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Abstract

We present DARTR: a Data Adaptive RKHS Tikhonov Regularization method for the linear inverse
problem of nonparametric learning of function parameters in operators. A key ingredient is a
system intrinsic data adaptive (SIDA) RKHS, whose norm restricts the learning to take place in the
function space of identifiability. DARTR utilizes this norm and selects the regularization parameter
by the L-curve method. We illustrate its performance in examples including integral operators,
nonlinear operators and nonlocal operators with discrete synthetic data. Numerical results show
that DARTR leads to an accurate estimator robust to both numerical error and measurement noise,
and the estimator converges at a consistent rate as the data mesh refines under different levels of
noises, outperforming two baseline regularizers using /2 and L? norms.
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1. Introduction

Regularization plays a crucial role in machine learning and inverse problems that aim to construct
robust generalizable models. The learning of kernel functions in operators is such a problem: given
data consisting of discrete noisy observations of function pairs {(u, fx)}2_,, we would like to learn
an optimal kernel function ¢ fitting the operator Ry[u] = f to the data. Such a need for learning
operators between function spaces has become vital in applications ranging from integral operators
solving PDEs and image processing (see e.g., Gin et al. (2021); Li et al. (2020); Kovachki et al.
(2021); Owhadi and Yoo (2019)), nonlinear operators in mean-field equation of interacting particle
systems in Lu et al. (2021); Lang and Lu (2022), homogenized nonlocal operators (see e.g., You
etal. (2021, 2022); Lin et al. (2021)), just to name a few. Since there is often limited information to
derive a parametric form, the kernel has to be learnt in a nonparametric fashion. More importantly,
the goal is a consistent estimator that converges as the data mesh refines and is robust to noise
in data. Without proper regularization, the estimator often oscillates largely with datasets due to
overfitting. Thus, regularization is crucial for the discovery of a generalizable kernel.

We present DARTR, a data adaptive RKHS Tikhonov regularization (DARTR) method, for the
linear inverse problem of learning of kernels in operators from data. That is, the operator Ry (u),
which can be either linear or nonlinear in u, depends linearly on the kernel ¢. We learn the ker-
nel by nonparametric regression that minimizes a loss functional of the mean square error. With
DARTR, our nonparametric regression algorithm produces an estimator that converges as the data
mesh refines and the rate of convergence is robust to different levels of white noise in data. In
numerical examples including integral operators, nonlinear operators and nonlocal operators with
discrete noisy synthetic data, DARTR consistently leads to accurate estimators, and the estimator
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converges at a consistent rate as the data mesh refines under different levels of noises, outperforming
two baseline regularizers using /2 and L? norms.

The major novelty of this method is the construction of a system (the operator) intrinsic data
adaptive (SIDA) RKHS, whose reproducing kernel is encoded in the loss functional. DARTR takes
the norm of this RKHS as the the penalty norm of regularization, and ensures the learning to take
place in the function space of identifiability. Additionally, we introduce a novel exploration measure
quantifying the exploration of the kernel by the data, and it allows a unified framework to treat
SIDA-RKHS with either discrete or continuous functions.

1.1. Related work

Classical regression. The function space of identifiability (FSOI) is a fundamental difference be-
tween the classical regression and the regression of kernels in operators. Here the FSOI must be
specified properly, otherwise the inverse problem can be ill-defined in the sense that there are mul-
tiple kernels fitting the data. In contrast, the classical regression inversion is always well-defined
and the conditional mean is the unique minimizer. More specifically, the classical regression learns
a function Y = ¢(X) from random samples {(X;,Y;)}, its FSOI is L?(p) with p being the distri-
bution of X, and the optimal estimator is E [Y| X], see e.g., Cucker and Smale (2002); Gyorfi et al.
(2006)). It corresponds to our setting with Ry(u) = ¢(u) with data {(u;, fi) = (X4, Y5)} (ie., Ry
is not an operator but a function), and our DARTR reduces to the L? Tikhonov/ridge regularization
(see e.g., Tihonov (1963)).

Functional data analysis (FDA): Learning kernels in operators falls in the category of FDA that
learns an operator or a functional. Different from those assuming no structure of the operator Hsing
and Eubank (2015); Kadri et al. (2016); Ferraty and Vieu (2006), we exploit a low-dimensional
structure of the operator: a radial kernel, which can be viewed as a function parameter, thus, we
can learn the kernel (and hence the operator) from only a few pairs of data. The setting of linear
operators in our study is similar to the functional linear models (FLM) (see e.g., Ramsay and Sil-
verman (2005) and Wang et al. (2016)), for which regression and regularization are also used. In
comparison with the regularizations for these FLMs that are based on extra differential operators
based prior assumptions, the major novelty of our DARTR is its utilization of a SIDA-RKHS based
on our new identifiability theory. Also, our method and theory are applicable to nonlinear operators.

Tikhonov regularization methods. DARTR differs from other Tikhonov/ridge regularization meth-
ods at the penalty term. The commonly used penalty terms include the Euclidean norm in the classi-
cal Tikhonov regularization (see e.g., Hansen (1994, 2000); Gazzola et al. (2019)), the RKHS norm
with an ad hoc reproducing kernel (see e.g., Cucker and Zhou (2007); Bauer et al. (2007)), the total
variation norm in the Rudin-Osher-Fatemi method in Rudin et al. (1992), or the L! norm in LASSO
(see e.g., Tibshirani (1996)). Whereas each of them has specific applications, none of them take
into account of the FSOI, which is fundamental for the learning of kernels in operators.

Data-dependent function spaces. Data-dependent strategies have been explored in the context of
classical nonparametric regression, such as data-dependent hypothesis space with an [! regularizer
in Wang (2009); Shi et al. (2011) and data-dependent early stopping rule in Raskutti et al. (2014).
While all strategies achieve data-dependent regularization, only our DARTR takes into account the
function space of identifiably.
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2. The inverse problem and the need of regularization
2.1. Problem statement: learning function parameters in operators

We consider the linear inverse problem of identifying function parameters in operators from data,
that is, to learn a function parameter ¢ in ab operator R : X — Y of the form Ry[u] = f from data
pairs {(ug, fk)}fcvzl < X x Y, where X and Y are problem specific functions spaces. Specifically,
suppose that we are given data consisting of discrete observation of function pairs:

D = {(up, fi) ooy = {(un(xy), fr(@;)) 15 =1,..., T}y, Q2.1)

where (uy, fi.) are real-valued functions on a bounded open set 2 = R? and {z; € Q} are spatial
mesh points. For simplicity, we assume Y = L?(£2) and assume X to be operator specific. Our goal
is to learn ¢ in an operator R fitting the data in the form:

Ry [u](z) = fﬂ oIy glul (. y)dy, Va € 9, 2.2)

where the functional g, which may depend on the derivatives of u, is known and it specifies the form
of the operator. Examples are as follows (see more details in Section 5):

e Ry is an integral operator with g[u](z,y) = u(x + y) and ¢ is called an integral kernel.

e Ry is a nonlinear operator with glu](z,y) = v (z + y)u(z) and ¢ is called an interaction
kernel in the mean-field equation of interacting particles.

e Ry is anonlocal operator with g[u](x,y) = u(x+y) —u(x) with ¢ called a nonlocal kernel.

