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Abstract

We propose a new architecture to approxi-
mately learn incentive compatible, revenue-
maximizing auctions from sampled valuations.
Our architecture uses the Sinkhorn algorithm
to perform a differentiable bipartite match-
ing which allows the network to learn strat-
egyproof revenue-maximizing mechanisms in
settings not learnable by the previous Regret-
Net architecture. In particular, our architec-
ture is able to learn mechanisms in settings
without free disposal where each bidder must
be allocated exactly some number of items. In
experiments, we show our approach success-
fully recovers multiple known optimal mech-
anisms and high-revenue, low-regret mecha-
nisms in larger settings where the optimal
mechanism is unknown.

1 INTRODUCTION

Auctions have been held for millennia, since at least
Classical antiquity (Krishna, 2009), and have played
an important complementary role to set-price sales and
bargaining to exchange goods. In recent decades, the
advent of computation has resulted in a surge of large-
scale fielded auctions in a variety of important indus-
tries, such as broadcasting (Leyton-Brown, Milgrom,
and Segal, 2017), advertising (Edelman, Ostrovsky, and
Schwarz, 2007), electricity markets (Cramton, 2017),
and many others (Milgrom, 2017; Roth, 2018). These
developments have made auctions not only of theoreti-
cal interest, but also of great practical importance.

Auction design is the problem faced by an auctioneer
who, given uncertain knowledge of the demands of
auction participants, wishes to set the rules of the
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auction to ensure, via proper incentive structure, a
desirable outcome. In the usual theoretical model of
auctions (Parsons, Rodriguez-Aguilar, and Klein, 2011),
the bidders have some private valuation of the items,
but the distribution from which these valuations are
drawn is common knowledge. The auctioneer solicits
bids from participants, awards the items up for sale to
the winners, and charges some amount of money to each.
Bidders may, however, choose to strategically lie about
their valuation given their knowledge of the auction
rules and anticipated behavior of other participants,
resulting in a Bayes-Nash equilibrium which may be
very hard for the auction designer to predict.

To avoid this problem, an auctioneer may simply wish
to design a strategyproof (or truthful) mechanism in
which participants are incentivized to truthfully reveal
their valuations. The distribution of bids is then simply
the valuation distribution itself, so it becomes easy
to predict the results of the auction in expectation.
While satisfying the strategyproofness constraint, the
auctioneer can additionally optimize total utility, their
own revenue, or other desirable properties.

If the auctioneer’s goal is to maximize the welfare of all
participants while maintaining strategyproofness, the
Vickrey-Clarke-Groves (VCG) mechanism always gives
a solution (Vickrey, 1961; Clarke, 1971; Groves, 1973).
By contrast, if the auctioneer wishes to maximize rev-
enue, strategyproof mechanisms are much harder to
find. Some revenue-maximizing strategyproof mecha-
nisms are known in limited cases: when selling a single
item, the Myerson auction is strategyproof and maxi-
mizes revenue (Myerson, 1981), and for selling multiple
items to one agent, some results are known (Daskalakis,
Deckelbaum, and Tzamos, 2015; Kash and Frongillo,
2016; Pavlov, 2011; Manelli and Vincent, 2006). But
even for the simple case of selling two items to two
agents, there has been almost no progress, with the
major exception of a breakthrough for the special case
where items take on at most two discrete valuations
(Yao, 2017).

The theoretical difficulty of devising revenue-
maximizing strategyproof auctions has resulted in a
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number of attempts to approximate them. Recently,
Duetting et al. (2019) presented a method, RegretNet,
for learning approximately incentive compatible mech-
anisms given samples from the bidder valuations. They
parameterize the auction as a neural network, and learn
to maximize revenue, and maintain strategyproofness,
by gradient descent. This learning approach to auction
design can replicate some known-optimal auctions, and
can learn good auctions in settings where the optimal
auction is not known. It has been extended in a vari-
ety of ways (Curry et al., 2020; Tacchetti et al., 2019;
Golowich, Narasimhan, and Parkes, 2018; Kuo et al.,
2020; Feng, Narasimhan, and Parkes, 2018; Rahme,
Jelassi, and Weinberg, 2021; Rahme, Jelassi, Bruna,
et al., 2020; Peri et al., 2021).

The RegretNet architecture has architectural features
to ensure that no item is over-allocated, and that each
bidder receives the correct amount of goods. This is
accomplished through a combination of softmax and
minimum operations, depending on the exact bidder
demand constraints.

