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Abstract
We introduce a new notion of influence for symmetric convex sets over Gaussian space, which we
term “convex influence”. We show that this new notion of influence shares many of the familiar
properties of influences of variables for monotone Boolean functions f : {±1}n æ {±1}.

Our main results for convex influences give Gaussian space analogues of many important results
on influences for monotone Boolean functions. These include (robust) characterizations of extremal
functions, the Poincaré inequality, the Kahn-Kalai-Linial theorem [28], a sharp threshold theorem of
Kalai [29], a stability version of the Kruskal-Katona theorem due to O’Donnell and Wimmer [44],
and some partial results towards a Gaussian space analogue of Friedgut’s junta theorem [24]. The
proofs of our results for convex influences use very di�erent techniques than the analogous proofs for
Boolean influences over {±1}n. Taken as a whole, our results extend the emerging analogy between
symmetric convex sets in Gaussian space and monotone Boolean functions from {±1}n to {±1}.
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1 Introduction

Background: An intriguing analogy. This paper is motivated by an intriguing, but at
this point only partially understood, analogy between monotone Boolean functions over the

hypercube and symmetric convex sets in Gaussian space. Perhaps the simplest manifestation
of this analogy is the following pair of easy observations: since a Boolean function f :
{±1}n æ {±1} is monotone if f(x) Æ f(y) whenever xi Æ yi for all i, it is clear that “moving
an input up towards 1n” by flipping bits from ≠1 to 1 can never decrease the value of f .
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14:2 Convex Influences

Similarly, we may view a symmetric1 convex set K ™ Rn as a 0/1 valued function, and it is
clear from symmetry and convexity that “moving an input in towards the origin” can never
decrease the value of the function.

The analogy extends far beyond these easy observations to involve many analytic and
algorithmic aspects of monotone Boolean functions over {±1}n under the uniform distribution
and symmetric convex subsets of Rn under the Gaussian measure. Below we survey some
known points of correspondence (several of which were only recently established) between
the two settings:

1. Density increments. The well-known Kruskal-Katona theorem [36, 31] gives quantitat-
ive information about how rapidly a monotone f : {±1}n æ {±1} increases on average as
the input to f is “moved up towards 1n.” Let f : {±1}n æ {0, 1} be a monotone function
and let µf (j) be the fraction of the

!
n

j

"
many weight-j inputs for which f outputs 1; the

Kruskal-Katona theorem implies (see e.g. [41]) that if k = cn for some c bounded away
from 0 and 1 and µf (k) œ [0.1, 0.9], then µf (k + 1) Ø µf (k) + �(1/n). Analogous “density
increment” results for symmetric convex sets are known to hold in various forms, where
the analogue of moving an input in {±1}n up towards 1n is now moving an input in Rn

in towards the origin, and the analogue of µf (j) is now –r(K), which is defined to be
the fraction of the origin-centered radius-r sphere rSn≠1 that lies in K. For example,
Theorem 2 of the recent work [16] shows that if K ™ Rn is a symmetric convex set (which
we view as a function K : Rn æ {0, 1}) and r = �(

Ô
n) satisfies –r(K) œ [0.1, 0.9], then

–K(r(1 ≠ 1/n)) Ø –K(r) + �(1/n).
2. Weak learning from random examples. Building on the above-described density

increment for symmetric convex sets, [16] showed that any symmetric convex set can be
learned to accuracy 1/2 + �(1)/

Ô
n in poly(n) time given poly(n) many random examples

drawn from N (0, 1)n. [16] also shows that any poly(n)-time weak learning algorithm
(even if allowed to make membership queries) can achieve accuracy no better than
1/2 + O(log(n)/

Ô
n). These results are closely analogous to the known (matching) upper

and lower bounds for poly(n)-time weak learning of monotone functions with respect to
the uniform distribution over {±1}n: Blum et al. [6] showed that 1/2 + �(log(n)/

Ô
n) is

the best possible accuracy for a poly(n)-time weak learner (even if membership queries
are allowed), and O’Donnell and Wimmer [44] gave a poly(n) time weak learner that
achieves this accuracy using random examples only.

3. Analytic structure and strong learning from random examples. [11] showed
that the Fourier spectrum of any n-variable monotone Boolean function over {±1}n

is concentrated in the first O(
Ô

n) levels. Analogously, [35] showed that the same
concentration holds for the first O(

Ô
n) levels of the Hermite spectrum2 of the indicator

function of any convex set. In both cases this concentration gives rise to a learning
algorithm, using random examples only, running in n

O(Ô
n) time and learning the relevant

class (either monotone Boolean functions over the n-dimensional hypercube or convex
sets under Gaussian space) to any constant accuracy.

4. Qualitative correlation inequalities. The well-known Harris-Kleitman theorem [26,
34] states that monotone Boolean functions are non-negatively correlated: any monotone
f, g : {±1}n æ {0, 1} must satisfy E[fg] ≠ E[f ] E[g] Ø 0. The Gaussian Correlation

1 A set K ™ Rn is symmetric if ≠x œ K whenever x œ K.
2 The Hermite polynomials form an orthonormal basis for the space of square-integrable real-valued

functions over Gaussian space; the Hermite spectrum of a function over Gaussian space is analogous to
the familiar Fourier spectrum of a function over the Boolean hypercube. See Section 2 for details.
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Inequality [48] gives an exactly analogous statement for symmetric convex sets in Gaussian
space: if K, L ™ Rn are any two symmetric convex sets, then E[KL] ≠ E[K] E[L] Ø 0,
where now expectations are with respect to N (0, 1)n.

5. Quantitative correlation inequalities. Talagrand [50] proved the following quant-

itative version of the Harris–Kleitman inequality: for monotone f, g : {±1}n æ {0, 1},

E[fg] ≠ E[f ] E[g] Ø 1
C

· �
A

nÿ

i=1
Inf i[f ]Inf i(g)

B
. (1)

Here �(x) := x/ log(e/x), C > 0 is an absolute constant, Inf i[f ] is the influence of
coordinate i on f (see Section 2), and the expectations are with respect to the uniform
distribution over {±1}n. In a recent work [14] proved a closely analogous quantitative
version of the Gaussian Correlation Inequality: for K, L symmetric convex subsets of Rn,

E[KL] ≠ E[K] E[L] Ø 1
C

· �
A

nÿ

i=1

ÂK(2ei)ÂL(2ei)
B

, (2)

where � : [0, 1] æ [0, 1] is �(x) = min
Ó

x,
x

log2(1/x)

Ô
, C > 0 is a universal constant, ÂK(2ei)

denotes the degree-2 Hermite coe�cient in direction ei (see Section 2), and expectations
are with respect to N (0, 1)n.