These inverse problems share three common features: First, the pointwise values of the function
¢ are undetermined from data, because the data depends on ¢ non-locally. Also, the support of ¢
is unknown and is to be learnt from data. Second, the data are discrete and can have measurement
noise. Thus, the inverse problem has to overcome the numerical error in the approximation of
integrals, as well as the noise. Third, the inverse problem can be extended to a homogenization
problem where the operator aims to fit the data that are not generated from the equation (2.2). In
this case, the inverse problem has to overcome the model error to identify a best fit.

2.2. Nonparametric regression and regularization

Our goal is to infer the kernel function ¢ from data in a nonparametric fashion, so as to address the
general situations that there is limited information to derive a parametric form for the kernel. Thus,
we will not assume any constraint on the function ¢. More importantly, we aim for an estimator that
is consistent and resolution independent, i.e., converges in a proper function space to the true kernel
as data mesh refines and is robust to treat noisy data.

We construct a variational estimator that minimizes loss functional (the mean square error),

N ' 1 X
b = ar%m E(p), where E(¢) = ¥ ;;1 |Rg[ur] — ful2, (2.3)

where the hypothesis space H is to be selected adaptive to data. Note that the loss functional &(¢)
is quadratic in ¢ since the operator R, depends linearly on ¢. Thus, the minimizer of the loss
functional is a least squares estimator. Suppose the hypothesis space is H,, = span{¢;};'_; with
basis functions {¢;}. Then for each ¢ = > | c;¢; € Hy, noticing that Ry = > | ¢;Rg,, we
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can write the loss functional in (2.3) as £(c) = E(¢) = ¢ Ape — 2¢Tb, + CY, where Cf, =
LS §o | fe(x)]?dz and the normal matrix A, and vector b, are given by

N
— s = . 1
An(i,7) = Cdisds), bali) = > (Ro,lukl, fiyv, 24
k=1
where -, -) is the bilinear form defined by
N
(61) =5 D (Rolwn], ByluaDy. @5
) N = ¢ y L) .
The least squares estimator is minimizes the quadratic loss function £(¢):
O, = ¢ and E=A4, By (2.6)
i=1

where A,, " is the inverse of A,, or Moore—Penrose pseudo-inverse when A,, is singular.

A major challenge is to find an optimal estimator capable of avoiding either under-fitting or
over-fitting, being robust to imperfect data and model error, in particular, converging in synthetic
tests when the data mesh refines. Unfortunately, this is an ill-posed inverse problem (see Section
3.2) and the normal matrix A,, is often highly ill-conditioned or singular. As a result, the estimator
in (2.6) oscillates largely and fails to converge when the data mesh refines.

Various regularization methods have been introduced to prevent over-fitting in such ill-posed
inverse problems. The idea is to add a penalty term to the loss functional:

Ex(9) = E(9) + AR(9) 2.7

where R(¢) is a regularization term and \ is a parameter that controls the importance of the regu-
larization. Various penalty terms have been proposed, including, for example, the Euclidean norm
R(¢) = ||c|? for ¢ = I | ci¢; in the classical Tikhonov regularization (see e.g., Tihonov (1963);
Hansen (1998)), the RKHS norm R(¢) = |¢|% with H being a reproducing kernel Hilbert space
with an artificial reproducing kernel (see e.g., Cucker and Zhou (2007); Bauer et al. (2007)) , the
total variation norm R (¢) = |¢’| ;1 in Rudin-Osher—Fatemi method or the L! norm R(¢) = ||¢| 11
in LASSO (see e.g., Tibshirani (1996)).

Whereas each of these penalty terms has a specific premise for a class of applications, none
of them take into account of the function space of identifiability (see Section 3.2), only in which
the inverse problem is well-defined. Our DARTR method (see Section 4.1) will utilize a norm that
restricts the learning in the function space of identifiability, thus providing a crucial regularization.

3. Identifiability theory and regularization

The foundation of learning is the function space of identifiability (FSOI), in which the inverse
problem well-defined. We provide a full characterization of it and importantly, we show that it can
be a proper subspace of the L? space, the default function space of learning. Thus, it is vital to
restrict the learning to take place in the FSOI. We show that the norm of a system intrinsic data
adaptive (SIDA) RKHS, when used for regularization, can achieve the goal.

The main theme of the identifiability theory is to find the function space on which the quadratic
loss functional has a unique minimizer. In other words, we seek the function space in which the
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Fréchet derivative of the loss functional is invertible. Using the bilinear form -, -) in (2.5), we can
rewrite the loss functional in (2.3) as

N
£(6) = (6,69 — 25 D (Rolw, e +C, G3.1)
k=1

where C]]:, =¥ Ly w—1 § | fx(x)|?dz. However, there is no function space for ¢ yet.

To start, we introduce two key elements: an exploration measure that leads to a default function
space of learning and an integral operator which plays a crucial role in the identifiability theory. Here
we consider only the functions {uy, fi} to simplify the notation. The integrals will be numerically
approximated from the discrete data in computation. Also, all the results extend directly to a version
on discrete vector space for discrete data, see Remark 3.4. o
Assumption 3.1 The functions {uy}Y_, in (2.1) satisfy that each function glug] : Q x Q@ — R
which defines the operator in (2.2), is continuous.

3.1. An integral operator and the SIDA-RKHS

The exploration measure. We introduce first a probability measure that quantifies the exploration
of the variable of ¢ by the data. Given data in (2.1), we define an empirical measure

N
- % Z jQ fﬂ 6|yl — ) lglu](z, y)| dzdy, (3.2)

where Z = (" 3§ §0(yl — ) |g[ur](z, y)| dvdydr is the normalizing constant. This
measure reflects the weight being put on |y| by the loss function through the data {g[u](z,y)}i_,.

The exploration measure plays an important role in the learning of the function ¢. Its support
is the region inside of which the learning process ought to work and outside of which we have
limit information from the data to learn the function ¢. Thus, it defines a default function space of
learning: L2(p).