However, this approach only works when some ad-
hoc combination of these operations is sufficient to
enforce the constraints. This is not always possible.
Consider the case where the auctioneer needs to ensure
that every participant receives exactly k items. Such
equality constraints cannot be enforced using the min-
of-softmax approach.

We observe that an auction allocation for bidders whose
utilities are linear functions of their valuations amounts
to a matching assigning items to bidders. Using this
observation, we present an alternative approach which
explicitly applies matching constraints on the output,
using the Sinkhorn algorithm (Cuturi, 2013) to solve
a discrete matching problem as part of an end-to-end
differentiable architecture.

This approach is among the first attempts to use the
techniques of differentiable optimization (Agrawal et al.,
2019) for learned mechanism design — concurrent work
(Liu et al., 2021) uses a differentiable sorting operator
to learn generalized second-price auctions. By simply
modifying the constraints in our matching problem,
our proposed approach can produce feasible allocations
without changes to the overall network architecture
for many different bidder demand constraints. Our ap-
proach successfully recovers known optimal mechanisms
in multiple settings including settings (such as exactly-
one-demand auctions) in which RegretNet would be
unable to guarantee that its output allocations adhere
to the constraints.

2 RELATED WORK

Auction Design and Learning Auction mecha-
nisms are functions from bids to allocations and pay-
ments; if one assumes sample access to the valuation
distribution, it is natural to treat auction design as a
learning problem, and there has been much work in
this area.

One thread of work has been learning-theoretic, de-
termining the sample complexity for various known
families of auctions to estimate properties like rev-
enue (M.-F. F. Balcan, Sandholm, and Vitercik, 2016;
Cole and Roughgarden, 2014; Morgenstern and Rough-
garden, 2016) or incentive compatibility (M.-F. Balcan,
Sandholm, and Vitercik, 2019).

Another thread of work, sometimes called “differen-
tiable economics”, represents auction mechanisms us-
ing general parametric function approximators, and at-
tempts to optimize them using gradient descent. (Duet-
ting et al., 2019) introduce several neural network archi-
tectures to find revenue-maximizing auctions, including
RochetNet, which works for single-agent auctions and is
strategyproof by constructions, and RegretNet, which
represents auctions as a general neural network and
includes a term in the loss function to enforce strate-
gyproofness.

Further work has built directly on both RochetNet and
RegretNet (Kuo et al., 2020; Curry et al., 2020; Rahme,
Jelassi, and Weinberg, 2021; Rahme, Jelassi, Bruna,
et al., 2020). Others have taken a similar approach
but applied to different mechanism design problems,
including finding welfare-maximizing auctions (Tac-
chetti et al., 2019) and facility location (Golowich,
Narasimhan, and Parkes, 2018). Other applications
of gradient-based methods to problems in mechanism
design include (Heidekriiger et al., 2021; Weissteiner
and Seuken, 2020).

Single-agent auction learning The case of selling
multiple items to a single agent is reasonably well un-
derstood. Rochet (1987) gives a characterization of
strategyproof single-agent mechanisms — their utility
functions must be monotone and convex. Based on
this characterization, Duetting et al. (2019) design Ro-
chetNet, a network architecture for single-agent mech-
anism learning which is guaranteed to be perfectly
strategyproof. Shen, Tang, and Zuo (2019) also pro-
vide network architectures for the single-agent setting
which can be made strategyproof by construction. The
authors of both works are able to learn mechanisms
and then prove them optimal using the theoretical
framework of Daskalakis, Deckelbaum, and Tzamos
(2015).
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We wish to explicitly contrast these architectures with
our own approach. In a single-agent setting, they work
better than a RegretNet-style architecture, and as men-
tioned can always guarantee perfect strategyproofness.
In this work, however, we focus on general architec-
tures which can work in both single- and multi-agent
settings.

Optimal Transport and the Sinkhorn Algo-
rithm Optimal transport (Kantorovich, 1942) is the
problem of moving one set of masses to another mass
while minimizing some cost function. In its infinite
dimensional form, where it amounts to finding the cost-
minimizing joint distribution between two marginal
continuous probability distributions, it has wide ap-
plications in pure mathematics (Villani, 2003) as well
as machine learning (Arjovsky, Chintala, and Bottou,
2017; Genevay, Peyré, and Cuturi, 2018). Interestingly,
Daskalakis, Deckelbaum, and Tzamos (2015) and Kash
and Frongillo (2016) use the mathematical tools of
infinite-dimensional optimal transport in the context
of mechanism design theory.

