

1 Current Opinion in Virology

2

3 Whitefly-transmitted viruses threatening cassava production in Africa

4

5 A.L. Jacobson¹, S. Duffy², and P. Sseruwagi³

6

7 ¹Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall,
8 Auburn, AL 36849, USA

9 ²Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College
10 Farm Rd, New Brunswick, NJ 08901, USA

11 ³Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania

12

13 Corresponding author during and after publication: Jacobson, Alana L. (alj0043@auburn.edu)

14

15

16

17

18

19

20

21

22

23

24 **Abstract**

25 Emerging plant viruses are one of the greatest problems facing crop production worldwide, and
26 have severe consequences in the developing world where subsistence farming is a major source
27 of food production, and knowledge and resources for management are limited. In Africa,
28 evolution of two viral disease complexes, cassava mosaic begomoviruses (CMBs)
29 (*Geminiviridae*) and cassava brown streak viruses (CBSVs) (*Potyviridae*), have resulted in
30 severe pandemics that continue to spread and threaten cassava production. Identification of
31 genetically diverse and rapidly evolving CMBs and CBSVs, extensive genetic variation in the
32 vector, *Bemisia tabaci* (Hemiptera: Aleyrodidae), and numerous secondary endosymbiont
33 profiles that influence vector phenotypes suggest that complex local and regional vector-virus-
34 plant-environment interactions may be driving the evolution and epidemiology of these viruses.

35 **Highlights**

36 • Cassava mosaic disease is caused by frequently recombining ssDNA virus species.
37 • Cassava brown streak disease is an emergent concern, caused by two ssRNA viruses.
38 • Complex genetic structure and endosymbionts may impact vector status of *B. tabaci*.

39 **Introduction**

40 Two whitefly (Hemiptera: Aleyrodidae) transmitted viral disease complexes, cassava mosaic
41 disease (CMD) and cassava brown streak disease (CBSD), are the primary threats to cassava
42 production across Africa [1]. Cassava, *Manihot esculenta* (Crantz), also referred to as yucca,
43 tapioca and manioc, originated in the New World [2], and is now grown across Central and
44 South America, Asia and Africa as an industrial source of starch and for human and animal
45 consumption [3]. It is an easy crop to grow with exceptional drought resistance [4], which has
46 made it a staple food for close to 1 billion people in the tropics [5]. This is especially true in
47 Africa, where cassava is currently the highest production crop and the most resistant crop to
48 climate change [6]. While cassava production is sometimes affected by viral diseases worldwide
49 [5], in sub-Saharan Africa, these viruses are a persistent and emergent threat to food security,
50 causing losses over US\$1 billion annually [5,7].

51 These viruses are believed to have originated in Africa, and have been spread across the
52 continent by human-mediated movement of vegetatively propagated cassava cuttings [8], and

53 whitefly vectors [9–12]. Although cassava viruses have been reported in Africa for more than 70
54 years, severe epidemics of both CMD and CBSD causing viral complexes have emerged in sub-
55 Saharan Africa during the past 30 years that have caused famine, reduced yields, and in some
56 areas severely restricted cassava production. Research findings during the first 1-2 decades after
57 the emergence of the severe CMD and CBSD addressing disease incidence, mechanisms of
58 spread, virus identification, vectors, management strategies, and proposed theories for the
59 widespread occurrence of the causative virus and abundance of the vectors have been reviewed
60 in [5,13–20,21*]. Molecular biology tools and approaches developed over the past decade such
61 as Next Generation Sequencing (NGS), NextRAD sequencing, and bioinformatics tools have
62 enabled identification and characterization of the genetic diversity of vector [22–24,25*,26*27]
63 and viral [28,29,30*,31] populations which have long been recognized as important factors
64 underlying reported variation in disease severity, vector competence [32] and coevolution of
65 vectors and viruses [33]. The objective of this review is to provide a current synthesis of
66 literature on the diversity of whiteflies, cassava viruses, and their interactions across the African
67 continent, and including Madagascar, Réunion Island, and Seychelles.

68 **Whitefly-Transmitted Viral Disease Complexes of Cassava**

69 Single-stranded DNA viruses that cause CMD, typified by chlorotic yellow mosaics, deformed
70 leaves and stunted growth [34] have been recognized as a threat to cassava production for a
71 longer period of time than viruses causing CBSD – since the 1894 [35]. Molecular typing and
72 sequencing have revealed CMD is caused by seven related species of cassava mosaic
73 begomoviruses (CMVs) (family *Geminiviridae*) occurring in single or mixed infections: *African*
74 *cassava mosaic virus* (ACMV), *Cassava mosaic Madagascar virus* (CMMGV), *East African*
75 *cassava mosaic virus* (EACMV); *East African cassava mosaic Kenya virus* (EACMKV), *East*
76 *African cassava mosaic Malawi virus* (EACMMV), *East African cassava mosaic Zanzibar virus*
77 (EACMZV), and *South African cassava mosaic virus* (SACMV) [36] (Figure 1). The CMVs can
78 co-infect a cassava plant, enhancing infection severity [37] and leading to recombinants with
79 altered virulence [38]. While CMD had been a problem for farmers for decades, the emergence
80 of *East African cassava mosaic virus, Uganda variant* (EACMV-UG2), a recombinant of
81 EACMV in which approximately 400 nucleotides of the Coat Protein (CP) gene of ACMV
82 replaced a similar region of EACMV [39–42], in 1997 led to a resurgence of severe CMD that

83 devastated cassava crops causing rampant famine in Uganda [43]. Shortly thereafter, roughly
84 half of all cassava harvested in East Africa had been affected by CMD [44], and by 2005 the
85 CMD pandemic was estimated to cover roughly 3,000,000 square km over nine countries.

86 The more recently emerged CBSD is not yet as widespread as CMD, but has become the more
87 pressing problem in African cassava production. CBSD exhibits fewer symptoms above ground
88 (fainter yellowing, the titular streaks on the stems [45]), and mainly rots the tubers, leading to
89 damage that fetches much lower prices (90% loss [46]). While it was first described in 1935 [47],
90 it was an isolated disease restricted to the low altitude areas of East Africa [48]. Only in the last
91 twenty years has it spread to higher altitudes and become a problem for a much larger area of
92 cassava production [49,50] (Figure 1). CBSD is caused by two related RNA viruses (*Potyvirus*:
93 *Ipomovirus*): *Cassava brown streak virus* (CBSV) and *Ugandan cassava brown streak virus*
94 (UCBSV). The two viruses that cause CBSD can be referred to as CBSVs (cassava brown streak
95 viruses).

