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Abstract

A cyclostationary process is one whose autocorrelation
function is periodic or nearly periodic. The modulation
schemes used to encode information give rise to cyclosta-
tionarity in many human-generated sources of interference.
In contrast, nearly all astrophysical signals are expected to
be wide-sense stationary on timescales of interest, making
cyclostationarity a potentially robust way of discriminating
between interference and astronomical sources. We are de-
veloping an algorithm that employs a well-known method
of detecting cyclostationary signals and testing its efficacy
against a suite of simulated interference covering a wide
range of modulation schemes. We present receiver operat-
ing characteristic curves and binary classification scores for
different types of interfering signals. Our algorithm per-
forms well for many modulation schemes, with F1 and ¢
coefficient scores in excess of 0.9 in some cases, though it
shows weaknesses in the case of frequency modulation. We
also apply our algorithm to archived Robert C. Byrd Green
Bank Telescope observations of a bright millisecond pulsar.
We use standard pipelines for blindly detecting and timing
pulsars and preliminarily find improvement in data qual-
ity according to several metrics, though some undesirable
effects are still present. We also show that our algorithm
has no negative impact when detecting Galactic HI emis-
sion. We thus believe that cyclostationary signal process-
ing shows promise as a means of interference mitigation
and discuss opportunities and challenges for employing it
more widely.

1 Introduction

Human-generated radio frequency interference (RFI) is
a long-standing and growing challenge for radio astron-
omy. Ultra-wide bandwidth instruments are becoming
more common in radio astronomy at the same time as the
number of interference sources and their spectrum occu-
pancy is increasing. This confluence threatens the abilities
of existing and next-generation radio telescopes to deliver
on their scientific promise.

A number of methods exist for identifying and mitigat-
ing the impact of RFI, both during real-time data collec-

tion and during post-processing. These methods usually
assume that astrophysical signals closely follow Gaussian
statistics, and flag data as being contaminated by RFI when
the data exhibit non-Gaussian statistical moments [9, 10].
Some other approaches attempt to use the data themselves
to subtract RFI at an early stage of post-processing (e.g.
[4]). While these approaches can be very successful, they
can also break down when extremely strong astrophysical
sources depart from the assumption of Gaussian statistics
(e.g. bright fast radio bursts).

One robust feature of nearly all astrophysical sources, re-
gardless of their intensity, is that they closely approximate a
wide-sense stationary process (one import exception is pul-
sars, which we discuss in more detail below). Some pro-
cess, x(¢), is wide-sense stationary when its autocorrelation
function, R, is time invariant, i.e.
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where E is the expectation operator, 7 is a time-lag, and the
* denotes complex conjugation.

In contrast, many sources of RFI are not wide-sense station-
ary, but instead are cyclostationary [5], meaning that R, is
periodic on a timescale Tp:
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Cyclostationarity arises in many sources of RFI because
information is encoded by periodically modulating some
property (phase, frequency, and/or amplitude) of a carrier
wave on a timescale determined by the bit rate, fu; = 1/Tpj.
Thus, cyclostationary signal processing (CSP) has the po-
tential to robustly discriminate between RFI and most astro-
physical signals. One important exception is pulsars, which
are cyclostationary on the timescale of the pulsar rotational
period, P [3]. CSP may still be used when observing pul-
sars as long as care is taken to analyze data in segments that
are shorter than P.

We are exploring the efficacy of a CSP-based approach to
RFI mitigation using both simulated RFI and real-world



data collected with the Robert C. Byrd Green Bank Tele-
scope (GBT). We have developed an algorithm that detects
the presence of cyclostationary signals and apply it to simu-
lated signals that employ a variety of modulation schemes.
We then use the optimal algorithmic parameters to mitigate
archived baseband data collected between 1100 and 1900
MHz on the bright milllisecond pulsar J1713+0747. We
process both the mitigated and original, unmitigated data
using standard pulsar data analysis tools and compare rel-
evant metrics of scientific data quality. We also compare
the integrated spectrum of Galactic H1, which was present
in our observing band. We find promising results and some
areas for improvement. In §2 we provide more details about
our algorithm, in §3 we describe our simulations, and in §4
we present results from our tests with GBT data. We dis-
cuss possible improvements and future avenues of research
in §5.

