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Abstract

While other areas of machine learning have seen more and more automation,
designing a high-performing recommender system still requires a high level of
human effort. Furthermore, recent work has shown that modern recommender
system algorithms do not always improve over well-tuned baselines. A natural
follow-up question is, “how do we choose the right algorithm for a new dataset
and performance metric?” In this work, we start by giving the first large-scale
study of recommender system approaches by comparing 24 algorithms and 100
sets of hyperparameters across 85 datasets and 315 metrics. We find that the
best algorithms and hyperparameters are highly dependent on the dataset and
performance metric. However, there is also a strong correlation between the
performance of each algorithm and various meta-features of the datasets. Motivated
by these findings, we create RecZilla, a meta-learning approach to recommender
systems that uses a model to predict the best algorithm and hyperparameters for
new, unseen datasets. By using far more meta-training data than prior work,
RecZilla is able to substantially reduce the level of human involvement when
faced with a new recommender system application. We not only release our code
and pretrained RecZilla models, but also all of our raw experimental results, so
that practitioners can train a RecZilla model for their desired performance metric:
https://github.com/naszilla/reczilla.

1 Introduction

Due to the large computational resources for training machine learning models, researchers have
found many ways to repurpose existing computation. For example, it is common to start with a
pretrained ImageNet classification model for computer vision tasks [30, 50, 75], or a pretrained BERT
model for natural language tasks [31, 65]. These approaches work well because the core problems are
largely homogeneous; for example, any computer vision model at its core must be able to distinguish
edges, colors, and shapes. Even a task-specific architecture can be found automatically through neural
architecture search [36], since the building blocks such as convolutional layers stay the same.

On the other hand, recommender system (rec-sys) research has followed a different trajectory: despite
their widespread usage across many e-commerce, social media, and entertainment companies such as
Amazon, YouTube, and Netflix [21, 41, 77], there is far less work in reusing models or automating
the process of selecting models. Many rec-sys techniques are designed and optimized with just a
single dataset in mind [21, 41, 48, 58, 81]. Intuitively, this might be because each rec-sys application
is highly unique based on the dataset and the target metric. For example, a typical user session looks
very different among e.g. YouTube, Home Depot, and AirBnB [21, 48, 58]. However, this intuition
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Figure 1: RecZilla recommends a parameterized rec-sys algorithm for a user-provided dataset and
performance metric. The RecZilla pipeline is built using a meta-dataset M that includes many
different performance metrics evaluated on many different rec-sys algorihtms on many different
datasets; we estimate algorithm performance using dataset meta-features. To avoid over-fitting and
reduce runtime, users can limit the number of algorithms and meta-features to constants n andm.

has not been formally established. Furthermore, recent work has shown that neural recommender
system algorithms do not always improve over well-tuned baselines such as k-nearest neighbor and
matrix factorization [28]. A natural question is then, “how do we choose the right algorithm for a
new dataset and performance metric?”

In this work, we show that the best algorithm and hyperparameters are highly dependent on the
dataset and user-defined performance metric. Specifically, we run the first large-scale study of
rec-sys approaches by comparing 24 algorithms across 85 datasets and 315 metrics. For each dataset
and algorithm pair, we test up to 100 hyperparameters (given a 10 hour time limit per pair). The
codebase that we release, which includes a unified API for a large, diverse set of algorithms, datasets,
and metrics, may be of independent interest. We show that the algorithms do not generalize – the
set of algorithms which perform well changes substantially across dataset and across performance
metrics. Furthermore, the best hyperparameters of a rec-sys algorithm on one dataset often perform
significantly worse than the best hyperparameters on a different dataset. Although we show that there
are no universal algorithms that work well on most datasets, we do show that various meta-features
of the dataset can be used to predict the performance of rec-sys algorithms. In fact, the same meta-
features are also predictive of the runtime of rec-sys algorithms as well as the “dataset hardness” –
how challenging it is to find a high-performing model on a particular dataset.

Motivated by these findings, we introduce RecZilla, a meta-learning-based algorithm selection
approach (see Figure 1) inspired by SATzilla [83]. At the core of RecZilla is a model that, given a
user-defined performance metric, predicts the best rec-sys algorithm and hyperparameters for a new
dataset based on meta dataset features such as number of users and items, and spectral properties of
the interaction matrix. We show that RecZilla quickly finds high-performing algorithms on datasets it
has never seen before. While there has been prior work on meta-learning for recommender systems
[26, 27], no prior work is metric-independent, searches for hyperparameters as well as algorithms,
or considers more than nine families of datasets. By running an ablation study on the number of
meta-training datasets, we show that more datasets are crucial to the success of RecZilla. We release
ready-to-use, pretrained RecZilla models for common test metrics, and we release the raw results
from our large-scale study, along with code so that practitioners can easily train a new RecZilla model
for their specific performance metric of interest.

Our contributions. We summarize our main contributions below.

• We run a large-scale study of recommender systems, showing that the best algorithm and hyper-
parameters are highly dependent on the dataset and user-defined performance metric. We also
show that dataset meta-features are predictive of the performance of algorithms.
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• We create RecZilla, a meta-learning-based algorithm selection approach which, given a perfor-
mance metric, efficiently predicts the best algorithm and set of hyperparameters on new datasets.

• We release a public repository containing 85 datasets and 24 rec-sys algorithms, accessed through
a unified API. Furthermore, we release both pretrained RecZilla models, and raw data so that
users can train a new RecZilla model on their desired metric.

Related Work Recommender systems are a widely studied area of research [10]. Common ap-
proaches include k-nearest neighbors [1], matrix factorization [57, 63], and deep learning approaches
[21, 41, 77]. For a survey on recommender systems, see [4, 10]. A recent meta-study showed
that of the 12 published neural rec-sys approaches published at top conferences between 2015 and
2018, 11 performed worse than well-tuned baselines (e.g. nearest neighbor search or linear models)
[28]. Another recent paper found that the relative performance of rec-sys algorithms can change
significantly based on the choice of datasets used [14].