96 Both the ssDNA CMBs and RNA CBSVs show high diversity in Africa, as expected for viruses
97 with these genomes. Surveys of CMBs routinely reveal that variants are produced by both
98 recombination and mutation [51*]. While intraspecific and interspecific recombination
99 frequently occur, and major changes in virulence have been associated with recombination
100 events (e.g., the pandemic associated EACMV-UG2), the majority of the diversity in sequenced
101 ACMV and EACMV is due to mutation [52]. Like other ssDNA viruses, EACMV evolves as
102 quickly as RNA viruses, meaning that CMBs can swiftly evolve to cope with environmental
103 changes, novel plant hosts and potentially to overcome host resistance [51*,53]. The RNA
104 CBSVs have been less intensively studied, but already show strong evidence of recombination
105 [28] and high diversity due to mutations [54]. The overall divergence among sequenced genomes
106 of CBSVs has led to high estimates of within species nucleotide diversity [54], and has prompted
107 a reexamination of the number of species capable of causing CBSD [55]. CBSV evolves as fast
108 as other potyviruses [29] strongly suggesting that CBSVs can also evolve quickly to overcome
109 novel challenges like RNAi-mediated host resistance [56]. The evolvability of coat proteins of
110 both CMBs [57–61] and CBSVs [30] may play a role in their use of vectors, and in efficient
111 transmission, but data on co-adaptation of viruses to their vectors is limited [33,62].

112 **Whitefly Vectors of Cassava Viruses**

113 Although the incidence of cassava viruses in fields is more commonly attributed to the
114 propagation of virus-infected cuttings, vector transmission can cause significant infection in crop
115 fields [11,63] and spreads viruses across their population range and to non-crop reservoir hosts.
116 CMBs are transmitted by *Bemisia tabaci* (Gennadius) [9,32,47,64,65*] in a circulative and non-
117 propagative manner whereas CBSVs are semipersistently transmitted by three whitefly species:
118 *B. tabaci* [10,66], *Trialeurodes vaporariorum* (Westwood), and *Aleurodicus dispersus* (Russell)
119 [10,12,66]. Differences in the number of vector species, modes of transmission, and vector
120 competence of these viruses differentially affect incidence, spread, and distribution both locally
121 and across the African continent. Faster acquisition and transmission (<1h) but lower persistence
122 of CBSV in the vector (24-48h) reduces the incidence and distance of virus spread from infected
123 hosts [10,11,66,67]. CMDs require up to 8 hours to circulate in the vector before they can be
124 transmitted, but whiteflies remain viruliferous for at least 9 days which may increase incidence
125 and distance of virus spread [9,47,64,66,68]. This review will focus on the primary vector and
126 most abundant cassava-associated whitefly species in Africa, *B. tabaci*, due to the paucity of
127 information on *T. vaporariorum* [69,70] and *A. dispersus* [70–72].

128 A growing body of literature is documenting extensive genetic diversity of *B. tabaci* and its
129 symbiome in Africa. *Bemisia tabaci* is a morphologically indistinguishable species complex
130 hypothesized to comprise over 40 genetic groups that are currently distinguished using partial
131 mtCOI gene sequences [73]. Nomenclature describing these groups is inconsistent in the
132 literature because the species delimitations within this group are undergoing constant revision
133 based on new knowledge [17,23]. In this review, this species complex will be referred to as *B.*
134 *tabaci*, using nomenclature based on mtCOI phylogenies [73]. Working names on
135 whiteflybase.org [24,74] are used because they were most easy to assimilate due to the high
136 number of reports using this, or similar nomenclature, although the status of these groups as
137 reproductively isolated species will change based on new information about evolutionary
138 relationships, species ranges, gene flow, reproductive compatibility (see below), and limitations
139 of mtCOI markers [75–77]. Published sequences of putative *B. tabaci*, not included on
140 whiteflybase.org because they did not meet the exact criteria, are included here along with newly
141 proposed genetic groups not yet present on whiteflybase.org [26*] in order to present a
142 comprehensive representation of the diversity and distribution of African *B. tabaci* reported in
143 the literature. The greatest genetic diversity among *B. tabaci* worldwide has been observed

144 within and among the sub-Saharan Africa clades, and evidence for African origin of *B. tabaci* is
145 supported by phylogenies from multiple studies [22,26*,78–83]. Nineteen putative endemic and
146 introduced species have been reported in Africa [21*,25*,26*,27,63,65*,77–80,84–101] (Figure
147 2), and include Uganda (Uganda clade) [26*,73], SubSahAf1-6, 8 (sub-Saharan Africa clade)
148 [26*,73], SubSahAf7 (Australia-Asia clade) [26*], SubSahAf10-11, NewWorld1, (New World
149 clade) [26*], SubSahAf12-13, Mediterranean, MidEastAm1, IndianOcean (Africa-Middle East-
150 Asia Minor clade) [26*,73], and Italy1 (Italy clade) [26*,73]. Genetically distinct sub-
151 groups/clades have also been consistently identified within the SubSahAf1 clade, and new
152 genetic diversity continues to be discovered as more robust genetic approaches are developed
153 [24,25*,26*,75,77,102,103].

154 Research on genetic diversity, genomics, population genetic structure, and gene-flow are
155 providing new information about variation in epidemiologically important biological and
156 ecological characteristics such as host utilization that may play a role in population growth,
157 gene-flow, and evolutionary dynamics of cassava viruses. Only nine *B. tabaci*, including
158 SubSahAf1, SubSahAf2, SubSahAf3, SubSahAf4, SubSahAf9, SubSahAf10, SubSahAf11,
159 Mediterranean, and IndianOcean, have been collected from cassava, but host preference and diet
160 breadth of cassava associated whiteflies is variable, with some collected only from cassava,
161 while others can colonize multiple crop hosts successfully [104–109]. Reciprocal backcross
162 experiments and population genetic experiments have provided evidence for the occurrence of
163 gene-flow and introgression between some cassava associated *B. tabaci* and their sub-groups at
164 local, regional, and continental scales [17,21*,25*,90,94–96,110]. The magnitude and direction
165 of gene flow among putative species and their sub-groups, however, is variable. Long-distance
166 gene flow and admixture is possible through human-mediated dispersal, trade [25*,95] and
167 whitefly dispersal, however, geographic structuring among cassava-associated *B. tabaci* species
168 and their subgroups is generally observed within countries and across Africa [21*,96–98].
169 Results of studies using genome-wide markers suggest that metapopulation structure of *B. tabaci*
170 is a complex network through which introgression may occur directly between reproductively
171 compatible groups, or indirectly through intermediates in the network [25*,95]. Genomic and
172 transcriptomic approaches are also identifying economically important genes and gene families
173 that may be involved with vector-virus interactions [95,111*], and new methods to investigate
174 vector-endosymbiome-virus interactions [27]. Due to the genetic complexity of species- and

175 population-level boundaries, molecular ecology and genomics approaches will continue to play a
176 major role in advancing our understanding about the geographic scales and temporal stability of
177 genetic structuring, the occurrence of gene-flow, and the implications of genetic structure on
178 economically important traits related to epidemiology and management of whitefly-transmitted
179 viruses [25*,95].

