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Abstract

Visualizing optimization landscapes has led to
many fundamental insights in numeric optimiza-
tion, and novel improvements to optimization
techniques. However, visualizations of the ob-
jective that reinforcement learning optimizes (the
“reward surface”) have only ever been generated
for a small number of narrow contexts. This work
presents reward surfaces and related visualiza-
tions of 27 of the most widely used reinforce-
ment learning environments in Gym for the first
time. We also explore reward surfaces in the pol-
icy gradient direction and show for the first time
that many popular reinforcement learning environ-
ments have frequent “cliffs” (sudden large drops
in expected return). We demonstrate that A2C
often “dives oft” these cliffs into low reward re-
gions of the parameter space while PPO avoids
them, confirming a popular intuition for PPO’s im-
proved performance over previous methods. We
additionally introduce a highly extensible library
that allows researchers to easily generate these
visualizations in the future. Our findings provide
new intuition to explain the successes and failures
of modern RL methods, and our visualizations
concretely characterize several failure modes of
reinforcement learning agents in novel ways.

1. Introduction

Reinforcement learning typically attempts to optimize the
expected discounted return of an agent’s policy. Policy gra-
dient methods represent the policy with a neural network,
and learn this policy by approximating the gradient of the
reinforcement learning objective over policy network pa-
rameters. This means that that the benefits and challenges of
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Figure 1. Reward surface for the Solaris Atari environment.

deep learning apply to policy gradient methods. However,
unlike most deep learning tasks, reinforcement learning
is notoriously unstable, and agents often experience sharp
drops in reward during training. Studying the reward surface
and how RL algorithms interact with it is critical to under-
standing the successes and failures of deep reinforcement
learning.

A “reward surface” is the high dimensional surface of the
reinforcement learning objective (the cumulative expected
reward when following a given policy in an environment)
over the policy network parameter space. Reward surfaces
have been used to study specific questions in limited con-
texts (Ilyas et al., 2020) but have never been generated for a
wide variety of environments. Loss landscapes have been
used in computer vision to understand the effect that resid-
ual connections have on computer vision tasks (Li et al.,
2018), and we expect that visualizations of reward surfaces
could be similarly valuable for understanding techniques
in reinforcement learning. As a first step toward this goal,
we produce visualizations of the reward surfaces for 27 of
the most popular reinforcement learning environments, and
identify new patterns in these surfaces for the first time.
We see common traits of environments that are generally
perceived to be "easy" for reinforcement learning to solve,
and visual explanations of failure modes in sparse reward
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environments.

We additionally conduct a series of novel visualizations
of the reward surface, finding evidence of steep “cliffs” in
reward surfaces plotted in the policy gradient direction of
numerous environments. These are directions where the
returns are constant or increase for a short distance, then
drop sharply. Reinforcement learning notoriously suffers
from instability, and these cliffs may explain the sudden
performance drops that agents experience during training.
Our plots offer conclusive visual evidence that these cliff
exist, as well as methods to study them further. We show
that the specific cliffs present in our visualizations impact
learning performance in some situations, and by comparing
the performance of PPO (Schulman et al., 2017) and A2C
(Mnih et al., 2016) on these cliffs, we provide an explanation
for PPO’s improved efficacy over previous methods.

Finally, to accelerate future research on reward surfaces and
the impact of cliffs in reinforcement learning, we release
the code for this paper as a comprehensive, modular, and
easy to use library for researchers to plot reward surfaces
and other visualizations used in this paper.

2. Background and Related Work
2.1. Loss Landscapes

Li et al. (2018) developed a filter-normalization, a technique
for plotting 3d visualizations of loss landscapes, the surface
generated by a loss function over neural network parameters.
They were able to demonstrate that the sharpness of loss
landscapes plotted using filter-normalized random directions
correlated with neural network generalization error. They
create their plots by choose perturbations d of trained param-
eters that give an informative view of the neural network’s
local behavior. However, uniform random perturbations are
known to be misleading in neural network analysis, because
neural networks with ReLU activations have scale invariant
weights (Li et al., 2018). To mitigate this problem, they pro-
pose filter-normalized random directions. They represent
the neural network as a vector 6 indexed by layer ¢ and filter
(not filter weight) j.! Then, they sample a random Gaussian
direction d, and scale each filter of this random direction to
match the magnitude of the neural network parameters in
the corresponding filter, by applying the following formula.
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Li et al. (2018) used this method to demonstrate that skip
connections can limit the increase in non-convexity as net-
work depth increases. Their work was originally applied to

"Note that this method also works for fully connected layers,
which are equivalent to a convolutional layer with a 1x1 output
feature map.

image classification networks, but we adapt these techniques
to visualize reward surfaces for policy networks.

2.2. Reinforcement Learning

Deep reinforcement learning aims to optimize a policy 7 to
maximize the expected return over neural network parame-
ters 6. This objective can be written as J (mp) = Err, R(T)
where R(7) = >, ,7'rs. Here 7 is a trajectory, r, is the
reward at time step ¢, and ~y is the discount factor and we
sum the rewards across the entire episode of n time steps.
Nota & Thomas (2020) showed that the discounted pol-
icy gradient is not the gradient over the surface of average
discounted rewards, and is in fact not the gradient of any
surface. To avoid this issue and make interpretation easier,
we plot the undiscounted reward surface where v = 1.