Algorithm selection for recommender systems was first studied in 2011 [52] by using a graph
representation of item ratings. Follow-up work used dataset meta-features to select the best nearest
neighbor and matrix factorization algorithms [3, 35, 43]. Subsequent work focused on improving
the model and framework [27] including studying 74 meta-features systematically [23]. More recent
approaches from 2018 run meta-learning for recommender systems by casting the meta-problem itself
as a collaborative filtering problem. Performance is then estimated with subsampling landmarkers
[24, 25, 26]. No prior work in algorithm selection for rec-sys includes open-source Python code.
There is also work on automated machine learning (AutoML) for recommender systems, without
meta-learning [6, 46, 47, 82]. Finally, we note that meta-learning across rec-sys datasets is not to be
confused with the body of work on meta-learning user preferences within a single rec-sys dataset
[17, 18, 19]. To the best of our knowledge, no meta-learning or AutoML rec-sys paper has run
experiments on more than nine dataset families or four test metrics, and no prior work predicts
hyperparameters in addition to algorithms.

2 Analysis of Recommender Systems

In this section, we present a large-scale empirical study of rec-sys algorithms across a large, diverse
set of datasets and metrics. We assess the following two research questions.

1. Generalizability. If a rec-sys algorithm or set of hyperparameters performs well on one dataset
and metric, will it perform well on other datasets or on other metrics?

2. Predictability. Given a metric, can various dataset meta-features be used to predict the perfor-
mance of rec-sys algorithms?

Algorithms, datasets, and metrics implemented. We present full results for 20 rec-sys algorithms,
including methods from recent literature and common baselines. Methods include five similarity
and clustering-based methods: User-KNN [74], Item-KNN [76], P3Alpha [20], RP3Beta [72], and
Co-Clustering [39]; six Matrix-Factorization (MF) methods: MF-FunkSVD, MF-AsySVD [56],
MF-BPR [73], IALS [51], Pure-SVD, Non-negative matrix factorization (NMF) [22]; five methods
based on linear models: Global-Effects, SLIM-BPR [7], SLIM-Elastic-Net [62], EASE-R [78], and
SlopeOne [61]; two simple baselines: Random and Top-Pop; and two neural network based methods:
User-NeuRec [84] and Mult-VAE [64]. We also include partial results (on 8-10 datasets each) for
four more neural network based methods: DELF-EF [13], DELF-MLP [13], Item-NeuRec [84], and
Spectral-CF [85] (with results included in Tables 9, 10, and 11). These algorithms were chosen due
to their high performance, popularity, and speed. For many algorithms, we used the implementations
from the codebase of Dacrema et al. [28]. For full details of the algorithms, see Appendix A.

We run the algorithms on 85 datasets from 19 dataset “families”: Amazon [71], Anime [16],
BookCrossing [87], CiaoDVD [45, 59], Dating (Libimseti.cz) [59, 60], Epinions [67, 68], FilmTrust
[44], Frappe [8], Gowalla [15], Jester2 [40], LastFM [11], MarketBias-Electronics and MarketBias-
ModCloth [80], MovieTweetings [33], Movielens [49], NetflixPrize [9], Recipes [66], Wikilens [37],
and Yahoo [34]. Here, a “dataset family” refers to an original dataset, while “dataset” refers to a
single train-test split drawn from the original dataset, which may be a small subset of the original.
We implemented the majority of rec-sys datasets commonly used for research; to the best of our
knowledge, this is the largest number of rec-sys datasets accessible in a single open-source repository.
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Table 1: The relative performance of each rec-sys algorithm depends on the dataset and metric. This
table shows the mean, min (best) and max (worst) rank achieved by all 20 algorithms over all 85
datasets, over 10 accuracy and hit-rate metrics at all cutoffs tested. This includes metrics NDCG,
precision, recall, Prec.-Rec.-Min-density, hit-rate, F1, MAP, MAP-Min-density, ARHR, and MRR.
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We use 23 different “base” metrics: ARHR, Average Popularity, Diversity Similarity, F1 Score, Gini
Index, Herfindahl Index, Hit Rate, Item Coverage, Item-hit Coverage, Precision (PREC), Precision-
Recall Min Denominator, Recall, MAP, MAP Min Denominator, Mean Inter-List Diversity, MRR,
NDCG, Novelty, Shannon Entropy, User Coverage, User-hit Coverage. All of these metrics are
computed at cutoffs {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50}, for a total of 315 different metrics.
See Appendix A.6 for more details. These metrics include the most popular from the literature, and
we use the Dacrema et al. [28] implementations.

Experimental design. Each dataset’s train, validation, and test split is based on leave-last-k-out
(and our repository also includes splits based on global timestamp). We use a random hyperparameter
search for all methods, with the exception of neural network based methods. Since neural networks
require far more resources to train (longer training time, and requiring GPUs), we use only the
default hyperparameters for neural algorithms. For each non-neural algorithm, we expose several
hyperparameters and give ranges based on common values. For each dataset, we run each algorithm
on a random sample of up to 100 hyperparameter sets. Each algorithm is allocated a 10 hour limit
for each dataset split; we train and test the algorithm with at most 100 hyperparameter sets on an
n1-highmem-2 Google Cloud instance, until the time limit is reached. Each neural network method
is trained on each dataset using the default hyperparameters used in its respective paper, with a time
limit of 15 hours on an NVIDIA Tesla T4 GPU. All neural network methods are trained with batch
size 64, for up to 100 epochs; early stopping occurs if loss does not improve in 5 epochs.

Each algorithm is trained on the train split, and the performance metrics are computed on the test
split. We refer to each combination of (algorithm, hyperparameter set, dataset) as an experiment. By
running 24 algorithms, most with up to 100 hyperparameters, on 85 datasets, this resulted in 84 850
successful experiments, and by computing 315 metrics, our final meta-dataset of results includes
more than 26 million evaluations. We give a more detailed look at the breakdown of experiments in
Appendix A, and we discuss any potential biases in the resulting dataset in Section 4.

2.1 On the generalizability of rec-sys algorithms

If a rec-sys algorithm or set of hyperparameters performs well on one dataset and metric, will it
perform well on other datasets or on other metrics?

Our first observation is that all algorithms perform well on some datasets, and poorly on others. First
we identify the best-performing hyperparameter set for each (algorithm, dataset) pair—to simulate
hyperparameter optimization using our meta-dataset. We then rank all algorithms for each dataset,
according to several performance metrics.

If we focus on a single metric, then many algorithms are ranked first according to this metric on at
least one dataset. Take for example metric NDCG@1: 17 of 20 algorithms are ranked either first or
second on at least one dataset. The same is true for metric RECALL@50: all algorithms except for
SlopeOne, GlobalEffects, and Random are ranked either first or second on at least one dataset. The
same is true for many other metrics and cutoffs (see Table 9 in Appendix C).

