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Abstract
Federated learning has attracted increasing attention with
the emergence of distributed data. While extensive federated
learning algorithms have been proposed for the non-convex
distributed problem, federated learning in practice still faces
numerous challenges, such as the large training iterations to
converge since the sizes of models and datasets keep increas-
ing, and the lack of adaptivity by SGD-based model updates.
Meanwhile, the study of adaptive methods in federated learn-
ing is scarce and existing works either lack a complete the-
oretical convergence guarantee or have slow sample com-
plexity. In this paper, we propose an efficient adaptive algo-
rithm (i.e., FAFED) based on the momentum-based variance-
reduced technique in cross-silo FL. We first explore how to
design the adaptive algorithm in the FL setting. By providing
a counter-example, we prove that a simple combination of
FL and adaptive methods could lead to divergence. More im-
portantly, we provide a convergence analysis for our method
and prove that our algorithm is the first adaptive FL algo-
rithm to reach the best-known samples O(ϵ−3) and O(ϵ−2)
communication rounds to find an ϵ-stationary point without
large batches. The experimental results on the language mod-
eling task and image classification task with heterogeneous
data demonstrate the efficiency of our algorithms.

Introduction
Distributed training, which emerges to address the challenge
of distributed data, has attracted wide attention (Bao et al.
2022). With the improvement of computing power, the bot-
tleneck of training speed is gradually shifting from comput-
ing capacity to communication. Therefore, federated learn-
ing (FL) (McMahan et al. 2017) was proposed as an im-
portant distributed training paradigm in large-scale machine
learning to reduce communication overhead. In the FL set-
ting, a central server coordinates multiple worker nodes to
learn a joint model together with periodic model averaging
by leveraging the massive local data of each worker node.
The worker nodes share the computational load, and FL also
provides some level of data privacy (Xiong et al. 2021) be-
cause training data are not directly shared or aggregated.

More recently, an increasing number of FL works focus
on addressing the cross-silo FL (i.e., FL between large in-
stitutions) problem (Xu and Huang 2022; Guo et al. 2022;
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Karimireddy et al. 2020b), where most clients participate
in computation every round and can maintain state between
rounds. The cross-silo FL involves many practical applica-
tions, such as collaborative learning on financial data across
various corporations and stakeholders or health data across
numerous medical centers (Xu et al. 2022; Guo et al. 2022).

In this paper, we consider solving a federated learning
problem in the cross-silo setting, defined as

min
x∈Rd

f(x) :=
1

N

N∑
i=1

fi(x) (1)

where x ∈ Rd denotes the model parameter and N indicates
the number of worker nodes. fi(x) = Eξ(i)∼Di

[
fi
(
x; ξ(i)

)]
is the loss function of the ith worker node, and ξ(i) ∼ Di

denotes the samples ξ(i) drawn from distribution Di on the
ith worker node. When Di and Dj are different (i ̸= j ), it
is referred to as the heterogeneous data setting. In this pa-
per, {Di}Ni=1 are not identical. We restrict our focus to the
non-convex problem, where the functions fi(x) and f(x),
therefore, are smooth and non-convex. On worker node i,
we have access to a stochastic gradient ∇fi(x; ξ

(i)) as an
unbiased estimation of the ith worker node’s true gradient
∇fi(x). Worker nodes collaboratively learn a global model,
but the raw data in each worker node is never shared with
the server and other worker nodes.

Although, various FL methods have been proposed
(Karimireddy et al. 2020b; Reddi et al. 2020; Hong et al.
2021; Xiong, Li, and Cai 2023; Xiong et al. 2022), which
substantially reduce communication cost by avoiding fre-
quent transmission between local worker nodes and the cen-
tral server, it suffers from unfavorable convergence behav-
ior. It is caused by a variety of factors, such as (1) client drift
(Karimireddy et al. 2020b), where local client models move
towards local optima instead of global optima, (2) lack of
adaptivity as SGD-based update (Reddi et al. 2020), and (3)
large training iterations to converge as sizes of model pa-
rameters and training datasets keep increasing. Despite the
recent advances, most of the existing work focuses on solv-
ing client drifts (Karimireddy et al. 2020b; Khanduri et al.
2021; Xu and Huang 2022). The current federated learning
framework still cannot solve all challenges.

On the other hand, we know that adaptive methods have
been widely developed and studied in non-federated settings



since they generally require less parameter tuning and bet-
ter convergence speed during the training phase. Meanwhile,
like centralized method SGD, stochastic FL methods are not
a good option for settings with heavy-tail stochastic gradient
noise distributions. Such issues could be solved by adaptive
learning rates (Zhang et al. 2019), which combines knowl-
edge of past iterations. In addition, adaptive gradient meth-
ods also escape saddle points faster compared to SGD (Staib
et al. 2019). Therefore, the introduction of adaptive tools is
an important direction to improve the performance of FL al-
gorithms in the practice.

