

n

∣∣∣∣∣∣
n∑
j=1

1

ζn − zjn

∣∣∣∣∣∣ <∞ and sup
n≥1

1

n2

n∑
j=1

1

|ζn − zjn|
2 <∞.

From every infinite sequence of positive integers, we can choose an infinite subse-
quence S such that uniformly for u in compact subsets of C,

(3.4) lim
n→∞,n∈S

ϕn
(
ζn
(
1 + u

n

))
ϕn (ζn)

= eu + C (eu − 1) ,

where

(3.5) C = lim
n→∞,n∈S

(
ζn
n

ϕ′n (ζn)

ϕn (ζn)
− 1

)
,

Proof
(a) See for example [13, p. 123, Thm. 2.16.1].
(b) See for example [7, Thm. 6.3, p. 559].
(c) This follows immediatley from Theorem 1.3 in [?] as we have the universality
limit ( ) We note that there was a mistake in Lemma 4.2(a) in [?] that was corrected
in [ ]. However, the mistake did not affect Theorem 1.3 there. �

Many of the assertions in the following lemma appear in the proof of Theorem
1.1 and 1.2 in [?], but we include proofs for the reader’s convenience. We also note
there was an error in Lemma 4.2(a) there, leading to an error in Lemma 4.3(d) and
a gap in the proof of Theorems 1.1 and 1.2 of [?], but this was corrected in [ ].
Recall that Rn and gn were defined by ( ), ( ).

Lemma 3.2
Let Γ be a proper subarc of ∆.
(a) For |z| = 1,

(3.6)
1

n
Rn (z) = Re [2gn (z)− 1] .

(b) Uniformly for z ∈ Γ, and fixed real α,

(3.7) lim
n→∞

Im
[
eiπαϕn (z)ϕn

(
ze2πiα/n

)]
µ′ (z) = − sinπα.

(c) Uniformly for z ∈ Γ, and fixed real α,

(3.8) lim
n→∞

{
Re
[
eπiαϕn (z)ϕn

(
ze2πiα/n

)]
1
nRn

(
ze2πiα/n

)
µ′ (z)

− (2 sinπα)
(
Im gn

(
ze2πiα/n

)) }
= cosπα.

(d) Uniformly for z ∈ Γ,

(3.9) lim
n→∞

1

n
Rn (z) |ϕn (z)|2 µ′ (z) = 1;

(e) Uniformly for z ∈ Γ, and fixed real α,

(3.10) ⇒
ϕn
(
ze2πiα/n

)
ϕn (z)

(1 + o (1)) + gn (z) 2ie−πiα sinπα = 1 + o (1) .
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Proof
(a) Elementary manipulation shows that

1− |zjn|2

|z − zjn|2
= 2 Re

(
z

z − zjn

)
− 1.

Dividing by 2n and adding for j = 1, 2, ..., n gives ( ).
(b) Let ζ = ze2πiα/n. The Christoffel-Darboux formula and universality limit ( )
(as well as the uniformity of that limit) give uniformly for α in compact subsets of
C,

lim
n→∞

ϕ∗n (z)ϕ∗n (ζ)− ϕn (z)ϕn (ζ)

[1− z̄ζ]Kn (z, z)

= lim
n→∞

Kn (ζ, z)

Kn (z, z)

= lim
n→∞

Kn

(
z
(
1 + 2πiα

n [1 + o (1)]
)
, z
)

Kn (z, z)
= eiπαS (α) .

(3.11)

Here by (4.10),
lim
n→∞

[1− z̄ζ]Kn (z, z) = −2πiαµ′ (z)
−1
.

Thus

lim
n→∞

[
ϕ∗n (z)ϕ∗n (ζ)− ϕn (z)ϕn (ζ)

]
µ′ (z) = −2πiαeiπαS (α)

= −2ieπiα sinπα = 1− e2πiα.(3.12)

Next, if α is real,
ϕ∗n (z)ϕ∗n (ζ) = e2πiαϕn (z)ϕn (ζ)

so combining this and the last two limits gives

lim
n→∞

eπiα
{
eiπαϕn (z)ϕn (ζ)− e−πiαϕn (z)ϕn (ζ)

}
µ′ (z) = −2ieπiα sinπα.