We remark that in many of the above cases the proofs of the two analogous results
(Boolean versus Gaussian) are very di�erent from each other even though the statements are
quite similar. For example, the Harris-Kleitman theorem has a simple one-paragraph proof
by induction on n, whereas the Gaussian Correlation Inequality was a famous conjecture for
four decades before Thomas Royen proved it in 2014.

Motivation. We feel that the examples presented above motivate a deeper understanding
of this “Boolean/Gaussian analogy.” This analogy may be useful in a number of ways; in
particular, via this connection known results in one setting may suggest new questions and
results for the other setting.3 Thus the overarching goal of this paper is to strengthen the
analogy between monotone Boolean functions over {±1}n and symmetric convex sets in
Gaussian space. We do this through the study of a new notion of influence for symmetric
convex sets in Gaussian space.

1.1 This Work: A New Notion of Influence for Symmetric Convex Sets
Before presenting our new notion of influence for symmetric convex sets in Gaussian space,
we first briefly recall the usual notion for Boolean functions. For f : {±1}n æ {±1}n, the
influence of coordinate i on f , denoted Inf i[f ], is Pr[f(x) ”= f(xüi)], where x is uniform
random over {±1}n and xüi denotes x with its i-th coordinate flipped. It is a well-known
fact (see e.g. Proposition 2.21 of [45]) that for monotone Boolean functions f , we have
Inf i[f ] = ‚f(i), the degree-1 Fourier coe�cient corresponding to coordinate i.

3 Indeed, the recent Gaussian density increment and weak learning results of [16] were inspired by the
Kruskal-Katona theorem and the weak learning algorithms and lower bounds of [6] for monotone Boolean
functions. Similarly, the recent quantitative version of the Gaussian Correlation Theorem established in
[14] was motivated by the existence of Talagrand’s quantitative correlation inequality for monotone
Boolean functions.

ITCS 2022



14:4 Convex Influences

Inspired by the relation Inf i[f ] = ‚f(i) for influence of monotone Boolean functions, and
by the close resemblance between Equation (1) and Equation (2), [14] proposed to define the
influence of K along direction v, for K : Rn æ {0, 1} a symmetric convex set and v œ Sn≠1,
to be

Infv[K] := ≠ ÂK(2v),

the (negated) degree-2 Hermite coe�cient4 of K in direction v (see Definition 10 for a
detailed definition). [14] proved that this quantity is non-negative for any direction v and
any symmetric convex K (see Proposition 11). They also defined the total influence of K to
be

I[f ] :=
nÿ

i=1
Infei [f ] (3)

and observed that this definition is invariant under di�erent choices of orthonormal basis
other than e1, . . . , en, but did not explore these definitions further.

The main contribution of the present work is to carry out an in-depth study of this new
notion of influence for symmetric convex sets. For conciseness, and to di�erentiate it from
other influence notions (which we discuss later), we will sometimes refer to this new notion
as “convex influence.”

Inspired by well known results about influence of monotone Boolean functions, we establish
a number of di�erent results about convex influence which show that this notion shares
many properties with the familiar Boolean influence notion. Intriguingly, and similar to the
Boolean/Gaussian analogy elements discussed earlier, while the statements we prove about
convex influence are quite closely analogous to known results about Boolean influences, the
proofs and tools that we use (Gaussian isoperimetry, Brascamp-Lieb type inequalities, etc.)
are very di�erent from the ingredients that underlie the corresponding results about Boolean
influence.

1.2 Results and Organization
We give an overview of our main results below.

1.2.1 Basics, Examples, and Margulis–Russo
We begin in Section 3.1 by working through some basic properties of our new influence
notion. After analyzing some simple examples in Section 3.2, we next show in Section 3.3
that the total convex influence for a symmetric convex set is equal to (a scaled version of) the
rate of change of the Gaussian volume of the set as the variance of the underlying Gaussian
is changed. This gives an alternate characterization of total convex influence, and may be
viewed as an analogue of the Margulis–Russo formula for our new influence notion.

1.2.2 Lower Bounds on Total Convex Influence
In Section 4, we give a lower bound on the total convex influence (Equation (3)) for symmetric
convex sets, which is closely analogous to the classical KKL Theorem. Our KKL analogue

4 We observe that if K is a symmetric set then since its indicator function is even, the degree-1 Hermite
coe�cient ÂK(v) must be 0 for any direction v.
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is quadratically weaker than the KKL theorem for Boolean functions; we conjecture that a
stronger bound in fact holds, which would quantitatively align with the Boolean variant (see
Item 1 of Section 1.3). Our proof relies on the Gaussian isoperimetric inequality and di�ers
quite significantly from the proof of the KKL theorem for Boolean functions.

1.2.3 Sharp Thresholds for Sets with All Small Influences
In Section 5, we establish a “sharp threshold” result for symmetric convex sets in Gaussian
space, which is analogous to a sharp threshold result for monotone Boolean functions due
to Kalai [29]. Building on earlier work of Friedgut and Kalai [25], Kalai [29] showed that
if f : {±1}n æ {0, 1} is a monotone Boolean function and p œ (0, 1) is such that (i) all the
p-biased influences of f are on(1) and (ii) the expectation of f under the p-biased measure is
�(1), then f must have a “sharp threshold” in the following sense: the expectation of f under
the p1-biased measure (p2-biased measure, respectively) is on(1) (1 ≠ on(1), respectively) for
some p1 < p < p2 with p2 ≠p1 = on(1). For our sharp threshold result, we prove an analogous
statement for symmetric convex sets, where now N (0, ‡

2) takes the place of the p-biased
distribution over {±1}n and the ‡-biased convex influences (see Definition 19) take the place
of the p-biased influences. Interestingly, the sharpness of our threshold is quantitatively
better than the known analogous result [29] for monotone Boolean functions; see Section 5
for an elaboration of this point.

1.2.4 A Stable Density Increment Result
Finally, in Section 6, we use our new influence notion to give a Gaussian space analogue of
a “stability” version of the Kruskal-Katona theorem due to O’Donnell and Wimmer [44].
In [44] it is shown that the �(1/n) density increment of the Kruskal-Katona theorem (see
Item 1 at the beginning of this introduction) can be strengthened to �(log(n)/n) as long
as a “low individual influences”-type condition holds. We analogously show that a similar
strengthening of the Gaussian space density increment result mentioned in Item 1 earlier can
be achieved under the condition that the convex influence in every direction is low.

1.2.5 Additional Results in the Full Version
In the full version of this paper [15], we give a number of additional results about convex
influences. These include a convex influence analogue of a consequence of Friedgut’s junta
theorem; a convex influence analogue of the Poincaré inequality; a characterization of
symmetric convex sets that are extremal with respect to convex influence; and a comparison
with previously studied notions of influence over Gaussian space.