However, the design of adaptive FL methods is nontrivial
because the local worker node moves towards different di-
rections and the global trackers cannot be updated frequently
in the FL setting. The improper design of the adaptive FL
method might lead to convergence issues (Chen, Li, and Li
2020). Reddi et al. (2020) firstly proposed a class of feder-
ated versions of adaptive optimizers, including FedAdagrad,
FedYogi, and FedAdam. But its analysis only holds when
the β1 = 0 and it cannot use the advantage of the momen-
tum. MimeAdam is proposed (Karimireddy et al. 2020a) and
it applies server statistics locally to address this issue. Nev-
ertheless, MimeAdam has to compute the full local gradi-
ent, which might be forbidden in practice. More recently,
FedAMS is proposed (Wang, Lin, and Chen 2022) and it
provides the completed proof, but it doesn’t improve the
convergence rate. Overall, the sample convergence rates of
FedAdagrad, FedYogi, FedAdam and FedAMS are O

(
ϵ−4
)

(Not better than FedAvg). At the same time, they also require
an extra global learning rate to tune.

As the sizes of model parameters and training datasets
keep increasing, the deep learning models require more
training iterations to converge and more efficient optimiza-
tion methods are welcomed. Consequently, a natural ques-
tion is whether one can achieve a faster convergence rate
in theory and practice with adaptive technology. In this pa-
per, we give an affirmative answer to the above question by
proposing a faster adaptive FL algorithm (i.e., FAFED).

Contributions The main contributions of this work are
listed below:
• We study how to incorporate the adaptive gradient

method into federated learning. We propose a faster
stochastic adaptive FL method (i.e., FAFED) in heteroge-
neous data settings based on the momentum-based vari-
ance reduction technique with a general adaptive matrix.

• We provide a convergence analysis framework for our
adaptive methods under some mild assumptions. Our al-
gorithm is the first adaptive FL algorithm to reach the
best-known samples complexity O(ϵ−3) and communi-
cation complexity O(ϵ−2) to find an ϵ-stationary point
without large batches. The extensive experimental results
on the language modeling task and image classification
task confirm the effectiveness of our proposed algorithm.

• By establishing a counter example, we also show that a
naive combination of adaptive gradient methods and peri-
odic model averaging might result in divergence. There-
fore, sharing adaptive learning should be considered in
the FL setting.

Related Works
Federated Learning
FedAvg was proposed in (McMahan et al. 2017) as the first
FL algorithm. With periodic model averaging, it can dra-
matically reduce communication overheads. Earlier works
analyzed FL algorithms in the homogeneous data setting
(Woodworth et al. 2020; Khaled, Mishchenko, and Richtárik
2020) and recent research extends federated learning to het-
erogeneous data settings (non-iid), as well as non-convex
models, such as deep neural networks. When datasets on
different worker nodes are homogeneous, FedAvg reduces
to local SGD (Zinkevich et al. 2010).

Recent works (Yang, Fang, and Liu 2021; Karimireddy
et al. 2020b) consider FedAvg with partial worker nodes
participation with O(1) local updates iterations and batch
sizes. The sample and communication complexities are both
O(ϵ−4). In (Yu, Jin, and Yang 2019; Yu, Yang, and Zhu
2019), authors propose Parallel Restarted SGD and Momen-
tum SGD, and show that both of them require O(ε−4) sam-
ples and O(ε−3) rounds of communication to reach an ε-
stationary solution. SCAFFOLD was proposed in (Karim-
ireddy et al. 2020b), which uses control variates to cor-
rect for the ‘client-drift’ when the data is heterogeneous. It
achieves the same sample and communication complexities
as FedAvg. Li et al. (2020) proposed a penalty-based method
called FedProx to reduce the communication complexity to
O(ε−2). The analysis of FedProx depends on a gradient sim-
ilarity assumption to restrict the data heterogeneity, which
essentially requires that all minimums of f(x) are also min-
imums of fi(x). Later, FedPD was proposed in (Zhang et al.
2020) to relax this assumption.

Momentum-based optimizers are widely used in learn-
ing tasks (Sun et al. 2022). Subsequently, some momentum-
based FL algorithms are proposed. For example, (Xu and
Huang 2022) introduces a momentum fusion technique to
coordinate the server and local momentum buffers, but they
do not reduce the complexity. Based on variance reduction
technology, Fed-GLOMO (Das et al. 2022) require O(ε−3)
sample complexity and O(ε−3) communication complex-
ity. Their sample complexity matches the optimal complex-
ity of the centralized non-convex stochastic optimization al-
gorithms (Fang et al. 2018; Cutkosky and Orabona 2019).
More recently, STEM was proposed in (Khanduri et al.
2021) which utilizes a momentum-assisted stochastic gradi-
ent direction for both the worker nodes and central server
updates. It further reduces the communication rounds to
O(ε−2) and keeps the same sample cost of O(ε−3).