An integral operator. The loss functional’s Fréchet derivative in L?(p) comes directly from the
bilinear form ¢-, - in (2.5). To see this, we rewrite the bilinear form as

6, :;Vki J1[ [ #t:Detubatuntie, ausio,vyavas | e

:foo JOO ¢(r)p(s)G(r, s)drds = foo foo B(r)(s)G(r, s)p(dr)p(ds), (3.3)
0o Jo o Jo

where the second-to-last equation follows from a change of order of integration and a change of
variables to polar coordinates with the integral kernel GG given by

Glr,s f J [ stusdte.reygtunde. | dean, (34)
k 1 YInl=1J[¢|=1
for r, s € supp(p) and G(r, s) = 0 otherwise. The last equality in (3.3) is a re-weighting by p with
= G(r,s)
Glr,s) = —22)_ (3.5)
)= e

where, abusing the notation, we use p(7) to denote the density of the measure p defined in (3.2).
The next lemma shows that G defines a positive semi-definite integral operator. Its proof, as
well as proofs to later lemmas and theorems, are presented in Appendix A.
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Lemma 3.2 (The integral operator) Under Assumption 3.1, the integral kernel G is positive semi-
definite and the integral operator L : L?(p) — L?(p)

£ootr) = | " ()T, 5)p(s)ds (3.6)

is compact and positive semi-definite. Further more, for any ¢, € L*(p),

The next lemma provides an operator characterization of the RKHS with G as the reproducing
kernel Aronszajn (1950). This RKHS is system(the operator Ry) intrinsic data adaptive (SIDA),
and we refer it as SIDA-RKHS. It is the data adaptive RKHS in our DARTR.

Lemma 3.3 (The SIDA-RKHS) Assume Assumption 3.1. Then the following statements hold.

(a) The RKHS H¢ with G as the reproducing kernel satisfies Hg = ,Cél/Q(L2 (p)) and its inner
product satisfies {¢p, V)., = <£§_1/2¢, £§_1/2¢>L2 (p) Jor any ¢,v € Hg.

(b) The eigen-functions of L, denoted by {1);, w?}m- with {1;} corresponding to positive eigen-
values {\;} in decreasing order and {1/1?} corresponding to zero eigenvalues (if any), form an
orthonormal basis of L*(p) and \; converges to 0. Furthermore, for any ¢ = D Citi, we

have
by = 2 hicks 0liag) = 2och 9le = 2 A"l (3.8)

where the last equation is restricted to ¢ € Hg.
(c) Forany ¢ € L*(p) and 1) € Hg, we have

<¢7 ¢>L2(p) = <£§¢7 1/}>HG7 <<¢7 ¢>> = <£§2¢7 ¢>Hc . (3.9

Remark 3.4 The space L?(p) can be a discrete vector space with the function ¢ defined only
on finitely many points {r;}?'_ that are explored by the data. In this setting, the integral kernel
G in (3.4) becomes a positive semi-definite matrix in R", so does G in (3.5). Now the integral
operator L is defined by the matrix G on the weighted vector space R™ and its eigenvalues are
the generalized eigenvalues of (G, B) with B = Diag(p(r1), -+, p(rn)). As a result, the SIDA-
RKHS Hg is the vector space spanned by the eigenvectors with nonzero eigenvalues. Furthermore,
the norms in (3.8) can be computed directly from the eigen-decomposition. These discrete values
can be viewed piecewise constant approximations to the functions, and the numerical algorithm in
Section 4.1 applies. When n — o0, they converge to the corresponding functions under suitable
regularity conditions. Thus, the measure p allows for a unified framework to treat the SIDA-RKHS
with either discrete or continuous functions.

3.2. Function space of identifiability and regularizations

We show that the function space of identifiability (FSOI), i.e., on which the loss functional has a
unique minimizer (see Definition 3.5), is the subspace of L?(p) spanned by the eigenfunctions of
L& with positive eigenvalues. When zero is an eigenvalue of Lz, this function space is a proper
subspace of L?(p) and the loss functional has multiple minimizers in L?(p). Thus, the inverse
problem is well-defined only on this function space. Furthermore, we show that the regularization
by the SIDA-RKHS norm enforces the regularized minimizer to be in it.
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Definition 3.5 The function space of identifiability is the largest linear subspace of L*(p) in which
the loss functional £ has a unique minimizer.

We remark that when the data is continuous and noiseless, the true kernel is the unique minimizer,
thus, it is identifiable by the loss functional. Also, note that the FSOI is data-dependent. When the
data is discrete or noisy, the unique minimizer in the FSOI is an optimal estimator in the FSOI, and
it converges to the true kernel as the data improves.

The next theorem characterizes the FSOI. Furthermore, it shows that this inverse problem is
ill-posed since the estimator requires the inverse of a compact operator.

Theorem 3.6 (Function space of identifiability (FSOI)) Suppose that Assumption 3.1 holds. Let
¢{V € L?(p) be the Riesz representation of the bounded linear functional:

N
W W12 = 37 2. f 2R y[ur) (@) fu(x)da, Vo € L*(p). (3.10)
k=1

Then the following statements hold.

(a) The Fréchet derivative of £(¢) in L*(p) is VE(¢) = 2(Lad — (b{\,)

(b) The FSOI is H = span{1;} with closure in L?(p), where {1;} are eigel’i\functions of Lo
with positive eigenvalues. Furthermore, the minimizer of £(¢) in H is ¢ = Eéflqbfv if
d’{v € L&(L?(p)). In particular, if the true function is ¢uue € H and the data is continuous
noiseless, we have (;5{\, = L&50true and ¢ = Eéflqﬁ{\, = Qprue-

(c) The Fréchit derivative of € in He is VIGE(¢) = 2(La2¢ — anbfv). Its zero leads to an
estimator ¢ = 55_2£§¢{V iqu)fV € La(L2(p)).

