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Abstract
Temporal event sequences associated with different event types
(e.g., location indices, disease types) are observed in various ap-
plications such as disaster resilience, criminology, and healthcare.
Temporal point processes (TPPs) have been developed to capture
the exciting patterns between events and forecast future events
quantitatively. Unfortunately, the events with different types of-
ten suffer from unknown biased observations in real-world scenar-
ios due to external interference. Accordingly, the temporal point
processes learned by conventional maximum likelihood estimation
(MLE) from such biased data may be misspecified and may lead
to inaccurate predictions. To overcome this issue, we model biased
event sequences as modulating TPPs with additional unknown thin-
ning processes. Furthermore, we develop a novel debiased imita-
tion learning framework to learn the modulated TPPs and suppress
the negative influences of biased data, which is more robust than
conventional MLE. When applying the debiased imitation learning
framework, we design a simple but effective reward function based
on the historical embedding obtained by the TPP model. Experi-
ments on three real-world datasets demonstrate that our proposed
method significantly outperforms existing methods.
Keywords: Imitation Learning; Temporal Point Process.

1 Introduction
Temporal event sequences associated with different event
types (e.g., location indices, disease types, tweet categories)
are observed in various applications such as disaster re-
silience, criminology, healthcare, and social media. The
events in such sequences often exhibit strong self- and
mutually-exciting patterns, e.g., a crime event is likely to
trigger more crimes in nearby areas and time slots, an alert
of disasters like floods may trigger a series of posts and for-
wards on social media, and a TV viewing event may trigger
the users’ visit to remaining episodes daily or weekly in the
following days.

Temporal point processes (TPPs) like Hawkes process
(HP) [1] and its neural network-based variants [2, 3] have
been developed to capture the exciting patterns between
events and forecast future events quantitatively. For example,
in a predictive rescue system during flood disasters, a city
is divided into geographic sub-regions such as grid cells or
political boundaries. Each “S.O.S.” event is recorded with a
time stamp and an event type (e.g., a zip code). A TPP model
is used to predict the rates of rescue events for each region at
each time window based on historical data. Regions are then
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ranked by the predicted hazard rates in each time window so
that rescue activities are directed to top-k risky regions, also
known as hotspot detection [1].

In real-world event forecasting, events with different
types and timestamps often suffer from imperfect observa-
tions due to external interference. A typical example of this
phenomenon is the “S.O.S.” events of flood disasters col-
lected from social media or sensor networks, where events
associated with certain types (e.g., zip codes) may occur but
are unobserved due to power outages or infrastructure fail-
ures in these regions. Besides the biased sampling of specific
event types, the events in specific time windows may have a
lower or higher sampling probability than others. For exam-
ple, the dynamic of flood sensor networks is time-varying.

Such imperfect observations introduce undesired “bias”
to the estimation of TPP models — for the maximum likeli-
hood estimation of a TPP based on such data, the asymptotic
unbiasedness of the mean intensity may not be held.1 Ac-
cordingly, TPP models learned by conventional maximum
likelihood estimation (MLE) from such biased data may be
misspecified and may lead to biased predictions in the testing
phase when external interference is alleviated. For example,
a TPP model is used to forecast the rates of crime events for
each region in a city based on historical training data. Events
reported in different regions may be biased in the training
data due to the fact that more police resources are allocated
to some regions than the others. However, in the testing time
window, more resources are available and police patrol activ-
ities are uniform across the city. In such cases, a TPP model
trained on crime data with biased observations would fail to
predict events accurately in the test phase.

Existing efforts have been made to learn TPPs from im-
perfect observations, e.g., the time-varying Hawkes process
with stitching-based augmentations [4], the Hawkes process
with hidden types [5], and a bidirectional continuous-time
LSTM [6]. However, they focus on modeling missing event
types or time windows, rather than explicitly modeling the
events with unknown biased generative mechanism. More-
over, they do not solve the mismatching problem between
the distribution of training and the testing data caused by the
sampling bias of external interference.

In this paper, we propose a novel algorithmic frame-

1In this study, the “bias” is defined for the estimation of the mean
intensity of point process, which will be explained in detail in Section 2.2.
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Figure 1: The scheme of proposed learning method. The red dotted
stems represent the events generated by the system but unobserved
because of the additional thinning modulated on the target TPP.

work, called “debiased imitation learning (DIL)”, to learn
temporal point processes from biased observations and sup-
press the risk of model misspecification accordingly. Specif-
ically, we model the mechanism of the biased observation
explicitly, modulating the target TPP model by an additional
biased thinning process of event types. Unlike other modu-
lated methods such as [2,7], this thinning process is external,
which not only generates biased sequences but also imposes
interference on the real triggering patterns among the events.
Our DIL framework learns the TPP and the external thinning
process jointly with the help of the reward-augmented max-
imum likelihood (RAML) [8].