1.3 Discussion and Future Work
We believe that much more remains to be discovered about this new notion of influences for
symmetric convex sets. We list some natural concrete (and not so concrete) questions for
future work:

1. A stronger KKL-type theorem for convex influences? We conjecture that the
factor of


log(Var[K]/”) in our KKL analogue, Theorem 22, can be strengthened to

log(1/”). As witnessed by Example 18, this would be essentially the strongest possible
quantitative result, and would align closely with the original KKL theorem [28].

ITCS 2022
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2. An analogue of Friedgut’s theorem for convex influences? As noted earlier, in
the full version of this paper, we establish a Gaussian space analogue of a consequence of
Friedgut’s Junta Theorem [24] for Boolean functions over {±1}n. The following would
give a full-fledged Gaussian space analogue of Friedgut’s Junta Theorem:

I Conjecture 1 (Friedgut’s Junta Theorem for convex influences). Let K ™ Rn
be a convex

symmetric set with Inf [K] Æ I. Then there are J Æ 2O(I/Á)
orthonormal directions

v
1
, . . . , v

J œ Sn≠1
and a symmetric convex set L ™ Rn

, such that

a. L(x) depends only on the values of v
1 · x, . . . , v

J · x, and

b. Prx≥N (0,1)n [K(x) ”= L(x)] Æ Á.

3. Are low-influence directions (almost) irrelevant? Related to the previous question,
we note that it seems to be surprisingly di�cult to show that low-influence directions
“don’t matter much” for convex sets. For example, it is an open question to establish
the following, which would give a dimension-free robust version of the last assertion of
Proposition 11:
I Conjecture 2. Let K ™ Rn

be symmetric and convex, and suppose that v œ Sn≠1
is

such that Infv[K] Æ Á. Then there is a symmetric convex set L such that

a. L(x) depends only on the projection of x onto the (n ≠ 1) dimensional subspace

orthogonal to v, and

b. Prx≥N (0,1)n [K(x) ”= L(x)] Æ ·(Á) for some function · depending only on Á (in

particular, independent of n) and going to 0 as Á æ 0.

While the corresponding Boolean statement is very easy to establish, natural approaches to
Conjecture 2 lead to open (and seemingly challenging) questions regarding dimension-free
stable versions of the Ehrhard-Borell inequality [23, 53].

4. Algorithmic results? Finally, a broader goal is to further explore the similarities and
di�erences between the theory of convex symmetric sets in Gaussian space and the theory
of monotone Boolean functions over {±1}n. One topic where the gap in our understanding
is particularly wide is the algorithmic problem of property testing. The problem of testing
monotonicity of functions from {±1}n to {±1} is rather well understood, with the current
state of the art being an Õ(n1/2)-query upper bound and an �̃(n1/3)-query lower bound
[33, 13]. In contrast, the problem of testing whether an unknown region in Rn is convex
(with respect to the standard normal distribution) is essentially wide open, with the best
known upper bound being n

O(Ô
n) queries [12] and no nontrivial lower bounds known.

2 Preliminaries

In this section we give preliminaries setting notation and recalling useful background on
convex geometry, log-concave functions, and Hermite analysis over N

!
0, ‡

2"n.

2.1 Convex Geometry and Log-Concavity
Below we briefly recall some notation, terminology and background from convex geometry
and log-concavity. Some of our main results employ relatively sophisticated results from
these areas; we will recall these as necessary in the relevant sections and here record only
basic facts. For a general and extensive resource we refer the interested reader to [2].

We identify sets K ™ Rn with their indicator functions K : Rn æ {0, 1}, and we say that
K ™ Rn is symmetric if K(x) = K(≠x). We write Br to denote the origin-centered ball of
radius r in Rn. If K ™ Rn is a nonempty symmetric convex set then we let rin(K) denote
suprØ0{r : Br ™ K} and we refer to this as the in-radius of K.
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Recall that a function f : Rn æ RØ0 is log-concave if its domain is a convex set and it
satisfies f(◊x+(1≠◊)y) Ø f(x)◊

f(y)1≠◊ for all x, y œ domain(f) and ◊ œ [0, 1]. In particular,
the 0/1-indicator functions of convex sets are log-concave.

Recall that the marginal of f : Rn æ R on the set of variables {i1, . . . , ik} is obtained by
integrating out the other variables, i.e. it is the function

g(xi1 , . . . , xik ) =
⁄

Rn≠k

f(x1, . . . , xn)dxj1 . . . dxjn≠k ,

where {j1, . . . , jn≠k} = [n] \ {i1, . . . , ik}. We recall the following fact:

I Fact 3 ([17, 39, 46, 47] (see Theorem 5.1, [40])). All marginals of a log-concave function

are log-concave.

The next fact follows easily from the definition of log-concavity:

I Fact 4 ([27], see e.g. [1]). A one-dimensional log-concave function is unimodal.

2.2 Gaussian Random Variables
We write z ≥ N (0, 1) to mean that z is a standard Gaussian random variable, and will use
the notation

Ï(z) := 1Ô
2fi

e
≠x

2
/2 and �(z) :=

⁄
z

≠Œ
Ï(t) dt

to denote the pdf and the cdf of this random variable.
Recall that a non-negative random variable r2 is distributed according to the chi-squared

distribution ‰
2(n) if r2 = g2

1 + · · · + g2
n

where g ≥ N (0, 1)n
, and that a draw from the chi

distribution ‰(n) is obtained by making a draw from ‰
2(n) and then taking the square root.

We define the shell-density function for K, –K : [0, Œ) æ [0, 1], to be

–K(r) := Pr
xœrSn≠1

[x œ K], (4)

where the probability is with respect to the normalized Haar measure over rSn≠1; so –K(r)
equals the fraction of the origin-centered radius-r sphere which lies in K. We observe that if
K is convex and symmetric then –K(·) is a nonincreasing function. A view which will be
sometimes useful later is that –K(r) is the probability that a random Gaussian-distributed
point g ≥ N(0, 1)n lies in K, conditioned on ÎgÎ = r.

2.3 Hermite Analysis over N (0, ‡2)n

Our notation and terminology here follow Chapter 11 of [45]. We say that an n-dimensional
multi-index is a tuple – œ Nn, and we define

|–| :=
nÿ

i=1
–i. (5)

We write N (0, ‡
2)n to denote the n-dimensional Gaussian distribution with mean 0 and

variance ‡
2, and denote the corresponding measure by “n,‡(·). When the dimension n is

clear from context we simply write “‡(·) instead, and sometimes when ‡ = 1 we simply
write “ for “1. For n œ N>0 and ‡ > 0, we write L

2(Rn
, “‡) to denote the space of functions

f : Rn æ R that have finite second moment ÎfÎ2
2 under the Gaussian measure “‡, that is:

ÎfÎ2
2 = E

z≥N (0,‡2)n

#
f(z)2$1/2

< Œ.