Adaptive Methods
Adaptive methods are a class of optimization algorithms
as one of the most important variants of stochastic gra-
dient descent in machine learning. For example, Adam
(Kingma and Ba 2014) AdaGrad (Duchi, Hazan, and Singer
2011), AdaDelta (Zeiler 2012) are widely used as opti-
mization tools in training deep neural networks (DNNs).
Afterward, some variants (Reddi, Kale, and Kumar 2019)
have been proposed to show a convergence guarantee in
the non-convex setting. More recently, the works (Cutkosky



Algorithm Reference Sample Communication Adaptivity
FedAvg (Yang, Fang, and Liu 2021) O

(
ϵ−4
)

O
(
ϵ−4
)

(Karimireddy et al. 2020b)
FedAdagrad (Reddi et al. 2020) O

(
ϵ−4
)

O
(
ϵ−4
) √

FedYogi (Reddi et al. 2020) O
(
ϵ−4
)

O
(
ϵ−4
) √

FedAdam (Reddi et al. 2020) O
(
ϵ−4
)

O
(
ϵ−4
) √

FedAMS (Wang, Lin, and Chen 2022) O
(
ϵ−4
)

O
(
ϵ−4
) √

FAFED Our work Õ
(
ϵ−3
)

Õ
(
ϵ−2
) √

Table 1: Complexity comparison of FedAvg and typical adaptive FL algorithms for finding an ϵ-stationary point. Sample
complexity denotes the number of calls to the First-order Oracle (IFO) by all worker nodes to reach an ε-stationary point.
Communication complexity is defined as the total number of back-and-forth communication rounds between each worker node
and the central server required to reach an ε-stationary point.

and Orabona 2019; Huang, Li, and Huang 2021) presented
some accelerated adaptive gradient methods based on the
variance-reduced techniques.

In FL settings, Reddi et al. (2020) firstly propose feder-
ated versions of adaptive optimizers, including a class of
adaptive FL methods, such as FedAdagrad, FedYogi, and
FedAdam. These methods achieve the same sample cost
and communication rounds as FedAvg when assuming the
β1 = 0. Chen, Li, and Li (2020) proposed Federated AMS-
Grad and achieves the same sample cost and communica-
tion rounds. MimeAdam is proposed in (Karimireddy et al.
2020a) but it requires the full local gradient in each com-
munication round. More recently, FedAMS is proposed in
(Wang, Lin, and Chen 2022) and it provides the completed
proof and considers the gradient compression. But it doesn’t
improve the convergence rate. Table 1 summarizes the de-
tails of typical adaptive FL algorithms.

Preliminaries
Notations: For two vectors x and y in Euclidean space,
⟨x, y⟩ denote their inner product. ∥ · ∥ denotes the ℓ2 norm
for vectors and spectral norm for matrices, respectively. And
xt,i denotes the local model parameters of the ith worker
node at the iteration t. ∇xf(x) is the partial derivative
w.r.t. variables x. Id means d-dimension identity matrix.
a = O(b) denotes that a ≤ Cb for some constant C > 0,
and the notation Õ(·) hides logarithmic terms. Given the
mini-batch samples B = {ξi}qi=1, we let ∇fi(x;B) =
1
q

∑q
i=1 ∇fi(x; ξi).

Assumption 1. (i) Unbiased Gradient. Each component
function fi(x; ξ) computed at each worker node is unbiased
∀ξ(i) ∼ Di, i ∈ [N ] and x ∈ Rd:

E[∇fi(x; ξ)] = ∇fi(x),

(ii) Intra- and inter- node Variance Bound. The following
holds for all ξ(i) ∼ Di, i, j ∈ [N ] and x ∈ Rd:

E∥∇fi(x; ξ
(i))−∇fi(x)∥2 ≤ σ2.

∥∇fi(x)−∇fj(x)∥2 ≤ ζ2

The assumption 1-(ii) is a typical assumption used in FL
algorithms to constrain the data heterogeneity. ζ is the het-

erogeneity parameter and represents the level of data hetero-
geneity. If datasets across each worker node have the iden-
tical distributions, i.e., Di = Dj for all i, j ∈ [N ], then we
have ζ = 0, corresponds to the homogeneous data setting
(I.I.D setting). In this paper, we consider the heterogeneous
data setting and ζ > 0.
Assumption 2. Each component function fi(x; ξ) has a L-
Lipschitz gradient, i.e., ∀x1, x2, we have

E∥∇xfi(x1; ξ)−∇xf(x2; ξ)∥ ≤ L∥x1 − x2∥,
By using convexity of ∥ · ∥ and assumption 2, we have

∥∇xf(x1)−∇xf(x2)∥
= ∥E

[
∇xf(x1; ξ)−∇xf(x2; ξ)

]
∥

≤E∥∇xf(x1; ξ)−∇xf(x2; ξ)∥ ≤ L∥x1 − x2∥
Assumption 2 is Lipschitz smooth, it is still a widely used
assumption in optimization analysis. Many typical central-
ized stochastic algorithms use this assumption, such as SPI-
DER (Fang et al. 2018), STORM (Cutkosky and Orabona
2019). Similarly, it is used in FL algorithms such as MIME
(Karimireddy et al. 2020a), Fed-GLOMO (Das et al. 2022)
and STEM(Khanduri et al. 2021).
Assumption 3. The function F (x) is bounded below in X ,
i.e., F ∗ = infx∈X F (x) > −∞.
Assumption 4. In our algorithms, the adaptive matrices At

for all t ≥ 1 for updating the variables x is a diagonal ma-
trix and satisfies λmin(At) ≥ ρ > 0, where ρ is an appro-
priate positive number based on its definition.