Our work here is not directly related. By contrast,
we use the discrete form of optimal transport, which
is essentially a formulation of minimum cost bipar-
tite matching (in our case, between agents and items).
This discrete problem can be numerically solved in a
number of ways, see Peyré, Cuturi, et al. (2019) for
an overview. In particular, we focus on the Sinkhorn
algorithm (Cuturi, 2013): a fast, GPU-parallelizable
iterative method for solving the entropy-regularized
version of the optimal transport problem, which can be
used as a differentiable bipartite matching operation
(Mena et al., 2018; Grover et al., 2019; Tay et al., 2020;
Emami and Ranka, 2018; Cuturi, Teboul, and Vert,
2019). We use the Sinkhorn algorithm to compute
matchings between agents and items.

Differentiable optimization and deep learning
Recently, there has been broad interest in mixing con-
vex optimization problems with deep learning. For
many convex optimization problems, the derivative of
the optimal solution with respect to parameters of the
objective or constraints is well defined, so it is possible
to define a neural network layer that will output a fea-
sible, optimal solution to some optimization problem.
This is useful if one wants to use optimization with deep
learning in a “predict and optimize” pipeline (Ferber
et al., 2020; Wilder, Dilkina, and Tambe, 2019), to en-
force that network outputs satisfy some constraints, or
if interesting operations can be formulated in terms of
optimization problems (Gould, Hartley, and Campbell,
2019).

One family of approaches (e.g., Agrawal et al., 2019;

Amos and Kolter, 2017) involves solving the convex op-
timization problem using standard solvers, then using
the implicit function theorem to compute the gradient
for the backward pass. In a contrasting approach, when
using an iterative method to solve the optimization
problem, it is also possible to use automatic differenti-
ation to simply backpropagate through the numerical
operations performed by the solver. We employ this
latter approach with the aforementioned Sinkhorn al-
gorithm in order to compute feasible matchings in a
differentiable manner

3 DIFFERENTIABLE ECONOMICS
AND COMBINATORIAL
OPTIMIZATION

General auction setting We consider an auction
setting with n bidders and m items. Each bidder ¢ has
a private valuation function, v; : [0,1]™ — R>¢, that
maps any subset of the items to a real number. We
assume that v; is drawn from a known distribution Fj,
but the realized valuation v; is private and unknown to
the auctioneer. Each bidder ¢ then submits their bids
b; € R™. Let b = (by,ba,...,b,) be the bids from all
bidder. The auction mechanism is then a combination
of an allocation mechanism and payment mechanism,
(g(b),p(d)). The g outputs an allocation (g1, 92, ..., gn)
where g;; is the probability of allocating item j to bidder
i. The payment mechanism p outputs (p1,p2,...,n)
where p; is how much bidder 7 is charged. Each bidder
then receives some utility u;(v;,b) = v;(g;(b)) — pi(b).

Quasilinear utilities, strategyproofness, and in-
dividual rationality Allowing a distinct valuation
for every combination of items may result in a combi-
natorial explosion. A simplifying assumption is that a
bidder may have a single valuation for each item. Then
their valuation v; is simply a vector in R™, and their
utility is simply u;(v;, b) = (vg, g:(b)) — ps(b).

Since a bidder’s true valuation is private they are
free to strategically report bids to maximize their util-
ity. Thus, a we require our mechanism to be strate-
gyproof or dominant-strategy incentive compat-
ible (DSIC), meaning each bidder’s utility is maxi-
mized by reporting truthfully i.e. wu;(v;, (vi,b—;)) >
u;(vi, (v, b_;) for any other v, where b_; are all the
bids except the ith bidder. Regret is defined by the fol-
lowing equation: rgt;(v;,b) = max,, u;(v;, (vj,b—;)) —
u;(v;, b), and represents the utility the bidder could
have gained from lying in their bid. We can then also
say that when a mechanism is DSIC, the regret for
truthful bidding should be 0 for every bidder i with
truthful valuation v;, for any opponent bids b_;.