ITCS 2022
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We view L
2(Rn

, “‡) as an inner product space with Èf, gÍ := Ez≥N (0,‡2)n [f(z)g(z)] for
f, g œ L

2(Rn
, “‡). We define “biased Hermite polynomials,” which yield an orthonormal

basis for L
2(Rn

, “‡):

I Definition 5 (Hermite basis). For ‡ > 0, the ‡-biased Hermite polynomials (hj,‡)jœN are

the univariate polynomials defined as

hj,‡(x) := hj

1
x

‡

2
, where hj(x) := (≠1)j

Ô
j!

exp
3

x
2

2

4
· d

j

dxj
exp

3
≠x

2

2

4
.

I Fact 6 (Easy extension of Proposition 11.33, [45]). For n Ø 1 and ‡ > 0, the collection of

n-variate ‡-biased Hermite polynomials given by (h–,‡)–œNn where

h–,‡(x) :=
nŸ

i=1
h–i,‡(x)

forms a complete, orthonormal basis for L
2(Rn

, “‡).

Given a function f œ L
2(Rn

, “‡) and – œ Nn, we define its (‡-biased) Hermite coef-

ficient on – to be Âf‡(–) := Èf, h–,‡Í. It follows that f is uniquely expressible as f =q
–œNn

Âf‡(–)h–,‡ with the equality holding in L
2(Rn

, “‡); we will refer to this expansion as
the (‡-biased) Hermite expansion of f . When ‡ = 1, we will simply write Âf(–) instead of
Âf‡(–) and h– instead of h–,1. Parseval’s and Plancharel’s identities hold in this setting:

I Fact 7. For f, g œ L
2(Rn

, “‡), we have:

Èf, gÍ = E
z≥N (0,‡2)n

[f(z)g(z)] =
ÿ

–œNn

Âf‡(–)Âg‡(–), (Plancherel)

Èf, fÍ = E
z≥N (0,‡2)n

[f(z)2] =
ÿ

–œNn

Âf‡(–)2
. (Parseval)

The following notation will sometimes come in handy.

I Definition 8. Let v œ Sn≠1
and f œ L

2(Rn
, “‡). We define f ’s ‡-biased Hermite coe�cient

of degree k along v, written Âf‡(kv), to be

Âf‡(kv) := E
x≥N (0,‡2)n

[f(x) · hk,‡(v · x)]

(as usual omitting the subscript when ‡ = 1).

I Notation 9. We will write ei œ Nn
to denote the i

th
standard basis vector for Rn

.

In this notation, for example, Âf(2ei) = Ex≥N (0,1)n [f(x) · h2(xi)]. Finally, for a measur-
able set K ™ Rn, it will be convenient for us to write “(K) to denote Prx≥N (0,1)n [x œ K],
the (standard) Gaussian volume of K.

3 Influences for Symmetric Convex Sets

In this section, we first introduce our new notion of influence for symmetric convex sets over
Gaussian space and establish some basic properties. In Section 3.2 we analyze the influences
of several natural symmetric convex sets, and in Section 3.3 we give an analogue of the
Margulis-Russo formula (characterizing the influences of monotone Boolean functions) which
provides an alternative equivalent view of our new notion of influence for symmetric convex
sets in terms of the behavior of the sets under dilations.
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3.1 Definitions and Basic Properties
I Definition 10 (Influence for symmetric log-concave functions). Let f œ L

2(Rn
, “) be a

symmetric (i.e. f(x) = f(≠x)) log-concave function. Given a unit vector v œ Sn≠1
, we define

the influence of direction v on f as being

Infv[f ] := ≠ Âf(2v) = E
x≥N (0,1)n

[≠f(x)h2(v · x)] = E
x≥N (0,1)n

5
f(x) ·

3
1 ≠ (v · x)2

Ô
2

46
,

the negated “degree-2 Hermite coe�cient in the direction v.” Furthermore, we define the total
influence of f as

I[f ] :=
nÿ

i=1
Infei [f ].

Note that the indicator of a symmetric convex set is a symmetric log-concave function,
and this is the setting that we will be chiefly interested in. The following proposition (which
first appeared in [14], and a proof of which can be found in the full version [15]) shows
that these new influences are indeed “influence-like.” An arguably simpler argument for the
non-negativity of influences is presented in Section 3.3.

I Proposition 11 (Influences are non-negative). If K is a centrally symmetric, convex set,

then Infv[K] Ø 0 for all v œ Sn≠1
. Furthermore, equality holds if and only if K(x) = K(y)

whenever xv‹ = yv‹ (i.e. the projection of x orthogonal to v coincides with that of y) almost

surely.

We note that the total influence of a symmetric, convex set K is independent of the
choice of basis; indeed, we have

I[K] = E
x≥N (0,1)n

5
f(x)

3
n ≠ ÎxÎ2

Ô
2

46
(6)

which is invariant under orthogonal transformations. Hence any orthonormal basis {v1, . . . , vn}
could have been used in place of {e1, . . . , en} in defining I[K].

We note that (as is shown in the proof of Proposition 11), the influence of a fixed
coordinate is not changed by averaging over some set of other coordinates:

I Fact 12. Let K ™ Rn
be a symmetric, convex set, and define the log-concave function

Kei : R æ [0, 1] as

Kei(x) := E
x≥N (0,1)n≠1

[K(x1, . . . , xi≠1, x, xi+1, . . . , xn)]. (7)

Then we have

Infei [K] = Infe1 [Kei ] = I[Kei ]. (8)

We conclude with the following useful relationship between the in-radius of a symmetric
convex set K and its max influence along any direction.

I Proposition 13. Let K ™ Rn
be a centrally symmetric convex set with “(K) Ø �, and let

rin = rin(K) be the in-radius of K. Then there is some direction v œ Sn≠1
such that

Infv[K] Ø �e
≠r

2
in

23/2fi
.
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We will use the following Brascamp–Lieb-type inequality.

I Lemma 14 (Final assertion of Lemma 4.7 of [51]). If g : R æ RØ0 is log-concave and

symmetric and supported in [≠c, c], then

s
c

≠c
x

2
e

≠x
2
/2

g(x)dx
s

c

≠c
e≠x2/2g(x)dx

Æ 1 ≠ 1
2fi

e
≠c

2
.

We use this in the proof of the following claim, which will easily yield Proposition 13:

I Proposition 15. Let K ™ Rn
be a centrally symmetric convex set with “(K) Ø �, and let

v œ Sn≠1
be a unit vector such that K ™ {x œ Rn : |v · x| Æ c}. Then we have

Infv[K] Ø �e
≠c

2

23/2fi
.