Average performance is more varied: some algorithms tend to perform better than others. Table 1
shows the mean, min (best) and max (worst) ranking of all 24 algorithms over all dataset and all
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Figure 2: Relative algorithm performance depends on both the dataset and metric: no algorithm
dominates across all dataests or metrics. Each plot shows a different metric, normalized to [0, 1]
for each dataset; the horizontal axis shows different dataset, ordered alphabetically. Each series
corresponds to a different algorithm: similarity-based methods are red, matrix factorization methods
are green, baseline methods are black, and neural network methods are in gray.

accuracy and hit-rate metrics. This includes metrics NDCG, precision, recall, Prec.-Rec.-Min-density,
hit-rate, F1, MAP, MAP-Min-density, ARHR, and MRR (see Appendix A.6 for descriptions of these
metrics). Nearly all algorithms are ranked first for at least one metric on at least one dataset. Many
algorithms perform well on average. Furthermore, most algorithms perform very poorly in some
cases: the maximum rank is at least 14 (out of 20) for all algorithms.

To illustrate the changes in algorithm performance across datasets, Figure 2 shows the normalized
metric values for eight algorithms across 17 dataset splits. Some algorithms tend to perform well
(Item-KNN and SLIM-BPR) and others poorly (Random, TopPop), but no algorithm clearly dominates
for all metrics and datasets. This is a primary motivation for our meta-learning pipeline descirbed
in Section 3: different algorithms perform well for different datasets on different metrics, so it is
important to identify appropriate algorithms for each setting.

Generalizability of hyperparameters. While the previous section assessed the generalizability
of pairs of (algorithm, hyperparameters), now we assess the generalizability of the hyperparameters
themselves while keeping the algorithms fixed. For a given rec-sys algorithm, we can tune it on a
dataset i, and then evaluate the normalized performance of the tuned method on a dataset j, compared
to the normalized performance of the best hyperparameters from dataset j. In other words, we
compute the performance of tuning a method on one dataset and deploying it on another.

In Figure 3, we run this experiment for all pairs of datasets (one dataset per dataset family). We plot
the hyperparameter transfer for three different algorithms, as well as the average over all algorithms
which completed sufficiently many experiments across the set of hyperparameters. For each given i,
j, we create the set of hyperparameters that completed for the given algorithm on both datasets i and
j, and then we use min-max scaling for the performance metric values of these hyperparameters on i
and on j separately. Therefore, all matrix values are between 0 and 1; a value close to 1 indicates
that the best hyperparameters from dataset i are also nearly the best on dataset j. A value close to
0 indicates that the best hyperparameters from dataset i are nearly the worst for dataset j. Across
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Figure 3: Transferability of hyperparameters across datasets, for three different algorithms, and
the average of all algorithms (bottom right). For each plot, row i, column j denotes the relative
performance of an algorithm tuned on dataset i and then evaluated on dataset j. A value close to 1
indicates that the hyperparameters transfer well from i to j, while a value close to 0 indicates that the
hyperparameters transfer poorly.

all algorithms, we see that it is particularly hard for hyperparameters to transfer to and from some
datasets such as Gowalla and Jester2. Furthermore, the majority of pairs of datasets do not have strong
hyperparameter transfer. Overall, these experiments give evidence that tuning the hyperparameters
of an algorithm on one dataset and transferring to another dataset does not give high performance,
motivating RecZilla which predicts the best hyperparameters for a given algorithm and dataset.

2.2 On the predictability of rec-sys algorithms

Can attributes of the rec-sys dataset be used to predict the performance of rec-sys algorithms?

Dataset meta-features. We calculate 383 different meta-features to characterize each dataset.
These meta-features include statistics on the rating matrix—including basic statistics, the distribution-
based features of Cunha et al. [23], and landmark features [24]—which measure the performance of
simple rec-sys algorithms on a subset of the training dataset. Since these meta-features are used for
algorithm selection, they are calculated using only the training split of each dataset. For more details
on the dataset meta-features, see Appendix A.4.

Algorithm performance prediction. Table 2 shows the meta-features that are most highly-
correlated with the performance (PREC@10) of each algorithm, using their default parameters.
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Table 2: Highest absolute correlations computed across 85 datasets and weighed inversely proportional
to dataset family frequency, over all pairs of algorithm families and meta-features, for the PREC@10
performance metric and the default algorithm hyperparameters.

Abs. Correlation Algorithm Family Meta-feature
0.941 SlopeOne Mean of item rating count distribution
0.933 CoClustering Median of item rating count distribution
0.887 MF-BPR Sparsity of rating matrix
0.855 RP3beta Mean of item rating count distribution
0.846 UserKNN Landmarker, Pure SVD, mAP@5

Several meta-features aare highly-correlated with algorithm performance; one of the simplest metrics—
the mean of the item rating count distribution—is highly correlated with performance of two rec-sys
algorithms. This experiment motivates the design of RecZilla in the next section, which trains a
model using dataset meta-features to predict the performance of algorithms on new datasets.

As a toy-model version of RecZilla, we train three different meta-learner functions (XGBoost, KNN,
and linear regression) using our meta-dataset, to predict performance metric PREC@10 for 10 rec-sys
algorithms with high average performance (see Appendix A for details). We use leave-one-out
evaluation for each meta-learner: one dataset family is held out for testing, while m are used for
training. Figure 4 shows the mean absolute error (MAE) of each meta-learner; these results are
aggregated over 200 random samples of randomly-selected training dataset families. MAE decreases
as more dataset families are added, suggesting that it is possible to estimate rec-sys algorithm
performance using dataset meta-features.

We also find that performance metrics are not the only values that can be predicted with dataset
meta-features. In particular, we find that the runtime of rec-sys algorithms is also highly correlated
with different meta-features. Furthermore, we compute a simple measure of dataset hardness, which
we compute as, given a performance metric, the maximum value achieved for that dataset across all
algorithms. For example, if all 20 algorithms do not perform well on the MovieTweetings dataset,
then we can expect that the MovieTweetings dataset is “hard”. Once again, we find that certain
dataset meta-features are highly correlated with dataset hardness. For more details on meta-feature
correlation with algorithm runtimes and dataset hardness, see Appendix A.