As illustrated in Fig. 1, our framework imitates the
generative mechanism of the biased data based on current
model parameters, and then measures the discrepancy be-
tween the real and the simulated biased sequences in an ef-
ficient and effective method. Using the discrepancy to con-
struct a sequence-level reward, our DIL learns model param-
eters by policy gradient-based updating. Experimental re-
sults demonstrate that our DIL framework is applicable to
arbitrary modulated TPPs and suppresses the negative in-
fluences of biased data, which is more robust than conven-
tional maximum likelihood estimation (MLE) and its vari-
ants. Also, the learned TPP model predicts further events
without bias, which performs more fairly across different
event types in the testing phase.

2 Proposed Model
2.1 Temporal point processes Denote a temporal point
process (TPP) with C event types as N(t) = [Nc(t)]. Its
realization in a time window [0, T ) is an event sequence
consisting of a list of events, i.e., s = {(ti, ci)}Ni=1 with
0 < t1 < · < tn < T and ci ∈ C = {1, 2, .., C} for i =
1, ..., N . For the i-th event (ti, ci), ti and ci represents the
event timestamp and type, respectively. As aforementioned,
many real-world sequential data can be described by the
above temporal point process. For example, in crime and

disaster rescue event sequences [1, 9], each event happens at
a specific time and is associated with a ZIP code (i.e., event
type).

Typically, a TPP model is characterized by conditional
intensity functions λ(t) = {λc(t)}c∈C,t∈[0,T ), where each
λc(t) is the expected instantaneous rate of the type-c event at
time t given all historical events up to time t, i.e.,

λc(t|HC
t ) =

E[dNc(t)|HC
t ]

dt
, ∀c ∈ C, t ∈ [0, T ),(2.1)

where Nc(t) counts the number of the type-c events till time
t and the historyHC

t = {(ti, ci)|ti < t, ci ∈ C}.
The formulation of the above intensity functions deter-

mines the exciting patterns among the events, and thus, leads
to various TPP models. For example, the homogeneous Pois-
son process [10] is memoryless, which owns constant inten-
sity functions, i.e., λc(t) = ηc ≥ 0, where ηc is a positive
constant associated with event type c. The classic Hawkes
process [11] applies additive intensity functions, i.e.,

λc(t|HC
t ) = µc +

∑︂
i:ti<t

ϕc,ci(t− ti),(2.2)

which captures the influence of the type-c′ event at time t′

on the type-c event at time t by an impact function ϕcc′(t −
ti) and accumulates all historical influences in an additive
way. Recently, neural network-based Hawkes processes
leverage more sophisticated mechanisms to quantify the
influence of historical events, whose intensity functions can
be represented in general as

λc(t|HC
t ) = gc(t, h(HC

t )),(2.3)

where h is a neural network embedding the historical events
to vectorized hidden state, which can be a recurrent neu-
ral network [3], a continuous-time LSTM [2], or a trans-
former [12], and gc is the following neural network corre-
sponding to the type-c event, which takes time and the em-
bedding as its inputs.

Typically, given a set of K sequences in [0, T ), denoted
as S = {sk}Kk=1, the likelihood of observing the sequences
given a TPP model parameterized by θ is:

L(θ;S) =
K∏︂

k=1

∏︁Nk

i=1 λcki
(tki |HC

tki
; θ)

exp(
∑︁

c∈C
∫︁ T

0
λc(τ |HC

τ ; θ)dτ)
,(2.4)

where the intensity functions λ are parameterized by θ.
We can learn a TPP model by the maximum likelihood
estimation (MLE):

min
θ
− logL(θ;S).(2.5)
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2.2 The bias of mean intensity caused by external in-
terference It should be noted that the intensity functions
are random variables depending on historical observations.
For a multivariate temporal point process N(t), whose in-
tensity functions are {λc(t)}c∈C , the mean intensity of each
event type is defined as the expectation of λc(t) over all his-
tory [13], i.e.,

λ̄c = EHC
t ∼P [λc(t|HC

t )], ∀c ∈ C,(2.6)

where P indicates a probability measure of possible history.
The mean intensity reflects the overall dynamics of a point
process model, which is determined by the model parameters
in general, i.e., λ̄c(θ) for c ∈ C. For typical point processes
like Poisson process and Hawkes process, the mean intensity
has a closed form solution [13].