Assumption 4 ensures that the adaptive matrices At, ∀t ≥
1, are positive definite, as in (Huang, Li, and Huang 2021).
The adaptive matrices At are diagonal matrices, and we do
not need to inverse the matrix At.
Assumption 5. (Bounded Gradients). The function fi(x)
have G-bounded gradients, i.e., for any i ∈ [N ], x ∈ Rd,
we have ∥∇fi(x)∥ ≤ G.

Assumption 5 is used to provide the upper bound of the
gradient in the adaptive methods, as in (Reddi et al. 2020;
Chen, Li, and Li 2020; Wang, Lin, and Chen 2022). It is a
typical assumption in the adaptive methods to constrain the
upper bound of the adaptive learning rate. It is reasonable
and often satisfied in practice, for example, it holds for the
finite sum problem.



Definition 1. A point x is called ϵ-stationary point if
∥∇f(x)∥ ≤ ϵ. Generally, a stochastic algorithm is de-
fined to achieve an ϵ-stationary point in T iterations if
E∥∇f(xT )∥ ≤ ϵ.

Faster Adaptive Federated Learning
In this section, we explore how to design the method to com-
bine adaptive gradient method with federated learning. We
propose two algorithms to show the idea behind the design
of the adaptive FL methods and how to use the adaptive
learning rate properly. We use a counter example to show
that naive combination of local adaptive update might result
in divergence, and then propose our fast adaptive federated
learning method (i.e., FAFED).

Divergence of Local Adaptive Federated Learning
The FedAdam, FedYogi, FedAdagrad proposed in (Reddi
et al. 2020) and FedAMS proposed in (Wang, Lin, and Chen
2022) adjust the adaptive learning rate on the server. These
methods have a main drawback that adaptive term cannot
adjust the performance of the model in the local update, and
introduce an extra global learning rate to tune.

To improve the algorithm, the most straightforward way
to design an adaptive federated learning method is to add an
adaptive term on each worker node and run an existing adap-
tive method, such as Adam, SuperAdam locally, and then av-
erage the model periodically after the inner loop. For ease of
understanding, we design the adaptive method in algorithm
1 based on FedAvg. Each work node runs local SGD with an
adaptive learning rate independently. The model parameters
{xt,i}Ni=1 are averaged after inner loop, as the FedAvg.

However, this design might suffer convergence issues and
algorithm 1 can fail to converge to stationary points regard-
less of parameter selection (Chen, Li, and Li 2020). It is be-
cause of heterogeneous data settings and the fact that the
adaptive learning rates on different nodes are different. As a
result, the global model moves away from the global optima
point. Following (Chen, Li, and Li 2020), theorem 1 uses an
example to present the details of step update in the algorithm
1 and shows that in some cases, divergence is unavoidable no
matter how we choose the tuning parameters.
Theorem 1. Suppose the sequence {x̄t}Tt=1 are gener-
ated from algorithm 1 using stochastic partial derivatives.
{x̄t}Tt=1 might fail to converge to non-stationary points re-
gardless of tuning parameter selection.

Proof. We utilize a counter example to prove theorem 1 and
consider a simple 1-dimensional case with N = 3 worker
nodes as:

f1 =

{
3x2, |x| ≤ 1,
6|x| − 2, |x| > 1

f2 = f3 =

{
−x2, |x| ≤ 1

−2|x|+ 1, |x| > 1

f(x) =
1

3

3∑
i=1

fi(x)

{
1
3x

2, |x| ≤ 1,
2
3 |x|, |x| > 1

It is clear that x = 0 is the unique stationary point. We
begin from step t = 0. Assume η = 0.1, β = 0.5 and v0,i =

Algorithm 1: Naive adaptive FedAvg Algorithm

1: Input: T , tuning parameters {β, η}, v0,i and mini-batch
size b0;

2: initialize: Initialize: xi ∈ Rd for i ∈ [N ],
3: for t = 1, 2, . . . , T do
4: Client i ∈ [N ]:
5: Draw mini-batch samples Bt,i = {ξji }

b0
j=1 with

|Bt| = b0 from Di locally, and compute stochastic
partial derivatives ĝt,i = ∇xfi(xt,i;Bt,i)

6: vt,i = βvt−1,i + (1− β) ĝ2t,i
7: if mod (t, q) = 0 then
8: Set xt+1,i = x̄t+1,i =

1
N

∑N
j=1

(
xt,j − η

ĝt,j√
vt,i

)
9: else

10: Set xt+1,i = xt,i − η
ĝt,i√
vt,i

11: end if
12: end for
13: Output: x̄ chosen uniformly random from {x̄t}Tt=1.

0 and the initial point is x0,i = 10 for i = 1, 2, 3. With the
first update (t = 1), for the f1, we have g0,1 = 6, and v0,1
= 0.5 × 62 = 18 . For i = 2, 3, we have g0,i = -2 and
v0,1 = 2. Following the algorithm 1 each worker node has its
adaptive learning rate. Thus, after the first update, we have
x1,1 = 10− 0.1

3
√
2
×6 = 9.858, and x1,2 = x1,3 = 10+ 0.1√

2
×2

= 10.14, and we have x̄ = 10.05.
The global model moves towards the opposite direction.