The fact that dataset meta-features are correlated with algorithm performance, algorithm runtimes,
and dataset hardness is a strong positive signal that meta-learning is worthwhile and useful in the
context of recommender systems. We explore this direction further in the next section.

3 RecZilla: Automated Algorithm Selection

In the previous section, we found that (1) the best algorithm and hyperparameters strongly depend
on the dataset and user-chosen performance metric, and (2) the performance of algorithms can be
predicted from dataset meta-features. Points (1) and (2) naturally motivate an algorithm selection
approach to rec-sys powered by meta-learning.

In this section, we present RecZilla, which is motivated by a practical challenge: given a performance
metric and a new rec-sys dataset, quickly identify an algorithm and hyperparameters that perform well
on this dataset. This challenge arises in many settings, e.g., when selecting good baseline algorithms
for academic research, or when developing high-performing rec-sys algorithms for a commercial
application. We begin with an overview and then formally present our approach.

Overview. RecZilla is an algorithm selection approach powered by meta-learning. We use the
results from the previous section as the meta-training dataset. Given a user-specified performance
metric, we train a meta-model that predicts the performance of each of a set of algorithms and
hyperparameters on a dataset, by using meta-features of the dataset. Given a new, unseen dataset, we
compute the meta-features of the dataset, and then use the meta-model to predict the performance of
each algorithm, returning the best algorithm according to the performance metric. See Figure 1.
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Figure 4: Three basic meta-learners (KNN, lin-
ear regression, and XGB) are trained randomly-
selected dataset families to predict performance
metric PREC@10. As more dataset families are
added, the meta-learners are better able to predict
rec-sys algorithm performance, suggesting that our
dataset meta-features are useful for predicting rec-
sys algorithm performance. Vertical axis shows
mean absolute error (MAE), over all folds of leave-
one-out validation, and 200 random trials; in each
trial a different set of training datasets are chosen.
Error bars show the 40th and 60th percentile.

Preliminaries. We start with notation for the
rec-sys problem. LetD denote a rec-sys dataset,
consisting of a set of user-item interactions, split
into a training and validation set. Let a denote a
rec-sys algorithm parameterized by a set of k(a)
hyperparameters ! 2 H(a) ✓ Rk(a), which is
algorithm-dependent. Suppose we train algo-
rithm a on the training split of dataset D, us-
ing hyperparameters !; we denote the perfor-
mance of algorithm a with hyperparameters !
on dataset D as �(a,!, D) 2 R. The function
�(·, ·, ·) represents a performance metric for the
recommender system that is selected by the user;
throughout this paper we refer to this function
and its numerical value simply as performance.
In this paper, larger values of �(·, ·, ·) indicates
better performance. We report the normalized
performance defined as

�(a,!, D) ⌘ 100⇥ �(a,!, D)� P
min
D

P
max
D � P

min
D

,

where P
max
D (resp. Pmin

D ) are the max (resp.
min) performance of any algorithm on D.

Next we define notation for the meta-learning
problem. Given a fixed performance function �,
let M = {(Di, ai,!i, yi)}Mi=1 denote a meta-
dataset consisting of M tuples. Each tuple con-
sists of a dataset D, algorithm a parameterized by !, and performance y, where yi ⌘ �(ai,!i, Di).
Since many algorithms have a wide range of hyperparameters, we refer to the set of parameterized
algorithms in the meta-dataset as S = {(ai,!i)}Ni=1. We represent each dataset using vector d 2 Rm,
where each element of d is a meta-feature of the dataset. In this setting, the meta-learning task is to
identify a function that estimates the performance of parameterized algorithm (a,!) on dataset D.

3.1 The RecZilla Algorithm Selection Pipeline

The RecZilla algorithm selection pipeline takes as input a meta-dataset M built with a user-chosen
performance function for the recommendation task �(·, ·, ·). RecZilla can accommodate any perfor-
mance function that is a computable function of the performance metrics present in the meta-dataset.
The RecZilla pipeline proposed here returns both an algorithm a 2 A and a set of hyperparameters
! 2 H(a), so that RecZilla can be used without additional hyperparameter optimization.

Since the meta-learning problem is in the low-data regime, to guard against overfitting, we select a
subset of the algorithms that have good coverage over the training dataset. We similarly select only
the meta-features which are most predictive of the user-selected performance metric for the selected
algorithms. Below we outline each of the steps used to build the proposed RecZilla pipeline.

1. Algorithm subset selection: We select a subset S 0 ✓ S of n parameterized algorithms that
collectively perform well on all datasets in the meta-training datasetM, according to performance
function �. We aim to select an algorithm subset with high coverage over the set of known
datasets, where coverage of a subset S 0 is defined as

C(S 0) =
1

|D|
X

D2D
max

(a,!)2S0
�(a,!, D). (1)

In other words, the coverage of subset S 0 is the normalized performance metric of the best
performing algorithm in S 0, averaged over all datasets D. Selecting a subset with maximum
coverage is itself a difficult problem; we use a greedy heuristic as follows. We begin with S 0 = {}
and iteratively add the parameterized algorithm (a⇤,!⇤) 2 argmax(a,!)2S C(S 0 [ {(a,!)}) to
S 0 until |S 0| = n. That is, we greedily ensure that the coverage is maximized at each step.
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Table 3: Comparison between RecZilla and two representative algorithm selection approaches from
prior work. To give a fair comparison, the approaches are given the same meta-training datasets.
We compute %Diff as defined in Section 3.2, as well as the Precision@10 for the predicted best
algorithm. We report the mean and standard deviation across 50 trials for 19 test sets, for 950 total
trials. The runtime is the average time it takes to output predictions on the meta-test dataset.

Approach Runtime (sec) %Diff (#) PREC@10 of best pred. (")
cunha2018 [27] 0.39 52.9± 23.0 0.00813± 0.0113
cf4cf-meta [25] 6.68 43.5± 21.8 0.00808± 0.00773
RecZilla 6.69 33.2± 22.8 0.00915± 0.00840

2. Meta-feature selection: Similar to the previous point, we select a subset of meta-features with
good coverage over the meta-training dataset M, where here coverage is defined in terms of the
correlation between algorithm performance and each meta-feature (see Appendix A.4 for details).
LetM : D ! Rm denote the resulting function that maps a dataset to a vector of meta-features.