2 CSP RFI Identification Algorithm

The autocorrelation function of a cyclostationary process
that is periodic on a timescale Tp can be expanded as a
Fourier series with coefficients that can be estimated as
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where the second line holds true if x(¢) is ergodic and Ry,
can be estimated from the observed data [5]. Cy, is known
as the cyclic autocorrelation function and is non-zero only
at discrete cycle frequencies given by oy = k/Tp, where k
is an integer. The spectral correlation function (SCF; also
known as the cyclic spectrum [5]) can be obtained by taking
a Fourier transform of C,, with respect to 7:
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where we will refer to v as the spectral frequency. Note
that S, reduces to the typical definition of the power spec-
tral density (PSD) when ¢ = 0. The SCF can be normalized
by a frequency-shifted version of the PSD so that it is de-
fined on [0, 1], in which case it is referred to as the spectral
coherence function:
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This normalized version of the SCF is useful for setting de-
tection thresholds for signals of arbitrary mean and vari-
ance.

In practice we will not usually know T for all of the RFI
that may be present in a data set, so to detect the presence
of a cyclostationary signal we need to have some way of
estimating S, with sufficient resolution in both v and «.
We employ a technique known as the strip-spectrum corre-
lation analyzer (SSCA; [12]), which is a method of time-
averaging spectral correlations. In words, the steps in the
SSCA are:

1. Take a data set, denoted as x(n), of length N points and
duration At.

2. Use a windowing function and sliding Fourier trans-
form to channelize subsets of x(n), each of length N’,
yielding X (r, v¢). Note that r is the time-index and vy
are the channelizer frequencies (not the final spectral
frequencies that appear in Equation 5).

3. Multiply X (r, v¢) by x*(r).

4. Perform a discrete Fourier transform of the result of
step 3.

5. If desired, compute the spectral coherence using an
over-sampled estimate of the PSD.

Mathematically this can be expressed as
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where the Az subscript indicates averaging, Aot = Ar~! is
the cycle frequency resolution, ¢ is an integer index running
from —N/2 to N/2, and w is a windowing function. Note
that the SSCA estimates Sy, at discrete spectral and cycle
frequencies which are given by v = % — qATO‘ and @0 = v, +
qAa.

Our implementation closely follows [2]. We use cupy' and
cusignal’ to implement the SSCA in Python with GPU
acceleration. X (r, vx) is computed via the cusignal short-
time Fourier-transform (STFT) routine using a Hann win-
dow and a time-domain step size of four samples.

Having used the SSCA to obtain an estimate of the spectral
coherence, we define a detection statistic using the maxi-
mum’ value of |p,|. The maximum value follows a Gumbel
distribution (a special case of the generalized extreme value
distribution), with shape parameters that depend slightly on
the choice of windowing function used in the STFT and on
the choice of N and N'. We determine the shape parameters
for various combinations of N and N’ by simulating 10°
independent realizations of complex Gaussian random val-
ues, passing them through our SSCA implementation, and
fitting a Gumbel distribution to the observed max{|py|}-
We can then set a detection threshold, Gyesn, Such that we
consider the data under analysis as having significant evi-
dence of cyclostationarity, and thus flag it as being contam-
inated by RFI, when

max{ |pxx | }observed > Q(Gthresh) (8)

where Q is the quantile function for a Gumbel distribution.