We continue to show the following steps. We still have gt,1
= 6 and gt,2 = gt,3 = −2. vt,1 = (1 − βt) × 62 and
vt,2 = vt,3 = (1 − βt) × 22. Therefore, xt,1 always up-
dates by −6η/

√
(1− βt)× 62 and xt,2, xt,3 always update

by 2η/
√
(1− βt)× 22. As a result, the averaged model pa-

rameter will update η

3
√

(1−βt)
. It is the opposite of the di-

rection of convergence and is independent of the choice of
parameters η and β.

Therefore, after the first inner loop on each worker node
and averaging step on the central server, the global model
moves away from the optima point. In the following steps,
each worker node continues running the local SGD with an
adaptive learning rate from the same point. The global model
keeps moving away from the optima point after each inner
loop training. Finally, the global model fails to converge to
the optimal point.

From this example, we could see the model diverges no
matter what tuning parameters we choose. The divergence
is caused by the heterogeneous data setting and the non-
consensus of adaptive learning rates on different worker
nodes. This suggests that we should combine the gradient in-
formation across nodes when we design the adaptive method
in the FL setting. Thus, we use the sharing adaptive learning
rate in the Algorithm 2 to avoid divergence.

Faster Adaptive Federated Learning Method
In the above subsection, we showed that SGD-based local
adaptive learning method could diverge even in a very sim-



ple example regardless of tuning parameters selection. In
this subsection, we propose a novel fast adaptive federated
learning algorithm (FAFED) with shared adaptive learning
rates for solving the problem under the heterogeneous data
setting. Specifically, our FAFED algorithm is summarized in
algorithm 2.

At the step 8 in algorithm 2, we use the coordinate-wise
adaptive learning rate as in Adam (Kingma and Ba 2014),
defined as:

vt,i = βvt−1,i + (1− β) (∇xfi(xt,i;Bt,i))
2 (2)

where β ∈ (0, 1). At the step 10 in algorithm 2, we add a pe-
riodic averaging step for local adaptive learning rate vt,i at
the server side. Then we use v̄t,i to generate an adaptive ma-
trix At = diag(

√
v̄t + ρ), where ρ > 0. In fact, the adaptive

vector vt can be given with different adaptive learning rate
methods, such as the global adaptive learning rate, AdaGrad-
Norm (Ward, Wu, and Bottou 2019), and the At keeps the
same form. The tuning parameter ρ is used to balance the
adaptive information with noises.

In the local update, different from algorithm 1, algorithm
2 use the shared adaptive learning rates to avoid model di-
vergence. At the step 15 in algorithm 2, the same At is used
for local updates of different work nodes. The idea behind
the design is that vt,i can be viewed as the second-moment
estimation of the gradients, thus At established on the aver-
age of vt,i is also an estimation of the second moment of the
global model. With the average of adaptive information, At

could follow the global direction and avoid the divergence
issue in the algorithm 1.

At step 7 in algorithm 2, we use the momentum-based
variance reduced gradient estimator mt,i, to track the gradi-
ent and update the model, defined as:

mt,i =∇xfi(xt,i;Bt,i)

+ (1− αt)(mt−1 −∇xfi(xt−1,i;Bt,i) (3)

where αt ∈ (0, 1). At the step 11 in algorithm 2, the gradi-
ent estimator mt,i is also synchronized and averaged on the
server.

Overall, the local servers run adaptive updates locally
with the shared adaptive learning rates, and the global server
aggregates the model parameters, gradient estimator mt,i

and the second-moment estimator vt,i every q steps. In the
next section, we will establish the theoretical convergence
guarantee of the proposed algorithm.

Convergence Analysis of Our Algorithm
In this subsection, we study the convergence properties of
our new algorithm under Assumptions 1, 2, 3, 4, and 5. The
details about proofs are provided in the supplementary ma-
terials.

Given the sequence {x̄}Tt=1 generated from our algo-
rithms, we first define a useful convergence metric as fol-
lows:

Mt =
1

4η2t
∥x̄t+1 − x̄t∥2 +

1

4ρ2
∥∇f (x̄t)− m̄t∥2 (4)

where these two terms of Mt measure the convergence
of the iteration solution of {x̄}Tt=1. The new convergence

Algorithm 2: FAFED Algorithm

1: Input: T , Parameters: β, ηt, αt, the number of local up-
dates q, and mini batch size b and initial batch-size B;

2: initialize: Initialize: x0,i = x̄0 = 1
N

∑N
i=1 x0,i. m0,i =

m̄0 = 1
N

∑N
i=1 m̂0,i with m̂0,i = ∇xf(x0,i;B0,i)

and v0,i = v̄0 = 1
N

∑N
i=1 v̂0,i with v̂0,i =

(∇xf(x0,i;B0,i))
2 where |B0,i| = B from Di for i ∈

[N ]. A0 = diag(
√
v̄0 + ρ)