180 Endosymbionts are an important characteristic of *B. tabaci* that are likely influencing
181 epidemiologically important life history and transmission phenotypes, and should be included in
182 *B. tabaci* characterizations to determine their importance. Several studies have documented
183 genetic diversity of whitefly endosymbionts, their distributions among *B. tabaci* species and
184 populations, and the impact of symbiosis on whitefly fitness, host plant, and vector phenotypes
185 [27,65*,84–90]. Specialized cellular compartments in *B. tabaci* harbor the primary/obligate
186 endosymbiont *Candidatus Portiera aleyrodidarum* that is required to synthesize essential amino
187 acids required for growth and development [112–114]. Secondary/facultative endosymbionts are
188 not required for survival, but may affect fitness. Endosymbionts are primarily maternally
189 transmitted [85], and although absent from some populations, secondary endosymbionts
190 *Arsenophonus*, *Cardinium*, *Hamiltonella*, *Rickettsia*, and *Wolbachia* have been found in 30
191 combinations of single, double, triple and quadruple infections in African *B. tabaci* [27,65*,84–
192 90] (Table 1). The underlying causes for the large number of endosymbiont profiles for *B. tabaci*
193 is not understood, but introduction of new *B. tabaci* species with overlapping hosts and/or gene-
194 flow may result in the acquisition of new endosymbionts. Studies have shown associations
195 between specific combinations of endosymbiotic bacteria, or strains of a bacteria [84,87], and *B.*
196 *tabaci* species, sub-groups, and populations [84,85,87,88], but none are clearly associated with
197 host plant utilization. The few laboratory studies examining endosymbiont effects on *B. tabaci*
198 showed that endosymbionts may negatively impact vector competence and fitness of cassava
199 associated *B. tabaci*. Decreased acquisition and retention of EACMV-UG2 by SubSahAfl-
200 subgroup3 was generally observed in a laboratory colony infected with *Arsenophonus* and
201 *Rickettsia* compared to a colony without secondary endosymbionts, and secondary endosymbiont
202 infections were absent from a high number, but not all, field collected SubSahAfl-subgroup1 *B.*
203 *tabaci*, which is the primary haplotype implicated in spread of CMBs in East Africa [65*,89].
204 Reductions in adult emergence, and increasing development time from first instar to adult were
205 also observed in SubSahAfl-subgroup3 infected with *Arsenophonus* and *Rickettsia* [65*].

206 Future research is needed to better understand the incidences, spread and influence of
207 endosymbionts in African *B. tabaci*.

208 **Conclusions**

209 Accurate identification of distinct species and populations of cassava viruses and their vectors is
210 an essential first step towards understanding vector-virus-plant-environment interactions
211 underlying the epidemiology of cassava viruses in Africa, but knowledge of the similarities and
212 differences of life history traits among CMBs, CBSVs, and *B. tabaci* is still lacking. Many field
213 and laboratory studies were conducted before molecular identification of study populations was
214 available, limiting conclusions that can be drawn about incidence, spread, and severity of viruses
215 and the role of specific vectors, especially when genetic variation in local populations influence
216 vector-virus-crop interactions among research locations. Studies that provide genetic
217 characterizations of vectors and viruses are revealing genetic variation that has the potential to
218 explain regional and phenotypic variation in epidemiological important phenotypes such as host
219 range, vector competence of whiteflies, transmission efficiency of cassava viruses, disease
220 severity, and the timing and magnitude of whitefly spread due to host utilization patterns,
221 population size, and dispersal. Fundamental studies are also needed to examine vector-virus-
222 plant interactions described for other related viruses affecting different cropping systems not
223 examined in this review, including virus mediated changes in vector-plant interactions,
224 localization and circulation in the vector, the role of endosymbionts in virus circulation, variation
225 in transmission efficiency, and mechanisms underlying these interactions reviewed in [20,115-
226 121,122*,123-125]. Ultimately, understanding the emergence, spread and epidemiological
227 potential of whitefly-transmitted cassava viruses will require a whole-systems approach that
228 examines cassava agroecosystems with the recognition that interbreeding whitefly and
229 recombining viral metapopulations extend across landscapes and beyond a single crop.

230 **Acknowledgments**

231 The authors would like to thank Dr. Stephanie Rogers for her assistance with making the figures.
232 This work was supported by the USA National Science Foundation grant number 1545553.

233 **References**

234 1. Patil BL, Legg JP, Kanju E, Fauquet CM: **Cassava brown streak disease: a threat to**

235 food security in Africa. *J Gen Virol* 2015, **96**:956–968.

236 2. Olsen KM: SNPs, SSRs and inferences on cassava's origin. *Plant Mol Biol* 2004,
237 **56**:517–526.

238 3. Ukwuru MU, Egbonu SE: Recent development in cassava-based products research.
239 *Acad J Food Res* 2013, **1**:001-013.

240 4. Okogbenin E, Egesi CN, Olasanmi B, Ogundapo O, Kahya S, Hurtado P, Marin J, Akinbo
241 O, Mba C, Gomez H: **Molecular Marker Analysis and Validation of Resistance to**
242 **Cassava Mosaic Disease in Elite Cassava Genotypes in Nigeria.** *Crop Sci* 2012,
243 **52**:2576.

244 5. Legg JP, Kumar LP, Makeshkumar T, Tripathi L, Ferguson M, Kanju E, Ntawuruhunga P,
245 Cuellar W: *Cassava virus diseases: Biology, epidemiology, and management.* Elsevier
246 Inc.; 2015.

247 6. Jarvis A, Ramirez-Villegas J, Herrera Campo BV, Navarro-Racines C: **Is Cassava the**
248 **Answer to African Climate Change Adaptation?** *Trop Plant Biol* 2012, **5**:9–29.

249 7. Manyong VM, Maeda C, Kanju E, Legg JP: **Economic damages of cassava brown**
250 **streak disease in sub-Saharan Africa: a framework | CCAFS: CGIAR research**
251 **program on Climate Change, Agriculture and Food Security.** In *Proceedings of the*
252 *11th triennial Symposium of the ISTRC-AB held at the Memling Hotel: Tropical roots and*
253 *tuber crops and the challenges of globalization and climate changes.* 2010:78–82.

254 8. Thresh JM, Fishpool LDC, Otim-Nape GW, Fargette D: **African cassava mosaic virus**
255 **disease: an under-estimated and unsolved problem.** *Trop Sci* 1994, **34**:3–14.

256 9. Dubern J: **Transmission of African cassava mosaic gemnivirus by the whitefly**
257 **(*Bemisia tabaci*).** *Trop Sci* 1994, **34**:82–91.

258 10. Maruthi MN, Hillocks RJ, Mtunda K, Raya MD, Muhanna M, Kiozia H, Rekha AR,
259 Colvin J, Thresh JM: **Transmission of Cassava brown streak virus by *Bemisia tabaci***
260 **(*Gennadius*).** *J Phytopathol* 2005, **153**:307–312.

261 11. Maruthi MN, Jeremiah SC, Mohammed IU, Legg JP: **The role of the whitefly, *Bemisia***

262 ***tabaci* (Gennadius), and farmer practices in the spread of cassava brown streak**
263 **ipomoviruses.** *J Phytopathol* 2017, **165**:707–717.

264 12. Mware B, Narla R, Amata R, Olubayo F, Songa J, Kyamanyua S, Ateka EM: **Efficiency**
265 **of cassava brown streak virus transmission by two whitefly species in coastal Kenya.**
266 *J Gen Mol Virol* 2009, **1**:040–045.

