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Abstract

Emerging plant viruses are one of the greatest problems facing crop production worldwide, and
have severe consequences in the developing world where subsistence farming is a major source
of food production, and knowledge and resources for management are limited. In Africa,
evolution of two viral disease complexes, cassava mosaic begomoviruses (CMBs)
(Geminiviridae) and cassava brown streak viruses (CBSVs) (Potyviridae), have resulted in
severe pandemics that continue to spread and threaten cassava production. Identification of
genetically diverse and rapidly evolving CMBs and CBSVs, extensive genetic variation in the
vector, Bemisia tabaci (Hemiptera: Aleyrodidae), and numerous secondary endosymbiont
profiles that influence vector phenotypes suggest that complex local and regional vector-virus-

plant-environment interactions may be driving the evolution and epidemiology of these viruses.
Highlights

e (assava mosaic disease is caused by frequently recombining ssDNA virus species.
e (assava brown streak disease is an emergent concern, caused by two ssSRNA viruses.

e Complex genetic structure and endosymbionts may impact vector status of B. tabaci.
Introduction

Two whitefly (Hemiptera: Aleyrodidae) transmitted viral disease complexes, cassava mosaic
disease (CMD) and cassava brown streak disease (CBSD), are the primary threats to cassava
production across Africa [1]. Cassava, Manihot esculenta (Crantz), also referred to as yucca,
tapioca and manioc, originated in the New World [2], and is now grown across Central and
South America, Asia and Africa as an industrial source of starch and for human and animal
consumption [3]. It is an easy crop to grow with exceptional drought resistance [4], which has
made it a staple food for close to 1 billion people in the tropics [5]. This is especially true in
Africa, where cassava is currently the highest production crop and the most resistant crop to
climate change [6]. While cassava production is sometimes affected by viral diseases worldwide
[5], in sub-Saharan Africa, these viruses are a persistent and emergent threat to food security,

causing losses over US$1billion annually [5,7].

These viruses are believed to have originated in Africa, and have been spread across the

continent by human-mediated movement of vegetatively propagated cassava cuttings [8], and
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whitefly vectors [9-12]. Although cassava viruses have been reported in Africa for more than 70
years, severe epidemics of both CMD and CBSD causing viral complexes have emerged in sub-
Saharan Africa during the past 30 years that have caused famine, reduced yields, and in some
areas severely restricted cassava production. Research findings during the first 1-2 decades after
the emergence of the severe CMD and CBSD addressing disease incidence, mechanisms of
spread, virus identification, vectors, management strategies, and proposed theories for the
widespread occurrence of the causative virus and abundance of the vectors have been reviewed
in [5,13-20,21%*]. Molecular biology tools and approaches developed over the past decade such
as Next Generation Sequencing (NGS), NextRAD sequencing, and bioinformatics tools have
enabled identification and characterization of the genetic diversity of vector [22-24,25%,26*27]
and viral [28,29,30*,31] populations which have long been recognized as important factors
underlying reported variation in disease severity, vector competence [32] and coevolution of
vectors and viruses [33]. The objective of this review is to provide a current synthesis of
literature on the diversity of whiteflies, cassava viruses, and their interactions across the African

continent, and including Madagascar, Réunion Island, and Seychelles.
Whitefly-Transmitted Viral Disease Complexes of Cassava

Single-stranded DNA viruses that cause CMD, typified by chlorotic yellow mosaics, deformed
leaves and stunted growth [34] have been recognized as a threat to cassava production for a
longer period of time than viruses causing CBSD — since the 1894 [35]. Molecular typing and
sequencing have revealed CMD is caused by seven related species of cassava mosaic
begomoviruses (CMVs) (family Geminiviridae) occurring in single or mixed infections: African
cassava mosaic virus (ACMV), Cassava mosaic Madagascar virus (CMMGV), East African
cassava mosaic virus (EACMV); East African cassava mosaic Kenya virus (EACMKYV), East
African cassava mosaic Malawi virus (EACMMV), East African cassava mosaic Zanzibar virus
(EACMZV), and South African cassava mosaic virus (SACMV) [36] (Figure 1). The CMBs can
co-infect a cassava plant, enhancing infection severity [37] and leading to recombinants with
altered virulence [38]. While CMD had been a problem for farmers for decades, the emergence
of East African cassava mosaic virus, Uganda variant (EACMV-UG?2), a recombinant of
EACMYV in which approximately 400 nucleotides of the Coat Protein (CP) gene of ACMV
replaced a similar region of EACMYV [39-42], in 1997 led to a resurgence of severe CMD that
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devastated cassava crops causing rampant famine in Uganda [43]. Shortly thereafter, roughly
half of all cassava harvested in East Africa had been affected by CMD [44], and by 2005 the

