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Abstract

A cyclostationary process is one whose autocorrelation

function is periodic or nearly periodic. The modulation

schemes used to encode information give rise to cyclosta-

tionarity in many human-generated sources of interference.

In contrast, nearly all astrophysical signals are expected to

be wide-sense stationary on timescales of interest, making

cyclostationarity a potentially robust way of discriminating

between interference and astronomical sources. We are de-

veloping an algorithm that employs a well-known method

of detecting cyclostationary signals and testing its efficacy

against a suite of simulated interference covering a wide

range of modulation schemes. We present receiver operat-

ing characteristic curves and binary classification scores for

different types of interfering signals. Our algorithm per-

forms well for many modulation schemes, with F1 and φ

coefficient scores in excess of 0.9 in some cases, though it

shows weaknesses in the case of frequency modulation. We

also apply our algorithm to archived Robert C. Byrd Green

Bank Telescope observations of a bright millisecond pulsar.

We use standard pipelines for blindly detecting and timing

pulsars and preliminarily find improvement in data qual-

ity according to several metrics, though some undesirable

effects are still present. We also show that our algorithm

has no negative impact when detecting Galactic HI emis-

sion. We thus believe that cyclostationary signal process-

ing shows promise as a means of interference mitigation

and discuss opportunities and challenges for employing it

more widely.

1 Introduction

Human-generated radio frequency interference (RFI) is

a long-standing and growing challenge for radio astron-

omy. Ultra-wide bandwidth instruments are becoming

more common in radio astronomy at the same time as the

number of interference sources and their spectrum occu-

pancy is increasing. This confluence threatens the abilities

of existing and next-generation radio telescopes to deliver

on their scientific promise.

A number of methods exist for identifying and mitigat-

ing the impact of RFI, both during real-time data collec-

tion and during post-processing. These methods usually

assume that astrophysical signals closely follow Gaussian

statistics, and flag data as being contaminated by RFI when

the data exhibit non-Gaussian statistical moments [9, 10].

Some other approaches attempt to use the data themselves

to subtract RFI at an early stage of post-processing (e.g.

[4]). While these approaches can be very successful, they

can also break down when extremely strong astrophysical

sources depart from the assumption of Gaussian statistics

(e.g. bright fast radio bursts).

One robust feature of nearly all astrophysical sources, re-

gardless of their intensity, is that they closely approximate a

wide-sense stationary process (one import exception is pul-

sars, which we discuss in more detail below). Some pro-

cess, x(t), is wide-sense stationary when its autocorrelation

function, Rxx is time invariant, i.e.

Rxx(t,τ) =E
{

x
(

t +
τ

2

)

x∗
(

t −
τ

2

)}

(1)

=Rxx(τ)

where E is the expectation operator, τ is a time-lag, and the
∗ denotes complex conjugation.

In contrast, many sources of RFI are not wide-sense station-

ary, but instead are cyclostationary [5], meaning that Rxx is

periodic on a timescale T0:

Rxx(t,τ) = Rxx(t +T0,τ). (2)

Cyclostationarity arises in many sources of RFI because

information is encoded by periodically modulating some

property (phase, frequency, and/or amplitude) of a carrier

wave on a timescale determined by the bit rate, fbit = 1/Tbit.

Thus, cyclostationary signal processing (CSP) has the po-

tential to robustly discriminate between RFI and most astro-

physical signals. One important exception is pulsars, which

are cyclostationary on the timescale of the pulsar rotational

period, P [3]. CSP may still be used when observing pul-

sars as long as care is taken to analyze data in segments that

are shorter than P.

We are exploring the efficacy of a CSP-based approach to

RFI mitigation using both simulated RFI and real-world



data collected with the Robert C. Byrd Green Bank Tele-

scope (GBT). We have developed an algorithm that detects

the presence of cyclostationary signals and apply it to simu-

lated signals that employ a variety of modulation schemes.

We then use the optimal algorithmic parameters to mitigate

archived baseband data collected between 1100 and 1900

MHz on the bright milllisecond pulsar J1713+0747. We

process both the mitigated and original, unmitigated data

using standard pulsar data analysis tools and compare rel-

evant metrics of scientific data quality. We also compare

the integrated spectrum of Galactic HI, which was present

in our observing band. We find promising results and some

areas for improvement. In §2 we provide more details about

our algorithm, in §3 we describe our simulations, and in §4

we present results from our tests with GBT data. We dis-

cuss possible improvements and future avenues of research

in §5.

2 CSP RFI Identification Algorithm

The autocorrelation function of a cyclostationary process

that is periodic on a timescale T0 can be expanded as a

Fourier series with coefficients that can be estimated as

Cxx(τ;α) =
1

T0
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where the second line holds true if x(t) is ergodic and Rxx

can be estimated from the observed data [5]. Cxx is known

as the cyclic autocorrelation function and is non-zero only

at discrete cycle frequencies given by αk = k/T0, where k

is an integer. The spectral correlation function (SCF; also

known as the cyclic spectrum [5]) can be obtained by taking

a Fourier transform of Cxx with respect to τ:

Sxx(ν ;α) =
∫ ∞

−∞
Cxx(τ;α)e−2πiντ dτ (5)

where we will refer to ν as the spectral frequency. Note

that Sxx reduces to the typical definition of the power spec-

tral density (PSD) when α = 0. The SCF can be normalized

by a frequency-shifted version of the PSD so that it is de-

fined on [0,1], in which case it is referred to as the spectral

coherence function:
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Sxx(ν ;α)
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This normalized version of the SCF is useful for setting de-

tection thresholds for signals of arbitrary mean and vari-

ance.