2.3. Policy Gradient Methods

Policy gradient methods estimate the gradient of
the policy network and use gradient ascent to in-
crease the probability of selecting actions that lead to
high rewards. The gradient of the objective J is

Vod(70) = Ermry| iy Volog mo(arls) A™ (star)]
where A™ (s¢|a;) is the advantage function for the current
policy 7.

2.4. Reward surfaces

The “reward surface” is the reinforcement learning objec-
tive function J(7y). Reward surfaces were first visualized
by Ilyas et al. (2020) to characterize problems with policy
gradient estimates. The authors plotted a policy gradient es-
timate vs a uniform random direction, showing via visually
striking examples that low sample estimates of the policy
gradient rarely guide the policy in a better direction than a
random direction. Note that this work did not make use of
filter-normalized directions.

Bekci & Guimiis (2020) then used loss landscapes from Li
et al. (2018) to study Soft Actor-Critic agents (Haarnoja
et al., 2018) trained on an inventory optimization task.
They visualize the impact of policy stochasticity and ac-
tion smoothing on the curvature of the loss landscapes for 4
MuJoCo environments.

Later, Ota et al. (2021) used loss landscapes from Li et al.
(2018) directly to compare shallow neural networks for
reinforcement learning to deeper neural networks, showing
that deep neural networks perform poorly because their
loss landscape has more complex curvature. They used
this visual insight to develop methods that can train deeper
networks for reinforcement learning tasks. This work plots
the loss function of SAC agents which includes an entropy-
regularization term (Haarnoja et al., 2018), while we directly
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plot the reinforcement learning objective.

This paper is different from each of these previous works in
the breadth of environments explored, and in that we are the
first to use filter-normalized directions from Li et al. (2018)
to visualize reward surfaces rather than loss landscapes.
We additionally introduce novel experiments and results
inspired by the findings in our initial reward surface plots.

2.5. Proximal Policy Optimization

Proximal Policy Optimization (PPO) (Schulman et al., 2017)
is a derivative method of Trust Region Policy Optimization
(TRPO) (Schulman et al., 2015) intended to be easier to im-
plement and more hyperparameter invariant. Over the past
4 years, PPO has become a “default” method for many deep
RL practitioners and has been used in numerous high profile
works (Berner et al., 2019; Mirhoseini et al., 2021). TRPO
and PPO claim to offer enhanced empirical performance
over previous methods by preventing dramatic changes in
the policy via trust regions and ratio clipping respectively.
Ratio clipping is conceptually a useful heuristic, however
we are not aware of any work demonstrating why it results
in empirically good performance across so many domains.

Instability during training is common in deep reinforcement
learning, and agents often experience large drops in reward
that can take long to recover from. One intuition for the
utility of PPO’s gradient and ratio clipping that has been
idly discussed in the community is that they prevent agents
from taking gradient steps that result in this collapsing per-
formance (Hui, 2018). More precisely, the intuition is that
by preventing large changes to the policy, it avoids gradient
steps that move the policy into regions of the parameter
space with poor rewards and uninformative gradients. To
the best of our knowledge, this intuition was first described
in a widely circulated medium article Hui (2018) released
roughly 1 year after the original PPO paper. We are aware
of no prior work in the academic literature which directly
support this intuition, and the TRPO and PPO papers do not
directly allude to it. We discover evidence of these cliffs in
plots of the policy gradient direction, and perform experi-
ments to confirm that they negatively impact learning. As a
result of its empirically good performance PPO has become
the de-facto policy gradient method, so we chose it as the
agent in our reward surface experiments.

3. Environment Selection

In exploring these reward surfaces, we sought to cover many
widely used benchmark environments. We generated plots
for all “Classic Control“ and “MuJoCo” environments in
Gym (Brockman et al., 2016) and for many popular Atari en-
vironments from the Arcade Learning Environment (Belle-
mare et al., 2013). Video games with graphical observations

and discrete actions are a common benchmark for the field,
and Atari games are the most popular games for this purpose.
The MuJoCo environments are high quality physics simu-
lations used for prominent robotics work with continuous
actions and vector observations. The Classic Control games
represent some of the early toy environments in reinforce-
ment learning, and continue to be used as a standard set of
"easy" environments. We generate surfaces for all classic
control and MuJoCo environments, but we only generate
surfaces for a representative selection of 12 Atari environ-
ments instead of all 59 Atari environments in Gym for the
sake of brevity. To make sure we explore diverse reward
schemes, we specifically picked six sparse reward environ-
ments (Montezuma’s Revenge, Pitfall!, Solaris, Private Eye,
Freeway, Venture), three popular dense reward environments
(Bank Heist, Q*Bert, Ms. Pac-Man), and three popular easy
exploration environments (Breakout, Pong and Space In-
vaders), according to the standard taxonomy by Bellemare
et al. (2016).