3. Meta-learning: We learn a function f : Rm ! Rn, where f(d) = ŷ is a vector of the estimated
performance metric of all parameterized algorithms in S on dataset meta-features d.

Note that the RecZilla pipeline has two hyperparameters: n, the number of parameterized algorithms
in S 0; and m, the number of dataset meta-features used by the meta-learner. In our experiments, we
run an ablation study with both n andm, as well as different functions f for the meta-learning model.

Using RecZilla for Algorithm Selection. After developing the RecZilla pipeline, we use the
following steps to select an algorithm for a new dataset D0:

1. Calculatem meta-features of the dataset d0  M(D0).
2. Estimate the performance of all parameterized algorithms: y0  f(d0).
3. Return the parameterized algorithm in S 0 with the best estimated performance.

3.2 Experiments

In this section, we evaluate the end-to-end RecZilla pipeline. We start by describing the specific
versions of RecZilla used in our experiments. We use four different meta-learning functions within
RecZilla: XGBoost [12], linear regression, k-nearest neighbors, and uniform random. For KNN, we
set k = 5 and use the L2 distance from the selected meta-features.

Experimental setup. Focusing on performance metric PREC@10, we build a meta-dataset M
using all rec-sys datasets, algorithms, and meta-features described in Section 2. We first use the
algorithm selection and meta-feature selection procedures described above to select n = m = 100
parameterized algorithms and meta-features. For all experiments, we use the best 10 parameterized
algorithms selected during this process. We vary both the number of training meta-datapoints and
meta-features; the datapoints and features are randomly selected over 50 random trials. All RecZilla
meta-learners are evaluated using leave-one-dataset-out evaluation: we iteratively select each dataset
family as the meta-test dataset, and run the full RecZilla pipeline using the remaining datasets as the
meta-training data. Splitting on dataset families rather than datasets ensures that there is no test data
leakage. Then for each dataset D in the test set, we compare the performance metric of the predicted
best parameterized algorithm (a0,!0) to the performance metric of the ground-truth best algorithm
y
⇤, using the percentage-difference-from-best: %Diff = 100⇥ (y⇤ � �(D, a

0
,!0))/y⇤. %Diff is

between 0 and 100, and smaller values indicate better performance.

Results and discussion. In Table 3, we compare RecZilla with two prior algorithm selection
approaches: cunha2018 [27] and cf4c4-meta [25], which are a comprehensive depiction of all
prior work (see Appendix B.4 for justification, and for details of the experiment). Furthermore,
note that cunha2018 has no open-source code, and cf4c4-meta only has code in R. We find that
RecZilla outperforms the other two approaches in both %Diff and in terms of the PREC@10 value of
the rec-sys algorithm outputted by each meta-learning algorithm.
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In Appendix C.3, Figure 5 (left) shows %Diff vs. the size of the meta-training set, and Figure
5 (right) shows the results of an ablation study on the number of selected meta-features m. See
Appendix C.3 for more details and discussion.

Pre-trained RecZilla models. We release pre-trained RecZilla models for PREC@10, NDCG@10,
and Item-hit Coverage@10, trained with XGBoost on all 18 datasets, with algorithms n = 10 and
meta-features m = 10. We also include a RecZilla model that predicts the Pareto-front of PREC@10
and model training time, so that users can select their desired trade-off between performance and
runtime. Finally, we include a pipeline so that users can choose a metric from the list of 315 (or any
desired combination of the 315 metrics) and train the resulting RecZilla model.

4 Conclusions, Limitations, and Broader Impact

In this work, we conducted the first large-scale study of rec-sys approaches: we compared 24 algo-
rithms and 100 sets of hyperparameters across 85 datasets and 315 metrics. We showed that for a given
performance metric, the best algorithm and hyperparameters highly depend on the dataset. We also
find that various meta-features of the datasets are predictive of algorithmic performance and runtimes.
Motivated by these findings, we created RecZilla, the first metric-independent, hyperparameter-aware
algorithm selection approach to recommender systems. Through empirical evaluation, we show that
given a user-defined metric, RecZilla effectively predicts high-performing algorithms and hyperpa-
rameters for new, unseen datasets, substantially reducing the need for human involvement. We not
only release our code and pretrained RecZilla models, but we also release the raw experimental results
so that users can train new RecZilla models on their own test metrics of interest. This codebase,
which includes a unified API for 85 datasets and 24 algorithms, may be of independent interest.

Limitations. While our work progresses prior work along several axes, there are still avenues for
improvement. First, the meta-learning problem in RecZilla is low-data. Although we added nearly all
common rec-sys research datasets into RecZilla, the result is still only 85 meta-datapoints (datasets).
While we guarded against over-fitting to the training data in numerous ways, RecZilla can still be
improved by more training data. Therefore, as new recommender system datasets are released in
the future, our hope is to add them to our API, so that RecZilla continuously improves over time.
Similarly, our hope is to add the most recent high-performing rec-sys approaches to our work, as
well as algorithms released in the future. This includes adding neural network-based approaches,
in addition to the six that we have already included. Another limitation is that RecZilla does not
directly predict the performance of hyperparameters for algorithms on a given dataset. Although care
must be taken to not overfit, modifying RecZilla to predict the performance of an algorithm together
with a set of hyperparameters is an interesting avenue for future work. Finally, the magnitude of our
evaluation (84 850 models trained) leaves our meta-data susceptible to biases based on experiment
success/failures. While we fixed many common errors such as out-of-memory errors, it was infeasible
to give each experiment specific attention. Therefore, RecZilla may have higher uncertainty for the
datasets and algorithms that are more likely to fail. An interesting future improvement to RecZilla
would be to predict the likelihood that a new dataset will successfully train on a new dataset.

Broader impact. Our work is “meta-research”: there is not one specific application that we
target, but our work makes it substantially easier for researchers and practitioners to quickly train
recommender system models when given a new dataset. On the research side, this is a net positive
because researchers can much more easily include baselines, comparisons, and run experiments on
large numbers of datasets, all of which lead to more principled empirical comparisons. On the applied
side, our day-to-day lives are becoming more and more influenced by recommendations generated
from machine learning models, which comes with pros and cons. These recommendations connect
users with needed items that they would have had to spend time searching for [54]. Although these
recommendations may lead to harmful effects such as echo chambers [38, 55], techniques to identify
and mitigate harms are improving [42, 69].