Suppose that we observe the sequences S ∼ Nθ∗(t) in
[0, T ), where Nθ∗(t) is a TPP with ground truth parameter
θ∗. The MLE is proven to provide a consistent estimation of
the TPP [14], and accordingly, the mean intensity functions
own asymptotically unbiased estimations, i.e., Eθ̂[λ̄c(θ̂)] →
λ̄c(θ

∗) when T →∞.
However, as aforementioned, practical event sequences

often suffer from external interference. In such a situation,
the observed sequences S are actually from a TPP modulated
by unknown noise. Accordingly, the probability measure
of history, i.e., the P in (2.6) is changed. When applying
the MLE on the noisy data S, the model has a high risk
of misspecification, and the asymptotic unbiasness of the
mean intensity cannot be held. To solve this problem,
we need to take the external interference into account in
the modeling phase and develop new debiased learning
algorithms accordingly.

2.3 Modulating TPPs via additional thinning As afore-
mentioned, in many real-world applications, events with dif-
ferent types often suffer from unknown biased observations
— the events might be generated by the system but unob-
served because of external interference. A typical example
of this phenomenon is the “S.O.S.” events of flood disasters.
Many “S.O.S.” events actually happened but are not recorded
by media or rescue systems because the infrastructures of
disaster areas, like power grids and telecommunication net-
works, are destroyed by floods. As a result, learning a TPP
from the observed data directly will leads to a serious model
misspecification issue and generates biased disaster forecast-
ing and evaluation for different areas.

To overcome this issue, we first propose the follow-
ing generative mechanism to generate above biased obser-
vations. Suppose that we have a TPP model N(t), which
generates “unobservable” unbiased event sequences. The
observed biased event sequence is generated by modulat-
ing the TPP with an additional thinning process, denoted
as {mc}c∈C , which remove the generated type-c events with

rate mc. We can formulate this generative process as:

1.Simulate unbiased sequences (Ogata’s thinning):

s = {(ti, ci)}Ni=1 ∼N(t).

2.Additional thinning:
For i = 1, ..., N :

u∼Uniform([0, 1]),s←s \{(ti,ci)} if u>mci

Biased sequences: ŝ← s.

(2.7)

Here, the first step generates unbiased data from the tar-
get TPP, which can be achieved by Ogata’s thinning algo-
rithm [15]. The formulation of the additional thinning rates
{mc}c∈C is flexible, which depends on practical application
scenarios. Typically, we can set each mc as a time-invariant
rate for sampling type-c events. In such a situation, the target
TPP is modulated via a noise multivariate Poisson process.
In more general settings, mc can be a function of time and
even parameterized by neural networks. As a result, we ob-
tain the biased data ŝ by (2.7), and we aim at learning the
target TPP model N(t) and the associated additional thin-
ning process {mc}c∈C from the data.

It should be noted that the modulated temporal point
process (MTPP) in (2.7) is different from those in [7, 16].
Specifically, conventional MTPPs modulates point processes
by Markovian or Gaussian processes, in which the modula-
tions are intrinsic mechanisms of the TPP models. In other
words, when generating event sequences, the modulation
happens during the Ogata’s simulation step: given historical
events, the modulation is a necessary part to determine cur-
rent intensity, which ensures the whole simulation process to
generate desired event sequences. On the contrary, the ad-
ditional thinning imposed on our TPP model is an external
interference, rather than a module of the target model itself,
which works after the simulation step and leads to biased
data.

A challenge caused by the proposed additional thinning
process is making the MLE in (2.5) inapplicable. Specif-
ically, denote HC

t as the historical events in the unbiased
sequence s before time t. Similarly, we denote ˆ︁HC

t as the
observed historical events in the biased sequence ŝ before
time t. The likelihood function in (2.4) consists of the in-
tensity functions that take historical observations as their in-
puts. According to (2.7), we can only observe ŝ and the
corresponding ˆ︁HC

t . As a result, for each event (t, c) in the
biased sequence ŝ, we cannot obtain the intensity function
λc(t|HC

t ; θ) directly because the complete history HC
t is un-

available. On the other hand, estimating the intensity func-
tion from biased history, i.e., λc(t| ˆ︁HC

t ; θ), will lead to a mis-
specified model.

As a result, the likelihood function based on the biased
sequence, i.e., L(θ; ŝ), is either unavailable (if considering
λc(t|HC

t ; θ)) or misspecified (if considering λc(t| ˆ︁HC
t ; θ)).

To overcome this challenge, we propose a new learning
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framework called debiased imitation learning in the next
section, which provides a potential solution beyond the MLE
strategy to learn unbiased TPPs from biased observations.