Remark 3.7 (Regularization with the L? and the SIDA-RKHS norms) In practice, due to the
discrete and/or noisy data, we often have gi){v = L&0true + gb‘f + ¢S5, where the perturbation from the
true function is decomposed to ¢ € Lg(L?(p)) and ¢ € L&(L*(p))*. Clearly, when ¢3 # 0, the
estimator qg = Eg_lqﬁ{\, does not exist and regularization is necessary. The following comparison
between the L? and the SIDA-RKHS regularizers shows that the later regularizer removes gi)g and

makes the estimator well-defined. More specifically, we consider the regularized loss functional
with R(¢) being N ¢|3 . and /\H(;SH%{G Then, their minimizers are

05" = (Lg+ M)7'0k, 03 = (Lg” + M) el
Plugging in gb{v = L&btrue + 0 + @3, we have
05" = Brrue + (L + M) (O] = Mtruc + 65),
N = Burue + (L5" + AD) T (Lgd] — Mtrue)-
A regularizer then selects the optimal A to balance the errors,
64 = Buruela(y < (L + AL S + 6P + (£ + A Adtruel
163 = Brruell T2y < I(LG” + M) LGB P + [(£57 + A1) ™ Adtrue*,

where in each of them, the first term on the right hand side requires a large )\, whereas the second
term requires a small ). In practice, the errors qﬁf are much smaller than ¢ye, and the optimal
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A should be small so that the second term is negligible. In this case, the bias in $A2 is about
Ef_l (d)5) + A1, whereas the bias in gb )\ ¢ is about ﬁf_l (¢9). Thus, the SIDA-RKHS regularized
estimator gzﬁ \C is more accurate than the L? regularized estimator. To avoid amplifying the error ¢2,

a projection is necessary for the L? regularizer, and we will compare the projected L? regularizer
with the SIDA-RKHS regularizer in Section 4.2.

4. Learning algorithm
4.1. Algorithm: nonparametric regression with DARTR

Based on the identifiability theory in Section 3.2, we introduce next a nonparametric learning algo-
rithm with Data Adaptive RKHS Tikhonov Regularization (DARTR). We briefly sketch the algo-
rithm in the following four steps, whose details are presented in Appendix B.1.

1. Estimate the exploration measure p. We utilize the data to estimate the support of the true kernel
and the exploration measure p. The support of the true kernel lies in [0, Ry] with Ry being the
diameter of the domain {2, and it is further confined from a comparison between the supports of
fr and g[uy] (see Appendix B.1 for more details). Then, we constrain the discrete approximation
of p defined (3.2) on the support of ¢. In this process, we also assemble the regression data that
will be repeatedly used.

2. Assemble the regression matrices and vectors. We select a class of hypothesis spaces H,, =
span{¢; }I ; with basis functions {¢;} and with dimension n in a proper range. Then, we com-
pute the regression normal matrices and vectors, as well as the basis matrix,

Zn(l’]) = (¢, ¢]>>7 Bﬂ(l) = <¢{V7 ¢Z>L2(p)7 By(i,7) = {¢i, ¢]>L2(p) 4.1

from data for each of these hypothesis spaces.

3. For each triplet (A,,, by, By,), find the best regularized estimator ¢y, by DARTR in Algorithm 1,
as well as corresponding loss value £(¢),, ).

4. From the estimators {C),, }, we select the one with the smallest loss value £(¢c),, ).

Algorithm 1 Data Adaptive RKHS Regularization (DARTR).

Input: The regression triplet (A, b, B) consisting of normal matrix A, vector b and basis matrix B as in (4.1).
Output: SIDA-RKHS regularized estimator ¢y, and loss value (¢, ).
1: Solve the generalized eigenvalue problem AV = BV A, where A is the diagonal matrix of eigenvalues
and the matrix V has columns being eigenvectors orthonormal in the sense that V' BV = I.
2: Compute the RKHS-norm matrix B,ns = (VAV )71, using pseudo inverse when A is singular. We
refer to Remark B.1 on a computational technique to avoid the inverse matrix.
3: Use the L-curve method to find an optimal estimator ¢, select Ay maximizing the curvature of the -
curve (log £(€y),1og(¢] ByknsCy)), where the least squares estimator ¢y = (A + AByxns) b minimizes
the regularized loss function

Ex(e) = E(¢) + Xe' Brpnse with E(c) = ¢ Ac—2¢Tb + BTZAE,

where the matrix inversion is a pseudo-inverse when it is singular.

In comparison to the classical nonparametric regression using (A, b,), we need only an ad-
ditional basis matrix B,,. The novelty of our algorithm is the data adaptive components, such as
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the exploration measure p, the basis matrix B,, in L?(p) and the norm of the SIDA-RKHS for reg-
ularization. The computation of the SIDA-RKHS norm is based on the generalized eigenvalues
problem with the pair (4,,, B,,), whose eigenvalues approximate the eigenvalues of L#in (3.6) and
12;C = Vjr¢; approximates the eigenfunctions of L (see Theorem 4.1). The additional computa-
tional cost is only the generalized eigenvalue problem which can be solved efficiently.

Theorem 4.1 Let H,, = span{¢;}"_; = L*(p) and let (A, By,) be the normal and basis matrix in
(4.1). Assume that H,, is large enough so that EG(LQ( p)) < Hy, (Which is true, for example when p
is a discrete-measure on a discrete set R and {¢,,} are piecewise constant functions withn = |R|).
Then, the operator L in (3.6) has eigenvalues (M1, ..., \,) solved by the generalize eigenvalue
problem

A,V =B,AV, st,V'B,V =1, A=Diag(\j,...,\), 4.2)

and the corresponding eigenfunctions of Lz are {1, = Z?:l Vikd;}-

4.2. Comparison with projected /> and L? regularizers

Our DARTR method differs from other regularizers in its use of the SIDA-RKHS norm, which
restricts the learning to take place in the function space of identifiability. In the following, we
compare it with the 1? and L? regularizers with R(¢) = [¢|% = >, ¢ and R(¢) = [¢]2, =
c' Byc. In fact, a direct application of these two regularization terms would lead to problematic
regularizers with largely biased estimators when A, is singular, i.e., when the function space of
identifiability is a proper subspace of L?(p), because the inverse problem is ill-defined on L?(p)
(see also Remark 3.7). Thus, in practice, one makes a projection to the FSOI (i.e., the eigen-space
of nonzero eigenvalues of A,, in computation) before adding these regularization terms, and we call
them projected /2 and L? regularizers.

Table 1: The SIDA-RKHS regularizer v.s. the projected [2,L? regularizers*.

I? | L? | SIDA-RKHS
R(¢) le|? =cTe le|%, = ¢ Bye lel#, = ¢" Brinsc
k T k T k -
2 Cx = Zi:l g,ii,\“in Cx = Zi:l ﬁ”?b Cx = Zi:l ﬁv?b
SVD Zn = Z?:l Uz-uiu;,u;uj = 61‘]‘ Zn = Z?:l )\ﬂ}ﬂ);, U;Bn’l}j = 6ij
UTA,U=x,U'U=1 VA, V=AV'B,V=1I

*All regularizers estimate ¢ = Y., ¢;¢; from A,,c = b,, with basis matrix B,, (see (4.1)). The projected I?
and L? regularizers use only the non-zero eigenvalues {o;}¥_, and {\;}*_, and their eigenvectors.