3: x1,i = x0,i − η0m0,i, for all i ∈ [N ]
4: for t = 1, 2, . . . , T do
5: Client i ∈ [N ]:
6: Draw mini-batch samples Bt,i = {ξji }bj=1 with

|Bt,i| = b from Di locally, and compute stochas-
tic partial derivatives ĝt,i = ∇xfi(xt,i;Bt,i) and
ĝt−1,i = ∇xfi(xt−1,i;Bt,i)

7: mt,i = ĝt,i + (1− αt)(mt−1 − ĝt−1,i)
8: vt,i = βvt−1,i + (1− β) ĝ2t,i
9: if mod (t, q) = 0 then

10: vt,i = v̄t =
1
N

∑N
i=1 vt,i and At = diag(

√
v̄t + ρ)

11: mt,i = m̄t =
1
N

∑N
i=1 mt,i

12: xt+1,i = x̄t+1 = 1
N

∑N
i=1(xt,i − ηtA

−1
t mt,i)

13: else
14: At = At−1

15: xt+1,i = xt,i − ηtA
−1
t mt,i

16: end if
17: end for
18: Output: x̄ chosen uniformly random from {x̄t}Tt=1.

measure is tighter than the standard gradient norm metric,
∥∇f(x̄t)∥, and we complete the final convergence analysis
based on it.

Theorem 2. Suppose that sequence {xt}Tt=1 are generated
from algorithm 2. Under the above Assumptions (1,2,3,4,5),
given that ∀t ≥ 0, αt+1 = cη2t , c = 1

12LIh̄3ρ2 + 60L2

bNρ2 ≤
120L2

bNρ , w = max( 32 , w ≤ 1728L3I3h̄3 − t) h̄ = N2/3

L , and
set

ηt =
ρh̄

(wt + t)1/3
(5)

then we have

1

T

T∑
t=1

E∥∇f(x̄t)∥ ≤ G′

√√√√ 1

T

T−1∑
t=0

E[Mt]

≤ G′
[[

12Lq

ρT
+

L

ρ(NT )2/3

]
E [f (x̄0)− f∗] +

6qσ2

Tρ2

+ [
122 × 150q

b2ρ2T
+

1800

b2ρ2(NT )2/3
]

[
5σ2

3
+

3ζ2

2

]
(lnT + 1)

+
σ2

2(NT )2/3ρ2

]1/2
where G′ = 4

√
(σ2 +G2 + ρ2)



Remark 1. (Complexity) Without loss of generality, let
B = bq and b = O(1)(b ≥ 1), and choose q =(
T/N2

)1/3
. Based on the definition of the ε-stationary

point, namely, E∥∇f(xT )∥ ≤ ϵ and E
[
MT

]
≤ ϵ2. we

get T = Õ(N−1ε−3). And T
q = (NT )2/3 = Õ(ε−2),

Because the sample size b is a constant, the total sample
cost is Õ(N−1ε−3) and the communication round is Õ(ε−2)
for finding an ε-stationary point that matches the state of
the art of gradient complexity bound given in for solving
the problem. And Õ(N−1ε−3) exhibits a linear speed-up
compared with the aforementioned centralized optimal al-
gorithms, such as SPIDER and STORM (Fang et al. 2018;
Cutkosky and Orabona 2019).
Remark 2. (Data Heterogeneity) We use the ζ to present the
data heterogeneity. From final results, it is shown that larger
ζ (higher data heterogeneity) will slow down the training.
Remark 3. Due to Assumption 4 and the definition of At,
the smallest eigenvalue of the adaptive matrix At has a
lower bound ρ > 0. It balances the adaptive information in
the adaptive learning rate. Generally, we choose ρ = O(1)
and we do not choose a very small or large parameter in
practice.

Experimental Results
In this section, we evaluate our algorithms with language
modeling task and image classification tasks. We compare
our algorithms with the existing state-of-the-art algorithms,
including FedAvg, SCAFFOLD (Karimireddy et al. 2020b),
STEM (Khanduri et al. 2021), FedAdam (Reddi et al. 2020)
and FedAMS (Wang, Lin, and Chen 2022). Experiments are
implemented using PyTorch, and we run all experiments
on CPU machines with 2.3 GHz Intel Core i9 as well as
NVIDIA Tesla P40 GPU.

Language Modeling Task
The WikiText2 dataset is used in the experiment and the
data is partitioned by 16 worker nodes. Over the WikiText2
dataset, we train a 2-layer LSTM (Hochreiter and Schmidhu-
ber 1997) with 650-dimensional word embeddings and 650
hidden units per layer. We used a batch size of 20 and an
inner loop number q of 10 in the experiment, and set the
dropout rate as 0.5. To avoid the case of an exploding gra-
dient in LSTM, we also clip the gradients by norm 0.25
(Huang, Li, and Huang 2021).

