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Abstract 24 

Emerging plant viruses are one of the greatest problems facing crop production worldwide, and 25 

have severe consequences in the developing world where subsistence farming is a major source 26 

of food production, and knowledge and resources for management are limited. In Africa, 27 

evolution of two viral disease complexes, cassava mosaic begomoviruses (CMBs) 28 

(Geminiviridae) and cassava brown streak viruses (CBSVs) (Potyviridae), have resulted in 29 

severe pandemics that continue to spread and threaten cassava production. Identification of 30 

genetically diverse and rapidly evolving CMBs and CBSVs, extensive genetic variation in the 31 

vector, Bemisia tabaci (Hemiptera: Aleyrodidae), and numerous secondary endosymbiont 32 

profiles that influence vector phenotypes suggest that complex local and regional vector-virus-33 

plant-environment interactions may be driving the evolution and epidemiology of these viruses.  34 

Highlights 35 

• Cassava mosaic disease is caused by frequently recombining ssDNA virus species. 36 

• Cassava brown streak disease is an emergent concern, caused by two ssRNA viruses.  37 

• Complex genetic structure and endosymbionts may impact vector status of B. tabaci. 38 

Introduction 39 

Two whitefly (Hemiptera: Aleyrodidae) transmitted viral disease complexes, cassava mosaic 40 

disease (CMD) and cassava brown streak disease (CBSD), are the primary threats to cassava 41 

production across Africa [1]. Cassava, Manihot esculenta (Crantz), also referred to as yucca, 42 

tapioca and manioc, originated in the New World [2], and is now grown across Central and 43 

South America, Asia and Africa as an industrial source of starch and for human and animal 44 

consumption [3]. It is an easy crop to grow with exceptional drought resistance [4], which has 45 

made it a staple food for close to 1 billion people in the tropics [5]. This is especially true in 46 

Africa, where cassava is currently the highest production crop and the most resistant crop to 47 

climate change [6]. While cassava production is sometimes affected by viral diseases worldwide 48 

[5], in sub-Saharan Africa, these viruses are a persistent and emergent threat to food security, 49 

causing losses over US$1billion annually [5,7].  50 

These viruses are believed to have originated in Africa, and have been spread across the 51 

continent by human-mediated movement of vegetatively propagated cassava cuttings [8], and 52 
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whitefly vectors [9–12].  Although cassava viruses have been reported in Africa for more than 70 53 

years, severe epidemics of both CMD and CBSD causing viral complexes have emerged in sub-54 

Saharan Africa during the past 30 years that have caused famine, reduced yields, and in some 55 

areas severely restricted cassava production. Research findings during the first 1-2 decades after 56 

the emergence of the severe CMD and CBSD addressing disease incidence, mechanisms of 57 

spread, virus identification, vectors, management strategies, and proposed theories for the 58 

widespread occurrence of the causative virus and abundance of the vectors have been reviewed 59 

in [5,13–20,21*]. Molecular biology tools and approaches developed over the past decade such 60 

as Next Generation Sequencing (NGS), NextRAD sequencing, and bioinformatics tools have 61 

enabled identification and characterization of the genetic diversity of vector [22–24,25*,26*27] 62 

and viral [28,29,30*,31] populations which have long been recognized as important factors 63 

underlying reported variation in disease severity, vector competence [32] and coevolution of 64 

vectors and viruses [33]. The objective of this review is to provide a current synthesis of 65 

literature on the diversity of whiteflies, cassava viruses, and their interactions across the African 66 

continent, and including Madagascar, Réunion Island, and Seychelles.  67 

Whitefly-Transmitted Viral Disease Complexes of Cassava 68 

Single-stranded DNA viruses that cause CMD, typified by chlorotic yellow mosaics, deformed 69 

leaves and stunted growth [34] have been recognized as a threat to cassava production for a 70 

longer period of time than viruses causing CBSD – since the 1894 [35]. Molecular typing and 71 

sequencing have revealed CMD is caused by seven related species of cassava mosaic 72 

begomoviruses (CMVs) (family Geminiviridae) occurring in single or mixed infections: African 73 

cassava mosaic virus (ACMV), Cassava mosaic Madagascar virus (CMMGV), East African 74 

cassava mosaic virus (EACMV); East African cassava mosaic Kenya virus (EACMKV), East 75 

African cassava mosaic Malawi virus (EACMMV), East African cassava mosaic Zanzibar virus 76 