3 Learning Algorithm
In principle, our debiased imitation learning (DIL) frame-
work learn the target TPP and the additional thinning pro-
cess jointly with the help of the reward-augmented maximum
likelihood (RAML) [8]. The proposed framework consists of
a learner and an expert. The learner imitates the generation
process in (2.7), generating unbiased and biased sequences
based on current models. The expert evaluates the quality
of the generated sequences by comparing them with real ob-
servations and assign different rewards to the generated se-
quences. The goal of our DIL is to find the optimal model
that maximizes the expected reward.

3.1 Debiased imitation learning framework Suppose
that we have an initial estimation of the TPP model θ and the
additional thinning {mc}c∈C , we can simulate N unbiased
sequences and their biased observations by the steps in (2.7),
denoted as {sn, s̃n}Nn=1. For each s̃n, its intensity function
can be derived without bias because the corresponding unbi-
ased sequence sn is available. In particular, for each event
(t, c) ∈ s̃n, we can obtain its intensity λc(t|HC

t ; θ), where
HC

t ⊂ sn. Accordingly, the likelihood function based on s̃n
becomes available, i.e.,

L(θ,{mc};s̃n,sn)=
∏︁

(tni ,c
n
i)∈s̃n

λcni
(tni |HC

t; θ)

exp(
∑︁

c∈C
∫︁ T

0
mcλc(τ |HC

τ; θ)dτ)
(3.8)

Compared with the likelihood in (2.4), the likelihood
in (3.8) owns two differences: i) for each event in the biased
sequence s̃n, its history is from the unbiased sequence sn;
ii) the integration in the denominator corresponds to the
expected biased number of events, which take the additional
thinning into account.

Based on the generated paired sequences, their likeli-
hoods, and K real-world biased sequences {ŝk}Kk=1, our DIL
solves the following reward-augmented maximum likelihood
problem:

min
θ,{mc}c∈C

−
K∑︂

k=1

N∑︂
n=1

r(ŝk, s̃n) logL(θ,{mc}; s̃n, sn),(3.9)

where r(ŝk, s̃n) is a sequence-level reward function measur-
ing the similarity between the real sequence and the simu-
lated sequence. The design of the reward function is criti-
cal for our learning method, which will be discussed in Sec-
tion 3.2.

Given the rewards, the model parameter θ and the addi-
tional thinning {mc} are updated by an alternating optimiza-

tion strategy based on policy gradients [17]:

θ←θ+α
∑︂
k,n

r(ŝk, s̃n)∇θ logL(θ, {mc}; s̃n, sn),

mc←mc+α
∑︂
k,n

r(ŝk,s̃n)∇mc logL(θ,{mc};s̃n,sn)
(3.10)

where α is learning rate, and the gradients above are calcu-
lated via backpropagation.

Note that, for the thinning process {mc}c∈C , we can
further parameterize it when some prior knowledge about
the biased mechanism is available. For example, in the
sequence of online rescue events, each event type (i.e., a
ZIP code c) may be associated with a feature xc including
the information of power grids, network facility, and social-
economic status of the corresponding region. Accordingly,
we can model each mc as a learnable function of xc, such as
mc = f(xc) where f is a multi-layer perceptron (MLP).
In summary, Algorithm 1 shows the scheme of our DIL
framework in details.

Algorithm 1 Debiased Imitation Learning (DIL)
Biased training sequences {ŝk};
Model parameters θ, thinning rates {mc}c∈C Initialize θ and
{mc}c∈C randomly;
i ← 1 to MaxIter: 1. Simulated N unbiased and biased
sequences {sn, s̃n}Nn=1 by (2.7) from current model θ and
{mc}c∈C .
2. Calculate reward r(ŝk, s̃n).
3. Update model parameter by (3.10).

It should be noted that the original RAML [8] is de-
signed for discrete or categorical data, whose sample space
is finite, while our DIL simulates unbiased event sequences
in the continuous-time domain and thus the search space is
infinite. To make our DIL feasible, in practice, we mod-
ify the Ogata’s thinning algorithm, simulating sequences in
a “finite” search space. In particular, following the idea of
nonparametric point process models [18], we can discretize
the time window as M bins, and each bin can contain at most
one event. When applying the Ogata’s thinning method to
simulate event sequences, for the timestamp fall into a bin,
we determine whether there exists an event in it and which
type the event is. As a result, our search space becomes finite
when ignoring the uncertainty of the timestamp within each
bin, whose size is (|C|+ 1)M .