"https://cupy.dev/

“nttps://github.com/rapidsai/cusignal

3 According to [6], a near-optimal detection statistic is given by ¥ =
Yoz0 Jy Pux (Vs &) pii (Vs a)dv. We are still investigating use of this statis-
tic but so far have had better results with our approach.
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Figure 1. An example of our simulated data for a BPSK signal. The left panel shows the simulated spectrum as a function of
time and the ground-truth for when a signal is present. The right panel shows the same data but with the samples flagged by
our algorithm having been “masked” (i.e. removed from the data set), and the mask used for this purpose. We also show some
parameters of the simulated signal and algorithmic metrics in the text-boxes.

3 Tests Using Simulated Data

Our goal is to explore the efficacy of our algorithm for var-
ious choices of N, N, and Oyesn When applied to real as-
tronomical data. As a first step, we simulated various types
of human-generated signals with well-known parameters so
that we could compare the results of our algorithm with
ground-truth and characterize its performance.

3.1 Simulated RFI Signals

We simulated human-generated signals using a variety
of modulation schemes, namely: amplitude-shift keying
(ASK), on-off keying (OOK), binary phase-shift keying
(BPSK), quadrature phase-shift keying (QPSK), frequency-
shift keying (FSK), minimum-shift keying (MSK), Gaus-
sian minimum-shift keying (GMSK), and quadrature am-
plitude modulation (QAM). We generated a random sym-
bol sequence with some energy-per-bit, Ey;, with one bit
per symbol (except in the case of QPSK/QAM, which by
definition uses two bits per symbol). We then added ran-
dom Gaussian noise with some noise spectral density, No.
To better match the digital backend system used at the GBT,
we performed a first-stage channelization via a 64-channel,
24-tap polyphase filterbank (PFB). The result is a complex-
value voltage time series for each PFB channel.

We worked entirely in normalized units, i.e. fsamp = 1 Hz.
We explored various combinations of N, N', and Gypyesn for
signal-to-noise ratios (S/N) of five and ten. We also varied
the bit-duration, T, using values of 100 and 300 samples.
In all the simulations presented here we used a duty cycle
of 100%, i.e. the signals were always “on” (OOK signals
by definition involve an “off” state, but we do not apply any
additional cycling).

In some of our test cases the simulated signal had a band-
width greater than that of a single PFB channel. Further-
more, in the case of the frequency-switched family of sig-
nals and OOK, the signal state was modulated using a ran-
dom symbol sequence, such that we did not know a pri-
ori which time/frequency samples would contain RFI. We
therefore defined a ground-truth data set by considering an
interfering signal to be present when S/N > 1. We then
passed the data set through our algorithm and compared the
results to ground-truth, counting the number of true pos-
itives (TP), true negatives (TN), false positives (FP), and
false negatives (FN). From these we derived the following
metrics:

TPR (true positive rate) )

TP
" TP+FN
FNR =

N
TPTEN (false negative rate) (10)
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We prefer to use ¢ to judge the efficacy of our algorithm
since it performs better than the commonly-used F1 score
when the size of the TP, TN, FP, and FN classes are very
different [1].

3.2 Simulation Results

In Figure 1 we show an example of our simulated data,
ground-truth, mitigated data (with samples flagged as con-
taining RFI removed), and mitigation mask. In this exam-
ple we used a BPSK signal with Ty = 300 and S/N = 5.
Our algorithmic parameters were N’ = 64, N = 4096, and
Othresh = 0.999. The algorithm performs very well, with
¢ = 0.904, TPR = 100%, and FPR = 0.3%.

A more useful metric than this snapshot is a receiver oper-
ating characteristic (ROC) curve, which compares TPR and
FPR for different values of Giyesh- Fig. 2 shows ROC curves
for S/N = 5 and 10 and for Ty, = 100 and 300 samples for
the different modulation schemes in our simulations. Our
algorithm performs very well for most signal types, espe-
cially at high S/N, but shows weaknesses in the case of FSK
and, especially, MSK/GMSK. This is because in the current
implementation of the algorithm, each PFB channel is ana-
lyzed independently; thus, when a frequency-switched sig-
nal moves between different PFB channels our algorithm
does not recognize it is as cyclostationary unless it returns
to a given channel within N samples (note that in these plots
N = 4096) and is of sufficiently high S/N. We also note
that, in general, signals with a shorter Ty; are also classified
more poorly compared to signals with a longer Ty;. This
is because a shorter Ty requires a wider-bandwidth signal,
which in turn can spread energy across multiple PFB chan-
nels and reduce the S/N in any one PFB channel. We dis-
cuss potential ways of reducing both of these weaknesses
in §5.