Acknowledgments and Disclosure of Funding

This work was supported by a GEM Fellowship, NSF CAREER Award IIS-1846237, NIST MSE
Award #20126334, DARPA GARD #HR00112020007, and DoD WHS Award #HQ003420F0035.

10



References
[1] David Adedayo Adeniyi, Zhaoqiang Wei, and Y Yongquan. Automated web usage data mining

and recommendation system using k-nearest neighbor (knn) classification method. Applied
Computing and Informatics, 12(1):90–108, 2016.

[2] Gediminas Adomavicius and YoungOk Kwon. Improving aggregate recommendation diversity
using ranking-based techniques. IEEE Transactions on Knowledge and Data Engineering,
24(5):896–911, 2011.

[3] Gediminas Adomavicius and Jingjing Zhang. Impact of data characteristics on recommender
systems performance. ACM Transactions on Management Information Systems (TMIS), 3(1):1–
17, 2012.

[4] Charu C Aggarwal et al. Recommender systems, volume 1. Springer, 2016.

[5] Fabio Aiolli. Efficient top-n recommendation for very large scale binary rated datasets. In
Proceedings of the 7th ACM Conference on Recommender Systems, RecSys ’13, page 273–280,
New York, NY, USA, 2013. Association for Computing Machinery.

[6] Rohan Anand and Joeran Beel. Auto-surprise: An automated recommender-system (autorecsys)
library with tree of parzens estimator (tpe) optimization. In Fourteenth ACM Conference on
Recommender Systems, pages 585–587, 2020.

[7] Krisztian Balog, Filip Radlinski, and Shushan Arakelyan. Transparent, scrutable and explainable
user models for personalized recommendation. In Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR’19, page
265–274, New York, NY, USA, 2019. Association for Computing Machinery.

[8] Linas Baltrunas, Karen Church, Alexandros Karatzoglou, and Nuria Oliver. Frappe: Under-
standing the usage and perception of mobile app recommendations in-the-wild. arXiv preprint
arXiv:1505.03014, 2015.

[9] James Bennett, Stan Lanning, et al. The netflix prize. In Proceedings of KDD cup and workshop,
volume 2007, page 35. Citeseer, 2007.

[10] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems survey.
Knowledge-Based Systems, 46:109–132, 2013.

[11] Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2nd workshop on information heterogeneity
and fusion in recommender systems (hetrec 2011). In Proceedings of the 5th ACM conference
on Recommender systems, RecSys 2011, New York, NY, USA, 2011. ACM.

[12] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

[13] Weiyu Cheng, Yanyan Shen, Yanmin Zhu, and Linpeng Huang. Delf: A dual-embedding based
deep latent factor model for recommendation. In Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-18, pages 3329–3335. International
Joint Conferences on Artificial Intelligence Organization, 7 2018.

[14] Jin Yao Chin, Yile Chen, and Gao Cong. The datasets dilemma: How much do we really know
about recommendation datasets? In Proceedings of the Fifteenth ACM International Conference
on Web Search and Data Mining, pages 141–149, 2022.

[15] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. Friendship and mobility: User movement
in location-based social networks. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’11, page 1082–1090, New York,
NY, USA, 2011. Association for Computing Machinery.

[16] Hyerim Cho, Marc L Schmalz, Stephen A Keating, and Jin Ha Lee. Analyzing anime users’
online forum queries for recommendation using content analysis. Journal of Documentation,
2018.

11



[17] Andrew Collins and Joeran Beel. Meta-learned per-instance algorithm selection in scholarly
recommender systems. arXiv preprint arXiv:1912.08694, 2019.

[18] Andrew Collins, Dominika Tkaczyk, and Joeran Beel. A novel approach to recommendation
algorithm selection using meta-learning. In AICS, pages 210–219, 2018.

[19] Andrew Collins, Dominika Tkaczyk, and Joeran Beel. One-at-a-time: A meta-learning
recommender-system for recommendation-algorithm selection on micro level. arXiv preprint
arXiv:1805.12118, 2018.

[20] Colin Cooper, Sang Hyuk Lee, Tomasz Radzik, and Yiannis Siantos. Random walks in recom-
mender systems: exact computation and simulations. In Proceedings of the 23rd international
conference on world wide web, pages 811–816, 2014.

[21] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommenda-
tions. In Proceedings of the 10th ACM conference on recommender systems, pages 191–198,
2016.

[22] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recommender algorithms
on top-n recommendation tasks. In Proceedings of the fourth ACM conference on Recommender
systems, pages 39–46, 2010.

[23] Tiago Cunha, Carlos Soares, and André CPLF de Carvalho. Selecting collaborative filtering
algorithms using metalearning. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 393–409. Springer, 2016.

[24] Tiago Cunha, Carlos Soares, and André CPLF de Carvalho. Recommending collaborative
filtering algorithms using subsampling landmarkers. In International Conference on Discovery
Science, pages 189–203. Springer, 2017.

[25] Tiago Cunha, Carlos Soares, and André CPLF de Carvalho. Cf4cf-meta: Hybrid collaborative
filtering algorithm selection framework. In International Conference on Discovery Science,
pages 114–128. Springer, 2018.

[26] Tiago Cunha, Carlos Soares, and André CPLF de Carvalho. Cf4cf: recommending collaborative
filtering algorithms using collaborative filtering. In Proceedings of the 12th ACM Conference
on Recommender Systems, pages 357–361, 2018.

[27] Tiago Cunha, Carlos Soares, and André CPLF de Carvalho. Metalearning and recommender
systems: A literature review and empirical study on the algorithm selection problem for
collaborative filtering. Information Sciences, 423:128–144, 2018.

[28] Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi, and Dietmar Jannach. A troubling
analysis of reproducibility and progress in recommender systems research. ACM Transactions
on Information Systems (TOIS), 39(2):1–49, 2021.

[29] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. Are we really making
much progress? A worrying analysis of recent neural recommendation approaches. In Toine
Bogers, Alan Said, Peter Brusilovsky, and Domonkos Tikk, editors, Proceedings of the 13th
ACM Conference on Recommender Systems, RecSys 2019, Copenhagen, Denmark, September
16-20, 2019, pages 101–109. ACM, 2019.

[30] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[31] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics.

[32] Lee R. Dice. Measures of the amount of ecologic association between species. Ecology,
26(3):297–302, 1945.