4. Initial Explorations of Reward Surfaces
4.1. Methodology

In this work, we adapt the techniques from Li et al. (2018) to
visualize the reward surfaces of PPO agents in reinforcement
learning environments. As in that paper, we deal with the
high-dimensional domain of the reward surface by focusing
our analysis around points in the policy space visited during
training. Given a training checkpoint with parameters 6, we
are interested in understanding the local surface of rewards
generated by the policy represented by parameters 6 + d for
small perturbations d.

To visualize this local region in 3 dimensions we plot the
empirical expected episodic return on the z axis against
independently sampled filter-normalized random directions
on the x and y axes.” The plots are additionally scaled
manually to highlight features of interest, so note the marks
on the axes which indicate those manual scales. The scale,
resolution, and number of environment steps used in each
environment are listed in Table 2.

A reward surface is dependent on the chosen learning al-
gorithm, network architecture, hyperparameters, and ran-
dom seed, so for these experiments we chose to plot the
reward surface of PPO agents using the tuned hyperparam-
eters found in RL Zoo 3 (Raffin, 2020). However, reward
surfaces for a given environment are extremely visually
similar across these variables, which we discuss in subsub-
section 4.2.2. To understand what challenges RL algorithms
face towards the end of training after sufficient exploration
has occurred, we chose the best checkpoint during train-

2Note that because this is a high-dimensional space, these
directions are orthogonal with high probability.
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Figure 2. Reward surfaces for CartPole-v1, Breakout, Hopper-v2, Montezuma’s Revenge

ing, evaluated on 25 episodes, with a preference for later
checkpoints when evaluations showed equal rewards. The
best checkpoint was typically found during the last 10% of
training.

4.2. Results

A sample of the visualizations of the reward surfaces can be
seen in Figure 2. The full set of reward surface plots can be
found in Appendix A. We additionally do a small number
of experiments on network architecture, which we include
in the appendix as a curiosity Appendix G. In the following
sections we present our key findings and discuss the validity
of our reward surface visualizations.

4.2.1. FINDINGS IN PLOTS

One obvious observation is that the size and shape of the
maximizers present in the reward surfaces roughly correlates
with the perceived difficulty of the environment. Though
there is some recent work attempting to quantify the dif-
ficulty of RL environments, it is still a challenging and
unsolved problem (Oller et al., 2020; Furuta et al., 2021).
However, researchers have used these benchmarks for years,
and we now have some intuition for identifying environ-

ments that are easier for modern methods to solve. The
Classic Control environments were designed as simple toy
environments, and modern methods easily find strong poli-
cies for them. The Atari environments have been taxono-
mized by Bellemare et al. (2016) to indicate their relative
difficulty. Breakout, Pong, and Space Invaders are listed as
"Easy Exploration" games. Among the "Hard Exploration"
games Bank Heist, Ms. Pacman, and Q*bert have dense
rewards, while Freeway, Montezuma’s Revenge, Pitall!, Pri-
vate Eye, Solaris, and Venture have a more challenging
sparse reward structure. The MuJoCo environments have
not been officially categorized according to difficulty to our
knowledge.

Using these rough categories as a guide, we see that the
Classic Control environments shown in Figure 5, certainly
the easiest set that we study, have large maximizers that
often span the entire domain of the plot. In the Atari en-
vironments shown in Figure 7, we see that the "Human
Optimal" (Easy Exploration) and "Dense Reward" (Hard
Exploration) environments have large smooth maximizers
relative the the chaotic landscapes seen in the "Sparse Re-
ward" environments. This finding complements those of Li
et al. (2018) who found that the sharpness of loss landscapes
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Figure 3. Gradient heat maps for Ant, Hopper, and InvertedDoublePendulum. The heat map for Hopper and InvertedDoublePendulum
shows a cliff-like gradient direction which falls off sharply compared to the filter-normalized direction.

using filter-normalized directions correlated with general-
ization error. This observation also raises the possibility of
future work creating a metric based on reward surfaces to
gauge the difficulty of RL environments.

We also observe some interesting characteristics of individ-
ual environments. In Figure 5, MountainCarContinuous
has a strangely spiky reward surface for a Classic Control
environment. This may be a result of the uniquely low
training time required to solve it. Using the hyperparam-
eters from RL Zoo 3 we train this agent for only 20,000
steps, while the next lowest training time in RL Zoo 3 is
200,000 timesteps. Looking at Figure 6, Humanoid Standup
has fairly spiky reward surface, suggesting that it’s reward
function is sensitive to small perturbations in the policy.
While many maximizers in these plots appear as a single
hill or peak in an otherwise flat region, some of the surfaces
have uniquely identifiable curvature. Hopper has a large
semi-circular curve in its reward surface. Cartpole, Moun-
tainCar, and InvertedPendulum have large plateaus at their
peak reward.