(c) We go back to ( ), which holds uniformly for α in compact subsets of C. This
uniformity allows us to differentiate with respect to α: after cancelling a factor of
2πi, we obtain

(3.13) lim
n→∞

[
ϕ∗n (z)ϕ∗′n (ζ)− ϕn (z)ϕ′n (ζ)

] ζ
n
µ′ (z) = −e2πiα.

Now we again specialize to real α, and use that for |ζ| = 1,

ϕ∗′n (ζ) = nζn−1ϕn (ζ)− ζn−2ϕ′n (ζ)

so that, recalling the definition of gn,

ϕ∗n (z)ϕ∗′n (ζ)
ζ

n
= e2πiαϕn (z)ϕn (ζ)− e2πiαϕn (z)ϕn (ζ)gn (ζ).

Substituting in ( ), and cancelling a factor of eπiα,
(3.14)

lim
n→∞

[
eπiαϕn (z)ϕn (ζ)− eπiαϕn (z)ϕn (ζ)gn (ζ)− e−πiαϕn (z)ϕn (ζ) gn (ζ)

]
µ′ (z) = −eπiα

or

lim
n→∞

[
eπiαϕn (z)ϕn (ζ)− 2 Re

{
eπiαϕn (z)ϕn (ζ)gn (ζ)

}]
µ′ (z) = −eπiα.
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Taking real parts,

lim
n→∞

Re
[
eπiαϕn (z)ϕn (ζ)

{
1− 2gn (ζ)

}]
= − cosπα.

Then using (b),

lim
n→∞

{
Re
[
eπiαϕn (z)ϕn (ζ)

]
Re [1− 2gn (ζ)]

+2 sinπα Im gn (ζ)

}
µ′ (z) = − cosπα.

Finally apply (a).
(d) Here we set α = 0, then α = 1

2 , then α = 1 in (c).
(e) From (a),

gn (ζ) = 2 Re gn (ζ)− gn (ζ) =
1

n
Rn (ζ) + 1− gn (ζ) .

We substitute this in ( ):

lim
n→∞

[
−eπiαϕn (z)ϕn (ζ)

1

n
Rn (ζ) + gn (ζ)

{
eπiαϕn (z)ϕn (ζ)− e−πiαϕn (z)ϕn (ζ)

}]
µ′ (z) = −eπiα

Using (d) and (b), we obtain

lim
n→∞

[
−eπiαϕn (z)

ϕn (ζ)
(1 + o (1)) + gn (ζ) 2i (− sinπα)

]
= −eπiα

⇒ lim
n→∞

[
ϕn (z)

ϕn (ζ)
(1 + o (1)) + gn (ζ) 2ie−πiα sinπα

]
= 1.

Because of the uniformity, we can substitute ze−2πiα for z so that ζ = z. �
We now prove parts of Theorems 2.1, 2.2:

Lemma 3.3
(a) The following are equivalent:
(i)

inf {n (1− |zjn|) : τ jn ∈ J, n ≥ 1} ≥ C > 0.

(ii)

sup
ζ∈Γ,n≥1

1

n2

n∑
j=1

1

|ζn − zjn|
2 <∞.

(b) The following are equivalent:
(i) As n→∞,

inf {n (1− |zjn|) : τ jn ∈ J} → ∞
(ii)

sup
ζ∈I

1

n2

n∑
j=1

1

|ζn − zjn|
2 = o (1) .