Another desirable property for an auction for it to be
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(ex post) individually rational. This means each
bidder receives a non-negative utility from the auction
ie. wu;(vg, (vi,b—;)) > 0 for all bidders 4, all possible
valuations v;, and all other bids b_;. Without this
guarantee bidders might choose not to participate in
the auction at all because they are concerned about
being left worse off than they were before the auction.

3.1 Bidder Demand Types

Here we define common bidder demand constraints
which are used in the experiments.

The value of a bundle of goods for a unit-demand
bidder is equal to the maximum value of a single item
in the bundle: v;(S) = maxjesv;(j). In this sort of
auction, there is no need to consider allocations of more
than one item to each bidder since those provide that
same utility as only allocating the most desirable item
within that bundle to that bidder. Thus, by restricting
allocations to allocate at most one item per bidder,
we can again treat bidder utility as quasilinear. More
generally, there can be k-unit-demand auctions where
a bidder’s value of a bundle of goods is the sum of
the top k items in the bundle (H. Zhang and Conitzer,
2020).

We also consider exactly-one demand, where each
bidder must be assigned exactly one item. In this
setting, the bidder cannot be assigned more or fewer
than one item and receives the value of the assigned
item. Additionally, this demand-type can be extended
to a more general exactly-k demand setting where each
bidder must be allocated k items.

In all these settings, in general allocations might be
randomized so that bidders can receive items with
different probabilities. This corresponds to allowing
fractional allocations, so that in the unit-demand and
exactly-one-demand settings, the one item the bidder
receives can be a mixture of fractions of multiple items.

3.2 RegretNet

The RegretNet architecture consists of two neural net-
works, the allocation network (denote it g) which out-
puts a matrix representing the allocation of each item
to each agent and payment network (denote it p) which
outputs the payments for each bidder (Duetting et al.,
2019).

RegretNet guarantees individual rationality by making
the payment network use a sigmoid activation, out-
putting a value p € [0,1]. The final payment is then

(Z ; Vij gij) P, ensuring that the utility of each bidder

is non-negative.

(Duetting et al., 2019) present network architectures to

learn under additive, unit-demand and combinatorial
valuations. Their architecture utilizes a traditional
feed-forward neural network with modifications in the
output layer to ensure a valid allocation matrix. In the
additive setting, the allocation probabilities for each
item must be at most one: this is enforced by taking
a row-wise softmax on the network outputs. For unit-
demand auctions, each bidder wants at most one item,
so the network takes a row-wise softmax of one matrix
and a column-wise softmax of another to ensure item
allocation is less than one. The final output is then the
elementwise min of these two, ensuring that both item
allocation and unit-demand constraints are enforced.

For training, the RegretNet architecture uses gradient
descent on an augmented Lagrangian which includes
terms to maximize payment while also containing terms
to enforce the constraint that regret should be zero:

£a(0) = = i)+ 3 Mgt (0)+5 3 (sgt(w)) (1)

Here @7 denotes an empirical estimate of regret pro-
duced by running gradient ascent on player i’s portion
of the network input to maximize their utility, comput-
ing their possible benefit from strategically lying. Dur-
ing training, the Lagrange multipliers A are gradually
maximized, incentivizing the minimization of regret.

4 BIPARTITE MATCHING FOR
AUCTIONS

The auction allocation problem is equivalent to finding
a minimum-cost bipartite matching between bidders
and items, for some cost matrix. We solve this bipartite
matching problem by formulating it as an optimal
transport problem. Using the Sinkhorn algorithm, we
are able to solve this optimal transport problem in an
end-to-end differentiable way, yielding a valid matching
that our network can use to learn an optimal allocation
mechanism.

4.1 Matching Linear Program

For marginal vectors a and b — here representing con-
straints for agents and items respectively, each with a
dummy component that represents no item or no agent
— the optimal transport problem is as follows.

n+lm+41
. . _ T _
min E E P;Cijst. Plyyy1=a,1,, P=b

i=1 j=1

(2)
By specifying @ and b, we can specify the demand
constraints of the problem:

o k-demand: a; =k, api1 =m, b; =1, by, = kn
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Figure 1: A schematic showing the Sinkhorn-based mechanism network. The agents’ bids (here, assumed to be
truthful) on each item act as input to a feedforward network, whose output is used as the cost matrix C;; for the
Sinkhorn algorithm. Marginals, specified separately, ensure that the Sinkhorn output is a feasible allocation. The
payment network charges a fraction of the value of items that each agent wins.

e exactly-k-demand: a; = k, apy1 = m—kn, b; =1,
bm+1 =0

Here the n + 1 and m + 1 values of the marginals
represent the dummy agent and item respectively. Con-
cretely, the marginal constraint for agents represents
how many items that agent must receive; if there is a
dummy item, it can be fully or partially met by assign-
ing that dummy item, representing receiving nothing.
Likewise, the constraints for items represent how much
of each item must be allocated; if there are dummy
agents, these constraints can be met by allocating to
the dummy agent (representing allocation to nobody).