The sparse reward Atari environments in Figure 7 are par-
ticularly interesting to examine. Note that each point in the
sparse Atari reward surfaces were evaluated with either 1
or 2 million environment steps, to limit the standard error
for each estimate. We see that Freeway’s reward surface
has large flat regions of varying heights surrounding a sin-
gle smooth maximizer. Montezuma’s Revenge and Venture
have short noisy maximizers. The agents for the sparse
environments (except Freeway) perform poorly, so note that
even the maximizers in these plots represent weak poli-
cies. As a result of this, we see that the reward surfaces for
Montezuma’s Revenge, Solaris, and Venture show nearby
maximizers that the agent was unable to find during training.
Private Eye has a large region of zero reward and a far away
maximum with much higher rewards. Finally, as its name
suggests, the reward surface for Pitfall! is mostly flat and
marred by several deep pits.

The idea that sparse rewards structures lead to flat regions

in a reward surface is intuitive — in environments where
rewards are issued solely in infrequent goal states, large yet
precise policy improvements may be required to experience
variations in rewards. Despite the intuitive nature of this ob-
servation, we’re unaware of this being visually documented
in the literature. We also find that in regions where the
reward surfaces are not flat, they are often extremely noisy.
This is supported by plots of the surface of standard devia-
tions at each point, which we include in Appendix B. We
see in these plots that the standard deviation is often signifi-
cantly larger than the average reward in the reward surfaces
for Montezuma’s Revenge, Private Eye, and Venture, unlike
any of the other environments we study. These plots seem
to highlight different failure modes of sparse environments
— either the surface is flat when the agent experiences no
variation in rewards, or the surface is spiky when rewards
are sparse and noisy.

4.2.2. PLOT REPRODUCIBILITY AND STANDARD ERROR

To demonstrate the consistency of these experiments across
multiple random seeds, we repeated our reward surface plots
18 times for Acrobot, HalfCheetah, Breakout, and Mon-
tezuma’s Revenge. For each trial, we trained and evaluated
a new agent with a new random seed. We can see from the
plots in Appendix C that the reward surfaces are extremely
visually similar for a particular environment, indicating that
training appears to converge to visually similar regions of
the reward landscape, and that the characteristics of these
plots are consistent across multiple seeds.

We evaluated for at least 200,000 time steps (1 or 2 million
steps for the sparse reward Atari games) at each point to
ensure that the standard error for these estimates is small.
We record the standard error of each plot in Appendix D.

5. Discovering Cliffs in the Gradient Direction

Filter normalized random directions provide a broad sense
of the local reward landscape, and are useful for analysis
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Figure 4. Gradient line search plots for Pendulum, Ant, and Pong.
properties.

near the end of training, but they do not represent the di-
rection of training because the sampled random directions
are likely orthogonal to the gradient direction. To better
understand the optimization characteristics of these environ-
ments, we performed similar experiments using the policy
gradient direction. We use a high quality estimate of the
policy gradient computed over 1,000,000 environment steps
as in Ilyas et al. (2020). In many of these plots, we find
evidence of “cliffs” in the reward surface. These are regions
of the reward surface in which rewards sharply decrease
after a short distance. We discuss the difficulty of precisely
defining a sharp decrease in Appendix I and explain the
heuristic criteria used to identify cliffs in Appendix H.

One difficulty of plotting the gradient direction is that the
gradient magnitudes vary drastically for different environ-
ments and at different points during training (McCandlish
et al., 2018). Additionally, any maximum in a reward sur-
face can be made to look like a sharp cliff by using a large
enough gradient scale, or like a large plateau by using a
smaller gradient scale. To provide a fair comparison of the
gradient direction’s sharpness, we normalize the gradient
direction by dividing each component by it’s L2 norm.

5.1. Gradient Directions vs. Filter-Normalized
Random Directions

We show the differences between filter normalized random
directions and the gradient direction by creating plots of the
reward surface using the gradient direction on the x axis
and a random filter normalized direction on the y axis. Due
to the frequent sharp changes in reward that we observe in
these plots, 3d surface plots can become partially obscured
by peaks, so we choose to plot these surfaces as heat maps
instead. A sample of the heat maps can be seen in Figure 3
and the full set of heat maps for Classic Control and MuJoCo
environments can be found in Appendix E.

pong

Rewards

The line plot for Ant shows several checkpoints that exhibit cliff-like

5.1.1. PRELIMINARY OBSERVATIONS

The most striking observation is that rewards in the gra-
dient direction often change much more rapidly than the
rewards in random directions. We see a sample of these
gradient heat maps in Figure 3. In the gradient heat maps
for Hopper and InvertedDoublePendulum, rewards in the
gradient direction seem to form cliffs and drop off rapidly
after a short distance. The plot for InvertedDoublePendulum
is particularly interesting. It is possible to argue that the
different normalization schemes that we use for random and
gradient directions make these plots falsely appear to have
cliffs. However, the rewards for InvertedDoublePendulum
drop much more quickly in the gradient direction than in
the negative gradient direction. Due to these potential con-
cerns about normalization, in the next section we directly
visualize the gradient directions across multiple training
checkpoints for each environment to find more convincing
evidence of cliffs.