Proof
(a) (i)⇒(ii)
We have

1

n2

∑
τjn∈J

1

|ζ − zjn|2
≤ C−1

n

∑
τjn∈J

1− |zjn|2

|ζ − zjn|2

≤ 1

Cn
Rn (ζ) ≤ C1 |ϕn (ζ)|−2

,
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by the old (4.8). Now we know from (4.7) that

|ϕn (ζ)|
∣∣∣ϕn (ζeiπ/n)∣∣∣ ≥ 1 + o (1)

so it follows that either
1

n2

∑
τjn∈J

1

|ζ − zjn|2
≤ C or

1

n2

∑
τjn∈J

1∣∣ζeiπ/n − zjn∣∣2 ≤ C
(or possibly both). But because of our hypothesis, for τ jn, ζ ∈ J,∣∣∣∣ ζ − zjn

ζeiπ/n − zjn

∣∣∣∣ =

∣∣∣∣∣1 +
ζ
(
1− eiπ/n

)
ζeiπ/n − zjn

∣∣∣∣∣
≤ 1 +

2 sin (π/2n)

1− |zjn|
≤ C

while a similar bound holds for the reciprocal. So for ζ ∈ J,
1

n2

∑
τjn∈J

1

|ζ − zjn|2
≤ C.

Then also for the remaining terms,

1

n2

∑
τjn /∈J

1

|ζ − zjn|2
≤ Cn

n2
= o (1) .

(OK one might need to worry near the boundary).
(ii)⇒(i)
Choosing ζ = τ jn ∈ J gives

1

n2 (1− |zjn|)2 =
1

n2 |ζ − zjn|2
≤ C,

by our hypothesis.
(b) (i)⇒(ii)
We have

1

n2

∑
τjn∈J

1

|ζ − zjn|2
≤ 1

n

∑
τjn∈J

1− |zjn|2

|ζ − zjn|2
1

infτjn∈J n
(

1− |zjn|2
)

= o

(
1

n
Rn (ζ)

)
.

We can now proceed as in (a).
(b) (ii)⇒(i)
Again, proceed much as in (a). �

4. Proof of Theorem 2.1

Proof of Theorem 2.1
(a)⇔(b)
This is immediate from Lemma 3.2(d).
(b)⇔(c)
This is immediate from Lemma 3.2(a).



ZEROS, BOUNDS, ASYMPTOTICS OF OPUC 9

(c)⇔(d)
It is immediate that (d)⇒(c). Now assume (c) holds. From Lemma 3.2(c) with
α = 1

2 , and Lemma 3.2(d),

(4.1) lim
n→∞

{
Im

[
ϕn (z)ϕn

(
zeiπ/n

)
|ϕn (z)|

∣∣ϕn (zeiπ/n)∣∣
]
− 2

(
Im gn

(
zeπi/n

))}
= 0.

Next, using (a) for ζ = z, zeiπ/n

lim
n→∞

|ϕn (ζ)|2 µ′ (ζ) = 1,

while from 3.2(d) with α = 1
2 ,

lim
n→∞

Re
[
ϕn (z)ϕn

(
zeiπ/n

)]
µ′ (z) = −1

so that

lim
n→∞

Re

[
ϕn (z)ϕn

(
zeiπ/n

)
|ϕn (z)|

∣∣ϕn (zeiπ/n)∣∣
]

= −1

and hence

lim
n→∞

Im

[
ϕn (z)ϕn

(
zeiπ/n

)
|ϕn (z)|

∣∣ϕn (zeiπ/n)∣∣
]

= 0.

Then

(4.2) lim
n→∞

Im gn

(
zeπi/n

)
= 0.

Because of the unformity in z, we may replace zeiπ/n by z. So indeed (c)⇒(d).
(d) ⇔(e)
From Lemma 3.2(a) with α = 1

2 ,

ϕn
(
zeπi/n

)
ϕn (z)

(1 + o (1)) + 2gn (z) = 1 + o (1)

and so ( ) holds iff gn → 1.
(a)⇔(f)
Let Γ1 be a proper subarc of ∆ containing Γ. Assume first the conclusion ( ) of
(a) holds. We apply Lemma 3.1(c), so must verify there. The first condition in (
) follows immediately from (d). For the second, observe first from Lemma 3.2(d)
and our hypothesis, that

1

n2

∑
zjn∈Γ1

1

|z − zjn|2
≤ C

n

∑
zjn∈Γ1

1− |zjn|2

|z − zjn|2
≤ C

n
Rn (z) ≤ C.