267 13. Legg JP, Shirima R, Tajebe LS, Guastella D, Boniface S, Jeremiah S, Nsami E, Chikoti P,
268 Rapisarda C: **Biology and management of *Bemisia* whitefly vectors of cassava virus**
269 **pandemics in Africa.** *Pest Manag Sci* 2014, **70**:1446–1453.

270 14. Macfadyen S, Paull C, Boykin LM, De Barro P, Maruthi MN, Otim M, Kalyebi A, Vassão
271 DG, Sseruwagi P, Tay WT: **Cassava whitefly, *Bemisia tabaci* (Gennadius) (Hemiptera:**
272 **Aleyrodidae) in East African farming landscapes: a review of the factors**
273 **determining abundance.** 2018, doi:10.1017/S0007485318000032.

274 15. Legg JP, Jeremiah SC, Obiero HM, Maruthi MN, Ndyetabula I, Okao-Okuja G,
275 Bouwmeester H, Bigirimana S, Tata-Hangy W, Gashaka G: **Comparing the regional**
276 **epidemiology of the cassava mosaic and cassava brown streak virus pandemics in**
277 **Africa.** *Virus Res* 2011, **159**:161–170.

278 16. Legg JP: **Epidemiology of a Whitefly-Transmitted Cassava Mosaic Geminivirus**
279 **Pandemic in Africa.** In *Bemisia: Bionomics and Management of a Global Pest.* . Springer
280 Netherlands; 2009:233–257.

281 17. Brown JK: **Phylogenetic Biology of the *Bemisia tabaci* Sibling Species Group.** In
282 *Bemisia: Bionomics and Management of a Global Pest.* Edited by Stansly PA, Naranjo
283 SE. Springer Netherlands; 2010:31–67.

284 18. Thompson WMO: **Association of *Bemisia tabaci* with the Severe Cassava Mosaic**
285 **Disease in Uganda.** In *The Whitefly, *Bemisia tabaci* (Homoptera: Aleyrodidae)*
286 *Interaction with Geminivirus-Infected Host Plants.* . Springer Netherlands; 2011:89–105.

287 19. Thompson WMO: **Interaction of *Bemisia tabaci* with East African cassava mosaic**
288 **virus-Infected Plants.** In *The Whitefly, *Bemisia tabaci* (Homoptera: Aleyrodidae)*
289 *Interaction with Geminivirus-Infected Host Plants.* . Springer Netherlands; 2011:107–119.

290 20. Colvin J, Omongo CA, Govindappa MR, Stevenson PC, Maruthi MN, Gibson G, Seal SE,
291 Muniyappa V: **Host-Plant Viral Infection Effects on Arthropod-Vector Population**
292 **Growth, Development and Behaviour: Management and Epidemiological**
293 **Implications.** *Adv Virus Res* 2006, **67**:419–452.

294 21. Legg JP, Sseruwagi P, Boniface S, Okao-Okuja G, Shirima R, Bigirimana S, Gashaka G,
295 Herrmann HW, Jeremiah S, Obiero H: **Spatio-temporal patterns of genetic change**
296 **amongst populations of cassava *Bemisia tabaci* whiteflies driving virus pandemics in**
297 **East and Central Africa.** *Virus Res* 2014, **186**:61–75.

298 *Documented spatio-temporal changes in *B. tabaci* haplotypes over 14 years during the
299 pandemic, and provided evidence that the emerging mtCOI haplotype associated with the
300 pandemic may be a hybrid between two distinct/divergent haplotypes.

301 22. Boykin LM, Shatters RG, Rosell RC, McKenzie CL, Bagnall RA, De Barro P, Frohlich
302 DR: **Global relationships of *Bemisia tabaci* (Hemiptera: Aleyrodidae) revealed using**
303 **Bayesian analysis of mitochondrial COI DNA sequences.** *Mol Phylogenet Evol* 2007,
304 **44**:1306–1319.

305 23. Boykin LM: ***Bemisia tabaci* nomenclature: lessons learned.** *Pest Manag Sci* 2014,
306 **70**:1454–1459.

307 24. Boykin LM, Kinene T, Wainaina JM, Savill A, Seal S, Mugerwa H, Macfadyen S, Tay
308 WT, De Barro P, Kubatko L: **Review and guide to a future naming system of African**
309 ***Bemisia tabaci* species.** *Syst Entomol* 2018, **43**:427–433.

310 25. Wosula EN, Chen W, Fei Z, Legg JP: **Unravelling the Genetic Diversity among**
311 **Cassava *Bemisia tabaci* Whiteflies Using NextRAD Sequencing.** *Genome Biol Evol*
312 2017, **9**:2958–2973.

313 **Examination of population structuring and gene-flow among cassava associated *B. tabaci*
314 collected across Africa using SNPs markers.

315 26. Mugerwa H, Seal S, Wang H-L, Patel M V, Kabaalu R, Omongo CA, Alicai T, Tairo F,
316 Ndunguru J, Sseruwagi P: **African ancestry of New World, *Bemisia tabaci*-whitefly**
317 **species.** *Sci Rep* 2018, **8**:1–11.

318 *Most recent phylogenetic reconstruction of *Bemisia tabaci* that includes new genetic groups
319 collected from Uganda, and supports African ancestry for this species complex.

320 27. Sseruwagi P, Wainaina J, Ndunguru J, Tumuhimbise R, Tairo F, Guo J-Y, Vrielink A,
321 Blythe A, Kinene T, De Marchi B: **The first transcriptomes from field-collected**
322 **individual whiteflies (*Bemisia tabaci*, Hemiptera: Aleyrodidae).** *Gates Open Res* 2017,
323 1:16.

324 28. Ndunguru J, Sseruwagi P, Tairo F, Stomeo F, Maina S, Djinkeng A, Kehoe M, Boykin
325 LM, Melcher U: **Analyses of twelve new whole genome sequences of cassava brown**
326 **streak viruses and ugandan cassava brown streak viruses from East Africa:**
327 **Diversity, supercomputing and evidence for further speciation.** *PLoS One* 2015, **10**.

328 29. Alicai T, Ndunguru J, Sseruwagi P, Tairo F, Okao-Okuja G, Nanvubya R, Kiiza L,
329 Kubatko L, Kehoe MA, Boykin LM: **Cassava brown streak virus has a rapidly**
330 **evolving genome: implications for virus speciation, variability, diagnosis and host**
331 **resistance.** *Sci Rep* 2016, **6**: 36164.

332 30. Ateka E, Alicai T, Ndunguru J, Tairo F, Sseruwagi P, Kiarie S, Makori T, Kehoe MA,
333 Boykin LM: **Unusual occurrence of a DAG motif in the *Ipomovirus* Cassava brown**
334 **streak virus and implications for its vector transmission.** *PLoS One* 2017,
335 12:e0187883.

336 *Identification of a motif associated with aphid transmission of Ipomoviruses in the coat protein
337 of cassava brown streak virus.

338 31. Brown JK, Zerbini FM, Navas-Castillo J, Moriones E, Ramos-Sobrinho R, Silva JCF,
339 Fiallo-Olivé E, Briddon RW, Hernández-Zepeda C, Idris A: **Revision of *Begomovirus***
340 **taxonomy based on pairwise sequence comparisons.** *Arch Virol* 2015, **160**:1593–1619.