Broadly speaking, though, our algorithm performs quite
well. When considering a range of factors we find that
the best combination of algorithmic parameters is N = 64,
N = 4096, and Gihresh = 0.999, and we use these parameters
in tests with real astronomical data.

4 Tests Using Astronomical Data

One of the long-term goals of our project is to implement
real-time RFI mitigation for the GBT. Since the data would
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Figure 2. ROC curves for S/N =5 (top) and 10 (bot-
tom) for different signal-types (indicated by color) and Ty;
(solid lines for 300 samples and dashed lines for 100 sam-
ples). Error bars indicate the standard deviation observed
in ten independent trials. In all cases we used N’ = 64 and
N = 4096. The dotted line is the ROC curve for a non-
informative classifier (which has a slope of exactly one).
The curve for a perfect classifier would appear at a right-
angle. Good classifiers approach close to the upper-left of
the plot. Our algorithm performs well for most modulation
schemes but shows weaknesses in the case of the frequency-
switched family of signals.

be altered in-place, it is vital that we show that our algo-
rithm not only removes RFI, but also does not deleteriously
impact the quality of the final science data products. To
this end, we have recorded a large amount of baseband
data on a variety of astronomical sources, using the Versa-
tile Green Bank Astronomical Spectrometer (VEGAS) and
the previous-generation Green Bank Ultimate Pulsar Pro-
cessing Instrument (GUPPI). This allows us to produce a
variety of final science data products from both the orig-
inal, unmitigated data, and from data that we have modi-
fied using our algorithm, and compare the results. In this
way we hope to rigorously test our algorithm and increase



Table 1. Blind Search Parameters for PSR J1713+0747

P Best DM . .
(ms) (pc cm—?) Fourier Bin Ny c Pinco Peon
Unmitigated 4.570147 16.0 9397.88 553  150.11 11384 169918.6
Mitigated  4.570147 16.0 9397.88 593 17328 15135 229867.1

Notes — Green highlighting indicates parameters that show improvement after applying our al-
gorithm. Best DM and Fourier Bin refer to those which have the highest significance; Nge is the
number of trial DMs in which the candidate is detected; o is the highest Gaussian-significance;
Pinco and P, are the highest incoherent and coherent powers, respectively. This pulsar has an
actual P = 4.57013 ms and DM = 15.917 pc cm 3.

confidence among observers that it can be used safely. We
should at least see no change in derived astrophysical prop-
erties, and ideally we would see improvement in metrics
like S/N.

4.1 GBT Data

For the preliminary tests presented here we used the bright
millisecond pulsar (MSP) J1713+0747, which is an impor-
tant source for projects like the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav; [8]).
We were careful to analyze data in segments less than a
rotational period to avoid flagging the pulsar as RFI due to
its own cyclostationary nature.

The data were recorded with the GBT L-Band receiver and
VEGAS, using 800 MHz of bandwidth centered at 1500
MHz. The data were channelized via a 512-channel, 24-
tap PFB, and were recorded in the GUPPIRAW format. The
sampling rate after channelization was 0.64 us. There are
a number of interfering sources in this frequency range, in-
cluding the Global Positioning System and Iridium commu-
nication satellites.

We used the dspsr” [13] package to create standard filter-
bank “search-mode” data in the PSRFITS format [7]. We
did not further channelize the data (i.e. the final number
of frequency channels is the same as the number of PFB
channels) and we wrote a spectrum to disk every 40.96 Ls.
We then simulated a blind search for the pulsar using the
PRESTO’ package [ 1] by creating dedispersed time series
at dispersion measures® 0 < DM < 32 pc cm ™3 in step sizes
of 0.05 pc cm™3. We performed both Fourier-domain and
single-pulse searches using standard PRESTO routines.