More complex constraints, such as different k for differ-
ent agents, can also be accommodated. Also, note in
the exactly-k-demand settings there must be at least kn
items, so m > kn. An optimal solution to the match-
ing LP will always be a permutation matrix (Birkhoff,
1946), or more generally on one of the extreme points
of the constraint set.

4.2 Entropy-Regularized Optimal Transport
and the Sinkhorn Algorithm

The problem in Equation (2) can be solved as a linear
program. However, Cuturi (2013) observed that by
adding an entropy penalty to the problem, it can be
solved in a practical and scalable way using the matrix-
scaling Sinkhorn algorithm. The new objective of the
problem is

N M

manZPow +EZZP’J log P;;

1=15=1 1=1 j=1

Given marginals and a cost matrix, Cuturi (2013) pro-
vides an iterative algorithm to solve this problem. It

can be implemented in a variety of ways; we use the
following stabilized log-domain updates (Peyré, Cuturi,
et al., 2019):

= —elog Zexp (

g]) + eloga

= —clog (Z exp (

fz)) + elogb

where P;; = efi/ce=Cii/<e9i/¢. Tn addition to en-
abling the use of the iterative algorithm, the regular-
ization term makes the problem strongly convex. Thus,
the derivative of the optimal solution with respect to
the cost matrix is well-defined. To approximate this
derivative, we choose to unroll several iterations of the
Sinkhorn updates (which consist only of differentiable
operations) and use automatic differentiation.

The e parameter controls the strength of the regulariza-
tion. If it is large the output P will be nearly uniform;
as it goes to zero we recover the original problem and
P will be a permutation matrix. For our purposes, we
set € large enough to avoid vanishing gradients, but
small enough that the output allocations are still nearly
permutation matrices.

4.3 Network Architecture

Our architecture, like RegretNet, uses a pair of net-
works to compute allocations and payments. We denote
the allocation and payment networks g* and p" respec-
tively, where w are the network weights.
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The main distinction from RegretNet is in the alloca-
tion mechanism. Like RegretNet we utilize a traditional
feedforward neural network that takes all given bids as
input. We use the output of the network as the cost ma-
trix C;; to the Sinkhorn algorithm (if there are dummy
agents or items, they receive cost 0). Marginals are
specified separately depending on the problem setting.

Finally, the output of the Sinkhorn algorithm (after
truncating the row and column for dummy variables)
provides the final probabilities g% of allocating item j
to bidder 1.

As in RegretNet, the final payment for bidder 7 is
(Zj vijgij> P where pi¥ € [0, 1] is the ith output from
a feedforward payment network. This ensures that the
mechanism is individually rational as the bidders will

never be charged more than their utility gained from
the allocated items.

4.4 Settings That RegretNet Cannot
Represent

RegretNet provides three different architectures de-
pending on bidder demand type and valuation functions.
For its unit-demand and combinatorial architectures, it
employs a “min-of-softmax” approach to ensure both
that agents receive at most 1 item or bundle, and items
are not overallocated.

We particularly emphasize the case of exactly-k de-
mand, which describes the situation where the auction
designer is obligated to ensure that every participant re-
ceives k items, no matter what they bid. This captures,
for instance, an offline version of the classic Display
Ads setting (Feldman et al., 2009), with a special case
of no-free-disposal requirements, where every ad buyer
is contractually guaranteed a certain number of ad slots.
For multiple agents and multiple items, RegretNet can-
not represent this demand type via the min-of-softmax
approach.

(In some special cases, ad-hoc changes could be made to
the original RegretNet architecture to support settings
beyond additive and unit-demand. For example, to
enforce “at-most-k” demand, one can just scale the
unit-demand outputs by a factor of k. In the special
single-agent case, it is possible to produce exactly-k
demand by removing the dummy item which allows for
the possibility of allocating no item.)