Table 1 compares our SIDA-RKHS regularizer with the projected /2 and L? regularizers. We
note that there are the following connections:

e The L? regularizer is a basis-adaptive generalization of the [? regularizer. When B,, = I (i.e., the
basis {¢;} are orthonormal in L?(p)), the two are the same. When B, is not the identity matrix
(i.e., the basis {¢;} are not orthonormal in L?(p)), which happens often, the L? regularizer takes
it into account through the generalized eigenvalue problem.

e The SIDA-RKHS regularizer is an improvement over the L? regularizer. When all the generalized
eigenvalues are \; = 1 (e.g., L is an identity operator or when A, = B, as in classical
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regression), the two are the same. Otherwise, the SIDA-RKHS regularizer not only takes into
account of the FSOI but also a balance between \; and )\;1.

e The SIDA-RKHS regularizer restricts the learning to be in the FSOI by definition, while the other
two regularizers, if not projected, miss this fundamental issue.

5. Numerical results

We test our learning method on three types of operators: linear integral operators, nonlocal operators
and nonlinear operators. For each type, we systematically examine the method in the regimes of
noiseless and noisy data, with kernels in and out of the SIDA-RKHSs. Since the ground-truth kernel
is known, we study the convergence of estimators to the true kernel as the data mesh refines. Thus,
the regularization has to overcome both numerical error and noise in the imperfect data. All codes
used will be publicly released on GitHub.

5.1. Settings and main results

The settings of the numerical tests for all three types of operators are as below.

Comparison with baseline methods. On each dataset, we compare our SIDA-RKHS regularizer
with two baseline regularizers using the projected /2 and L? norm (denoted by 12 and L2 in the
figures below, respectively) defined in Section 4.2. All three regularizers use the same L-curve
method to select the hyper-parameter A as described in Appendix B.1. They differ only at the
regularization norm.

Settings of synthetic data. We test two kernels for each type of operators:

e Truncated sine kernel. The truncated sine kernel is ¢ = sin(2z)1 [0,3] (x). It represents a kernel
with discontinuity. Due to the nonlocal dependency of the operator on the kernel, this discontinuity
can cause a global bias to the estimator.

e Gaussian kernel. The kernel ¢, 1s the Gaussian density centered at 3 with standard deviation
0.75. It represents a smooth kernel whose interaction concentrated in the middle of its support.

The kernels act on the same set of function {uy}x—12 with ui(z) = sin(z)1_; (v) and
uz(z) = sin(2r)1|_r »(z). When generating the data for learning, the integral Ry[ux] = f is
computed by the adaptive Gauss-Kronrod quadrature method. This integrator is much more accurate
than the Riemann sum integrator that we will use in the learning stage. To create discrete datasets
with different resolutions, for each Az € 0.0125 x {1, 2,4, 8,16}, we take values of {u, fk}{cvzl =
{ur(x;), fr(x;) + x; € [-40,40],5 = 1,...,J}Y |, where x; is a point on the uniform grid
with mesh size Az. For the nonlinear operator, to avoid the inverse problem being ill-defined, we
introduce add an additional pair of data (us, f3) with uz(x) = z1j_; () (see Section 5.3 for
more details). In short, the discrete data {uy, };—1 2 are continuous functions and the discrete data u3
is a piece-wise smooth function.

For each kernel, we consider both noiseless and noisy data with different noise levels by taking
values of noise-to-signal-ratio (nsr) in {0,0.5,1,1.5,2}. Here the noise is added to each spatial
mesh point, independent and identically distributed centered Gaussian with standard deviation o,
and the noise-to-signal-ratio is the ratio between o and the average L? norm of f;,.

Settings for the learning algorithm. When estimating the kernels from the discrete data, we
estimate the values of the kernel on the points S = {Tj}}]=1 with 7; = jAuz, the support of the
empirical exploration measure p. When the data mesh refines, the size of this set increases. In
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Table 2: Rate of convergence of the SIDA-RKHS regularizer’s estimators from noisy data.

Linear Integral Operator | Nonlinear Operator | Nonlocal Operator

Kernel Data continuity(C) Data continuity (D) | Data continuity (C)
Truncated Sine (D) 0.29 0.94 0.29
Gaussian (C) 0.62 0.66 1.01

* Here “C” stands for continuous, and “D” stands for discontinuous. When the continuity of the kernel and
data matches, the rates are closer to 1 than when the two dis-matches. The rates are the average of the mean
rates for nsr € {0.1,0.5, 1,2} in the right columns of Figure 1-3. We do not report the rate for the /? and L?
regularizers because they do not have a consistent rate.

terms of the algorithm in Section 4.1, such a discrete estimation uses a hypothesis space with B-
spline basis functions consisting of piece-wise constants with knots being the points in S. Thus,
the true kernels are not in this hypothesis space. Furthermore, this hypothesis space has the largest
dimension for the basis matrix B, in (4.1) being non-singular, and there is no need to select an
optimal dimension. In this setting, the regularizer is the only source of regularization and there is
no regularization from basis functions. Hence, this setting highlights the role of the regularizers.
Performance assessment. We assess the performance of the regularizers by their ability to consis-
tently identify the true kernels in the presence of numerical error (in the Riemann sum approxima-
tion of the integrals due to discrete data) and noise (due to noisy data). We present typical estimators,
the L?(p) errors of the estimators as data mesh refines, as well as the statistics (mean and standard
deviation) of the rates of convergence that are computed from 20 independent simulations.

Summary of main results Our main findings are as follows.

e The SIDA-RKHS regularizer’s estimator is the most accurate in most cases. However, it occasion-
ally happens that the [? or L? regularizer performs better because of a suboptimal regularization
parameter \g, which depends on multiple factors, ranging from the operator, numerical error,
noise and treatment of the singular or ill-conditioned normal matrix, even though SIDA-RKHS
regularizer is the most robust (see Figure 4 in appendix). Thus, in addition to accuracy of the
estimator, it is important to also compare the convergence rates.

o The SIDA-RKHS regularizer robustly leads to estimators converging at a consistent rate for all
levels of noises for each operator, while the other two regularizers cannot.

e The rate of convergence of the SIDA-RKHS regularizer’s estimator from noisy data depends on
both the continuity of the kernel and the continuity of the discrete data: when the two matches,
the rate is higher and closer to 1, as shown in Table 2.

5.2. Linear integral operators

We consider first the integral operator with kernel ¢:
Rolul(@) = | olly = abuto)ds = F(a).