(EACMZV), and South African cassava mosaic virus (SACMV) [36] (Figure 1). The CMBs can 77 

co-infect a cassava plant, enhancing infection severity [37] and leading to recombinants with 78 

altered virulence [38].  While CMD had been a problem for farmers for decades, the emergence 79 

of East African cassava mosaic virus, Uganda variant (EACMV-UG2), a recombinant of 80 

EACMV in which approximately 400 nucleotides of the Coat Protein (CP) gene of ACMV 81 

replaced a similar region of EACMV [39–42], in 1997 led to a resurgence of severe CMD that 82 
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devastated cassava crops causing rampant famine in Uganda [43]. Shortly thereafter, roughly 83 

half of all cassava harvested in East Africa had been affected by CMD [44], and by 2005 the 84 

CMD pandemic was estimated to cover roughly 3,000,000 square km over nine countries.  85 

The more recently emerged CBSD is not yet as widespread as CMD, but has become the more 86 

pressing problem in African cassava production. CBSD exhibits fewer symptoms above ground 87 

(fainter yellowing, the titular streaks on the stems [45]), and mainly rots the tubers, leading to 88 

damage that fetches much lower prices (90% loss [46]). While it was first described in 1935 [47], 89 

it was an isolated disease restricted to the low altitude areas of East Africa [48]. Only in the last 90 

twenty years has it spread to higher altitudes and become a problem for a much larger area of 91 

cassava production [49,50] (Figure 1). CBSD is caused by two related RNA viruses (Potyvirus: 92 

Ipomovirus): Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus 93 

(UCBSV). The two viruses that cause CBSD can be referred to as CBSVs (cassava brown streak 94 

viruses). 95 

Both the ssDNA CMBs and RNA CBSVs show high diversity in Africa, as expected for viruses 96 

with these genomes. Surveys of CMBs routinely reveal that variants are produced by both 97 

recombination and mutation [51*]. While intraspecific and interspecific recombination 98 

frequently occur, and major changes in virulence have been associated with recombination 99 

events (e.g., the pandemic associated EACMV-UG2), the majority of the diversity in sequenced 100 

ACMV and EACMV is due to mutation [52]. Like other ssDNA viruses, EACMV evolves as 101 

quickly as RNA viruses, meaning that CMBs can swiftly evolve to cope with environmental 102 

changes, novel plant hosts and potentially to overcome host resistance [51*,53]. The RNA 103 

CBSVs have been less intensively studied, but already show strong evidence of recombination 104 

[28] and high diversity due to mutations [54]. The overall divergence among sequenced genomes 105 

of CBSVs has led to high estimates of within species nucleotide diversity [54], and has prompted 106 

a reexamination of the number of species capable of causing CBSD [55]. CBSV evolves as fast 107 

as other potyviruses [29] strongly suggesting that CBSVs can also evolve quickly to overcome 108 

novel challenges like RNAi-mediated host resistance [56]. The evolvability of coat proteins of 109 

both CMBs [57–61] and CBSVs [30] may play a role in their use of vectors, and in efficient 110 

transmission, but data on co-adaptation of viruses to their vectors is limited [33,62]. 111 

Whitefly Vectors of Cassava Viruses 112 
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Although the incidence of cassava viruses in fields is more commonly attributed to the 113 

propagation of virus-infected cuttings, vector transmission can cause significant infection in crop 114 

fields [11,63] and spreads viruses across their population range and to non-crop reservoir hosts. 115 

CMBs are transmitted by Bemisia tabaci (Gennadius) [9,32,47,64,65*] in a circulative and non-116 

propagative manner whereas CBSVs are semipersistently transmitted by three whitefly species: 117 

B. tabaci [10,66], Trialeuroides vaporariorum (Westwood), and Aleurodicus dispersus (Russell) 118 

[10,12,66]. Differences in the number of vector species, modes of transmission, and vector 119 

competence of these viruses differentially affect incidence, spread, and distribution both locally 120 

and across the African continent. Faster acquisition and transmission (<1h) but lower persistence 121 

of CBSV in the vector (24-48h) reduces the incidence and distance of virus spread from infected 122 

hosts [10,11,66,67]. CMDs require up to 8 hours to circulate in the vector before they can be 123 

transmitted, but whiteflies remain viruliferous for at least 9 days which may increase incidence 124 

and distance of virus spread [9,47,64,66,68]. This review will focus on the primary vector and 125 