By contrast, in multi-agent settings with exactly-k de-
mand, the Sinkhorn-based architecture can ensure feasi-
ble outputs by simply specifying the correct marginals.
Our network architecture is also independent of the
demand type since only the marginals change rather
than the entire network output structure.

Algorithm 1 Sinkhorn allocation procedure

Input: Bid v € R™*" allocation network output f(v;0),
marginals @ € R"™ and b € R™*! Sinkhorn epsilon
schedule €1, - - -, er, tolerance t
Output: Feasible allocation matrix g;; € R™*"
Initialize: f =0"" g =0""' C = f(v;0)
for € in ¢p, -+, er do
Py = efi/ceCiilce9ile
while maxi\zj P,; —a;|/a; >t do
fi = —elog (Z] exp (—%)) +eloga, g; =
—elog (Zl exp (—@)) +elogb
P = efilec=Cijlepgil/e
end while

end for
gij = Pijfori=1.n,j=1.m

4.5 Optimization and Training

Like RegretNet, our training objective is Equation (1).
For each batch we estimate the empirical regret, r/g\tl(w)
by performing gradient ascent for each bidder on the
network inputs, approximating a misreport for each
bidder.

In our experiments, the network for both the payment
and allocation network had 2 hidden layers of 128
nodes with Tanh activation functions, optimized using
the Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 1073, The training set consisted of
219 = 524, 288 valuation profiles. We used batch sizes of
4,096 and ran a total of 100 epochs. For each batch, we
computed the best misreport using 25 loops of gradient
ascent with a learning rate 0.1. We also incremented
p every two batches and and updated the Lagrange
multipliers, A, every 100 batches. Experiments were
all run on single 2080Ti GPUs, on either a compute
node or workstation with 32GB RAM, using PyTorch
(Paszke et al., 2019).

For evaluation, we used 1,000 testing examples and
optimized the misreports of these examples for 1,000
iterations with learning rate 0.1. For each of the 1,000
samples we use ten random initialization points for
the misreport optimization and use the maximum re-
gret from these. At both train and test time we used
the Sinkhorn algorithm with an ¢ parameter of 0.05,
and a stopping criterion of a relative tolerance of 0.01.
Additionally we used an e schedule (as suggested by
Schmitzer (2019) and Cuturi, Teboul, and Vert (2019))
of 10 steps from 1 down to the final value of 0.05. Pseu-
docode for computing the allocation network output is
given in algorithm 1.
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5 EXPERIMENTS

5.1 Optimal single-agent mechanisms

We start by recovering two known optimal mechanisms
in the single bidder case. We emphasize that if the only
goal were to learn single-agent auctions, architectures
such as RochetNet (Duetting et al., 2019) or that of
(Shen, Tang, and Zuo, 2019) would work better. Our
architecture works for both single-agent and multi-
agent auctions. Following previous work (Duetting et
al., 2019; Rahme, Jelassi, Bruna, et al., 2020; Rahme,
Jelassi, and Weinberg, 2021), we use these single-agent
experiments as a test case to make sure it recovers
some known optimal mechanisms, before continuing on
to multi-agent settings where optimal auctions are not
known and where RochetNet or (Shen, Tang, and Zuo,
2019) cannot work.

Unit-demand We first recover the optimal mecha-
nism in the unit-demand single-agent two-item setting
with item values drawn from U|0, 1]. The optimal mech-
anism, also approximately recovered in Duetting et al.
(2019), is from (Pavlov, 2011): it is to offer each good
for a price of ? The learned allocation probabilities
are shown in Figure 2b with the boundary of the opti-
mal analytic mechanism denoted by a dotted line. The
x and y axis are the valuation of the bidder for item one
and two respectively. The color represents the alloca-
tion probability output by the learned mechanism with
the darker color corresponding to higher probability.
Quantitatively, the learned mechanism has small regret
and slightly higher than the optimal mechanism likely
due to the small amount of regret.

Exactly-one demand The second optimal mecha-
nism was a deterministic mechanism in the same single
agent, two-item setting with valuations on U[0, 1]. How-
ever, this time the agent will be allocated exactly one
item (instead of at most one). Kash and Frongillo
(2016) shows that the optimal mechanism is to offer
one of the items for free and the other for a price of %

The boundary of this optimal mechanism is shown
in Figure 2a as the black dotted line. The revenue in
Figure 1 is slightly higher than the optimal, again likely
due to the presence of small regret.