341 32. Bedford ID, Markham PG, Brown JK, Rosell RC: **Geminivirus transmission and**
342 **biological characterisation of whitefly (*Bemisia tabaci*) types from different**
343 **geographic regions.** *Ann Appl Biol* 1994, **125**:311–325.

344 33. Maruthi MN, Colvin J, Seal S, Gibson G, Cooper J: **Co-adaptation between cassava**
345 **mosaic geminiviruses and their local vector populations.** *Virus Res* 2002, **86**:71–85.

346 34. Legg JP, Fauquet CM: **Cassava mosaic geminiviruses in Africa.** *Plant Mol Biol* 2004,
347 **56**:585–599.

348 35. Warburg O: *Die kulturpflanzen usambaras.* Mitt. Deutsch. Schutz; 1894.

349 36. Rey MEC, Ndunguru J, Berrie LC, Paximadis M, Berry S, Cossa N, Nuaila VN, Mabasa
350 KG, Abraham N, Rybicki EP: **Diversity of dicotyledenous-infecting geminiviruses and**
351 **their associated DNA molecules in Southern Africa, including the South-west Indian**
352 **Ocean Islands.** *Viruses* 2012, **4**:1753–1791.

353 37. Fondong VN, Pita JS, Rey MEC, Kochko A, Beachy RN and, Fauquet CM: **Evidence of**
354 **synergism between African cassava mosaic virus and new double-recombination**
355 **geminivirus infecting cassava in Cameroon.** *J Gen Virol* 2000, **81**:287–297.

356 38. Bull SE, Briddon RW, Sserubombwe WS, Ngugi K, Markham PG, Stanley J: **Infectivity,**
357 **pseudorecombination and mutagenesis of Kenyan cassava mosaic begomoviruses.** *J*
358 *Gen Virol* 2007, **88**:1624–1633.

359 39. Harrison BD, Zhou X, Otim-Nape GW, Liu Y, Robinson DJ: **Role of a novel type of**
360 **double infection in the geminivirus-induced epidemic of severe cassava mosaic in**
361 **Uganda.** *Ann Appl Biol* 1997, **131**:437–448.

362 40. Zhou X, Liu Y, Calvert L, Munoz C, Otim-Nape GW, Robinson DJ, Harrison BD:
363 **Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease**
364 **in Uganda has arisen by interspecific recombination.** *J Gen Virol* 1997, **78**:2101–2111.

365 41. Pita JS, Fondong VN, Sangare A, Otim-Nape GW, Ogwale S, Fauquet CM:
366 **Recombination, pseudorecombination and synergism of geminiviruses are**
367 **determinant keys to the epidemic of severe cassava mosaic disease in Uganda.** *J Gen*
368 *Virol* 2001, **82**:655–665.

369 42. Deng D, Otim-Nape WG, Sangare A, Ogwale S, Beachy RN, Fauquet CM: **Presence of a**
370 **new virus closely related to East African cassava mosaic gemnivirus, associated with**
371 **cassava mosaic outbreak in Uganda.** *African J Root Tuber Crop* 1995, **2**:23–28.

372 43. Otim-Nape GW, Alicai T, Thresh JM: **Changes in the incidence and severity of**
373 **Cassava mosaic virus disease, varietal diversity and cassava production in Uganda.**

374 *Ann Appl Biol* 2001, **138**:313–327.

375 44. Legg JP, Thresh JM: **Cassava virus diseases in Africa**. In *Proceedings of the First*
376 *International Conference on Plant Virology in Sub-Saharan Africa*. . 2003:517–552.

377 45. Mohammed IU, Abarshi MM, Muli B, Hillocks RJ, Maruthi MN: **The Symptom and**
378 **Genetic Diversity of Cassava Brown Streak Viruses Infecting Cassava in East Africa**.
379 *Adv Virol* 2012, **2012**:1–10.

380 46. McSween S, Walker T, Salequa V, Pitoro R: *Economic Impact on Food Security of*
381 *Varietal Tolerance to Cassava Brown Streak Disease in Coastal Mozambique*. 2006.

382 47. Storey HH, Nichols RFW: **Studies of the mosaic disease of cassava**. *Ann Appl Biol* 1938,
383 **25**:790–806.

384 48. Nichols RFW: **The Brown Streak Disease of Cassava**. *East African Agric J* 1950,
385 **15**:154–160.

386 49. Alicai T, Omongo CA, Maruthi MN, Hillocks RJ, Baguma Y, Kawuki R, Bua A, Otim-
387 Nape GW, Colvin J: **Re-emergence of Cassava Brown Streak Disease in Uganda**. *Plant*
388 *Dis* 2007, **91**:24–29.

389 50. Mbewe W, Kumar PL, Changadeya W, Ntawuruhunga P, Legg J: **Diversity, Distribution**
390 **and Effects on Cassava Cultivars of Cassava Brown Streak Viruses in Malawi**. *J*
391 *Phytopathol* 2015, **163**:433–443.

392 51. De Bruyn A, Harimalala M, Zinga I, Mabvakure BM, Hoareau M, Ravigné V, Walters M,
393 Reynaud B, Varsani A, Harkins GW: **Divergent evolutionary and epidemiological**
394 **dynamics of cassava mosaic geminiviruses in Madagascar**. *BMC Evol Biol* 2016,
395 **16**:182.

396 *Focused on one, isolated African country, and reported the full sequencing of nearly 400 CMB
397 genomic segments, and a thorough analysis of the evolutionary relationships of CMBs in
398 Madagascar and throughout Africa and nearby islands.

399 52. Lima ATM, Silva JCF, Silva N, Castillo-Urquiza GP, Silva FF, Seah YM, Mizubuti ESG,
400 Duffy S, Murilo Zerbini F: **The diversification of begomovirus populations is**

401 predominantly driven by mutational dynamics. *Virus Evol* 2017, **3**: vex005:1–5.

402 53. Duffy S, Holmes EC: **Validation of high rates of nucleotide substitution in**
403 **geminiviruses: Phylogenetic evidence from East African cassava mosaic viruses.** *J*
404 *Gen Virol* 2009, **90**:1539–1547.

405 54. Mbewe W, Tairo F, Sseruwagi P, Ndunguru J, Duffy S, Mukasa S, Benesi I, Sheat S,
406 Koerbler M, Winter S: **Variability in P1 gene redefines phylogenetic relationships**
407 **among cassava brown streak viruses.** *Virol J* 2017, **14**:1–7.

408 55. Ndunguru J, Sseruwagi P, Tairo F, Stomeo F, Maina S, Djinkeng A, Kehoe M, Boykin
409 LM, Melcher U: **Analyses of twelve new whole genome sequences of cassava brown**
410 **streak viruses and ugandan cassava brown streak viruses from East Africa:**
411 **Diversity, supercomputing and evidence for further speciation.** *PLoS One* 2015,
412 **10**:e0141939.