5.2. Visualizing Rewards in the Gradient Direction
During Training

5.2.1. METHODOLOGY

In order to study the gradient direction’s reward surface over
the course of training, we plot a 1-dimensional projection
of the rewards along the gradient direction for a series of
checkpoints taken at uniform training step increments. A
sample of these can be seen in Figure 4 and the full set
of plots can be found in Appendix F Since the training
checkpoints are relatively far apart from one another, the plot
is somewhat discontinuous. However, we selected uniformly
distributed checkpoints across the entire span of training,
so they should be representative of all points visited during
training. We sample 20 points along a distance of 0.4 in
the normalized gradient direction, and another 10 points
between the first and second sample point. This results in a
single high resolution segment at the start of each plot that
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allows us to more easily identify cliffs early in the plots. The
Atari environments Montezuma’s Revenge, Pitfall!, Private
Eye, and Solaris were plotted with 1,000,00 environment
steps per sample point to limit evaluation noise, while the
remaining environments used 200,000 time steps.

5.2.2. OBSERVATIONS

We find that many of the same observations here as we do
in the original reward surfaces. The gradient directions for
easy, dense reward environments tend to point toward better
rewards, and sparse reward environments often have flat
trajectories in the gradient direction. Some of the sparse
environments also have extremely noise gradient directions,
with wide swings in reward. This typically occurs in envi-
ronments where the agent performs poorly. For example,
we see in Freeway, a sparse reward environment where our
agent finds a nearly optimal policy, that the gradient line
plot looks very similar to that of dense reward Atari envi-
ronments like Pong. However, we also note some unique
properties of the gradient direction. In some plots, for exam-
ple in Pong, we see “cliffs” in the reward surface where the
reward briefly increases, then sharply decreases. We find
that these cliffs occur occasionally in almost every environ-
ment.

6. Cliffs Impact Policy Gradient Training

We are clearly able to see cliffs in our line plots, but we
needed to confirm that these cliff-like gradient directions
are not simply a visualization artifact and that they affect the
performance of agents. We hypothesize that methods which
approximate the policy gradient will occasionally step too
far and fall off of these cliffs, thereby performing worse
on cliff-like checkpoints than normal checkpoints. This
hypothesis follows from the intuition that motivated PPO
and TRPO. To test our hypothesis, we use the line plots to
identify trained checkpoints where the true policy gradient
points towards a cliff, and compare the performance of A2C
on these cliffs versus less cliff-like checkpoints. We find that
A2C performs significantly worse on cliff checkpoints than
non-cliff checkpoints. We further hypothesize that PPO,
which uses ratio clipping to avoid significant changes to
its policy and better hyperparameters, will perform better
than A2C on cliff checkpoints. We run the same experiment
using PPO, and compare the results in Table 1.

6.1. Methodology

To evaluate performance on cliffs relative to baseline perfor-
mance on standard checkpoints, we first select 12 cliff and
12 non-cliff checkpoints from our gradient line search data
using a heuristic explained in Appendix H.

For both A2C and PPO we evaluate the percent change in

reward that results from training for 2048 environment steps
at a particular checkpoint. For each checkpoint, we perform
10 trials in which we evaluate the starting performance of
the agent over 1000 episodes, the agent takes a few gradient
steps, and then we evaluate the resulting policy over 1000
episodes as well. We calculate the percent change in reward,
and average this value over every checkpoint in each set.
This produces an average change in reward for the set of
cliff checkpoints, and the set of non-cliff checkpoints, which
we list in Table 1.

We also want to ensure that the method takes a step in the
direction that we are studying, and steps far enough to reach
the cliff. As such, we try increasing both the learning rate
(LR) and the number of steps per parallel environment per
training update (N steps). The remaining hyperparameters
are the optimal hyperparameters from RL Zoo 3 (Raffin,
2020) as in previous experiments. We use these hyperpa-
rameters to validate the existence of cliffs and demonstrate
that cliffs can have a negative effect on training, whether or
not it commonly occurs in practice.

6.2. Results

We see the results of our experiments with several hyperpa-
rameter sets in Table 1. We find that on cliff checkpoints,
A2C’s gradient step consistently results in a decrease in re-
wards, while on non-cliff checkpoints it increases expected
return. On the other hand, PPO sees nearly the same percent
change in performance across cliff and non-cliff checkpoints.
From these results, we confirm that the cliffs present in our
gradient line searches can have a real effect on optimization,
and are not simply a visualization artifact. We also show
that for all tested hyperparameters, PPO is affected by cliffs
less than A2C. Only one of our experiments shows a minor
decrease in rewards for PPO, while all of them show a larger
decrease for A2C. Engstrom et al. (2020) found that PPO’s
performance could largely be attributed to hyperparameter
improvements and implementation tricks, so we leave a thor-
ough investigation of the exact components that cause PPO
to be less affected by cliffs as future work.