most abundant cassava-associated whitefly species in Africa, B. tabaci, due to the paucity of 126 

information on T. vaporariorum [69,70] and A. dispersus [70–72]. 127 

A growing body of literature is documenting extensive genetic diversity of B. tabaci and its 128 

symbiome in Africa. Bemisia tabaci is a morphologically indistinguishable species complex 129 

hypothesized to comprise over 40 genetic groups that are currently distinguished using partial 130 

mtCOI gene sequences [73]. Nomenclature describing these groups is inconsistent in the 131 

literature because the species delimitations within this group are undergoing constant revision 132 

based on new knowledge [17,23]. In this review, this species complex will be referred to as B. 133 

tabaci, using nomenclature based on mtCOI phylogenies [73]. Working names on 134 

whiteflybase.org [24,74] are used because they were most easy to assimilate due to the high 135 

number of reports using this, or similar nomenclature, although the status of these groups as 136 

reproductively isolated species will change based on new information about evolutionary 137 

relationships, species ranges, gene flow, reproductive compatibility (see below), and limitations 138 

of mtCOI markers [75–77]. Published sequences of putative B. tabaci, not included on 139 

whiteflybase.org because they did not meet the exact criteria, are included here along with newly 140 

proposed genetic groups not yet present on whiteflybase.org [26*] in order to present a 141 

comprehensive representation of the diversity and distribution of African B. tabaci reported in 142 

the literature. The greatest genetic diversity among B. tabaci worldwide has been observed 143 
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within and among the sub-Saharan Africa clades, and evidence for African origin of B. tabaci is 144 

supported by phylogenies from multiple studies [22,26*,78–83]. Nineteen putative endemic and 145 

introduced species have been reported in Africa [21*,25*,26*,27,63,65*,77–80,84–101] (Figure 146 

2), and include Uganda (Uganda clade) [26*,73], SubSahAf1-6, 8 (sub-Saharan Africa clade) 147 

[26*,73], SubSahAf7 (Australia-Asia clade) [26*], SubSahAf10-11, NewWorld1, (New World 148 

clade) [26*], SubSahAf12-13, Mediterranean, MidEastAm1, IndianOcean (Africa-Middle East-149 

Asia Minor clade) [26*,73], and Italy1 (Italy clade) [26*,73]. Genetically distinct sub-150 

groups/clades have also been consistently identified within the SubSahAf1 clade, and new 151 

genetic diversity continues to be discovered as more robust genetic approaches are developed 152 

[24,25*,26*,75,77,102,103].  153 

Research on genetic diversity, genomics, population genetic structure, and gene-flow are 154 

providing new information about variation in epidemiologically important biological and 155 

ecological characteristics such as host utilization that may play a role in population growth, 156 

gene-flow, and evolutionary dynamics of cassava viruses. Only nine B. tabaci, including 157 

SubSahAf1, SubSahAf2, SubSahAf3, SubSahAf4, SubSahAf9, SubSahAf10, SubSahAf11, 158 

Mediterranean, and IndianOcean, have been collected from cassava, but host preference and diet 159 

breadth of cassava associated whiteflies is variable, with some collected only from cassava, 160 

while others can colonize multiple crop hosts successfully [104–109]. Reciprocal backcross 161 

experiments and population genetic experiments have provided evidence for the occurrence of 162 

gene-flow and introgression between some cassava associated B. tabaci and their sub-groups at 163 

local, regional, and continental scales [17,21*,25*,90,94–96,110]. The magnitude and direction 164 

of gene flow among putative species and their sub-groups, however, is variable. Long-distance 165 

gene flow and admixture is possible through human-mediated dispersal, trade [25*,95] and 166 

whitefly dispersal, however, geographic structuring among cassava-associated B. tabaci species 167 

and their subgroups is generally observed within countries and across Africa [21*,96–98]. 168 

Results of studies using genome-wide markers suggest that metapopulation structure of B. tabaci 169 

is a complex network through which introgression may occur directly between reproductively 170 

compatible groups, or indirectly through intermediates in the network [25*,95]. Genomic and 171 

transcriptomic approaches are also identifying economically important genes and gene families 172 

that may be involved with vector-virus interactions [95,111*], and new methods to investigate 173 

vector-endosymbiome-virus interactions [27]. Due to the genetic complexity of species- and 174 
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population-level boundaries, molecular ecology and genomics approaches will continue to play a 175 

major role in advancing our understanding about the geographic scales and temporal stability of 176 

genetic structuring, the occurrence of gene-flow, and the implications of genetic structure on 177 

economically important traits related to epidemiology and management of whitefly-transmitted 178 

viruses [25*,95].  179 

Endosymbionts are an important characteristic of B. tabaci that are likely influencing 180 

epidemiologically important life history and transmission phenotypes, and should be included in 181 