CMD pandemic was estimated to cover roughly 3,000,000 square km over nine countries.

The more recently emerged CBSD is not yet as widespread as CMD, but has become the more
pressing problem in African cassava production. CBSD exhibits fewer symptoms above ground
(fainter yellowing, the titular streaks on the stems [45]), and mainly rots the tubers, leading to
damage that fetches much lower prices (90% loss [46]). While it was first described in 1935 [47],
it was an isolated disease restricted to the low altitude areas of East Africa [48]. Only in the last
twenty years has it spread to higher altitudes and become a problem for a much larger area of
cassava production [49,50] (Figure 1). CBSD is caused by two related RNA viruses (Potyvirus:
Ipomovirus): Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus
(UCBSV). The two viruses that cause CBSD can be referred to as CBSVs (cassava brown streak

viruses).

Both the ssDNA CMBs and RNA CBSVs show high diversity in Africa, as expected for viruses
with these genomes. Surveys of CMBs routinely reveal that variants are produced by both
recombination and mutation [51*]. While intraspecific and interspecific recombination
frequently occur, and major changes in virulence have been associated with recombination
events (e.g., the pandemic associated EACMV-UG?2), the majority of the diversity in sequenced
ACMYV and EACMV is due to mutation [52]. Like other ssDNA viruses, EACMYV evolves as
quickly as RNA viruses, meaning that CMBs can swiftly evolve to cope with environmental
changes, novel plant hosts and potentially to overcome host resistance [51*,53]. The RNA
CBSVs have been less intensively studied, but already show strong evidence of recombination
[28] and high diversity due to mutations [54]. The overall divergence among sequenced genomes
of CBSVs has led to high estimates of within species nucleotide diversity [54], and has prompted
a reexamination of the number of species capable of causing CBSD [55]. CBSV evolves as fast
as other potyviruses [29] strongly suggesting that CBSVs can also evolve quickly to overcome
novel challenges like RNAi-mediated host resistance [56]. The evolvability of coat proteins of
both CMBs [57-61] and CBSVs [30] may play a role in their use of vectors, and in efficient

transmission, but data on co-adaptation of viruses to their vectors is limited [33,62].

Whitefly Vectors of Cassava Viruses
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Although the incidence of cassava viruses in fields is more commonly attributed to the
propagation of virus-infected cuttings, vector transmission can cause significant infection in crop
fields [11,63] and spreads viruses across their population range and to non-crop reservoir hosts.
CMBs are transmitted by Bemisia tabaci (Gennadius) [9,32,47,64,65*] in a circulative and non-
propagative manner whereas CBSVs are semipersistently transmitted by three whitefly species:
B. tabaci [10,66], Trialeuroides vaporariorum (Westwood), and Aleurodicus dispersus (Russell)
[10,12,66]. Differences in the number of vector species, modes of transmission, and vector
competence of these viruses differentially affect incidence, spread, and distribution both locally
and across the African continent. Faster acquisition and transmission (<1h) but lower persistence
of CBSV in the vector (24-48h) reduces the incidence and distance of virus spread from infected
hosts [10,11,66,67]. CMDs require up to 8 hours to circulate in the vector before they can be
transmitted, but whiteflies remain viruliferous for at least 9 days which may increase incidence
and distance of virus spread [9,47,64,66,68]. This review will focus on the primary vector and
most abundant cassava-associated whitefly species in Africa, B. tabaci, due to the paucity of

information on 7. vaporariorum [69,70] and A. dispersus [70-72].