3.2 Proposed reward function As aforementioned, the
proposed reward function should capture the similarity be-
tween arbitrary two sequences. A typical option is designing
the reward as a kernel function based on the distance between
the sequences, i.e., r(s, s′) = exp(−d(s, s′)), where the dis-
tance d(s, s′) can be the Wasserstein distance in [19]. The
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Wasserstein distance computes the distance between events
of the same type and average the distance over all types, and
for each event type sequences are sorted and compared in or-
der. Formally, given two sequences ŝk and s̃n in [0, T ), let
ξc = {t1, t2, .., tn} and ρc = {τ1, τ2, .., τm} be two sub se-
quences of event type c sorted by time stamps increasingly.
Without loss of generality we assume n ≤ m and the dis-
tance between these two as define in [19] is:

(3.11) d(ξc, ρc) =

n∑︂
i=1

|ti − τi|+
m∑︂

i=n+1

(T − τi),

where the second summation is basically padding the shorter
sequences with T . The reward between two sequences is
thus:

(3.12) r(ŝk, s̃n) = exp

(︄
− γ

C

C∑︂
i=1

d(ξc, ρc)

)︄
,

where C is number of event types and γ is a positive
constant.

Another popular choice for d(s, s′) is the hierarchical
optimal transport (HOT) distance in [20]. The HOT dis-
tance further considers a hierarchical architecture for the
sequences with different event types, which applies nested
Wasserstein distance and thus owns higher complexity. Un-
fortunately, these distances are often computational expen-
sive for comparing the event sequences with multiple event
types. The kernel-based reward used in [21] is only applica-
ble for spatio-temporal point process, rather than our TPPs
with categorical event types. In summary, for the real-world
scenarios like city crime and disaster rescue, whose event se-
quences often own hundreds of event types (i.e., ZIP codes),
these distances are hard to scale and unsuitable for designing
computationally-friendly reward functions.

In this work, we propose a simple but efficient reward
function for the generalized TPP model defined in (2.3).
Specifically, the TPP in (2.3) leverages a neural network h to
obtain the embedding of historical events. The embedding
obtained by h aggregates the information of the input events.
When the input of h is the whole sequence, i.e., h(s),
we can obtain an embedding that represents the sequence.
Therefore, given ŝk and s̃n, we derive the reward r(ŝk, s̃n) as
a function of the cosine similarity between their embeddings:

(3.13) r(ŝk, s̃n) = f

(︃
h⊤(ŝk)h(s̃n)

∥h(ŝk)∥2∥h(s̃n)∥2

)︃
,

where f can be a simple scaling function or a nonlinear ac-
tivation. This design is efficient because we can derive the
reward easily by the feed-forward computation of the model.
Compared with distance-based methods such as the Wasser-
stein distance, our reward function works well in the follow-
ing experiments (Section 5) and reduces computational cost
greatly.

4 Related Work
4.1 Temporal point processes Conditional point pro-
cesses, such as Hawkes processes, are capable of modeling
self- and mutual-excited event sequences and can be used for
event clustering [22], causal inference [11], and event fore-
casting [1]. Point processes have been widely applied in var-
ious applications including predictive policing [1, 5] and on-
line social activities [3,23,24]. In particular, those TPPs out-
perform regression models for predicting event hazard rates
and ranking event hotspots [1]. In comparison with tradi-
tional Hawkes approaches, neural Hawkes processes such
as recurrent marked temporal point process (RMTPP) [3],
continuous-time LSTM [2], transformer Hawkes [12], and
self-attentive Hawkes [25], show better prediction accuracy
in event forecasting. Typically, the above TPP models are
learned in the MLE framework, and few of them consider
learning based on imperfect observations.

4.2 Learning from imperfect observations Some efforts
have been made to learn TPPs from imperfect observations,
e.g., applying data augmentation methods in the training
phase [4, 6] and imposing structural (e.g., low-rank, sparse,
and topological) regularizers on the models [26]. Another
attempt [5] and its variant [9] assume that events of certain
types may be unobserved during any time period, which can
excite or be excited by events of observed types. A particle
smoothing method based on a bidirectional continuous-time
LSTM is proposed in [6] to simulate missing events for
missing windows.

A neural network model is proposed in [27] to model
both observed and missing sequences. However, most of
those methods focus on modeling missing event types or
time windows, rather than explicitly modeling the events
with unknown biased generative mechanism. Moreover, they
do not solve the mismatching problem between the training
and the testing data caused by the biased observations.
Some other approaches such as [1, 28] introduce fairness
penalties into the likelihood function of spatial-temporal
Hawkes processes to enforce group fairness in the hotspot
predictions. While we focus on explicitly modeling data bias
mechanism, those classic MLE frameworks with fairness
regularization are complimentary to our approaches.