Next, for z ∈ Γ, if d is the distance from Γ to Γ1,

1

n2

∑
zjn /∈Γ1

1

|z − zjn|2
≤ n

n2d
= o (1) .

Thus
1

n2

n∑
j=1

1

|z − zjn|2
≤ C

and we have the second condition in ( ). From Lemma 3.4, we obtain that every
subsequence of positive integers contains a further subsequence S such that uni-
formly for u in compact subsets of C, we have ( ), where C is given by ( ). But
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from (d), C = 0, so the limit is independent of the subsequence, and we have ( ).

Now conversely assume we have the local limit ( ). Then setting u = iπ/n and
using the uniformity,

lim
n→∞

ϕn(zeiπ/n)

ϕn (z)
= lim
n→∞

ϕn(z
(
1 + iπ

n [1 + o (1)]
)
)

ϕn (z)
= eiπ = −1,

so we have ( ) and hence the result from (x?).
(f)⇒(g)
This is a consequence of the fact that eu has no zeros. Indeed, if there were a
subsequence of zeros zjn, n ∈ S, j = j (n), then writing zjn = ζn (1 + iαn/n), we
have αn = O (1), and by the local limit,

0 =
ϕn (ζn (1 + iαn/n))

ϕn (ζn)
= eπiαn + o (1) .

leading to a contradiction.
(g)⇔(h)
This is Lemma 3.3.
(h)⇒(f)
Now

1

n
g′n (z) =

1

n2

d

dz

 n∑
j=1

[
1 +

zjn
z − zjn

]
= − 1

n2

n∑
j=1

zjn

(z − zjn)
2 .

Our hypothesis gives uniformly for z ∈ Γ,

1

n
g′n (z) = o (1)

and hence for ζ, z ∈ Γ with |ζ − z| ≤ A/n,
|gn (z)− gn (ζ)| = o (1) .

Then from Lemma 3.2(e), with ζ = ze−iπ/n,∣∣∣∣∣ϕn
(
zeiπ/n

)
ϕn (z)

− ϕn (z)

ϕn
(
zeiπ/n

) ∣∣∣∣∣ = o (1)

so that in view of ( ),

lim
n→∞

ϕn
(
zeiπ/n

)
ϕn (z)

= −1.

Then we have the conclusion of (e) and ( ) gives the result. �

5. Proof of Theorem 2.2

Lemma 5.1
Assume

sup
n≤1
‖ϕn‖L∞(Γ) <∞,

then there exists C > 0 such that for n ≥ 1 and zjn 6= 0,
zjn
|zjn| ∈ Γ

n (1− |zjn|) ≥ C.
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Proof
Suppose the conclusion is false. Then we can can choose an infinite subsequence S
of integers, and for j = j (n) ∈ S,

n (1− |zjn|)→ 0.

Write
zjn = τ jn

(
1 + 2πi

αn
n

)
;u = τ jn

(
1 + 2πi

v̄

n

)
where v = v (n) and αn → 0 as n→∞. Then from the university limit, uniformly
for v in compact sets,

Kn (zjn, u)

Kn (τ jn, τ jn)
= eiπ(v−αn)S (v − αn) + o (1)

= eiπvS (v) + o (1) .