413 56. Lafforgue G, Martínez F, Sardanyés J, de la Iglesia F, Niu Q-W, Lin S-S, Solé R V, Chua
414 N-H, Daròs J-A, Elena SF: **Tempo and mode of plant RNA virus escape from RNA**
415 **interference-mediated resistance.** *J Virol* 2011, **85**:9686–95.

416 57. Briddon RW, Pinner MS, Stanley J, Markham PG: **Geminivirus coat protein gene**
417 **replacement alters insect specificity.** *Virology* 1990, **177**:85–94.

418 58. Höhnle M, Höfer P, Bedford ID, Briddon RW, Markham PG, Frischmuth T: **Exchange of**
419 **three amino acids in the coat protein results in efficient whitefly transmission of a**
420 **nontransmissible *Abutilon* mosaic virus isolate.** *Virology* 2001, **290**:164–171.

421 59. Noris E, Vaira AM, Caciagli P, Masenga V, Gronenborn B, Accotto GP: **Amino acids in**
422 **the capsid protein of tomato yellow leaf curl virus that are crucial for systemic**
423 **infection, particle formation, and insect transmission.** *J Virol* 1998, **72**:10050–7.

424 60. Wartig L, Kheyr-Pour A, Noris E, De Kouchkovsky F, Jouanneau F, Gronenborn B, Jupin
425 I: **Genetic Analysis of the Monopartite Tomato Yellow Leaf Curl Geminivirus: Roles**
426 **of V1, V2, and C2 ORFs in Viral Pathogenesis.** *Virology* 1997, **228**:132–140.

427 61. Wu Z: **Complete Nucleotide Sequence of a Nonvector-Transmissible Strain of**
428 ***Abutilon* Mosaic Geminivirus in Hawaii.** *Phytopathology* 1996, **86**:608.

429 62. Liu S, Bedford ID, Briddon RW, Markham PG: **Efficient whitefly transmission of**
430 **African cassava mosaic geminivirus requires sequences from both genomic**
431 **components.** *J Gen Virol* 1997, **78**:1791–1794.

432 63. Szyniszewska AM, Busungu C, Boni SB, Shirima R, Bouwmeester H, Legg JP: **Spatial**
433 **Analysis of Temporal Changes in the Pandemic of Severe Cassava Mosaic Disease in**
434 **Northwestern Tanzania.** *Phytopathology* 2017, **107**:1229–1242.

435 64. Chant SR: **Studies on the Transmission of Cassava Mosaic Virus By *Bemisia* Spp.**
436 **(Aleyrodidae).** *Ann Appl Biol* 1958, **46**:210–215.

437 65. Ghosh S, Bouvaine S, Richardson SCW, Ghanim M, Maruthi MN: **Fitness costs**
438 **associated with infections of secondary endosymbionts in the cassava whitefly species**
439 ***Bemisia tabaci*.** *J Pest Sci* (2004) 2018, **91**:17–28.

440 *First report of the effects of endosymbiont infection of SubSahAf *Bemisia tabaci* on
441 transmission of EACMV-UG and whitefly fitness.

442 66. Njoroge MK, Mutisya D, Milano D, Kilalo D: **Whitefly species efficiency in**
443 **transmitting cassava mosaic and brown streak diseases.** *Cogent Biol* 2017, **3**:
444 **1311499**:1–8.

445 67. Jeremiah SC: **The role of whitefly (*Bemisia tabaci*) in the spread and transmission of**
446 **cassava brown streak disease.** *PhD Thesis, Univ Dar es Salaam* 2014,

447 68. Bedford J, Innes C, Thomas H: **Geminivirus-transmission and biological**
448 **characterisation of *Bemisia tabaci* (Gennadius) biotypes from different geographic**
449 **regions.** *Ann Appl Biol* 1994, **125**:311–325.

450 69. Njoroge MK, Kilalo DC, Miano DW, Mutisya Kalro-Katumani DL, Correspondence K,
451 Kilalo D, Miano D, Mutisya D: **Whiteflies species distribution and abundance on**
452 **cassava crop in different agro-ecological zones of Kenya.** *J Entomol Zool Stud JEZS*
453 2016, **43**:258–262.

454 70. Guastella D, Lulah H, Tajebe LS, Cavalieri V, Evans GA, Pedata PA, Rapisarda C, Legg
455 JP: **Survey on whiteflies and their parasitoids in cassava mosaic pandemic areas of**
456 **Tanzania using morphological and molecular techniques.** *Pest Manag Sci* 2015,

457 71:383–394.

458 71. Neuenschwander P: **The spiralling whitefly, *Aleurodicus dispersus*, a recent invader**
459 **and new cassava pest.** *African Crop Sci J* 1994, **2**:419–421.

460 72. Mware B, Olubayo F, Narla R, Songa J, Amata R, Kyamanywa S, Ateka EM: **First**
461 **Record of Spiraling Whitefly in Coastal Kenya: Emergence, Host Range,**
462 **Distribution and Association with Cassava Brown Streak Virus Disease.** *Int J Agric*
463 *Biol* 2010, **12**:411–415.

464 73. Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro AP: **Refined Global Analysis of**
465 ***Bemisia tabaci* (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae)**
466 **Mitochondrial Cytochrome Oxidase 1 to Identify Species Level Genetic Boundaries.**
467 *Ann Entomol Soc Am* 2010, **103**:196–208.

468 74. Boykin LM, Savill A, De Barro P: **Updated mtCOI reference dataset for the *Bemisia***
469 ***tabaci* species complex.** *F1000Research* 2017, **6**:1835.

470 75. Elfekih S, Tay WT, Gordon K, Court LN, De Barro PJ: **Standardized molecular**
471 **diagnostic tool for the identification of cryptic species within the *Bemisia tabaci***
472 **complex.** *Pest Manag Sci* 2018, **74**:170–173.

473 76. Tay WT, Elfekih S, Court LN, Gordon KHJ, Delatte H, De Barro PJ: **The Trouble with**
474 **MEAM2: Implications of Pseudogenes on Species Delimitation in the Globally**
475 **Invasive *Bemisia tabaci* (Hemiptera: Aleyrodidae) Cryptic Species Complex.** *Genome*
476 *Biol Evol* 2017, **9**:2732–2738.

477 77. Hadjistylli M, Roderick GK, Brown JK: **Global Population Structure of a Worldwide**
478 **Pest and Virus Vector : Genetic Diversity and Population History of the *Bemisia***
479 ***tabaci* Sibling Species Group.** *PLoS One* 2016, **11**(11): e0132.

480 78. Mugerwa H, Rey MEC, Alicai T, Ateka E, Atuncha H, Ndunguru J, Sseruwagi P: **Genetic**
481 **diversity and geographic distribution of *Bemisia tabaci* (Gennadius) (Hemiptera:**
482 **Aleyrodidae) genotypes associated with cassava in East Africa.** *Ecol Evol* 2012,
483 **2**:2749–62.

484 79. Sseruwagi P, Legg JP, Maruthi MN, Colvin J, Rey MEC, Brown JK: **Genetic diversity of**

485 ***Bemisia tabaci* (Gennadius) (Hemiptera: Aleyrodidae) populations and presence of**
486 **the B biotype and a non-B biotype that can induce silver-leaf symptoms in squash, in**
487 **Uganda.** *Ann Appl Biol* 2005, **147**:253–265.