In practice we will not usually know T0 for all of the RFI

that may be present in a data set, so to detect the presence

of a cyclostationary signal we need to have some way of

estimating Sxx with sufficient resolution in both ν and α .

We employ a technique known as the strip-spectrum corre-

lation analyzer (SSCA; [12]), which is a method of time-

averaging spectral correlations. In words, the steps in the

SSCA are:

1. Take a data set, denoted as x(n), of length N points and

duration ∆t.

2. Use a windowing function and sliding Fourier trans-

form to channelize subsets of x(n), each of length N′,

yielding X(r,νk). Note that r is the time-index and νk

are the channelizer frequencies (not the final spectral

frequencies that appear in Equation 5).

3. Multiply X(r,νk) by x∗(r).

4. Perform a discrete Fourier transform of the result of

step 3.

5. If desired, compute the spectral coherence using an

over-sampled estimate of the PSD.

Mathematically this can be expressed as
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where the ∆t subscript indicates averaging, ∆α = ∆t−1 is

the cycle frequency resolution, q is an integer index running

from −N/2 to N/2, and w is a windowing function. Note

that the SSCA estimates Sxx at discrete spectral and cycle

frequencies which are given by ν = νk
2
−q ∆α

2
and α = νk +

q∆α .

Our implementation closely follows [2]. We use ❝✉♣②1 and

❝✉s✐❣♥❛❧2 to implement the SSCA in Python with GPU

acceleration. X(r,νk) is computed via the ❝✉s✐❣♥❛❧ short-

time Fourier-transform (STFT) routine using a Hann win-

dow and a time-domain step size of four samples.

Having used the SSCA to obtain an estimate of the spectral

coherence, we define a detection statistic using the maxi-

mum3 value of |ρxx|. The maximum value follows a Gumbel

distribution (a special case of the generalized extreme value

distribution), with shape parameters that depend slightly on

the choice of windowing function used in the STFT and on

the choice of N and N′. We determine the shape parameters

for various combinations of N and N′ by simulating 106

independent realizations of complex Gaussian random val-

ues, passing them through our SSCA implementation, and

fitting a Gumbel distribution to the observed max{|ρxx|}.

We can then set a detection threshold, σthresh, such that we

consider the data under analysis as having significant evi-

dence of cyclostationarity, and thus flag it as being contam-

inated by RFI, when

max{|ρxx|}observed > Q(σthresh) (8)

where Q is the quantile function for a Gumbel distribution.

1❤tt♣s✿✴✴❝✉♣②✳❞❡✈✴
2❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴r❛♣✐❞s❛✐✴❝✉s✐❣♥❛❧
3According to [6], a near-optimal detection statistic is given by Y =

∑α 6=0

∫

ν ρxx(ν ;α)ρ∗
xx(ν ;α)dν . We are still investigating use of this statis-

tic but so far have had better results with our approach.











and when a signal changes frequency by more than the

bandwidth of a PFB channel, the cyclostationary nature of

the signal may not be captured by our algorithm. We can

alleviate this weakness by analyzing multiple PFB chan-

nels jointly to capture signals over a wider bandwidth. This

would also help alleviate the weakness to non-frequency-

switched signals that occupy a wider bandwidth. This will

require more parellelization of our code but is conceptually

straightforward.

Another weakness in our approach is that we currently an-

alyze data in segments of fixed size. A more adaptive ap-

proach that analyzes data in segments of varying size would

allow us to better match a variety of signal types.

Next, when we replace samples that we flag as containing

RFI we do so in blocks that are at least as wide as a PFB

channel. While this is a natural choice given the GBT’s

current backend architecture it has the potential to throw

out good data along with the bad. For example, if RFI was

present in the PFB channel containing the HI line (see Fig.

5), the entire channel would have been lost, even if the RFI

did not overlap with HI. This scenario is unlikely in the

case of HI since it is in a protected band, but this will not

generally be the case for other spectral lines. One possi-

ble approach is to oversample the PFB and then reduce the

frequency resolution after removing bad data.

Finally, we are currently replacing data that has been

flagged by our algorithm with stastistical noise. This

method simplifies post-processing but is conceptually

flawed, since it decreases the effective integration time. A

better approach would be to “blank” samples flagged as

containing RFI, i.e. replacing them with a special value

that indicates that they should be ignored entirely, and ad-

justing the true on-source integration time accordingly. Un-

fortunately this requires significant modification to existing

post-processing software — data are currently stored as 8-

bit integers and there is no integer representation of a ◆❯▲▲

or ◆❛◆ value other than zero, which is a possibly valid data

value. The modifications that would be required to imple-

ment a true null-value replacement scheme are beyond the

scope of the current work.

Most of these improvements, however, increase computa-

tional complexity. Our long-term goal is to implement a

real-time RFI mitigation system, but our current code is

far from running in real-time — it takes many multiples

of the observation length to process and flag data. So far

we have used Python to test our algorithms, and while this

is a good choice for rapid prototyping, it is not optimal

from a performance standpoint. We are currently develop-

ing a pure C++/CUDA implementation, which we hope will

speed up processing by at least a factor of a few. However,

even this will not be fast enough to process wide observ-

ing bandwidths in real-time. Either we will need to find

a more efficient SCF estimator than the SSCA, or we will

need to significantly increase the amount of computational

resources of our backend systems. Another potential ap-

proach is to drop the requirement for real-time processing

and instead record baseband data to disk, as we have done

for our tests. The data could then be further processed of-

fline and removed after making the data products of interest

(e.g. spectra or phase-folded pulsar profiles). This would

require significant disk space, since the data rates would be

very high, but may ultimately be a more attractive option.
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