After a change of variables in the integral, it is the operator Ry in (2.2) with g[u](z,y) = u(x + y).
Such kernels in operators arise in a wide range of applications, such as the Green’s function in PDEs
(see e.g., Evans (2010); Gin et al. (2021)) and convolution kernels in image processing in Owhadi
and Yoo (2019), to name just a few.

11
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For this operator, the exploration measure p (defined in (3.2)) is a uniform measure, since each
data g[uy] interacts with the kernel uniformly. Furthermore, since each g[ug] is continuous, the
reproducing kernel G in (3.4) is continuous on the support of p, thus the SIDA-RKHS consists of
continuous functions. As a result, we expect the algorithm to learn the smooth Gaussian kernel
better than the discontinuous truncated sine kernel.
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Figure 1: Linear integral operators with the sine kernel (top row) and Gaussian kernel (bottom row). Left
column: typical estimators by the three regularizers, in comparison of the true kernel, superim-
posed with the exploration measure p (in cyan color), when Ax = 0.05 and noise-to-signal-ratio
nsr = 1. Middle 3-columns: convergence of estimators as the mesh-size Az refines, along with
values of the loss function. Right column: the mean and standard deviation of the convergence
rates in 20 independent simulations, with five levels of noise (with nsr € {0,0.1,0.5,1,2}). Only
the SIDA-RKHS regularizer’s estimator consistently converges for all levels of noise, and its esti-
mators are mostly more accurate than the other two regularizers’.

Figure 1 shows the results. The left column shows the typical estimators by the three regular-
izers, in comparison of the true kernel, when Az = 0.05 and noise-to-signal-ratio nsr = 1. The
exploration measure p (in light cyan color) is uniform for each kernel, and its support, estimated
from the difference between the supports of g[uy] and fy, is slightly larger than the support of the
true kernel. All three regularizers lead to accurate estimators. The RKHS regularizer’s estima-
tors are the closest to the true kernel and this is further verified in the middle 3-column panel with
Az = 0.05 add nsr = 1: for the sine kernel, all three estimators’ L?(p) errors are about 1071;
but for the Gaussian kernel, the RKHS’s estimator has an error close to 10725 while the other two
regularizers’ error are about 102,

The middle 3-column panel shows the convergence of the estimator’s L?(p) error as the data
mesh refines when nsr = 0.1 and nsr = 1, superimposed with the corresponding values of the loss
function. When nsr = 1, all three regularizers’ estimators converge for both kernels, at rates that are
close to the rates of the loss function, and their errors are comparable. However, when nsr = 0.1,
the RKHS regularizer continues to yield converging estimators, whereas the other two regularizers
have flat error lines even though the corresponding loss values keep decaying. In particular, those
flat error lines are above those errors for nsr = 1 with Az < 0.025, i.e., when the numerical error
is small. Thus, these results demonstrates the importance to take into account the function space of
learning via SIDA-RKHS, particularly when the noise level is relatively low.

The right column shows the mean and standard deviations of the rates of convergence in 20
independent simulations. The RKHS regularizer has consistent rates of convergence for all levels

12
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of noises. The rates are closer to 1 for the smooth Gaussian kernel (which matches the continuity
of data) than the rates for the discontinuous truncated sine kernel when the data are noisy. The rates
are close to 1 when the data are noiseless. On the other hand, the [? and L? regularizers fails to
have consistent rates when the noise level reduces. In particular, for the sine kernel, they present
deceivingly higher rates than the RKHS regularizer when nsr € {0.5, 1, 2}, and the middle 3-column
panel reveals the facts: they often have much larger errors than the RKHS when Az = 0.2, thus
leading to deceiving better rates even when their errors remains large as Az decreases.

In short, the RKHS regularizer leads to estimators that converge consistently, at lower rates
for the discontinuous sine kernel (which is discontinuous, different from the dta) and at higher
rates for the smooth Gaussian kernel (which match the continuity of the data), while the [? and L?
regularizers cannot. Furthermore, RKHS regularizer’s estimators are often more accurate than those
of the other two regularizers.

5.3. Nonlinear operators

Next we consider the nonlinear operator Ry with g[u](z,y) = 0z[u(z + y)u(x)]:

Rylu](z) = JQ S|y alu(z + y)u(x)]dy = [u ¢(| - [)u] ().

Such nonlinear operators arise in the mean-field equations of interaction particles (see e.g., Jabin
and Wang (2017); Motsch and Tadmor (2014); Lu et al. (2021); Lang and Lu (2022)), and the
function ¢ is called an interaction kernel. More precisely, the mean-field equations are of the form
oy = vAu + div(u * Ksu) on RY, where Ky(y) = ¢(|y])‘—z| Here we consider only d = 1 and

neglect the ratio £ to obtain the above operator.

We add an ac‘lﬂitional pair of data (us, f3) with uz(x) = 21|_; r(z), so as to avoid the issue
that the value of [u * ¢(] - |)u](x) is under-determined from the data f(x) = [u * ¢(| - |)u]'(z) due
to the differential. Here we set the derivative of u3 to be uz(z) = 1[_; r(z). These derivatives
are approximated by finite difference when learning the kernel from discrete data. Note that the w3
and its derivative have jump discontinuities. As a result, the reproducing kernel G in (3.4) also has
discontinuity, and the SIDA-RKHS contains discontinuous functions.

Figure 2 shows the results. The left column shows that the exploration measure p is non-uniform
due to the nonlinear function g[uy], and its density is a decreasing function, suggesting that the data
explores the short range interactions more than the long range interaction. The RKHS regularizer’s
estimators significantly outperforms the other two regularizers, and they are near smooth and are
close to the true kernels. The [? and L? regularizers have largely oscillating estimators, suggesting
an overfitting. Note that the RKHS estimators also have oscillating parts, but they are only in the
region where the exploration measure has little weight, due to limited data exploration. The superior
performance of RKHS regularizer is further verified in the middle 3-column panel with Az = 0.05
add nsr = 1: its errors are much smaller than those of the other two regularizers.

The middle 3-column panel shows that the RKHS regularizer’s error consistently decreases as
the data mesh refines. In contrast, the other two regularizers have slower and less consistent error
decay, in particular, their error lines flatten as the noise level increases.