Next from the Christoffel-Darboux formula,

(5.1) ϕ∗n (zjn)ϕn (u) = {Kn (τ jn, τ jn) (1− ūzjn)} Kn (zjn, u)

Kn (τ jn, τ jn)

and setting u = τ jn so that v = 0 in both formulas, gives

ϕ∗n (zjn)ϕn (τ jn) = Kn (τ jn, τ jn) (1− |zjn|)
Kn (zjn, τ jn)

Kn (τ jn, τ jn)

= o (1) (1 + o (1)) = o (1) .(5.2)

Now apply the above with u = τ jne
iπ/n, so that v = − 1

2 + o (1) ,

Kn

(
zjn, τ jne

iπ/n
)

Kn (τ jn, τ jn)
= e−iπ/2S

(
1

2

)
+ o (1) ,

while

ϕ∗n (zjn)ϕn

(
τ jne

iπ/n
)

=
{
Kn (τ jn, τ jn)

(
1− e−iπ/n |zjn|

)} Kn (zjn, u)

Kn (τ jn, τ jn)

=

{
Kn (τ jn, τ jn)

(
1− e−iπ/n + o

(
1

n

))}{
e−iπ/2S

(
1

2

)
+ o (1)

}
so that ∣∣∣ϕ∗n (zjn)ϕn

(
τ jne

iπ/n
)∣∣∣ ∼ 1.

Dividing (5.2) by this, gives ∣∣∣∣∣ ϕn (τ jn)

ϕn
(
τ jneiπ/n

) ∣∣∣∣∣ = o (1) .

But from the old (4.7),∣∣∣ϕn (τ jneiπ/n)ϕn (τ jn)
∣∣∣ ≥ 1 + o (1) ,

so ∣∣∣ϕn (τ jneiπ/n)∣∣∣2 =

∣∣∣∣∣ ϕn (τ jn)

ϕn
(
τ jneiπ/n

) ∣∣∣∣∣
−1 ∣∣∣ϕn (τ jneiπ/n)ϕn (τ jn)

∣∣∣
→ ∞ as n→∞,



12 D. S. LUBINSKY

contradicting boundedness. �
Proof of Theorem 2.1

(a)⇔(b)
This is immediate from Lemma 3.2(d).
(b)⇔(c)
This is immediate from Lemma 3.2(a).
(c)⇔(d)
This follows from Lemma 3.2(e).
(a)⇒(e)
This follows from Lemma 5.1.
(e)⇔(f)
This was proved in Lemma 3.3.
(f)⇒(a)
Assume the result is false. Then can choose a sequence S and for n ∈ S, ζn such
that

|ϕn (ζn)| → ∞.
Then from ( )

1

n
Rn (ζn)→ 0.

But then for |ζn − zn| ≤ C
n ,

1

n
Rn (zn)→ 0.

Then also
1

n2

∑
τjn∈J

1

|zn − zjn|2
≤ C

n

∑
τjn∈J

1− |zjn|2

|zn − zjn|2
= o (1)

while the tail sum is smaller, so

1

n2

n∑
j=1

1

|z − zjn|2
= o (1) .

Then

1

n

d

dz

(
zϕ′n (z)

nϕn (z)

)
=

1

n2

d

dz

 n∑
j=1

z

z − zjn


=

1

n2

d

dz

 n∑
j=1

[
1 +

zjn
z − zjn

]
= − 1

n2

n∑
j=1

zjn

(z − zjn)
2 = o (1) .

It follows that if |zn − ζn| ≤ C/n,
znϕ

′
n (zn)

nϕn (zn)
− ζnϕ

′
n (ζn)

nϕn (ζn)
= o (1) .

From the old (4.12), ∣∣∣∣∣ϕn
(
ζne

iπ//n
)

ϕn (ζn)
− ϕn (ζn)

ϕn
(
ζne

iπ//n
) ∣∣∣∣∣ = o (1)
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which forces
ϕn
(
ζne

iπ//n
)

ϕn (ζn)
= 1 + o (1)

which forces
ζnϕ

′
n (ζn)

nϕn (ζn)
= 1 + o (1)

which forces from the old (4.9) that

|ϕn (ζn)|2 µ′ (ζn) = 1 + o (1)

which forces
1

n
Rn (ζn) = 1 + o (1) .

This contradicts our hypothesis. So uniformly in n and ζ ∈ J,
1

n
Rn (ζ) ≥ C

which forces
‖ϕn‖L∞(J) ≤ C.

�
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