5.2 Multi-agent setting

We now experiment in settings where the optimal strat-
egyproof mechanism is unknown. Specifically, we study
2 bidders and either 3 or 15 items where valuations for
each item are drawn from UJ0,1]. A typical analytic
baseline is a separate Myerson auction for each item,
but this only works in additive settings. Instead, as

prob of allocating item 2

10 prob of allocating item 1
0.8

0.0 0.2 0.4 0.6 0.8 1.0
vl

(a) Exactly-One

prob of allocating item 1 prob of allocating item 2

1.0

(b) Unit-Demand

Figure 2: Heatmaps of learned mechanisms for single-
bidder two-item with vy,ve ~ U[0, 1] are shown in
(a)-(b). The optimal mechanism boundaries are the
black dotted lines.

a baseline, we compute the revenue from an (Vickrey,
1961; Clarke, 1971; Groves, 1973). The VCG auction
is strategyproof, and maximizes welfare rather than
revenue. It works by charging each bidder the harm
they cause to other bidders, which in the settings we
test may be very small or even close to zero. Table
2 contains the revenues for both mechanism (unsur-
prisingly higher for the learned auction) as well as the
average observed regret on the testing sample, while
figures 3a and 3b show training plots for the two agent,
3 item, exactly-one demand case.

5.3 Comparison To RegretNet

RegretNet is capable of representing unit-demand auc-
tions, but not the exactly-one setting. We compare
performance to it in this case; results are shown in
Table 2. (Runtimes are significantly faster than those
reported in Duetting et al. (2019) likely due to our
much larger batch sizes.) For the one-agent, two item
setting, both architectures approximate the optimal
mechanism so performance is similar. Performance is
also similar for the 2 agent, 3 item setting. In the
15-item setting, revenue with the Sinkhorn architecture
is somewhat smaller. In all cases the computational
cost of RegretNet is significantly lower, as it requires
only two softmax operations instead of many iterations
of the Sinkhorn algorithm.
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Setting Rev Regret Opt Rev  Train Time
Unit-demand 0.397 (0.248) < 0.001 (< 0.001) 0.393 3h25m
RegretNet Unit-Demand  0.381 (0.258) < 0.001 (< 0.001) 0.393 18m34s
Exactly-one 0.079 (0.127) 0.001 (0.001) 0.069 1h21m

Table 1: Table of mean revenue and regret from learned mechanism in test set alongside revenue of optimal
mechanism for 1 agent, 2 items, with item valuations distributed independently on U|[0, 1].
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(a) Mean revenue for exactly-one demand, 2 agent (b) Mean empirical regret for exactly-one demand,
3 item setting 2 agent 3 item setting

Setting Agents Items Rev Regret VCG Rev  Time

Unit 2 3 .876 (.322) .001 (.001) .048 6h20m
RegretNet Unit 2 3 .878 (.337) < .001 (< .001) .048 20m28s
Unit 2 15 .886 (.113) .001 (< .001) .002 3h10m
RegretNet Unit 2 15 999 (.123) < .001 (< .001) .002 25m45s
Exactly-1 2 3 194 (.064)  .004 (.008) .049 2h38m

RegretNet Exactly-1 2 3 N/A N/A .049 N/A
Exactly-1 2 15 571 (.030)  .003 (.015) 002 1h29m

RegretNet Exactly-1 2 15 N/A N/A .002 N/A

Table 2: Table of mean revenue and regret from learned mechanism in test set along with revenue from VCG
auction, for 2 agents with valuations distributed independently on U|0, 1]
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6 STRENGTHS, LIMITATIONS,
AND POTENTIAL IMPACTS

Structurally, our architecture has the benefit of remain-
ing the same for any quasi-linear bidder utilities and
constraints, with only the Sinkhorn marginals chang-
ing. The use of the Sinkhorn algorithm allows us to
enforce these constraints explicitly and even tackle new
settings, such as exactly-k demand, that the existing
RegretNet architecture would be unable to handle.

Our Sinkhorn-based architecture has a higher computa-
tional cost than the comparable RegretNet architecture,
as the Sinkhorn algorithm requires many iterations.
The Sinkhorn algorithm also requires two additional
hyperparameters, € and a tolerance before the algo-
rithm terminates.