7. Library

We developed an extensive software library for plotting the
reward surfaces of reinforcement learning agents to produce
this work and encourage future research using these visual-
izations. The library includes code for training agents using
all of the options available in Stable Baselines 3 (Raffin
et al., 2019) and hyperparameters from RL Zoo 3 (Raffin,
2020). We provide algorithms for estimating the gradient
and hessian of policy networks along with code for evalu-
ating the rewards or discounted returns of trained agents.
The entire code base supports the use of arbitrary directions
for investigation, and specifically provides tools for using
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Table 1. Table of A2C and PPO’s average percent change in reward after taking a few gradient steps on cliff and non-cliff checkpoints for
various sets of hyperparameters. These results are averaged among 10 trials each evaluated for 1000 episodes.

filter-normalized and policy gradient directions. We include
routines for creating 3d plots, line plots, heat maps, and gifs
of reward surfaces. Finally, all experiments in the library are
parallelized across multiple environments, and scripts are
included for generating reward surfaces on SLURM clusters.
The library is well organized and documented, and it can be
found at https://github.com/RyanNavillus/reward-surfaces.

8. Discussion

In this work we introduce valuable new methods for study-
ing deep reinforcement learning, and use them to discover
new results about the optimization characteristics of pop-
ular RL environments. Reward surfaces provide a useful
overview of the reward structure of an environment. Loss
landscapes have already been used in debugging tools for
computer vision tasks (Bain et al., 2021), and we hope that
reward surfaces could be similarly useful in debugging RL
systems. In particular, the reward surfaces for sparse en-
vironments allow us to see large regions of flat rewards,
and extreme evaluation noise at individual points. Gradi-
ent methods cannot optimize flat surfaces, so solutions to
this problem are constrained to either modifying the reward
structure (e.g. curiosity or bonus-based exploration meth-
ods (Pathak et al., 2017; Burda et al., 2019)) or condensing
the action space such that simple exploration methods are
tractable (e.g. DIAYN and related work (Eysenbach et al.,
2019; Sharma et al., 2020)).

All this suggests many interesting opportunities for future
work, either visualizing the effects of bonus-based explo-
ration methods on the reward surface, or quantification of
reward sparsity. Additionally, our gradient line searches

visualize optimization characteristics of the environment,
and could allow us to select gradient methods more suited to
reinforcement learning. We see a few worthwhile research
directions using these techniques.

Our gradient line searches show evidence of cliffs in most
popular RL environments. Interestingly, although these
cliffs appear in almost every environment occasionally, the
most extreme examples occur in relatively easy environ-
ments like CartPole and Inverted Double Pendulum, while
the harder Atari environments are characterized by mostly
flat and noisy gradient directions. Despite the apparent dif-
ference, these noisy spikes can also be considered small
cliffs on the scale of an individual gradient step. Our ex-
periments demonstrate that the extreme cliffs can have an
impact on training over a few gradient steps, but we suspect
that smaller cliffs have a slower, degrading effect over the
course of training. Future work could attempt to directly
study the degree to which cliffs affect training in practice.

Our experiments comparing PPO and A2C provide an em-
pirical justification for why PPO is so effective. We find
that PPO performs significantly better than A2C on check-
points with steep cliffs in the gradient direction’s reward
surface. A deeper understanding of why existing methods
work will allow us to develop stronger algorithms in the
future. Previous work has focused on the hyperparameters
and algorithmic advances that contribute to PPO’s strong
performance (Engstrom et al., 2020), but we believe that the
specific situations where PPO outperforms previous meth-
ods warrants further investigation.

Finally, this work focuses on policy networks, but the tools
that we introduce could be applied to study Q networks or
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value networks. It would also be interesting to see reward
surfaces for multiagent algorithms, such as independent
learning or parameter sharing (Gupta et al., 2017).

9. Conclusion

This work is the first to use filter-normalized directions to
visualize reward surfaces for a large collection of popular
reinforcement learning environments. We are also the first
to find visual evidence of the cliffs that inspired TRPO and
PPO, and we perform experiments demonstrating their neg-
ative impact on policy gradient methods. This offers new
potential insights into why deep RL works, and why rein-
forcement learning is seemingly so challenging when com-
pared to other areas of deep learning. To accelerate future
works in this field we created an extensive, well-documented
library for plotting reward surfaces. We thoroughly outline
limitations this work has in Appendix I. We hope that this
work inspires future research on the specific optimization
challenges that reinforcement learning faces, and that it
enables new studies using reward surfaces.
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A. All Reward Surfaces

A.1. Classic Control
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Figure 5. Reward surfaces for 5 Classic Control environments.
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A.2. MuJoCo
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Figure 6. Reward surfaces for 10 MuJoCo environments.
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A.3. Atari
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Figure 7. Reward surfaces for 12 Atari environments.
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A.4. Reward Surface Plot Options

Environment Grid Range | Grid Samples | Environment Steps
Acrobot [-3, 3] 31 x 31 200,000
CartPole [-3, 3] 31 x 31 200,000

MountainCar [-3, 3] 31 x31 200,000

MountainCarContinuous [-3, 3] 31x31 200,000
Pendulum [-3, 3] 31x31 200,000
Ant [-1, 1] 31x31 200,000