Proof of Proposition 15. For ease of notation, we take v = e1 and so K ™ {x œ Rn : |x1| Æ
c}. From Equations (7) and (8), we have that

Infv[K] = Infe1 [K] = I[Ke1 ] = 1
2
Ô

fi

⁄

R
Kei(x)(1 ≠ x

2)e≠x
2
/2

dx (9)

where Ke1 : R æ [0, 1] is the symmetric log-concave function given by

Ke1(x) := E
x≥N (0,1)n≠1

[K(x, x2, . . . , xn)].

As K(x) = 0 when |x1| > c we have that supp(g) ™ [≠c, c] and so it follows from Equation (9)
that

Infv[K] = 1
2
Ô

fi

⁄
c

≠c

Ke1(x)(1 ≠ x
2)e≠x

2
/2

dx. (10)

It follows then from Lemma 14 that

Infv[K] Ø 1
23/2fi

A
e

≠c
2

Ô
2fi

⁄
c

≠c

Ke1(x)e≠x
2
/2

dx

B
= �e

≠c
2

23/2fi

which completes the proof of Proposition 15. J

Proof of Proposition 13. By definition of the in-radius and the supporting hyperplane
theorem, there must exist some unit vector v̂ œ Rn such that

K ™ Kú := {x œ Rn : |v̂ · x| Æ rin},

and hence by Proposition 15 we get that

Inf v̂[K] Ø “(K)e≠r
2
in

23/2fi
Ø Var[K]e≠r

2
in

23/2fi
,

giving Proposition 13 as claimed. J
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3.2 Influences of Specific Symmetric Convex Sets
In this subsection we consider some concrete examples by analyzing the influences of a few
specific symmetric convex sets, namely “slabs”, balls, and cubes. As we will see, these are
closely analogous to well-studied monotone Boolean functions (dictator, Majority, and Tribes,
respectively).

I Example 16 (Analogue of Boolean dictator: a “slab”). Given a vector w œ Rn, define
Dictw := {x œ Rn : |Èx, wÍ| Æ 1}. As suggested by the notation, this is the analogue of a
single Boolean variable f(x) = xi, i.e. a “dictatorship.” For simplicity, suppose w := 1

c
· e1

for some c > 0, i.e. Dictw = {x œ Rn : |x1| Æ c}. We then have

Infei [Dictw] =
I

�
!
c · exp

!
≠c

2
/2

""
i = 1

0 i ”= 1
.

Note that while in the setting of the Boolean hypercube there is only one “dictatorship” for
each coordinate, in our setting given a particular direction we can have “dictatorships” of
varying widths and volumes.

I Example 17 (Analogue of Boolean Majority: a ball). Let Br := {x œ Rn : ÎxÎ2 Æ r} denote
the ball of radius r. Analogous to the Boolean majority function, we argue that for B = BÔ

n

we have that Infei(B) = �(1/
Ô

n) for all i œ [n].
Recall from Equation (6) that

I[B] = 1Ô
2

E
x≥N (0,1)n

#
B(x)

!
n ≠ ÎxÎ2"$

.

By the Berry-Esseen Central Limit Theorem (see [5, 22] or, for example, Section 11.5 of [45]),
we have that for t œ R,

---- Pr
x≥N (0,1)n

5
ÎxÎ2 ≠ nÔ

n
Æ t

6
≠ Pr

y≥N (0,1)
[y Æ t]

---- Æ cÔ
n

for some absolute constant c. In particular, this implies that

Pr
x≥N (0,1)n

#
ÎxÎ2 Æ n ≠

Ô
n

$
Ø Pr

y≥N (0,1)
[y Æ ≠1] ≠ cÔ

n
Ø 0.15.

Since Prx≥N (0,1)n [B(x) = 1] = 1
2 ± on(1), and B(x)(n ≠ ÎxÎ2) is never negative, it follows

that

E
x≥N (0,1)n

#
B(x)

!
n ≠ ÎxÎ2"$

Ø �
!Ô

n
"

from which symmetry implies that Infei [B] Ø �
1

1Ô
n

2
for all i œ [n]. The upper bound

Infei [B] Æ �
1

1Ô
n

2
follows from Parseval’s identity.

Our last example is analogous to the “Tribes CNF” function introduced by Ben-Or and
Linial [4] (alternatively, see Definition 2.7 of [45]):

I Example 18 (Analogue of Boolean Tribes: a cube). Let Cr := {x œ Rn : |xi| Æ r for all i œ [n]}
denote the axis-aligned cube of side-length 2r and “(Cr) = 1

2 , i.e. let r > 0 be the unique
value such that

Pr
g≥N (0,1)

[|g| Æ r] =
3

1
2

41/n

= 1 ≠ �(1)
n

. (11)
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By standard tail bounds on the Gaussian distribution, we have that r = �(
Ô

log n). Because
of the symmetry of Cr, we have Infei [Cr] = Infej [Cr] for all i, j œ [n]. Note, however, that
we can write

Cr(x) =
nŸ

i=1
Dict1/r(xi)

where Dict1/r : R æ {0, 1} is as defined in Example 16. By considering the Hermite
representation of Cr(x), it is easy to see that

Infei [Cr] = E
g≥N (0,1)

#
Dict1/r(g)

$n≠1I
#
Dict1/r

$
.

By our choice of r above, we have E
#
Dict1/r

$
= n


1/2 and so

E
g≥N (0,1)

#
Dict1/r(g)

$n≠1 = �(1).

From Example 16, we know I
#
Dict1/r

$
= �

1
re

≠r
2
/2

2
, and so we have

Infei [Cr] = �
1

re
≠r

2
/2

2
. (12)

We now recall the following tail bound on the normal distribution (see Theorem 1.2.6 of [18]
or Equation 2.58 of [52]):

Ï(r)
3

1
r

≠ 1
r3

4
Æ Pr

g≥N(0,1)
[g Ø r] Æ Ï(r)

3
1
r

≠ 1
r3 + 3

r5

4
, (13)

where Ï(r) = 1Ô
2fi

e
≠r

2
/2 is the density function of N(0, 1). Combining Equation (11),

Equation (12) and Equation (13) we get that Infei [Cr] = �(r2) · Prg≥N(0,1)[g Ø r] =
�(log(n)) · �(1/n), which corresponds to the influence of each individual variable on the
Boolean “tribes” function.

3.3 Margulis-Russo for Convex Influences: An Alternative
Characterization of Influences via Dilations

In this subsection we give an alternative view of the notion of influence defined above, in terms
of the behavior of the Gaussian measure of the set as the variance of the underlying Gaussian
is changed.5 This is closely analogous to the Margulis-Russo formula for monotone Boolean
functions on {±1}n (see [49, 42] or Equation (8.9) in [45]), which relates the derivative (with
respect to p) of the p-biased measure of a monotone function f to the p-biased total influence
of f .