B. tabaci characterizations to determine their importance. Several studies have documented 182 

genetic diversity of whitefly endosymbionts, their distributions among B. tabaci species and 183 

populations, and the impact of symbiosis on whitefly fitness, host plant, and vector phenotypes 184 

[27,65*,84–90]. Specialized cellular compartments in B. tabaci harbor the primary/obligate 185 

endosymbiont Candidatus Portiera aleyrodidarum that is required to synthesize essential amino 186 

acids required for growth and development [112–114]. Secondary/facultative endosymbionts are 187 

not required for survival, but may affect fitness. Endosymbionts are primarily maternally 188 

transmitted [85], and although absent from some populations, secondary endosymbionts 189 

Arsenophonus, Cardinium, Hamiltonella, Rickettsia, and Wolbachia have been found in 30 190 

combinations of single, double, triple and quadruple infections in African B. tabaci [27,65*,84–191 

90] (Table 1). The underlying causes for the large number of endosymbiont profiles for B. tabaci 192 

is not understood, but introduction of new B. tabaci species with overlapping hosts and/or gene-193 

flow may result in the acquisition of new endosymbionts. Studies have shown associations 194 

between specific combinations of endosymbiotic bacteria, or strains of a bacteria [84,87], and B. 195 

tabaci species, sub-groups, and populations [84,85,87,88], but none are clearly associated with 196 

host plant utilization. The few laboratory studies examining endosymbiont effects on B. tabaci 197 

showed that endosymbionts may negatively impact vector competence and fitness of cassava 198 

associated B. tabaci. Decreased acquisition and retention of EACMV-UG2 by SubSahAf1-199 

subgroup3 was generally observed in a laboratory colony infected with Arsenophonus and 200 

Rickettsia compared to a colony without secondary endosymbionts, and secondary endosymbiont 201 

infections were absent from a high number, but not all, field collected SubSahAf1-subgroup1 B. 202 

tabaci, which is the primary haplotype implicated in spread of CMBs in East Africa [65*,89]. 203 

Reductions in adult emergence, and increasing development time from first instar to adult were 204 

also observed in SubSahAf1-subgroup3 infected with Arsenophonus and Rickettsia [65*].  205 
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Future research is needed to better understand the incidences, spread and influence of 206 

endosymbionts in African B. tabaci. 207 

Conclusions 208 

Accurate identification of distinct species and populations of cassava viruses and their vectors is 209 

an essential first step towards understanding vector-virus-plant-environment interactions 210 

underlying the epidemiology of cassava viruses in Africa, but knowledge of the similarities and 211 

differences of life history traits among CMBs, CBSVs, and B. tabaci is still lacking. Many field 212 

and laboratory studies were conducted before molecular identification of study populations was 213 

available, limiting conclusions that can be drawn about incidence, spread, and severity of viruses 214 

and the role of specific vectors, especially when genetic variation in local populations influence 215 

vector-virus-crop interactions among research locations. Studies that provide genetic 216 

characterizations of vectors and viruses are revealing genetic variation that has the potential to 217 

explain regional and phenotypic variation in epidemiological important phenotypes such as host 218 

range, vector competence of whiteflies, transmission efficiency of cassava viruses, disease 219 

severity, and the timing and magnitude of whitefly spread due to host utilization patterns, 220 

population size, and dispersal. Fundamental studies are also needed to examine vector-virus-221 

plant interactions described for other related viruses affecting different cropping systems not 222 

examined in this review, including virus mediated changes in vector-plant interactions, 223 

localization and circulation in the vector, the role of endosymbionts in virus circulation, variation 224 

in transmission efficiency, and mechanisms underlying these interactions reviewed in [20,115-225 

121,122*,123-125]. Ultimately, understanding the emergence, spread and epidemiological 226 

potential of whitefly-transmitted cassava viruses will require a whole-systems approach that 227 

examines cassava agroecosystems with the recognition that interbreeding whitefly and 228 

recombining viral metapopulations extend across landscapes and beyond a single crop.  229 
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