HalfCheetah [-1, 1] 31 x31 200,000

Hopper [-1, 1] 31x31 200,000

Humanoid [-1, 1] 31x31 500,000
HumanoidStandup [-3, 3] 61 x 61 500,000
InvertedDoublePendulum [-1, 1] 31 x 31 200,000
InvertedPendulum [-3, 3] 61 x 61 200,000
Reacher [-3, 3] 91 x91 200,000
Swimmer [-2, 2] 31 x31 500,000
Walker2d [-1, 1] 31x31 200,000
Breakout [-1, 1] 31x31 200,000

Pong [-1, 1] 31x31 200,000
Spacelnvaders [-1, 1] 31 x31 200,000
BankHeist [-1, 1] 31 x 31 200,000
MsPacman [-1, 1] 31 x31 200,000
Q*bert [-1, 1] 31x31 200,000
Freeway [-3, 3] 61 x61 1,000,000
Montezuma’s Revenge [-1, 1] 31x31 200,000
Pitfall! [-3, 3] 61 x61 1,000,000

Private Eye [-3, 3] 61 x61 1,000,000
Solaris [-3, 3] 91 x 91 2,000,000
Venture [-1, 1] 31x31 200,000

Table 2. Settings used to generate reward surfaces for each environment. These settings were manually chosen to highlight interesting
features of the reward surface and to reduce standard error in the plots.
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B. Standard Deviation Plots
B.1. Classic Control

Acrobot-v1 | Classic Control | Episodic Reward Standard Deviation Cartpole-v1 | Classic Control | Episodic Reward Standard Deviation MountainCar-v0 | Classic Control | Episodic Reward Standard Deviation

MountainCarContinuous-v0 | Classic Control | Episodic Reward Standard Deviation

Figure 8. Standard deviation surfaces for 5 Classic Control environments.
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B.2. MuJoCo

Hopper-v2 | Mujoco | Episodic Reward Standard Deviation
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Figure 9. Standard deviation surfaces for 10 MuJoCo environments.
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B.3. Atari
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Figure 10. Standard deviation surfaces for 12 Atari environments.
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B.4. Standard Deviation and Error Relative to Rewards

Environment Average Standard Deviation / Mean | Average Standard Error / Mean
Acrobot 30.58% 0.77%
CartPole 37.51% 0.67%

MountainCar 14.30% 0.37%

MountainCarContinuous 21.33% 0.77%
Pendulum 6.82% 0.22%
Ant 39.45% 2.53%
HalfCheetah 108.68% 7.76%
Hopper 26.81% 0.82%
Humanoid 21.08% 0.26%
HumanoidStandup 11.65% 0.52%
InvertedDoublePendulum 42.23% 0.74%
InvertedPendulum 31.88% 0.45%
Reacher 13.23% 0.21%
Swimmer 139.79% 9.88%
Walker2d 100.01% 2.11%
Breakout 119.43% 21.76%
Pong 15.80% 2.09%
Spacelnvaders 50.02% 2.99%
BankHeist 98.40% 13.65%
MsPacman 52.12% 2.83%
Q*bert 184.20% 8.82%
Freeway 18.00% 0.81%
Montezuma’s Revenge 559.64% 65.11%
Pitfall! 180.45% 8.56%
Private Eye 448.63% 23.26%
Solaris 166.94% 21.49%
Venture 742.24% 31.78%

Table 3. Standard deviation and Standard error as a percentage of the rewards for each point estimate in the reward surface for each
environment. We see that aside from some of the sparse Atari environments, the standard error of our reward surfaces is fairly low on

average.
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C. Reproducibility
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Figure 11. 18 training and plotting runs for the Classic Control Acrobot-v1 environment.
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Figure 12. 18 training and plotting runs for the MuJoCo HalfCheetah-v2 environment.
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Figure 13. 18 training and plotting runs for the Atari Breakout environment.



CIliff Diving: Exploring Reward Surfaces in Reinforcement Learning Environments

MontezuamRevengeNoFrameskip-v0 | Mean Episodic Reward MontezuamRevengeNoFrameskip-v0 | Mean Episodic Reward

MontezuamRevengeNoFrameskip-v0 | Mean Episodic Reward

100
07550,
800, 55

050,

MontezuamRevengeNoFrameskip-vO | Mean Episodic Reward MontezuamRevengeNoFrameskip-v0 | Mean Episodic Reward

MontezuamRevengeNoFrameskip-vO | Mean Episodic Reward MontezuamRevengeNoFrameskip-v0 | Mean Episodic Reward

O - N WA o

.75 -1.00

MontezuamRevengeNoFrameskip-v0 | Mean Episodic Reward

07
10
06
8 05
6 04
03
4
02
? 01
0 00
MontezuamRevengeNoFrameskip-v0 | Mean Episodic Reward MontezuamRevengeNoFrameskip-v0 | Mean Episodic Reward
20 25
20
15
15
10
10
: 05
o 00
MontezuamRevengeNoFrameskip-v0 | Mean Episodic Reward MontezuamRevengeNoFrameskip-v0 | Mean Episodic Reward
6
30
5
B
.
20
3
15
10 2
5 1
o 0

Figure 14. 18 training and plotting runs for the Atari Montezuma’s Revenge environment.
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D. Standard Error Plots
D.1. Classic Control

Acrobot-v1 | Classic Control | Episodic Reward Standard Error Cartpole-v1 | Classic Control | Episodic Reward Standard Error