12



[33] Simon Dooms, Toon De Pessemier, and Luc Martens. Movietweetings: a movie rating dataset
collected from twitter. InWorkshop on Crowdsourcing and Human Computation for Recom-
mender Systems, CrowdRec at RecSys 2013, 2013.

[34] Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus Weimer. The yahoo! music
dataset and kdd-cup’11. In Proceedings of KDD Cup 2011, pages 3–18. PMLR, 2012.

[35] Michael Ekstrand and John Riedl. When recommenders fail: predicting recommender failure
for algorithm selection and combination. In Proceedings of the sixth ACM conference on
Recommender systems, pages 233–236, 2012.

[36] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
In JMLR, 2019.

[37] Dan Frankowski, Shyong K. Lam, Shilad Sen, F. Maxwell Harper, Scott Yilek, Michael Cassano,
and John Riedl. Recommenders everywhere: The wikilens community-maintained recommender
system. In Proceedings of the 2007 International Symposium on Wikis, WikiSym ’07, page
47–60, New York, NY, USA, 2007. Association for Computing Machinery.

[38] Yingqiang Ge, Shuya Zhao, Honglu Zhou, Changhua Pei, Fei Sun, Wenwu Ou, and Yongfeng
Zhang. Understanding echo chambers in e-commerce recommender systems. In Proceedings
of the 43rd international ACM SIGIR conference on research and development in information
retrieval, pages 2261–2270, 2020.

[39] Thomas George and Srujana Merugu. A scalable collaborative filtering framework based on
co-clustering. In Fifth IEEE International Conference on Data Mining (ICDM’05), pages 4–pp.
IEEE, 2005.

[40] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. Eigentaste: A constant time
collaborative filtering algorithm. Information Retrieval, 4(2):133–151, 2001.

[41] Carlos A Gomez-Uribe and Neil Hunt. The netflix recommender system: Algorithms, business
value, and innovation. ACM Transactions on Management Information Systems (TMIS), 6(4):1–
19, 2015.

[42] Pietro Gravino, Bernardo Monechi, and Vittorio Loreto. Towards novelty-driven recommender
systems. Comptes Rendus Physique, 20(4):371–379, 2019.

[43] Josephine Griffith, Colm O’Riordan, and Humphrey Sorensen. Investigations into user rating
information and predictive accuracy in a collaborative filtering domain. In Proceedings of the
27th Annual ACM Symposium on Applied Computing, pages 937–942, 2012.

[44] G. Guo, J. Zhang, and N. Yorke-Smith. A novel bayesian similarity measure for recommender
systems. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence
(IJCAI), pages 2619–2625, 2013.

[45] Guibing Guo, Jie Zhang, Daniel Thalmann, and Neil Yorke-Smith. Etaf: An extended trust
antecedents framework for trust prediction. In 2014 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM 2014), pages 540–547, 2014.

[46] Garima Gupta and Rahul Katarya. Enpso: An automl technique for generating ensemble
recommender system. Arabian Journal for Science and Engineering, 46(9):8677–8695, 2021.

[47] Srijan Gupta. Auto-caserec: A novel automated recommender system framework, 2020.

[48] Malay Haldar, Mustafa Abdool, Prashant Ramanathan, Tao Xu, Shulin Yang, Huizhong Duan,
Qing Zhang, Nick Barrow-Williams, Bradley C Turnbull, Brendan M Collins, et al. Applying
deep learning to airbnb search. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1927–1935, 2019.

[49] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst., 5(4), dec 2015.

[50] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-training. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4918–4927, 2019.

13



[51] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback
datasets. In 2008 Eighth IEEE international conference on data mining, pages 263–272. Ieee,
2008.

[52] Zan Huang and Daniel Dajun Zeng. Why does collaborative filtering work? transaction-
based recommendation model validation and selection by analyzing bipartite random graphs.
INFORMS Journal on Computing, 23(1):138–152, 2011.

[53] Nicolas Hug. Surprise: A python library for recommender systems. Journal of Open Source
Software, 5(52):2174, 2020.

[54] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich. Recommender
systems: an introduction. Cambridge University Press, 2010.

[55] Ray Jiang, Silvia Chiappa, Tor Lattimore, András György, and Pushmeet Kohli. Degenerate
feedback loops in recommender systems. In Proceedings of the 2019 AAAI/ACM Conference
on AI, Ethics, and Society, pages 383–390, 2019.

[56] Yehuda Koren. Factorization meets the neighborhood: A multifaceted collaborative filtering
model. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’08, page 426–434, New York, NY, USA, 2008. Association
for Computing Machinery.

[57] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

[58] Pigi Kouki, Ilias Fountalis, Nikolaos Vasiloglou, Xiquan Cui, Edo Liberty, and Khalifeh
Al Jadda. From the lab to production: A case study of session-based recommendations in the
home-improvement domain. In Fourteenth ACM conference on recommender systems, pages
140–149, 2020.

[59] Jérôme Kunegis. Konect: The koblenz network collection. In Proceedings of the 22nd
International Conference on World Wide Web, WWW ’13 Companion, page 1343–1350, New
York, NY, USA, 2013. Association for Computing Machinery.

[60] Jérôme Kunegis, Gerd Gröner, and Thomas Gottron. Online dating recommender systems:
The split-complex number approach. In Proceedings of the 4th ACM RecSys Workshop on
Recommender Systems and the Social Web, RSWeb ’12, page 37–44, New York, NY, USA,
2012. Association for Computing Machinery.

[61] Daniel Lemire and Anna Maclachlan. Slope one predictors for online rating-based collaborative
filtering. In Proceedings of the 2005 SIAM International Conference on Data Mining, pages
471–475. SIAM, 2005.

[62] Mark Levy and Kris Jack. Efficient top-n recommendation by linear regression, 2013.

[63] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization.
Advances in neural information processing systems, 27, 2014.

[64] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. Variational autoen-
coders for collaborative filtering. In Proceedings of the 2018 World Wide Web Conference,
WWW ’18, page 689–698, Republic and Canton of Geneva, CHE, 2018. International World
Wide Web Conferences Steering Committee.

[65] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach, 2019.

[66] Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo Ni, and Julian McAuley. Generating
personalized recipes from historical user preferences. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 5976–5982, Hong Kong, China,
November 2019. Association for Computational Linguistics.