We find that the € parameter plays a crucial role in the
training of the algorithm. If the € is too small, training
fails, likely due to vanishing gradients. However, with
too large of an € the mechanism becomes too smooth
and unable to approximate the sharp boundaries that
tend to show up in optimal mechanisms leading to
suboptimal revenue. (For further discussion of ¢, see
Appendix A in the supplemental material.) Our ar-
chitecture has an inductive bias towards deterministic
allocations. This may pose a limitation where revenue-
maximizing mechanisms are nondeterministic, but it
may be an advantage if they are deterministic or if
determinism is desirable. By setting € small enough it
is possible to ensure near-determinism in allocations.
However, because the mechanisms are trained under
a higher ¢, there are regions where the price charged
becomes too high, increasing regret. Because training
directly with small € is difficult, we cannot directly
guarantee that we train deterministic mechanisms.

Following previous work that uses neural networks to
approximate optimal auctions (e.g. Duetting et al.,
2019; Shen, Tang, and Zuo, 2019; Rahme, Jelassi,
Bruna, et al., 2020; Rahme, Jelassi, and Weinberg,
2021), we train on synthetic data. While in principle
deep-learning-based methods could be used to train
on truthful bids from real-world bidders, and doing so
would be extremely interesting, such data is hard to
come by. We see learned auctions as, at least in part,
a tool for pushing theory forward, so using synthetic
data remains interesting when it is drawn from valu-
ation distributions for which analytic solutions have
remained out of reach.

Our work, like most work in differentiable economics,
uses sample-based approximations to estimate revenue
and regret. It would be desirable to understand the
error due to sampling. Some generalization bounds in
previous mechanism design papers (such as the quantile

regret from Duetting et al. (2019)) apply directly to our
case; others (such as the techniques in M.-F. Balcan,
Sandholm, and Vitercik (2019)) do not but might be
extended.

There are clear ethical implications of revenue-
maximizing auction design, in terms of potential impact
on bidders and society as a whole. We do release code
which can in principle be used for revenue-maximizing
mechanism design. However, since our work is still
closely to the theoretical models discussed above, we
do not see any direct ethical implications — it is very
unlikely that deep-learned auctions will be directly
deployed in the near future.

7 CONCLUSION AND FUTURE
WORK

We have presented a new architecture for learned auc-
tions which uses the Sinkhorn algorithm to perform a
differentiable matching operation to compute an alloca-
tion. Our architecture works for a variety of bidder de-
mand constraints by encoding them into the marginals
used in the Sinkhorn algorithm. This new architecture
allows the network to guarantee valid allocations in
settings where RegretNet could not.

We show that our approach successfully recovers opti-
mal mechanisms in settings where optimal mechanisms
are known, and achieves good revenue and low regret
in larger settings. Future work might include extend-
ing the Sinkhorn architecture to more directly support
randomized allocations, further computational improve-
ments, or further extensions to other mechanism design
problems where the allocation decision can be expressed
as a matching.
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A Effect of Sinkhorn Epsilon

Effect of Sinkhorn € Figures 4b and 4a highlights
the effect of the Sinkhorn parameters on the final mech-
anism. The lower the € in the Sinkhorn algorithm the
sharper the boundary becomes, as with less entropy
regularization, the optimal matching is closer to deter-
ministic. However, we found that very small values of
epsilon led to problems during training; the learned
mechanism would choose to never allocate items, likely
due to vanishing gradients. One can make an almost-
perfectly-deterministic mechanism by decreasing € at
test time, but this can increase regret as the learned
payments no longer agree with the allocations.
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Figure 4: The following figures illustrate the effect

of Sinkhorn temperature on allocation mechanism (c)
higher Sinkhorn € value and (d) lower Sinkhorn € value.



	INTRODUCTION
	RELATED WORK
	DIFFERENTIABLE ECONOMICS AND COMBINATORIAL OPTIMIZATION
	Bidder Demand Types
	RegretNet

	BIPARTITE MATCHING FOR AUCTIONS
	Matching Linear Program
	Entropy-Regularized Optimal Transport and the Sinkhorn Algorithm
	Network Architecture
	Settings That RegretNet Cannot Represent
	Optimization and Training

	EXPERIMENTS
	Optimal single-agent mechanisms
	Multi-agent setting
	Comparison To RegretNet

	STRENGTHS, LIMITATIONS, AND POTENTIAL IMPACTS
	CONCLUSION AND FUTURE WORK
	Effect of Sinkhorn Epsilon