We start by defining ‡-biased convex influences, which are analogous to p-biased influences
from Boolean function analysis (see Section 8.4 of [45]).

I Definition 19 (‡-biased influence). Given a centrally symmetric convex set K ™ Rn
, we

define the ‡-biased influence of direction v on K as being

Inf (‡)
v

[K] := ≠ Âf‡(2v) = E
x≥N (0,1)n

[≠f(x)h2,‡(v · x)],

5 Since “‡(K) = “(K/‡), decreasing (respectively increasing) the variance of the underlying Gaussian
measure is equivalent to dilating (respectively shrinking) the set.
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the negated degree-2 ‡-biased Hermite coe�cient in the direction v. We further define the

‡-biased total influence of K as

I(‡)[K] :=
nÿ

i=1
Inf (‡)

ei
[K].

The proof of the following proposition, which asserts that the rate of the change of the
Gaussian measure of a symmetric convex set K with respect to ‡

2 is (up to scaling) equal
to the ‡-biased total influence of K, is deferred to the full version [15]. We note that this
relation was essentially known to experts (see e.g. [37]), though we are not aware of a specific
place where it appears explicitly in the literature.

I Proposition 20 (Margulis-Russo for symmetric convex sets). Let K ™ Rn
be a centrally

symmetric convex set. Then for any ‡ > 0 we have

d

d‡2 E
x≥N (0,‡2)n

[K(x)] = ≠I(‡)[K]
‡2

Ô
2

= ≠1
‡2

Ô
2

nÿ

i=1
Inf (‡)

ei
[K].

Note that decreasing (respectively increasing) the variance of the background Gaussian
measure is equivalent to dilating (respectively shrinking) the symmetric convex set while
keeping the background measure fixed; this lets us write

I[K] = 1Ô
2

lim
”æ0

“n(K) ≠ “n((1 ≠ ”)K)
”

(14)

for a symmetric convex K ™ Rn. We also note that Proposition 20 easily extends to the
following coordinate-by-coordinate version (which also admits a similar description in terms
of dilations):

I Proposition 21 (Coordinate-wise Margulis-Russo). Let K ™ Rn
be a centrally symmetric

convex set. Then for any ‡ > 0, we have

d

d‡2
i

E
xi≥N (0,‡

2
i )

j ”=i : xj≥N (0,‡
2)

[K(x)]
----
‡2

i =‡2
= ≠1

‡2
Ô

2
Inf (‡)

ei
[K].

In particular, we have

Infei [K] = ≠
Ô

2 d

d‡2 E
xi≥N (0,‡

2)
j ”=i : xj≥N (0,1)

[K(x)]
----
‡2=1

.

Note that decreasing the variance of the underlying Gaussian measure along a coordinate
direction cannot cause the volume of the set to decrease. It follows then that Infei [K] Ø 0
for all ei.

4 A KKL Analogue for Symmetric Convex Sets

A fundamental result on the influence of variables for Boolean functions f : {±1}n æ {±1}
is the celebrated “KKL Theorem” of Kahn, Kalai, and Linial [28], which gives a lower bound
on total influence. The KKL theorem shows (roughly speaking) that if all influences are small
then the total influence must be somewhat large. Several proofs of the KKL Theorem are now
known, using a range of di�erent techniques such as the famous hypercontractive inequality
[7, 3] (the original approach), methods of stochastic calculus [21], and the Log-Sobolev
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inequality [32]. In this section we prove our convex influence analogue of the KKL theorem
using the Gaussian Isoperimetric Theorem [8].

Recall that the KKL theorem for Boolean functions over {±1}n states that if no coordinate
influence is allowed to be large (each is at most ”), then the total influence must be large (at
least �(Var[f ] · log(1/”))). We now prove an analogous result for convex influences, though
we only achieve a quadratically weaker bound in terms of the max influence:

I Theorem 22 (KKL for symmetric convex sets). Let K ™ Rn
be a symmetric convex set with

Infv[K] Æ ” Æ Var[K]/10 for all v œ Sn≠1
. Then

I[K] Ø �
A

Var[K]

Û

log
3Var[K]

”

4B
. (15)

Our proof of Theorem 22 is inspired by the approach of [38]. The main technical ingredient
we use is the Gaussian isoperimetric inequality:

I Proposition 23 (Gaussian isoperimetric inequality, [8]). Given any Borel set A ™ Rn
, we

have

�≠1(“n(At)) Ø �≠1(“n(A)) + t

where At := A + Bt is the t-enlargement of A.

We remark that it is easy to obtain Proposition 23 from the Ehrhard-Borell inequality
[20, 9, 10]. We will also require the following easy estimate on the Gaussian isoperimetric

function Ï ¶ �≠1(·).

I Proposition 24. Let � : R æ [0, 1] denote the cumulative distribution function of the

standard one-dimensional Gaussian distribution, and let Ï := �Õ
denote its density. Then

for all – œ (0, 1), we have

Ï ¶ �≠1(–) Ø
Ú

2
fi

min(–, 1 ≠ –).

Proof. By symmetry, it su�ces to show that Ï ¶ �≠1(–) Ø
Ò

2
fi

– for – œ
#
0,

1
2
$
. This is

immediate from the fact that

Ï ¶ �≠1(0) = 0 and Ï ¶ �≠1
3

1
2

4
= 1Ô

2fi
,

and the concavity of Ï ¶ �≠1 (see, for example, Exercise 5.43 of [45]). J

Proof of Theorem 22. Let rin denote the in-radius of K. We will show that

I[K] Ø 1Ô
fi

Var [K] · rin (16)

and that

rin Ø �(


ln(Var[K]/”)) (17)

from which the desired result follows.
For Equation (17), by Proposition 13 we have that for some direction v œ Sn≠1,

Inf v̂[K] Ø “(K)e≠r
2
in

23/2fi
Ø Var[K]e≠r

2
in

23/2fi
.
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Combining this with Inf v̂[K] Æ ” and recalling that ” Æ Var[K]/10, we get Equation (17).
We turn now to establishing Equation (16). Recall from Equation (14) of Section 3.3

(our Margulis-Russo formula) that

I[K] = 1Ô
2

lim
”æ0

“(K) ≠ “((1 ≠ ”)K)
”

. (18)

We proceed to upper-bound “((1 ≠ ”)K) in terms of “(K). Since rin is the in-radius of K,
for all 0 < ” Æ 1, we have that

(1 ≠ ”)K + ”rinB1 = (1 ≠ ”)K + B”rin ™ K. (19)

Let K
c := R\K, and let (Kc)”rin := K

c + B”rin be the ”rin-enlargement of K
c. It follows

from Equation (19) that (1 ≠ ”)K fl (Kc)”rin = ÿ, which in turn implies that

“((1 ≠ ”)K) + “((Kc)”rin) Æ 1, and so “((1 ≠ ”)K) Æ 1 ≠ “((Kc)”rin). (20)