Grid search is used to choose learning rates for each op-
timizer. In FedAvg, SCAFFOLD, FedAdam, and FedAMS,
we set the learning rate as 10. The global learning rate in the
SCAFFOLD is 1. Given that the large global learning rate in
FedAdam and FedAms causes the divergence and big fluc-
tuation, we tune it as 0.03(≈ 10−1.5). In STEM algorithm,
we set κ̄ as 20, w = σ = 1, and the step-size is diminished
in each epoch as in (Khanduri et al. 2021). In FAFED algo-
rithm, we set ρh̄ as 1 and w = 1 and decrease the step size
as (5). In the FedAdam, FedAMS, STEM and FAFED algo-
rithm, the momentum parameters, such as αt, β, β1 and β2

are chosen from the set {0.1, 0.9}. Their adaptive parame-
ters τ or ρ are chosen as 0.01.

Figure 1 shows both training loss and training perplex-
ities. Our FAFED algorithm outperforms all other base-
line optimizers. Although FedAdam also has a good perfor-
mance with an adaptive learning rate, it presents clear fluc-
tuation at the beginning of the training phase because it uti-
lizes the global adaptive method. FedAMS is worse because
the adaptive term of FAFED and FedAdam is more flexi-
ble, while the adaptive term is monotonically increasing in
FedAMS.

Image Classification Tasks
In the second task, we conduct image classification tasks on
the Fashion-MNIST dataset as in (Nouiehed et al. 2019),
MNIST dataset and CIFAR-10 dataset with 20 worker nodes
in the network. The fashion-MNIST dataset and MNIST
dataset includes 60, 000 training images and 10, 000 test-
ing images classified into 10 classes. Each image in both
datasets contains 28 × 28 arrays of the grayscale pixel.
CIFAR-10 dataset includes 50, 000 training images and
10, 000 testing images. 60, 000 32×32 color images are clas-
sified into 10 categories. Each worker node holds the same
Convolutional Neural Network (CNN) model as the classi-
fier. We use cross entropy as the loss function. The network
structures are provided in the supplementary material.

We consider three different heterogeneity settings: low
heterogeneity, moderate heterogeneity and high heterogene-
ity. For the low heterogeneity setting, datasets in differ-
ent worker nodes have 95% similarity (Karimireddy et al.
2020b). In the real-world application, the data on the dif-
ferent worker nodes are usually completely different, and
they even have different categories. Then we consider two
more challenging settings. For moderate heterogeneity set-
tings and high heterogeneity settings, the datasets are di-
vided into disjoint sets across all worker nodes. In the mod-
erate heterogeneity setting, each worker node holds part of
the data from all the classes, while for the high heterogeneity
setting, each worker node only has a part of the total classes
(5 out of 10 classes).

We carefully tune hyperparameters for all methods. We
run grid search for step size, and choose the step size in the
set {0.001, 0.01, 0.02, 0.05, 0.1}. We set the global learn-
ing rate as 1 for SCAFFOLD. For FedAdam and FedAMS,
we set global learning from the set {10−1.5, 10−2, 10−2.5, },
based on the Fig. 2 in (Reddi et al. 2020). The adaptive pa-
rameter τ is chosen as 0.01. Given that the datasets are di-
vided by all worker nodes, the number of data points in each
worker node is limited. Heterogeneity settings also slow
down the training. Thus, the number of local steps required
increases, and the methods perform badly with diminishing
step size because it decreases rapidly. We choose the fixed
step size for STEM and FAFED. We choose the momentum
parameter in the set {0.1, 0.9}. The β1 and β2 in FedAdam
and FedAMS, and β in FAFED are chosen from {0.1, 0.9}.
The batch-size b is in {5, 50, 100} and the inner loop num-
ber q ∈ {5, 10, 20}. With the increase of data heterogeneity
from low heterogeneity to high heterogeneity, we increase
the batch size and decrease the inner loop number.

Discussion: The goal of our experiments is two-fold: (1)
To compare the performance of FAFED with other algo-



(a) Training Loss (b) Training perplexities

Figure 1: Experimental results of WikiText2 for language modeling task.

(a) Fashion-MNIST (b) MNIST (c) CIFAR-10

Figure 2: Training loss vs the number of communication rounds for low heterogeneity setting.

rithms in different heterogeneity settings during the training
phase with training datasets; (2) To demonstrate the model
performance on the test datasets.

In Figures 2, and figure (Seen in the supplementary ma-
terials), we show the performance of FAFED and other
baseline methods against the number of communication
rounds, namely back-and-forth communication rounds be-
tween each worker node and the central server on three
datasets with different heterogeneity setting in the image
classification task. From Figures, we can find that our al-
gorithms consistently outperform the other baseline algo-
rithms. Compared with FedAdam and FedAMS, our adap-
tive method has lower fluctuation (e.g., the beginning phase
of FedAdam). That is because we use the adaptive learning
rate locally, while FEDADAM just scales the model param-
eters in the central server after multistep training.

Finally, we focus on the performance on the testing
datasets. In Tables (Seen in the supplementary mateirals),
we show the testing accuracy of FAFED and that of other
algorithms on the Fashion-MNIST dataset for different het-
erogeneity settings after training with the same epochs. Al-
though, with the increasing data heterogeneity, model train-
ing becomes more difficult. FAFED performs well under all
conditions. It shows the adaptive FL methods adapt well and
our method (FAFED) has a good performance in different

heterogeneity settings.