488 80. Berry SD, Fondong VN, Rey C, Rogan D, Fauquet CM, Brown JK, Berry SD, Fondong
489 VN, Rey C, Rogan D: **Molecular Evidence for Five Distinct *Bemisia tabaci***
490 **(Homoptera:Aleyrodidae) Geographic Haplotypes Associated with Cassava Plants in**
491 **Sub-Saharan Africa.** *Ann Entomol Soc Am* 2004, **97**:852–859.

492 81. De Barro PJ, Liu S-S, Boykin LM, Dinsdale AB: ***Bemisia tabaci* : A Statement of**
493 **Species Status.** *Annu Rev Entomol* 2011, **56**:1–19.

494 82. Brown JK: **Molecular markers for the identification and global tracking of whitefly**
495 **vector–Begomovirus complexes.** *Virus Res* 2000, **71**:233–260.

496 83. Brown JK, Idris AM: **Genetic Differentiation of Whitefly *Bemisia tabaci***
497 **Mitochondrial Cytochrome Oxidase I, and Phylogeographic Concordance with the**
498 **Coat Protein of the Plant Virus Genus Begomovirus.** *Ann Entomol Soc Am* 2005,
499 **98**:827–837.

500 84. Ghosh S, Bouvaine S, Maruthi MN: **Prevalence and genetic diversity of endosymbiotic**
501 **bacteria infecting cassava whiteflies in Africa.** *BMC Microbiol* 2015, **15**:93.

502 85. Thierry M, Becker N, Hajri A, Reynaud B, Lett J-M, Delatte H: **Symbiont diversity and**
503 **non-random hybridization among indigenous (Ms) and invasive (B) biotypes of**
504 ***Bemisia tabaci*.** *Mol Ecol* 2011, **20**:2172–2187.

505 86. Hélène D, Rémy B, Nathalie B, Anne-Laure G, Traoré RS, Jean-Michel L, Bernard R:
506 **Species and endosymbiont diversity of *Bemisia tabaci* (Homoptera: Aleyrodidae) on**
507 **vegetable crops in Senegal.** *Insect Sci* 2015, **22**:386–398.

508 87. Gueguen G, Vavre F, Gnankine O, Peterschmitt M, Charif D, Chiel E, Gottlieb Y,
509 Ghanim M, Zchori-Fein E, Fleury F: **Endosymbiont metacommunities, mtDNA**
510 **diversity and the evolution of the *Bemisia tabaci* (Hemiptera: Aleyrodidae) species**
511 **complex.** *Mol Ecol* 2010, **19**:4365–4378.

512 88. Gnankine O, Mouton L, Henri H, Terraz G, Houndete T, Martin T, Vavre F, Fleury F:

513 **Distribution of *Bemisia tabaci* (Homoptera: Aleyrodidae) biotypes and their**
514 **associated symbiotic bacteria on host plants in West Africa.** *Insect Conserv Divers*
515 2013, **6**:411–421.

516 89. Tajebe LS, Guastella D, Cavalieri V, Kelly SE, Hunter MS, Lund OS, Legg JP, Rapisarda
517 C: **Diversity of symbiotic bacteria associated with *Bemisia tabaci* (Homoptera:**
518 **Aleyrodidae) in cassava mosaic disease pandemic areas of Tanzania.** *Ann Appl Biol*
519 2015, **166**:297–310.

520 90. Tahiri A, Halkett F, Granier M, Gueguen G, Peterschmitt M: **Evidence of gene flow**
521 **between sympatric populations of the Middle East-Asia Minor 1 and Mediterranean**
522 **putative species of *Bemisia tabaci*.** *Ecol Evol* 2013, **3**:2619–2633.

523 91. Manani DM, Ateka EM, Nyanjom SRG, Boykin LM: **Phylogenetic relationships among**
524 **whiteflies in the *Bemisia tabaci* (Gennadius) species complex from major cassava**
525 **growing areas in Kenya.** *Insects* 2017, **8**:1–14.

526 92. Legg JP, French R, Rogan D, Okao-Okuja G, Brown JK: **A distinct *Bemisia tabaci***
527 **(Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae) genotype cluster is**
528 **associated with the epidemic of severe cassava mosaic virus disease in Uganda.** *Mol*
529 *Ecol* 2002, **11**:1219–1229.

530 93. Tocko-Marabena BK, Silla S, Simiand C, Zinga I, Legg J, Reynaud B, Delatte H: **Genetic**
531 **diversity of *Bemisia tabaci* species colonizing cassava in Central African Republic**
532 **characterized by analysis of cytochrome c oxidase subunit I.** *PLoS One* 2017, **12**:1–17.

533 94. Maruthi MN, Colvin J, Gibson G, Thwaites RM, Banks GK, Seal S: **Reproductive**
534 **incompatibility and cytochrome oxidase I gene sequence variability amongst host-**
535 **adapted and geographically separate *Bemisia tabaci* populations (Hemiptera:**
536 **Aleyrodidae).** *Syst Entomol* 2004, **29**:560–568.

537 95. Elfekih S, Etter P, Tay WT, Fumagalli M, Gordon K, Johnson E, De Barro P: **Genome-**
538 **wide analyses of the *Bemisia tabaci* species complex reveal contrasting patterns of**
539 **admixture and complex demographic histories.** *PLoS One* 2018, **13**:1–18.

540 96. Delatte H, David P, Lett JM, Goldbach R, Peterschmitt M, Reynaud B: **Microsatellites**

541 **reveal extensive geographical, ecological and genetic contacts between invasive and**
542 **indigenous whitefly biotypes in an insular environment.** *Genet Res Camb* 2006,
543 **87:109–124.**

544 97. Esterhuizen LL, Mabasa KG, Van Heerden SW, Czosnek H, Brown JK, Van Heerden H,
545 Rey MEC: **Genetic identification of members of the *Bemisia tabaci* cryptic species**
546 **complex from South Africa reveals native and introduced haplotypes.** *J Appl Entomol*
547 2013, **137:122–135.**

548 98. Tajebe LS, Boni SB, Guastella D, Cavalieri V, Lund OS, Rugumamu CP, Rapisarda C,
549 Legg JP: **Abundance, diversity and geographic distribution of cassava mosaic disease**
550 **pandemic-associated *Bemisia tabaci* in Tanzania.** *J Appl Entomol* 2015, **139:627–637.**

551 99. Delatte H, Reynaud B, Granier M, Thornary L, Lett JM, Goldbach R, Peterschmitt M: **A**
552 **new silverleaf-inducing biotype Ms of *Bemisia tabaci* (Hemiptera: Aleyrodidae)**
553 **indigenous to the islands of the south-west Indian Ocean.** *Bull Entomol Res* 2005,
554 **95:29–35.**

555 100. Laarif A, Saleh D, Clouet C, Gauthier N: **Regional co-occurrence between distinct**
556 ***Bemisia tabaci* species in Tunisia with new insights into the role of host plants.**
557 *Phytoparasitica* 2015, **43:135–150.**

558 101. Sseruwagi P, Maruthi MN, Colvin J, Rey MEC, Brown JK, Legg JP: **Colonization of**
559 **non-cassava plant species by cassava whiteflies (*Bemisia tabaci*) in Uganda.** *Entomol*
560 *Exp Appl* 2006, **119:145–153.**

561 102. Hadjistylli M, Brown JK, Roderick GK: **Tools and Recent Progress in Studying Gene**
562 **Flow and Population Genetics of the *Bemisia tabaci* Sibling Species Group.** In
563 *Bemisia: Bionomics and Management of a Global Pest.* . Springer Netherlands; 2009:69–
564 103.