We also used dspsr to coherently dedisperse and phase-
fold the baseband data using the known rotational proper-
ties of the pulsar, and then measured pulse times-of-arrival
(TOAs). TOAs are the most important input for pulsar

“http://dspsr.sourceforge.net/

Shttps://github.com/scottransom/presto

SDispersion measure (DM) is the electron column density towards a
pulsar. This ionized medium causes a dispersive delay of a broadband
pulse which goes as v~2. The delay is typically much greater than a ro-
tational period. Thus, without correcting for this effect, a pulsar becomes
undetectable when integrating over a wide bandwidth.

timing experiments; deviations between predicted and ob-
served TOAs can be used to study a wide range of phe-
nomena, including fundamental physics, and possibly to di-
rectly detect nanohertz-frequency gravitational waves [8].
As such, it is vitally important that our algorithm does not
bias TOAs.

We analyzed both the original, unmitigated data and the
data passed through our algorithm in the exact same way.

4.2 Results from GBT Data Analysis

As noted above we used a flagging threshold of Oypresh =
0.999, N’ = 64 spectral channels in the SSCA, and ana-
lyzed data in segments of length N = 4096 samples (a du-
ration of 2.62144 ms, which is less than the 4.57-ms period
of the pulsar). We replaced samples flagged as containing
RFI with randomly-generated values drawn from a Gaus-
sian distribution with the same mean and standard deviation
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Figure 3. Fourier power spectrum from our observation of
PSR J1713+0747. The data were dedispersed at the true
DM of the pulsar and integrated in frequency to produce a
time series, which was transformed via the PRESTO routine
realfft. The frequencies corresponding to the pulsar and
it’s harmonics are indicated with red tick marks. The pulsar
has higher power in the mitigated data, but there is also
excess noise, especially at low frequencies.



J1713+0437 pulse profile comparison
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Figure 4. Comparison of integrated, phase-folded pulse
profiles for PSR J1713+0747. The bottom panel shows
the residuals after subtracting the unmitigated and mitigated
data. We see an improvement in S/N with no distortion of
the pulse shape.

Table 2. Timing Parameters of J1713+0747

S/N Mean oroa
(us)
Unmitigated 74 1.51
Unmitigated w/ manual removal of RFI ~ 88 1.50
Mitigated 118 1.57

Notes — We used the PSRCHIVE package (http://psrchive.
sourceforge.net/; [7]) to manually remove RFI in the sec-
ond case presented above, and to derive TOAs.

as our actual data. We also explored replacing data with ze-
ros but found that this introduced artifacts that negatively
impacted Fourier-domain pulsar searches.

4.2.1 Blind Pulsar Search

We were able to detect the pulsar through a blind search in
both the unmitigated and mitigated data. Table | compares
relevant parameters returned by the accelsearch routine
that is part of PRESTO. We find good agreement in relevant
astrophysical parameters (P and DM) and improvement in
the significance of the detection. However, we can also see
in Fig. 3 that the Fourier spectrum of the mitigated data
exhibits excess noise at several frequencies, especially at
f < 100 Hz, when compared to the unmitigated data. This
is obviously undesirable, and if the pulsar had a lower ro-
tational frequency then we expect that our algorithm would
have made it harder to detect. We are still investigating the
source of this excess noise.
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Figure 5. Comparison of Galactic HI emission in our miti-
gated and unmitigated data. We see no change in the inten-
sity of the HI line.

4.2.2 Pulsar Timing

Fig. 4 shows the integrated, phase-folded pulse profile of
PSR J1713+0747 for both our unmitigated and mitigated
data. We see an improvement in S/N (see Table 2) and no
significant distortion of the pulse shape, which is important
because a change in pulse shape could bias the measured
TOAs. We also show the mean TOA uncertainty in Table
2. Interestingly, this shows no improvement (and even gets
slightly worse, though the change is small). The TOA un-
certainty should be proportional to S/N, so this result is un-
expected and still requires further investigation.