4.3 Reinforcement learning for TPPs Imitation learning
and reinforcement learning have been used for learning TPPs
[17], marked TPPs [29], and the clustering of temporal event
sequences [22]. The primary benefit of those methods is that
they do not rely on the pre-defined likelihood function and
are more robust to model misspecification or overfitting than
MLE. A recent imitation learning framework [21] has been
specifically designed to estimate the parameters of a spatio-
temporal Hawkes process given fully observed data in con-
tinuous space and time. A reward function is based on the
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Table 1: Descriptions of real-world datasets.

Dataset Events Event Type Unique-IDs Time
IPTV 9230 TV ID 7 200h

Houston 1182 ZIP Code 106 26h
Dallas 3372 ZIP Code 74 380d

maximum mean discrepancy (MMD) and the discrepancy
between sequences is computed via spatio-temporal kernels.
Unlike [21], our framework focuses on modeling the event
sequences with categorical types, which imitates biased gen-
erative processes in sequence simulation and is applicable to
arbitrary modulated TPPs.

5 Experiment
5.1 Data We evaluate our methods on synthetic datasets as
well as three real-world datasets. Our synthetic event streams
are sampled based on Ogata’s thinning algorithm from two
different processes, respectively: (a) a multivariate Hawkes
process [10] (M-SYN), (b) a neural Hawkes process (equiv-
alently, a CT-LSTM model) [2] (N-SYN) with randomly ini-
tialized parameters. Sequences of k = 5 types are generated
during the time window 0 hour to 35 hour and the length of
each synthetic sequence L is from 100 events to 128 events.
For each dataset, we generated 50 sequences. The M-SYN
dataset contains 5867 events and the N-SYN dataset contains
5764 events in total.

The summary of real-world datasets is in Table 1.
Specifically, the IPTV dataset [11] collects watching records
of 7, 100 users and 436 TV programs in the period of Jan-
uary to November 2012. We select the records of 688 users
watching 7 types of TV programs during 200 hours. There
are totally 9, 230 events. The dataset Houston rescue data2,
which contains online rescue requests from Harris county in
Houston area during the Hurricane Harvey. Each rescue re-
quest event has a time stamp and a ZIP code as the event type.
There are 1, 182 events reported from 106 ZIP codes during
26 hours. The Dallas dataset, which is obtained from Kag-
gle3, contains different types of crime incidences collected
for around 3 years from the Dallas Police Department. We
select “ROBBERY OF BUSINESS” events for a length of
380 days. Each robbery event has a time stamp and a ZIP
code as the event type. There are totally 74 types.

5.2 Constructing biased training data To simulate real-
world biased scenarios, i.e., training on biased data while
testing on unbiased testing, we create biased training datasets
with different sampling patterns from the original datasets.
Specifically, we consider the original data as unbiased data
and split it into a training set and a testset. Then we follow

2https://data.world/sya/harvey-rescue-doc
3https://www.kaggle.com/carrie1/dallaspolicereportedincidents

two different strategies to create biased training sets from the
original training set. We train different models on the biased
training sets and evaluate them on the unbiased testset.

The first strategy is “Random”, where we randomly
sample events from the training data. The sampling rate
mc for each type c is a random number ranging from 0 to
1. This strategy simulates the real-world scenarios where
sampling bias exists at different locations due to random
failure rates of sensor networks for spatial temporal events.
The second strategy is “Top”. Specifically, we rank event
types by their total occurrences in the training data. For
the most popular type, we keep all the events. For all other
types, we randomly select 60% of the events. This strategy
simulates the real-world scenarios where biased data with
imbalanced distributions are observed such as online TV
browsing events and hotspot events.

5.3 Baselines We consider the following learning methods
including our DIL-based method and its competitors:

MLEH is the method proposed in [5]. It adopts MLE
to estimate a classic multivariate Hawkes process (MHP).
In addition, it assumes that there exists hidden nodes (i.e.,
unobserved event types) that can excite or be excited by
events of observed types. The method adopts a Metropolis-
Hastings sampler to simulate virtual events to improve model
estimation.

MLER is a method proposed in [9], which is an exten-
sion of MLEH. It defines a missing probability for each time
interval and revises event likelihood function by integrating
missing window probabilities. Similar to MLEH, a sampler
is used to simulate virtual events. The paper also proposes to
utilize prior knowledge of event types for model regulariza-
tion. For a fair comparison, we choose the one without event
type regularization as our baseline.