565 103. Tay WT, Elfekih S, Court L, Gordon KH, De Barro PJ: **Complete mitochondrial DNA**
566 **genome of *Bemisia tabaci* cryptic pest species complex Asia I (Hemiptera:**
567 **Aleyrodidae).** *Mitochondrial DNA* 2016, **27:972–973.**

568 104. Abdullahi I, Winter S, Atiri GI, Thottappilly G: **Molecular characterization of whitefly,**

569 ***Bemisia tabaci* (Hemiptera: Aleyrodidae) populations infesting cassava.** *Bull Entomol*
570 *Res* 2003, **93**:97–106.

571 105. Legg JP: **Host-associated strains within Ugandan populations of the whitefly *Bemisia***
572 ***tabaci* (Genn.), (Hom., Aleyrodidae).** *J Appl Entomol* 1996, **120**:523–527.

573 106. Omondi AB, Obeng-Ofori D, Kyerematen RA, Danquah EY: **Host preference and**
574 **suitability of some selected crops for two biotypes of *Bemisia tabaci* in Ghana.**
575 *Entomol Exp Appl* 2005, **115**:393–400.

576 107. Thompson WMO: **A new host plant species for the cassava biotype of *Bemisia tabaci***
577 **(Gennadius) (Hom., Aleyrodidae).** *J Appl Entomol* 2003, **127**:374–376.

578 108. Burban C, Fishpool LDC, fauquet C, Fargette D, Thouvenel JC: **Host associated biotypes**
579 **within west-african populations of the whitefly *Bemisia tabaci* (Genn.), Hom.,**
580 **Aleyrodidae).** *J Appl Ent* 1992, **113**:416–423.

581 109. Legg, J. P.; Gibson, R. W.; Otim-Nape GW: **Genetic polymorphism amongst Ugandan**
582 **populations of *Bemisia tabaci* (Gennadius)(Homoptera: Aleyrodidae), vector of**
583 **African cassava mosaic geminivirus.** *Trop Sci* 1994, **34**:73–81.

584 110. Romba R, Gnankiné O: **Comparative biology parameters of Q1 and Q3 genotypes of**
585 ***Bemisia tabaci* MED (Hemiptera: Aleyrodidae) on two host plants in Burkina Faso,**
586 **West Africa.** *African Entomol* 2018, **26**:1–8.

587 111. Chen W, Hasegawa DK, Kaur N, Kliot A, Pinheiro PV, Luan J, Stensmyr MC, Zheng Y,
588 Liu W, Sun H: **The draft genome of whitefly *Bemisia tabaci* MEAM1, a global crop**
589 **pest, provides novel insights into virus transmission, host adaptation, and insecticide**
590 **resistance.** *BMC Biol* 2016, **14**:1–15.

591 *First draft genome of a member of the *Bemisia tabaci* species complex.

592 112. Clark MA, Baumann L, Munson MA, Baumann P, Campbell BC, Duffus JE, Osborne LS,
593 Moran NA: **The eubacterial endosymbionts of whiteflies (Homoptera: Aleyrodoidea)**
594 **constitute a lineage distinct from the endosymbionts of aphids and mealybugs.** *Curr*
595 *Microbiol* 1992, **25**:119–123.

596 113. Baumann L, Thao ML, Funk CJ, Ng JCK, Baumann P, Falk BW: **Sequence Analysis of**
597 **DNA Fragments from the Genome of the Primary Endosymbiont of the Whitefly**
598 ***Bemisia tabaci***. *Curr Microbiol* 2004, **48**:77–81.

599 114. Thao ML, Baumann P: **Evolutionary relationships of primary prokaryotic**
600 **endosymbionts of whiteflies and their hosts**. *Appl Environ Microbiol* 2004, **70**:3401–6.

601 115. Wang X-W, Li P, Liu S-S: **Whitefly interactions with plants**. *Curr Opin Insect Sci* 2017,
602 **19**:70–75.

603 116. Luan J-B, Wang X-W, Colvin J, Liu S-S: **Plant-mediated whitefly–begomovirus**
604 **interactions: research progress and future prospects**. *Bull Entomol Res* 2014, **104**:267–
605 276.

606 117. Czosnek H, Hariton-Shalev A, Sobol I, Gorovits R, Ghanim M: **The Incredible Journey**
607 **of Begomoviruses in Their Whitefly Vector**. *Vruses* 2017, **9**:1–19.

608 118. Brown JK, Czosnek H: **Whitefly transmission of plant viruses**. *Adv Bot Res* 2002,
609 **36**:65–100.

610 119. Ghanim M: **A review of the mechanisms and components that determine the**
611 **transmission efficiency of Tomato yellow leaf curl virus (Geminiviridae;**
612 **Begomovirus) by its whitefly vector**. *Virus Res* 2014, **186**:47–54.

613 120. Rosen R, Kanakala S, Kliot A, Cathrin Pakkianathan B, Farich BA, Santana-Magal N,
614 Elimelech M, Kontsedalov S, Lebedev G, Cilia M: **Persistent, circulative transmission**
615 **of begomoviruses by whitefly vectors**. *Curr Opin Virol* 2015, **15**:1–8.

616 121. Polston JE, De Barro P, Boykin LM: **Transmission specificities of plant viruses with**
617 **the newly identified species of the *Bemisia tabaci* species complex**. *Pest Manag Sci*
618 2014, **70**:1547–1552.

619 122. Wei J, He Y-Z, Guo Q, Guo T, Liu Y-Q, Zhou X-P, Liu S-S, Wang X-W, Raikhel AS:
620 **Vector development and vitellogenin determine the transovarial transmission of**
621 **begomoviruses**. *Proc Natl Acad Sci U S A* 2017, **114**:6746–6751.

622 **Describes the localization of *Tomato yellow leaf curl virus* in the whitefly reproductive tract

623 and persistence of transovarially transmitted virus for two generations.

624 123. Navas-Castillo J, López-Moya JJ, Aranda MA: **Whitefly-transmitted RNA viruses that**
625 **affect intensive vegetable production.** *Ann Appl Biol* 2014, **165**:155–171.

626 124. Eigenbrode SD, Bosque-p NA, Davis TS: **Insect-Borne Plant Pathogens and Their**
627 **Vectors : Ecology , Evolution , and Complex Interactions.** *Annu Rev Entomol* 2017,
628 **63**:169–191.

629 125. Mauck KE: **Variation in virus effects on host plant phenotypes and insect vector**
630 **behavior: what can it teach us about virus evolution?** *Curr Opin Virol* 2016, **21**:114–
631 123.

632