The right column shows that the RKHS regularizer has consistent rates of convergence for all
levels of noises, with all rates close to 1 for the sine kernel, and slightly above 0.5 for the Gaussian
kernel. In comparison, the other two regularizers’ rates decreases as the noise level increases,
dropping close to zero when the noise level is nsr = 2.
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Figure 2: Nonlinear operators, in the same setting as in Figure 1. The SIDA-RKHS regularizer’s estimators
are significantly more accurate than those of the /2 and L? regularizers in the left column. The
middle 3-column panel shows that the SIDA-RKHS regularizer leads to consistently converging
estimators as the data mesh refines, for both levels of noise, while the other two regularizers have
slower and less consistent error decay and their error lines flatten when the noise level is nsr = 1.
The right column shows that only the SIDA-RKHS regularizer has consistent rates for all levels
of noise, and the other two regularizers’ rates drops significantly when the noise level increases.

In short, the RKHS regularizer’s estimators are more accurate than those of the [? and L? regu-
larizers. More importantly, the RKHS regularizer consistently leads to convergent estimators, main-
taining similar rates for all levels of noises, at rates close to 1 for the truncated sine kernel (which
is discontinuous, matching the discontinuity of data) and at rates slightly above 0.5 for the Gaus-
sian kernel (which is smooth, different from the data). The [? and L? regularizers have convergent
estimators, but the rate of convergence drops when the noise level increases.

5.4. Nonlocal operators

At last, we consider nonlocal operators Ry with glul(x,y) = u(z + y) — u(x):
Rolul(z) = | olyluta + ) — u(a)ldy

Such nonlocal operators arise in nonlocal and fractional diffusions (see e.g., Du et al. (2012); Ap-
plebaum (2009); Bucur and Valdinoci (2016)) and they have been used to construct homogenized
models for peridynamic in You et al. (2022, 2020); Lu et al. (2022).

Figure 3 shows the results. The left column shows typical estimators. The exploration measure
p shrinks to zero near the origin due to the difference g[u] = u(y) — u(x) and the continuity of w.
All three regularizers lead to accurate estimators, and the RKHS estimator is the most accurate.

In the middle 3-column panel, we observe again that the RKHS regularizer leads to estimators
remain converging as data mesh refines for both noise levels, even though the errors decay slower
than the loss function. On the other hand, the {? and L? regularizers have inconsistent error decay:
the errors decreasing monotonically when nsr = 1, but the error lines oscillate when nsr = 0.1 for
the sine kernel, and for the Gaussian kernel, they present deceiving rates larger than the decay of
the loss function due their large errors when Az is large.

The right column further confirms the consistency of the RKHS regularizer’s rates and the in-
consistency of the [? and L?-regularizers’ rates. When the data is noisy, the rates of the RKHS
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Figure 3: Nonlocal operators, in the same setting as in Figure 1. Overall, the SIDA-RKHS estimators have
the smallest error mostly, and it is the only one with consistent rates for all levels of noise.

regularizer are about 0.29 for the truncated sine kernel (which has a jump discontinuity) and about
1 for the Gaussian kernel (which is continuous). Meanwhile, the rates for the [? and L?-regularizers
are about 0.65 for the sine kernel, and about 0.8 for the Gaussian kernel. We note again that they can
have deceivingly better rates than the RKHS regularizer’s while their errors are larger. Moreover,
when the data is noiseless, RKHS regularizer has rates close to 1 for both kernels, while the other
two regularizers rates are not consistent.

6. Discussion and future work

We have proposed a data adaptive RKHS Tikhonov regularization (DARTR) method for the non-
parametric learning of kernel functions in operators. The DARTR method regularizes the least
squares regression by the norm of a system intrinsic and data adaptive (SIDA) RKHS. It constraints
the learning to take place in the function space of identifiability, in which the inverse problem is
well-defined but ill-posed.

Numerical tests on synthetic datasets suggest that DARTR has the following advantages: (1) it is
naturally adaptive to both data and the operator; (2) it leads to estimators converging at a consistent
rate when the data mesh refines, robust to numerical error and noise.

This study presents a preliminary introduction of the DARTR method. There are several direc-
tions for further development and analysis of DARTR in general settings and applications:

1. Convergence analysis. We are in short of a convergence analysis of the regularized estimators
due to the numerical errors in the normal matrix.

2. Multivariate kernel functions. When the kernel is a multivariate function, sparse-grid representa-
tion or sparse basis functions (sparse polynomials) become necessary. A related issue is to select
the optimal dimension of the hypothesis space.

3. Applications to Bayesian inverse problems. In a Bayesian perspective, the Tikhonov regulariza-
tion can be interpreted as a Gaussian prior with a covariance matrix corresponding to the penalty
term. In this perspective, our SIDA-RKHS norm coincides with the Zellner’s g-prior (Zellner

and Siow (1980); Bayarri et al. (2012)) that uses Z; ! as prior covariance, because we have
Brkns = A, ! when the basis functions are orthonormal in L2 (p).

4. The DARTR method is applicable to general linear inverse problems with a quadratic loss func-
tional. It is particularly useful when the data depends on the unknown function non-locally.
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Appendix A. Proofs

Proof [Proof of Lemma 3.2] Recall that a bi-variate function G is positive semi-definite if for any
(¢1;...,cm) € R™and any {r;}7L, RY, the sum 7" 1 200 cicjG(ri,rj) = 0. (see e.g. Berg
et al. (1984) Cucker and Zhou (2007); Li et al. (2021)). Us1ng (3.4) and (3.5), we have

Z cicjG(ri,rj) N 2 lfn| 1f5| ) fZZCzCJ olus)(x Zﬁiigrj)](xjrjn)dx] dgdn

i=1j5=1 i=1j5=1
SO
Ng%mﬂ|w1

§ oluarie)|

: dz | dedn =0
~ p(ri)
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Thus G is positive semi-definite. The operator Lz is compact because G € L?(p x p), which fol-
lows from tIE fact that each uy, is bounded and the definition of p (see also in Lang and Lu (2021)).
Also, since G'is positive semi-definite, so is L. The equation (3.7) follows from (3.3). |

Proof [Proof of Lemma 3.3] Part (a) is a standard operator characterization of the RKHS Hq (see
e.g., (Cucker and Zhou, 2007, Section 4.4)).

For Part (b), since the operator L is symmetric positive semi-definite and compact as shown
in Lemma 3.2, the eigenfunctions are orthonormal and the eigenvalues decay to zero. The first
equation in (3.8) follows from (3.7) and the second equation follows from the orthonormality of the
eigenfunctions. At last, if ¢ € Hg, by the characterization of the inner product of H¢ in Part (a),
we have the third equation in (3.8).

The first equality in Part (c) follows from Part (a) and that Eé_l/ 2 is self-adjoint, which implies
that (L&¢, Y)n, = <£§1/2¢, 56_1/2¢>L2(p) = (¢, 9¥)12(p)- The second equality in (3.9) follows
from the first equality and (3.7). |

Proof [Proof of Theorem 3.6] From (3.7), we can write the loss functional in (3.1) as

E(¢) = (Lgd O)r2(p) — Abh: Br2(p) + C-

Then we can compute the Fréchet derivative directly from definition, and Part (a) follows.