MLENN is a representative work that adopts MLE to
estimate neural network (NN)-based point processes that are
robust to biased cases, such as the continuous-time LSTM
(CT-LSTM) in [2, 6]. Generally, these NN-based models
learned by MLE outperform classic methods in prediction
accuracy and robustness.

Our methods are denoted as DILW
NN and DILE

NN, respec-
tively. These two methods learn the aforementioned CT-
LSTM model in the DIL framework, rather than the above
MLE-based strategy, whose reward functions are different.
DILW

NN uses traditional Wasserstein distance [19] as defined
in Equation (3.12) and DILE

NN uses our Embedding-based
distance defined in Equation (3.13).

5.4 Evaluation metrics We adopt different metrics to
evaluate the models. Firstly, we use the data in the full time
window and split it to train and test. The training data is fur-
ther used to create biased training sets as described in Sec-
tion 5.2. Model parameters are estimated using the biased
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training data and we evaluate the testset log-likelihood.
Furthermore, we would like to evaluate the accuracy of

predicted event type ci of the testing event at time t based
on historical events H(ti). In this setting, events before time
t are in the training set and events after time t are in the
testset. The training data is further used to create biased
training sets as described in Section 5.2. Model parameters
are estimated using the biased training data. At each unique
time unit t in the testset, the model can sample a set of events
associated with different event types. We can rank the event
types (e.g., hotspots) by the number of occurrences in the
sampled sequences and compare the relevance of the ranked
list with respect to the ground truth.

We use top-k mean average precision (MAP), mean
average recall (MAR) and mean reciprocal rank (MRR) to
evaluate the ranked lists at different time unit t. Rank k
can be chosen to fit different applications. For example,
considering that the rescue resources are often limited during
a time window, we can predict hotspots that need the most
help. In our case, Houston data has multiple ground-
truth markers at one time unit (i.e., requests from multiple
locations at the same time). We choose top-3, top-5, top-7,
and top-10 MAP, MAR, and MRR in the experiment.

1. Mean Average Precision@K: We calculate average pre-
cision at top K of the predicted types at one time unit,
then average over different time units. For computing
average precision, if a predicted type matches any of
the multiple ground-truth ones, we consider it a correct
prediction.

2. Mean Average Recall@K: We calculate recall at top K
of the predicted event types at one time unit and average
over different time units.

3. Mean Reciprocal Rank@K: We compute the rank of
each ground-truth types and the reciprocal rank score
by rr = 1

rank and average over all test cases.

5.5 Results of testset likelihood In this experiment, for
each synthetic dataset and real-world dataset, we create two
different biased training sets using the strategies “Random”
and “Top” as described in 5.2. We use the training set to train
the model and evaluate the log-likelihood of the testset. The
result of synthetic dataset and real-world dataset are shown
in the Table 2 and Table 3 respectively.

For all synthetic and real-world datasets, our method
DILE

NN outperforms all the others in both biased strategies.
Methods MLEH and MLER are worse since they are MHPs
and they do not explicitly model the biased generation pro-
cess. MLENN is better since the neural network based model
quantifies the influence of historical events in a more sophis-
ticated way. Our model DILE

NN outperforms MLENN, which
indicates that the imitation framework with additional thin-

Table 2: Testset log-likelihood comparison on two synthetic
datasets with biased training sets selected by two different strate-
gies “Random” and “Top”.

Datasets Bias Methods
Pattern MLEH MLER MLENN DILE

NN

M-SYN Rand -5.6099 -5.1398 -3.3942 -3.2726
Top -9.7088 -8.0963 -4.0877 -3.6943

N-SYN Rand -3.0859 -3.5352 -1.3211 -1.3004
Top -5.6909 -6.0849 -2.4704 -1.9654

Table 3: Testset log-likelihood comparison on three real-world
datasets with biased training sets selected by two different strategies
“Random” and “Top”.

Dataset Bias Methods
Pattern MLEH MLER MLENN DILE

NN

IPTV Rand -19.3445 -9.9676 -3.1611 -3.1273
Top -16.1876 -7.4249 -4.2732 -4.1989

HoustonRand -12.0878 -9.8246 -5.2327 -5.1552
Top -12.6778 -9.8425 -6.3368 -5.9288

Dallas Rand -15.3229 -10.3771 -9.0653 -8.3042
Top -11.0430 -10.6268 -8.2712 -7.3074

ning process is more robust than MLE given biased training
sequences.