14



[67] Paolo Massa and Paolo Avesani. Trust-aware recommender systems. In Proceedings of the
2007 ACM Conference on Recommender Systems, RecSys ’07, page 17–24, New York, NY,
USA, 2007. Association for Computing Machinery.

[68] Paolo Massa, Kasper Souren, Martino Salvetti, and Danilo Tomasoni. Trustlet, open research
on trust metrics. Scalable Computing: Practice and Experience, 9(4), 2008.

[69] Virginia Morini, Laura Pollacci, and Giulio Rossetti. Toward a standard approach for echo
chamber detection: Reddit case study. Applied Sciences, 11(12):5390, 2021.

[70] Allan H. Murphy. The finley affair: A signal event in the history of forecast verification. Weather
and Forecasting, 11(1):3 – 20, 1996.

[71] Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-
labeled reviews and fine-grained aspects. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 188–197, Hong Kong, China, November 2019.
Association for Computational Linguistics.

[72] Bibek Paudel, Fabian Christoffel, Chris Newell, and Abraham Bernstein. Updatable, accurate,
diverse, and scalable recommendations for interactive applications. ACM Transactions on
Interactive Intelligent Systems (TiiS), 7(1):1–34, 2016.

[73] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. BPR:
Bayesian personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, UAI ’09, page 452–461, Arlington, Virginia,
USA, 2009. AUAI Press.

[74] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. Grouplens:
An open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM
Conference on Computer Supported Cooperative Work, CSCW ’94, page 175–186, New York,
NY, USA, 1994. Association for Computing Machinery.

[75] Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik. Imagenet-21k pretraining for
the masses. In J. Vanschoren and S. Yeung, editors, Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks, volume 1, 2021.

[76] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th International Conference
on World Wide Web, WWW ’01, page 285–295, New York, NY, USA, 2001. Association for
Computing Machinery.

[77] Brent Smith and Greg Linden. Two decades of recommender systems at amazon. com. Ieee
internet computing, 21(3):12–18, 2017.

[78] Harald Steck. Embarrassingly shallow autoencoders for sparse data. In The World Wide Web
Conference, pages 3251–3257, 2019.

[79] Amos Tversky. Features of similarity. Psychological review, 84(4):327, 1977.

[80] Mengting Wan, Jianmo Ni, Rishabh Misra, and Julian McAuley. Addressing Marketing Bias in
Product Recommendations, page 618–626. Association for Computing Machinery, New York,
NY, USA, 2020.

[81] Fan Wang, Xiaomin Fang, Lihang Liu, Yaxue Chen, Jiucheng Tao, Zhiming Peng, Cihang Jin,
and Hao Tian. Sequential evaluation and generation framework for combinatorial recommender
system. arXiv preprint arXiv:1902.00245, 2019.

[82] Ting-Hsiang Wang, Xia Hu, Haifeng Jin, Qingquan Song, Xiaotian Han, and Zirui Liu. AutoRec:
An Automated Recommender System, page 582–584. Association for Computing Machinery,
New York, NY, USA, 2020.

[83] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla: portfolio-based
algorithm selection for SAT. Journal of Artificial Intelligence Research, 32:565–606, June
2008.

15



[84] Shuai Zhang, Lina Yao, Aixin Sun, Sen Wang, Guodong Long, and Manqing Dong. Neurec: On
nonlinear transformation for personalized ranking. In Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence, IJCAI-18, pages 3669–3675. International
Joint Conferences on Artificial Intelligence Organization, 7 2018.

[85] Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, and Philip S. Yu. Spectral collaborative
filtering. In Proceedings of the 12th ACM Conference on Recommender Systems, RecSys ’18,
page 311–319, New York, NY, USA, 2018. Association for Computing Machinery.

[86] Tao Zhou, Zoltán Kuscsik, Jian-Guo Liu, Matúš Medo, Joseph Rushton Wakeling, and Yi-Cheng
Zhang. Solving the apparent diversity-accuracy dilemma of recommender systems. Proceedings
of the National Academy of Sciences, 107(10):4511–4515, 2010.

[87] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. Improving
recommendation lists through topic diversification. In Proceedings of the 14th International
Conference on World Wide Web, WWW ’05, page 22–32, New York, NY, USA, 2005. Associa-
tion for Computing Machinery.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] [The main claims in the abstract and introduction reflect
the paper’s contributions and scope.]

(b) Did you describe the limitations of your work? [Yes] [See Section 4.]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] [See

Section 4.]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] [We read the ethics review guidelines and ensured our paper conforms to
them.]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] [We did not

include theoretical results.]
(b) Did you include complete proofs of all theoretical results? [N/A] [We did not include

theoretical results.]
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] [We
include the code, data, and instructions to reproduce the results here: https:
//github.com/naszilla/reczilla.]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] [See Section 2 and Appendix A.]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] [See Section 3.]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] [We include this information in
Section 2].

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] [See Section 2 and

Appendix A.]
(b) Did you mention the license of the assets? [N/A] Our experiments were conducted

only on publicly available datasets.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

We did not include new assets.

16

https://github.com/naszilla/reczilla
https://github.com/naszilla/reczilla


(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] Our experiments were conducted only on publicly available
datasets.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] Our experiments were conducted only on
publicly available datasets.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] [We did not conduct research with human subjects.]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] [We did not conduct research with human
subjects.]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] [We did not conduct research with human
subjects.]

17


	Introduction
	Analysis of Recommender Systems
	On the generalizability of rec-sys algorithms
	On the predictability of rec-sys algorithms

	RecZilla: Automated Algorithm Selection
	The RecZilla Algorithm Selection Pipeline
	Experiments

	Conclusions, Limitations, and Broader Impact
	Experiment Details
	Generating Meta-Datasets
	Rec-sys Algorithms Implemented in RecZilla
	RecZilla Datasets
	Dataset Meta-Features & Meta-Feature Selection
	Hyperparameter Sampling
	Evaluation Metrics
	Additional details and experiments from Section 2.2

	RecZilla Meta-Learning Pipeline
	Initial algorithm selection
	Meta-feature selection
	Metalearner for algorithm selection
	Additional details on comparisons to other algorithm selection methods for rec-sys

	Additional Results and Discussion
	Detailed algorithmic results
	A guide to practitioners
	Additional experiments from Section 3
	Meta-learner results with additional metrics