However, from the Gaussian isoperimetric inequality (Proposition 23), we know that

“((Kc)”rin) Ø �
!
�≠1(“(Kc)) + ”rin

"
. (21)

Let – = “(Kc), so “(K) = 1 ≠ –. Putting Equations (18), (20), and (21) together, we get

I[K] Ø 1Ô
2

lim
”æ0

�
!
�≠1(–) + ”rin

"
≠ –

”

= 1Ô
2

rin

A
lim
Áæ0

�
!
�≠1(–) + Á

"
≠ �

!
�≠1(–)

"

Á

B

= 1Ô
2

rin · �Õ!�≠1(–)
"

= 1Ô
2

rin · Ï ¶ �≠1(–)

by making the change of variables Á := ”rin and using the fact that Ï = �Õ. It follows then
from Proposition 24 that

I[K] Ø 1Ô
2

rin ·
AÚ

2
fi

min(–, 1 ≠ –)
B

Ø 1Ô
fi

Var [K] · rin

which completes the proof. J
As discussed in Item 1 of Section 1.3, we conjecture that the RHS of Equation (15) can be

strengthened to �
!
Var[K] log

! 1
”

""
, which would be the best possible bound by Example 18.

5 Sharp Threshold Results for Symmetric Convex Sets

For any symmetric convex set K ™ Rn, we have that “‡(K) = “(K/‡), and hence the map
�K : ‡ ‘æ “‡(K) is a non-increasing function of ‡ (since K/‡1 ™ K/‡2 whenever ‡1 Ø ‡2).
Given this, it is natural to study the rate of decay of �K for di�erent symmetric convex sets
K ™ Rn.

The S-inequality of [37] can be interpreted as saying that the slowest rate of decay across
all symmetric convex sets of a given volume is achieved by a symmetric strip. Let Kú be
such a strip, i.e. we may take Kú = {x œ Rn : |x1| Æ cú} where cú = �(


ln(1/Á)) is chosen

ITCS 2022



14:16 Convex Influences

so that �Kú(1) = 1 ≠ Á (and hence “(Kú) = 1 ≠ Á). With this choice of cú, it follows that
�Kú(‡) = Á for ‡ = �̃(1/Á). Hence, for the volume of Kú to shrink from 1 ≠ Á to Á, the
variance of the underlying Gaussian has to increase very dramatically, by a factor of Õ(1/Á

2).
Taking, for example, Á = 0.01, we see that in order for the symmetric strip Kú to have its
Gaussian volume change from “1(Kú) = 0.99 to “‡(Kú) = 0.01, the parameter ‡ must vary
over an interval of size �(1), so the strip Kú does not exhibit a “sharp threshold.”

Of course, as we have seen before, the symmetric strip Kú has an extremely large (constant)
convex influence in the direction e1. We now show that large individual influences are the
only obstacle to sharp thresholds, i.e. any symmetric convex set in which no direction has
large convex influence must exhibit a sharp threshold:
I Theorem 25 (Sharp thresholds for symmetric convex sets with small max influence). Let

K ™ Rn
be a centrally symmetric convex set. Suppose Á, ” > 0 where ” Æ Á

≠10 log(1/Á)
and

Á > 0 is su�ciently small (at most some fixed absolute constant). Suppose that “(K) Æ 1 ≠ Á

and maxvœSn≠1 [Infv(K)] Æ ”. Then, for ‡ = 1 + �
3

ln(1/Á)Ô
ln(Á/”)

4
, we have “‡(K) Æ Á.

Setting Á = 0.01 and ” = o(1), the above theorem implies that for K a symmetric convex set
K with maxvœSn≠1 [Infv(K)] = o(1), it must be the case that “‡(K) changes from 0.99 to
0.01 as the underlying ‡ changes from 1 to 1 + o(1).
Discussion. Theorem 25 can be seen as a convex influence analogue of a “sharp threshold”
result due to Kalai [29]. Building on [25], Kalai [29] shows that if f : {±1}n æ {0, 1} is
monotone and its max influence is o(1), then µp(f) must have a sharp threshold (where
µp(f) is the expectation of f under the p-biased measure) (see also Theorem 3.8 of [30]).
This is closely analogous to Theorem 25, which establishes a sharp threshold for “‡(K)
under the assumption that the max convex influence of K is o(1). We note an interesting
quantitative distinction between Theorem 25 and the result of [29]: if the max influence of
a monotone f : {±1}n æ {0, 1} function is ”, then [29] shows that µp(f) goes from 0.01 to
0.99 in an interval of width ¥ 1/poly(log log(1/”)) (see the discussion following Theorem 3.8
of [30]). In contrast, Theorem 25 shows that “‡(K) goes from 0.01 to 0.99 in an interval of
width ¥ 1/


log(1/”), thus establishing an exponentially “sharper threshold” in the convex

setting.6

Proof of Theorem 25. We may assume that “(K) Ø Á, since otherwise, there is nothing to
prove. Let rin = rin(K) be the in-radius of K. By Proposition 13 we get that

rin Ø

Û

ln
3

“(K)
23/2fi”

4
Ø

Û

ln
3

Á

23/2fi”

4
(22)

(note that our assumptions on ” and Á imply that the right hand side of (22) is well-defined).
Next, we observe that a mutatis mutandis modification of the proof of Equation (16) gives
that

I(‡)[K] Ø 1Ô
fi

· rin · Var
‡

[K]. (23)

We further recall that by our Margulis-Russo formula for symmetric convex sets (Proposi-
tion 20), we have

d“‡(K)
d‡2 = ≠ 1

‡2
Ô

2
I(‡)[K]. (24)

6 Roughly speaking, the extra exponential factor in [29] arises because of Friedgut’s junta theorem; our
proof takes a di�erent path and does not incur this quantitative factor.
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Combining (22), (23) and (24), we get that

d“‡(K)
d‡2 Æ ≠ 1Ô

2fi‡2 · Var
‡

[K] ·

Û

ln
3

Á

23/2fi”

4
.

Expressing Var‡[K] as “‡(K) · (1 ≠ “‡(K)) and “solving” the above di�erential equation for
“‡(K), we get that

ln
3

“‡(K)
1 ≠ “‡(K)

4
≠ ln

3
“(K)

1 ≠ “(K)

4
Æ ≠1Ô

2fi
·

Û

ln
3

Á

23/2fi”

4
· 2 ln ‡. (25)

Using the assumption that “(K) Æ 1 ≠ Á, it follows that for ‡ Ø 1, we have

ln
3

“‡(K)
1 ≠ “‡(K)

4
Æ ln(1/Á) + ≠1Ô

2fi
·

Û

ln
3

Á

23/2fi”

4
· 2 ln ‡.