Furthermore, in the synthetic data experiment as shown
in Table 2, for all models, the testing performance on the
N-SYN datasets are better than the performance on the M-
SYN datasets where the N-SYN dataset is generated by the
neural self-modulating process. In general, for all methods,
the testset results of “Top” are worse than those of “Random”
since the imbalance rate of “Top” is higher.

5.6 Results of event type forecasting We evaluate the
accuracy of predicted event types at test time based on
historical events as described in Section 5.4. For Houston
data, we use the first 21-hour data (about 70% events) as
the training data and the last 5-hour data as the testing data.
For Dallas data, we use the first 350-day data (about 70%
events) as the training data and the last 30-day data as the
testing data. For each dataset, we predict hotspots at each
testing unit (e.g., an hours, a day), evaluate the top-K metrics
described in Section 5.4, and average the performance over
all units in the testing time window.

Table 4, 5 show prediction accuracy. We compare our
models with the strongest competitor MLENN on Houston
dataset . For almost all metrics evaluated at top K positions,
our model DILE

NN gets the best results. In particular, DILE
NN

using our proposed reward based on embeddings is better
than DILW

NN using traditional Wasserstein distance.
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(a) Top-10 hotspots at test time 25 hour with “Random” biased training. (b) Top-10 hotspots at test time 25 hour with “Top” biased training.

Figure 2: Houston map with “Mean flood depth” as the background. Blue dots and orange dots represent the predicted top ZIP codes
using the strongest baseline MLENN and our method DILE

NN, respectively.

Table 4: Hotspot detection in each testing hour for Houston rescue
data where the training data is selected by “Random”.

Method Metrics Top-K
Top-3 Top-5 Top-7 Top-10

MAP 0.4111 0.3707 0.3659 0.3477
MLENN MAR 0.0257 0.0442 0.0745 0.0712

MRR 0.1111 0.0867 0.0803 0.0667
MAP 0.3999 0.3720 0.3765 0.3504

DILW
NN MAR 0.0385 0.0409 0.0633 0.0896

MRR 0.1025 0.0933 0.0724 0.0683
MAP 0.3889 0.3973 0.3947 0.3926

DILE
NN MAR 0.0415 0.0494 0.0755 0.1037

MRR 0.1333 0.1033 0.0884 0.0681

5.7 Case study and visualization In Fig. 2, we visualize
the predicted top-10 hotspots at 25th hour on Houston rescue
data based on two different biased training data. The blue
dots represent the predicted top-10 ZIP codes from the
strongest baseline MLENN and the orange dots shows the
results of our method DILE

NN. The dots of two colors indicate
that the locations have been predicted as top-K regions by
both methods. The background of the figures shows the map
of Houston area with ZIP codes colored by “Mean flood
depth”. It is worth mentioning that “Mean flood depth” is
computed based on historic flooding information and the
areas with darker green in the backgrounds indicate higher
flooding risks. During Hurricane Harvey, Harris County
including ZIP codes 77044,77049, and 77084 is the worst-
hit area. We can see that our method predicts more locations
with higher flooding risks compared to the baseline. The
prediction accuracy results compared to ground-truth are
quantified in Table 4 and 5.

Table 5: Hotspot detection in each testing hour for Houston rescue
data where the training data is selected by “Top”.

Method Metrics Top-K
Top-3 Top-5 Top-7 Top-10

MAP 0.3463 0.2911 0.3395 0.3082
MLENN MAR 0.0570 0.0615 0.0662 0.0737

MRR 0.0796 0.0716 0.0639 0.0637
MAP 0.3519 0.4344 0.3119 0.2565

DILW
NN MAR 0.0662 0.0658 0.0703 0.0732

MRR 0.0768 0.0667 0.0571 0.0578
MAP 0.4130 0.3811 0.3602 0.3583

DILE
NN MAR 0.0634 0.0654 0.0726 0.0801

MRR 0.0811 0.0735 0.0733 0.0612

6 Conclusion
Real-world events often suffer from (unknown) biased ob-
servations due to external interference. Most of the exist-
ing work does not explicitly modeling the events with un-
known biased generative mechanism and does not solve the
mismatching problem between the distribution of training
and the testing data caused by the sampling bias of exter-
nal interference. We have proposed a novel DIL framework
for learning unbiased TPPs from biased observations. The
DIL framework makes the first attempt to learn TPPs modu-
lated by additional thinning processes, which suppresses the
model misspecification risk caused by the biased data. The
DIL framework is applicable to arbitrary TPP models, whose
reward function can be designed with high flexibility accord-
ing to model architectures and application scenarios. In the
future, we plan to consider more complicated additional thin-
ning processes such as time varying sampling functions and
introduce domain knowledge to the DIL framework.
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