4.2.3 Galactic HI Emission

In Fig. 5 we show Galactic 21-cm HI emission for both un-
mitigated and mitigated data. The data are total power, with
no subtraction of off-source emission, and no calibration.
To resolve the HI line, we further channelized the output of
the PFB to a final frequency resolution of ~0.7 kHz. The
periodic drop in power across the spectrum is due to inten-
tional tapering of the coarse PFB channels used in the VE-
GAS spectrometer, which minimizes leakage of power into
neighboring channels and improves resistance to RFI. The
key result of these tests is that, as expected, our algorithm
does not flag any astrophysical HI emission.

5 Discussion

Overall, we believe that our algorithm shows a great deal
of promise. In both simulations and tests with astronomical
data it performs well and leads to some improvement in
data quality. However, we identify several ways in which
the algorithm could be made better.

The first is the weakness to frequency-switched signals. As
noted previously, we analyze PFB channels independently,



and when a signal changes frequency by more than the
bandwidth of a PFB channel, the cyclostationary nature of
the signal may not be captured by our algorithm. We can
alleviate this weakness by analyzing multiple PFB chan-
nels jointly to capture signals over a wider bandwidth. This
would also help alleviate the weakness to non-frequency-
switched signals that occupy a wider bandwidth. This will
require more parellelization of our code but is conceptually
straightforward.

Another weakness in our approach is that we currently an-
alyze data in segments of fixed size. A more adaptive ap-
proach that analyzes data in segments of varying size would
allow us to better match a variety of signal types.

Next, when we replace samples that we flag as containing
RFI we do so in blocks that are at least as wide as a PFB
channel. While this is a natural choice given the GBT’s
current backend architecture it has the potential to throw
out good data along with the bad. For example, if RFI was
present in the PFB channel containing the HI line (see Fig.
5), the entire channel would have been lost, even if the RFI
did not overlap with H1. This scenario is unlikely in the
case of HI since it is in a protected band, but this will not
generally be the case for other spectral lines. One possi-
ble approach is to oversample the PFB and then reduce the
frequency resolution after removing bad data.

Finally, we are currently replacing data that has been
flagged by our algorithm with stastistical noise. This
method simplifies post-processing but is conceptually
flawed, since it decreases the effective integration time. A
better approach would be to “blank” samples flagged as
containing RFI, i.e. replacing them with a special value
that indicates that they should be ignored entirely, and ad-
justing the true on-source integration time accordingly. Un-
fortunately this requires significant modification to existing
post-processing software — data are currently stored as 8-
bit integers and there is no integer representation of a NULL
or NaN value other than zero, which is a possibly valid data
value. The modifications that would be required to imple-
ment a true null-value replacement scheme are beyond the
scope of the current work.

Most of these improvements, however, increase computa-
tional complexity. Our long-term goal is to implement a
real-time RFI mitigation system, but our current code is
far from running in real-time — it takes many multiples
of the observation length to process and flag data. So far
we have used Python to test our algorithms, and while this
is a good choice for rapid prototyping, it is not optimal
from a performance standpoint. We are currently develop-
ing a pure C++/CUDA implementation, which we hope will
speed up processing by at least a factor of a few. However,
even this will not be fast enough to process wide observ-
ing bandwidths in real-time. Either we will need to find
a more efficient SCF estimator than the SSCA, or we will
need to significantly increase the amount of computational

resources of our backend systems. Another potential ap-
proach is to drop the requirement for real-time processing
and instead record baseband data to disk, as we have done
for our tests. The data could then be further processed of-
fline and removed after making the data products of interest
(e.g. spectra or phase-folded pulsar profiles). This would
require significant disk space, since the data rates would be
very high, but may ultimately be a more attractive option.
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