Recalling the assumption that ” Æ Á
≠10 log(1/Á), we see that choosing

‡ = 1 + �
A

ln(1/Á)
ln(Á/”)

B
,

we get “‡(K) Æ Á as claimed. J
I Remark 26. We close this section by noting that the type of threshold phenomenon
studied here has previously been considered in geometric functional analysis. In particular,
the seminal work of Milman [43], using concentration of measure to establish Dvoretzky’s
theorem [19] on almost Euclidean sections of symmetric convex sets, implies a type of
threshold phenomenon for symmetric convex sets. Milman’s result can be shown to imply
that if the “Dvoretzky number” of a symmetric convex set is Ên(1), then the set must
exhibit a type of sharp threshold behavior. Indeed, Milman’s theorem can be used to give an
alternate proof of a result that is similar to Theorem 25.

6 A Robust Kruskal-Katona Analogue for Symmetric Convex Sets

Recall from Equation (4) that for a symmetric convex set K ™ Rn, the shell density function
–K : [0, Œ) æ [0, 1] is defined to be –K(r) := PrxœSn≠1

r
[x œ K], and that –K(·) is non-

increasing. In [16], De and Servedio established the following quantitative lower bound on
the rate of decay of –K(·):

I Theorem 27 (Theorem 12 of [16]). Let K ™ Rn
be a convex body that has in-radius

rin > 0. Then for r > rin such that min{–K(r), (1 ≠ –K(r))} Ø e
≠n/4

, as �r æ 0+
we have

that

–K(r ≠ �r) ≠ –K(r) Ø �
3

rin ·
Ô

n · �r

r2

4
–K(r)(1 ≠ –K(r)).

As alluded to in Item 1 of Section 1, the above result can be used to obtain a Kruskal-Katona
type theorem for centrally symmetric convex sets. In particular, we have the following
corollary:

I Corollary 28. Let K ™ Rn
be a symmetric convex set and r = �(

Ô
n) be such that

–K(r) œ [1/10, 9/10]. Then, as Á æ 0+
, we have that

–K(r(1 ≠ Á)) ≠ –K(r) = �(Á).
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Proof. Let rin denote the in-radius of K, so for any ’ > 0, there is a point zú such that
zú ”œ K and ÎzúÎ2 = rin + ’. By the separating hyperplane theorem, it follows that there is a
unit vector v̂ œ Rn such that

K ™ Kú := {x œ Rn : |v̂ · x| Æ rin + ’}. (26)

We next upper bound –Kú(r). For this, without loss of generality, we may assume that
v̂ = e1. We have

–Kú(r) = Pr
yœSn≠1

r

[|y1| Æ rin + ’] Æ O

3
(rin + ’) ·

Ô
n

r

4
,

where the upper bound is an easy consequence of well-known concentration of measure results
for the n-dimensional unit sphere. Now, using (26) and letting ’ æ 0, we have

–K(r) Æ –Kú(r) Æ O

3
rin ·

Ô
n

r

4
.

Since –K(r) Ø 0.1 by assumption, it follows that rin = �(1). Corollary 28 now follows
from Theorem 27. J

A Robust Analogue of Kruskal-Katona. The lower bound given by Corollary 28 cannot
be improved in general; for example, the convex set K = Dicte1 := {x : |x1| Æ 1} satisfies
the conditions of Corollary 28 and has

–Dicte1
(r(1 ≠ Á)) ≠ –Dicte1

(r) = �(Á)

for r = �(
Ô

n). This is closely analogous to how the �(1/n) density increment of the
original Kruskal-Katona theorem for monotone Boolean functions (recall Item 1 of Section 1)
cannot be improved in general because of functions like the Boolean dictator function
f(x) = x1. However, if “large single-coordinate influences” are disallowed then stronger forms
of the Kruskal-Katona theorem, with larger density increments, hold for monotone Boolean
functions. In particular, O’Donnell and Wimmer proved the following “robust” version of
the Kruskal-Katona theorem:

I Theorem 29 (Theorem 1.3 of [44]). Let f : {±1}n æ {0, 1} be a monotone function and

let n/10 Æ j Æ 9n/10. If 1/10 Æ µj(f) Æ 9/10 and it holds for all i œ [n] that

---- Pr
x≥([n]

j )
[f(x) = 1|xi = 1] ≠ Pr

x≥([n]
j )

[f(x) = 1|xi = ≠1]
---- Æ 1

n1/10 , (27)

then

µj+1(f) Ø µj(f) + �
3

log n

n

4
.

In words, under condition Equation (27) (which is akin to saying that each variable xi has
“low influence on f”), the much larger density increment �(log(n)/n) must hold.

Using our notion of convex influences, we now establish a robust version of Corollary 28
which is similar in spirit to the Boolean “robust Kruskal-Katona” result given by Theorem 29.
Intuitively, our result says that if all convex influences are small, then we get a stronger
density increment than Corollary 28:

I Theorem 30. Let K ™ Rn
be a centrally symmetric convex set and

Ô
n Æ r = �(

Ô
n) be

such that –K(r) œ [1/10, 9/10]. If Infv[K] Æ ” for all v œ Sn≠1
then as Á æ 0+

we have that

–K(r(1 ≠ Á)) ≠ –K(r) = �(Á


ln(1/”)).



A. De and S. Nadimpalli and R. A. Servedio 14:19

Proof of Theorem 30. We begin by proving that “(K) = �(1). Note that

“(K) =
⁄ Œ

r=0
–K(r) · ‰n(r)dr Ø

⁄ Ô
n

r=0
–K(r) · ‰n(r)dr,

where ‰n(·) is the pdf of the ‰-distribution with n-degrees of freedom. Now, since –K(·) is
non-increasing and

s Ô
n

r=0 ‰n(r) = �(1), it must be the case that

“(K) Ø –K(
Ô

n) ·
⁄ Ô

n

r=0
‰n(r)dr = �(1), (28)

where the last equality uses the fact that r Ø
Ô

n and –K(r) Ø 1/10.
Let rin denote the in-radius of K. Exactly as reasoned in the proof of Corollary 28, there

exists a unit vector v œ Sn≠1 such that K ™ {x œ Rn : |v · x| Æ rin + ’} for any ’ > 0. Since
“(K) = �(1), it now follows from Proposition 15 that there is a direction v such that

Infv[K] = �(e≠(rin+’)2
).

By our hypothesis, we have that Infv[K] Æ ”, so taking ’ æ 0 we get that rin = �(


ln(1/”))
(note that we may assume ” is at most some su�ciently small constant, since otherwise the
claimed result is given by Corollary 28). We now apply Theorem 27 to obtain that

–K(r(1 ≠ Á)) ≠ –K(r) = �(Á


ln(1/”)),

thus proving Theorem 30. J
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