Conclusion
In this work, we proposed a novel adaptive algorithm (i.e.,
FAFED) based on the momentum-based variance reduced
technique in the FL setting. We show that adaptive opti-
mizers can be powerful tools and have a good performance
in both theoretical analysis and numerical experiments. In
the beginning, we explore how to design the adaptive al-
gorithm in the FL setting. By providing a counter exam-
ple, we present that a naive combination of the local adap-
tive method with the periodic model average can lead to di-
vergence, and sharing adaptive learning should be consid-
ered. Moreover, we provide a solid convergence analysis for
our methods, and prove that our algorithm is the first adap-
tive FL method to reach the best-known samples complexity
O(ϵ−3) and communication complexity O(ϵ−2) to find an
ϵ-stationary point without large batches. Finally, we conduct
experiments on the language modeling task and image clas-
sification tasks with different levels of heterogeneous data.

Acknowledgements
This work was partially supported by NSF IIS 1852606,
1838627, 1837956, 1956002, 2211492, CNS 2213701, CCF
2217003, DBI 2225775.



References
Bao, R.; Gu, B.; and Huang, H. 2020. Fast oscar and owl
regression via safe screening rules. In Inxternational Con-
ference on Machine Learning, 653–663. PMLR.
Bao, R.; Wu, X.; Xian, W.; and Huang, H. 2022. Doubly
sparse asynchronous learning for stochastic composite opti-
mization. In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI, 1916–
1922.
Chen, X.; Li, X.; and Li, P. 2020. Toward communication
efficient adaptive gradient method. In Proceedings of the
2020 ACM-IMS on Foundations of Data Science Confer-
ence, 119–128.
Cutkosky, A.; and Orabona, F. 2019. Momentum-based vari-
ance reduction in non-convex sgd. Advances in neural infor-
mation processing systems, 32.
Das, R.; Acharya, A.; Hashemi, A.; Sanghavi, S.; Dhillon,
I. S.; and Topcu, U. 2022. Faster non-convex federated
learning via global and local momentum. In Uncertainty
in Artificial Intelligence, 496–506. PMLR.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.
Dou, J. X.; Luo, L.; and Yang, R. M. 2022. An optimal trans-
port approach to deep metric learning (student abstract). In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, 12935–12936.
Dou, J. X.; Mao, H.; Bao, R.; Liang, P. P.; Tan, X.; Zhang, S.;
Jia, M.; Zhou, P.; and Mao, Z.-H. 2023. The Measurement of
Knowledge in Knowledge Graphs. In AAAI 2023 Workshop
on Representation Learning for Responsible Human-Centric
AI (R2HCAI).
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. Journal of machine learning research, 12(7).
Fang, C.; Li, C. J.; Lin, Z.; and Zhang, T. 2018. Spider:
Near-optimal non-convex optimization via stochastic path-
integrated differential estimator. Advances in Neural Infor-
mation Processing Systems, 31.
Guo, M.; Hwa, R.; Lin, Y.-R.; and Chung, W.-T. 2020. Inflat-
ing Topic Relevance with Ideology: A Case Study of Politi-
cal Ideology Bias in Social Topic Detection Models. arXiv
preprint arXiv:2011.14293.
Guo, P.; Yang, D.; Hatamizadeh, A.; Xu, A.; Xu, Z.; Li, W.;
Zhao, C.; Xu, D.; Harmon, S.; Turkbey, E.; et al. 2022. Auto-
FedRL: Federated Hyperparameter Optimization for Multi-
institutional Medical Image Segmentation. arXiv preprint
arXiv:2203.06338.
He, T.; Zhang, Z.; Zhang, H.; Zhang, Z.; Xie, J.; and Li, M.
2019. Bag of tricks for image classification with convolu-
tional neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
558–567.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation, 9(8): 1735–1780.

Hong, J.; Wang, H.; Wang, Z.; and Zhou, J. 2021. Feder-
ated robustness propagation: Sharing adversarial robustness
in federated learning. arXiv preprint arXiv:2106.10196, 1.
Huang, F.; Li, J.; and Huang, H. 2021. Super-adam: faster
and universal framework of adaptive gradients. Advances in
Neural Information Processing Systems, 34.
Huang, F.; Wu, X.; and Huang, H. 2021. Efficient mir-
ror descent ascent methods for nonsmooth minimax prob-
lems. Advances in Neural Information Processing Systems,
34: 10431–10443.
Karimireddy, S. P.; Jaggi, M.; Kale, S.; Mohri, M.; Reddi,
S. J.; Stich, S. U.; and Suresh, A. T. 2020a. Mime: Mimick-
ing centralized stochastic algorithms in federated learning.
arXiv preprint arXiv:2008.03606.
Karimireddy, S. P.; Kale, S.; Mohri, M.; Reddi, S.; Stich, S.;
and Suresh, A. T. 2020b. Scaffold: Stochastic controlled av-
eraging for federated learning. In International Conference
on Machine Learning, 5132–5143. PMLR.
Khaled, A.; Mishchenko, K.; and Richtárik, P. 2020. Tighter
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