A growing body of literature is documenting extensive genetic diversity of B. tabaci and its
symbiome in Africa. Bemisia tabaci is a morphologically indistinguishable species complex
hypothesized to comprise over 40 genetic groups that are currently distinguished using partial
mtCOI gene sequences [73]. Nomenclature describing these groups is inconsistent in the
literature because the species delimitations within this group are undergoing constant revision
based on new knowledge [17,23]. In this review, this species complex will be referred to as B.
tabaci, using nomenclature based on mtCOI phylogenies [73]. Working names on
whiteflybase.org [24,74] are used because they were most easy to assimilate due to the high
number of reports using this, or similar nomenclature, although the status of these groups as
reproductively isolated species will change based on new information about evolutionary
relationships, species ranges, gene flow, reproductive compatibility (see below), and limitations
of mtCOI markers [75—77]. Published sequences of putative B. tabaci, not included on
whiteflybase.org because they did not meet the exact criteria, are included here along with newly
proposed genetic groups not yet present on whiteflybase.org [26*] in order to present a
comprehensive representation of the diversity and distribution of African B. tabaci reported in

the literature. The greatest genetic diversity among B. tabaci worldwide has been observed
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within and among the sub-Saharan Africa clades, and evidence for African origin of B. tabaci is
supported by phylogenies from multiple studies [22,26*,78—83]. Nineteen putative endemic and
introduced species have been reported in Africa [21*,25%,26%*,27,63,65%,77-80,84—-101] (Figure
2), and include Uganda (Uganda clade) [26*,73], SubSahAf1-6, 8 (sub-Saharan Africa clade)
[26*,73], SubSahAf7 (Australia-Asia clade) [26*], SubSahAf10-11, NewWorldl, (New World
clade) [26*], SubSahAf12-13, Mediterranean, MidEastAm1, IndianOcean (Africa-Middle East-
Asia Minor clade) [26*,73], and Italy1 (Italy clade) [26%*,73]. Genetically distinct sub-
groups/clades have also been consistently identified within the SubSahAf1 clade, and new
genetic diversity continues to be discovered as more robust genetic approaches are developed

[24,25%,26*,75,77,102,103].

Research on genetic diversity, genomics, population genetic structure, and gene-flow are
providing new information about variation in epidemiologically important biological and
ecological characteristics such as host utilization that may play a role in population growth,
gene-flow, and evolutionary dynamics of cassava viruses. Only nine B. tabaci, including
SubSahAf1, SubSahAf2, SubSahAf3, SubSahAf4, SubSahAfY, SubSahAf10, SubSahAfl1,
Mediterranean, and IndianOcean, have been collected from cassava, but host preference and diet
breadth of cassava associated whiteflies is variable, with some collected only from cassava,
while others can colonize multiple crop hosts successfully [ 104—109]. Reciprocal backcross
experiments and population genetic experiments have provided evidence for the occurrence of
gene-flow and introgression between some cassava associated B. tabaci and their sub-groups at
local, regional, and continental scales [17,21*,25%*,90,94-96,110]. The magnitude and direction
of gene flow among putative species and their sub-groups, however, is variable. Long-distance
gene flow and admixture is possible through human-mediated dispersal, trade [25%*,95] and
whitefly dispersal, however, geographic structuring among cassava-associated B. tabaci species
and their subgroups is generally observed within countries and across Africa [21*,96-98].
Results of studies using genome-wide markers suggest that metapopulation structure of B. tabaci
1s a complex network through which introgression may occur directly between reproductively
compatible groups, or indirectly through intermediates in the network [25%,95]. Genomic and
transcriptomic approaches are also identifying economically important genes and gene families
that may be involved with vector-virus interactions [95,111%*], and new methods to investigate

vector-endosymbiome-virus interactions [27]. Due to the genetic complexity of species- and
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population-level boundaries, molecular ecology and genomics approaches will continue to play a
major role in advancing our understanding about the geographic scales and temporal stability of
genetic structuring, the occurrence of gene-flow, and the implications of genetic structure on
economically important traits related to epidemiology and management of whitefly-transmitted

viruses [25*,95].