MountainCar-v0 | Classic Control | Episodic Reward Standard Error

MountainCarContinuous-v0 | Classic Control | Episodic Reward Standard Error

Figure 15. Standard error surfaces for 5 Classic Control environments.
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D.2. MuJoCo
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Figure 16. Standard error surfaces for 10 MuJoCo environments.
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D.3. Atari
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Figure 17. Standard error surfaces for 12 Atari environments.
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E. All Gradient Heat Maps
E.1. Classic Control
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Figure 18. Policy gradient heat maps for 5 Classic Control environments.
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E.2. MuJoCo
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F. All Gradient Line Plots

F.1. Classic Control
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Figure 20. Policy gradient line search plots for 5 Classic Control environments.
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Figure 21. Policy gradient line search plots for 10 MuJoCo environments.
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Figure 22. Policy gradient line search plots for 12 Atari environments.
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G. Network Architecture Experiments

We produce plots of the InvertedDoublePendulum-v2, Swimmer-v2, and Walker2D-v2 environments with different network
architectures to show the effect that increasing policy network depth has on a reward surface. We test actor and critic
networks with 2, 4, 6, 8, 12, and 16 shared layers of 128 nodes. In each environment, as the network depth increases, either
the maximizer present in the reward surface becomes sharper, or the maximum reward in the plot decreases. Often we see
both occur. This is expected from the findings in (Li et al., 2018) that when filter-normalization is used, generalization error
decreases as the sharpness of the loss landscape increases. We hope that this serves as a useful preliminary result for those
studying network architectures in reinforcement learning, and leave further investigation as future work. For an investigation
of loss landscapes for different RL architectures, see Ota et al. (2021).

InvertedDoublePendulum-v2 | Mujoco | Mean Episodic Reward InvertedDoublePendulum-v2 | Mujoco | Mean Episodic Reward InvertedDoublePendulum-v2 | Mujoco | Mean Episodic Reward

Figure 23. Inverted Double Pendulum environment with different number of layers in policy network. Top: 2, 4, and 6 layer networks.
Bottom: 8, 12, and 16 layer networks
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Figure 24. Swimmer environment with different number of layers in policy network. Top: 2, 4, and 6 layer networks. Bottom: 8, 12, and

16 layer networks
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Figure 25. Walker2d environment with different number of layers in policy network. Top: 2, 4, and 6 layer networks. Bottom: 8, 12, and
16 layer networks
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H. Cliff Checkpoint Selection

For cliffs, we select checkpoints that exhibit a decrease in returns of at least 50% in the first, high-resolution section of the
line search (that is, within a normalized gradient magnitude of 0.04). By selecting points closer to the initial, unperturbed
weights, we choose cliffs that the optimization method is likely to reach. Although we do our best to evaluate the gradient
line searches with enough environment steps to reduce their standard error, it is not computationally feasible to completely
account for the high variance of returns in sparse reward environments. To mitigate this, the decrease in returns that identify
a cliff must also be at least 25% of the global reward range across all checkpoints in the line plot. This ensures that we
select cliffs that are significant in the environment’s overall reward scale, and not likely to be caused by evaluation noise.
We select non-cliff checkpoints arbitrarily from the remaining checkpoints that do not meet these criteria.

I. Limitations

The scale of axes in our plots is a ubiquitous concern in this paper. Fortunately for the 3d reward surface plots, filter-
normalized random directions have been well studied, and we find that many of the original findings from the loss landscapes
paper hold. The sharpness of the minimizer or maximizer in loss landscapes and reward surfaces respectively correlate with
the difficulty of the task.

The correct scale for plots that use the policy gradient direction are less obvious. In general, a continuous, sharp change in
rewards can be made to look gentle by zooming into the slope, and any continuous change in rewards can appear to occur
instantly if you zoom out enough. Gradient directions are calculated from network parameters, and therefore have their
own implicit normalization, so we cannot apply filter-normalization. We choose to normalize these directions to have the
same magnitude, and assume that the gradient’s implicit normalization will highlight important features. While it is possible
that our gradient line searches miss some cliffs, or make some checkpoints incorrectly appear as cliffs, the results of our
experiments with A2C appear to confirm that more often than not, the cliffs in our line searches are real.

Our comparison of PPO and A2C on cliff checkpoints is a preliminary result and does not identify which component of PPO
makes it more robust to cliffs than A2C. Previous work has highlighted that much of the improved performance of PPO can
be attributed to implementation details rather than algorithmic improvements like ratio clipping (Engstrom et al., 2020). We
hope that future work may narrow down the specific component in PPO that allows it to perform well on cliffs.

We also do not use only optimal hyperparameters in our experiments comparing A2C and PPO on cliff vs. non-cliff
checkpoints. This allows us to verify the existence of cliffs, but does not provide clear indication as to how impactful they
are on agents with well-tuned hyperparameters. Naturally, optimized hyperparameters should not allow for the sharp drops
in reward that we expect to see on the cliff checkpoints. We hope that future work will explore how often cliffs affect
training in practice.