Endosymbionts are an important characteristic of B. fabaci that are likely influencing
epidemiologically important life history and transmission phenotypes, and should be included in
B. tabaci characterizations to determine their importance. Several studies have documented
genetic diversity of whitefly endosymbionts, their distributions among B. tabaci species and
populations, and the impact of symbiosis on whitefly fitness, host plant, and vector phenotypes
[27,65*,84-90]. Specialized cellular compartments in B. fabaci harbor the primary/obligate
endosymbiont Candidatus Portiera aleyrodidarum that is required to synthesize essential amino
acids required for growth and development [112—114]. Secondary/facultative endosymbionts are
not required for survival, but may affect fitness. Endosymbionts are primarily maternally
transmitted [85], and although absent from some populations, secondary endosymbionts
Arsenophonus, Cardinium, Hamiltonella, Rickettsia, and Wolbachia have been found in 30
combinations of single, double, triple and quadruple infections in African B. tabaci [27,65*,84—
90] (Table 1). The underlying causes for the large number of endosymbiont profiles for B. tabaci
1s not understood, but introduction of new B. tabaci species with overlapping hosts and/or gene-
flow may result in the acquisition of new endosymbionts. Studies have shown associations
between specific combinations of endosymbiotic bacteria, or strains of a bacteria [84,87], and B.
tabaci species, sub-groups, and populations [84,85,87,88], but none are clearly associated with
host plant utilization. The few laboratory studies examining endosymbiont effects on B. tabaci
showed that endosymbionts may negatively impact vector competence and fitness of cassava
associated B. fabaci. Decreased acquisition and retention of EACMV-UG2 by SubSahAfl-
subgroup3 was generally observed in a laboratory colony infected with Arsenophonus and
Rickettsia compared to a colony without secondary endosymbionts, and secondary endosymbiont
infections were absent from a high number, but not all, field collected SubSahAf1-subgroupl B.
tabaci, which is the primary haplotype implicated in spread of CMBs in East Africa [65*,89].
Reductions in adult emergence, and increasing development time from first instar to adult were

also observed in SubSahAfl-subgroup3 infected with Arsenophonus and Rickettsia [65*].
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Future research is needed to better understand the incidences, spread and influence of

endosymbionts in African B. tabaci.
Conclusions

Accurate identification of distinct species and populations of cassava viruses and their vectors is
an essential first step towards understanding vector-virus-plant-environment interactions
underlying the epidemiology of cassava viruses in Africa, but knowledge of the similarities and
differences of life history traits among CMBs, CBSVs, and B. tabaci is still lacking. Many field
and laboratory studies were conducted before molecular identification of study populations was
available, limiting conclusions that can be drawn about incidence, spread, and severity of viruses
and the role of specific vectors, especially when genetic variation in local populations influence
vector-virus-crop interactions among research locations. Studies that provide genetic
characterizations of vectors and viruses are revealing genetic variation that has the potential to
explain regional and phenotypic variation in epidemiological important phenotypes such as host
range, vector competence of whiteflies, transmission efficiency of cassava viruses, disease
severity, and the timing and magnitude of whitefly spread due to host utilization patterns,
population size, and dispersal. Fundamental studies are also needed to examine vector-virus-
plant interactions described for other related viruses affecting different cropping systems not
examined in this review, including virus mediated changes in vector-plant interactions,
localization and circulation in the vector, the role of endosymbionts in virus circulation, variation
in transmission efficiency, and mechanisms underlying these interactions reviewed in [20,115-
121,122*,123-125]. Ultimately, understanding the emergence, spread and epidemiological
potential of whitefly-transmitted cassava viruses will require a whole-systems approach that
examines cassava agroecosystems with the recognition that interbreeding whitefly and

recombining viral metapopulations extend across landscapes and beyond a single crop.
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