For Part (b), first note that for any qb{v € L&(L?(p)), the estimator ¢ = Ea_lqﬁfv is the unique
zero of the loss functional’s Fréchet derivative in H, hence it is the unique minimizer of £(¢) in H.
In particular, when the data is continuous noiseless and the true kernel is ¢¢pye, i.6. Ry, [ur] = fr,
by (3.7) and the definition of the bilinear form {-, - ) in (2.5), we have

(N> r2(p) = Lgbirues VD 12(p)

for any ¢ € L%(p). Thus, & = Ladirue and ¢ = L5 ¢h = Girue. That is, drrue € H is the
unique minimizer of the loss functional £. Meanwhile, note that / is the orthogonal complement
of the null space of L, and &(pirue + ¢°) = E(Ptrue) for any ¢V such that L5¢” = 0. Thus, H is
the largest such function space, and we conclude that H is the FSOL.

To prove Part (c), we further re-write the loss functional as

E(9) =L, Lad)ug — 2L bk, L *Doug + CL,

which follows from (3.9) and the definition of (-, ). Thus, by definition, the Fréchet derivative
of £(¢) in the direction of ¢ € H is

(VHOE($), ) = lim ~[E( + ) — E(9)]

= 2L, LaPdng — 2L * ok, LoV m
= 2<£a2¢ - £6¢{V7 w>Hga

which gives the Fréchet derivative VH¢ £ (). [ |
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Proof [Proof of Theorem 4.1] Let ¢, = Z?:I Vir¢; with VB,V = I,. Then, 1 1s an eigen-
function of L with eigenvalue ), if and only if for each i,

{Pis Mer)pr2(p) = {Pis LGVh)12(p) = Z<¢u Ledi)12(p) Z Wik,

where the last equality follows from the definition of A,, in (4.1). Meanwhile, by the definition of
By, we have {¢i, Atk )r2(p) = 2?21 By (i, j) A\, Vjy, for each i. Then, Equation (4.2) follows. W

Appendix B. Algorithm details
B.1. Detailed nonparametric learning algorithm

We consider only discrete data {uy(z;), fi(2;)}A_, in 1-dimensional and at equidistant mesh points
{z; = ]A:L‘} _o- The extension to multi-dimensional cases is straightforward.

Step 1: Estimate the exploration measure and assemble regression data. We first estimate the
exploration measure and extract the regression data that can be repeatedly used for all hypothesis
spaces. This step can reduce the computational cost in orders of magnitude when the data is large
with thousands of pairs (ug, fx) with fine mesh.

Let Ry be the diameter of the set 2. The discrete data set {uy(z;), fx(z;)}5_, explores only
the variable 7 of ¢ in the set R%, = {rijx = |vi| < Ro : g[ux](xi,y;) # 0 for some i, j, k}, the set
of all values explored by data with repetition. A discrete approximation of the exploration measure
pin (3.2)is

N J
1
pR(dr) = — > E% ) glur) (. )| (B.1)
|RN|k: j=1

This measure p]‘{, uses only the information from uy, and it does not reflect the information about the
kernel in fj. To estimate the support of the kernel, we extract the additional information from { fx }
as follows. We set the data-adaptive support of the kernel to be [0, R] with R defined by

R = 1.1min{R,, max{|L] — L¥|,|R — R*}}¥,}, (B.2)

where (L}, RY) and (L{ , sz ) are the lower and upper bounds of the supports g[ux](z,y) and
supp( fi) respectively, and R, is the maximum of the support of p]‘{,. That is, the support of the
kernel lies inside the support of the exploration measure, and it is the maximal interaction range in-
dicated by the difference between supports of uy, and fi, which extracts the additional information
in the data { f}. Here the multiplicative factor 1.1 is an artificial factor to enlarge the range, so that
the supports of the basis functions will fully cover the explored region.

The estimated support of the kernel is the region explored by data. Outside of the region, the data
provides little information about the kernel. Thus, we focus on learning the kernel in this region
and set the local basis functions to be supported in it. Accordingly, we constrain the exploration
measure to be supported in [0, R], and for simplicity of notation, we still denote it by p}{,.
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Assemble regression data. Next, we assemble the regression data that will be used repeatedly,
thus saving the computational cost by orders of magnitude, particularly when the data size is large
with thousands of pairs (uy, fx). In order to compute the normal matrix A(i, j) = {¢;, ¢;) for any
pair of basis functions, with the bilinear form defined in (3.3), we only need the integral kernel G.
In particular, when d = 1, the integral S|n\:1 h(n)dn = h(n) + h(—n), therefore, we have

N
6(r:9) = 3y X | (o) + el =) Gl o)+ glonl(o, =) e B3

for r, s € supp(p). Similarly, for a basis function ¢;, to compute b(7) in (2.4), which can be re-
written as

o 1 X R ;
ba(i) = > JR@. [ug] () fi(z)dx = JO di(r)gh (r)dr, (B.4)
k=1

we only need the function g]]i, defined by

- Ly f (gFur)(@, ) + glug] (@, —r) fu()da. (B.5)
N Nk:1 Q ’ 7

Letry = kAxfork =1,..., [%J, which are the mesh points of ¢ explored by the data. Then, all
the regression data we need in the original data (2.1) are

R
{G(Tk>rl)7g{\[(rk)7p]{/(rk)’ with kvl = 17 ceey [AI'J} ) (B6)

where G, ng and ,0;{, are defined respectively in (B.3), (B.5) and (B.1).

Step 2: Select a class of hypothesis spaces and assemble regression matrices and vectors. We
set a class of data-adaptive hypothesis spaces H,, = span{¢;};_; with their dimensions set to range
from under-fitting to over-fitting. The basis functions can be either global basis functions such as
polynomials and trigonometric functions, or local basis functions such B-spline polynomials (see
e.g., Chapter 2 of Piegl and Tiller (1997) and Lyche et al. (2018)). To set the range for n, we note that
the mesh points of the kernel’s independent variable explored by data are {kAx : k =1,..., [%J }.
Meanwhile, the basis function should be linearly independent in L?(p¥;) so that the basis matrix

By, = ({¢s, ¢j>L2(p]Jv))1<i,j$n e R™*" (B.7)
is nonsingular. Thus, we set the range of n to be in [%J % [0.2, 1] such that B,, is nonsingular while
covering a wide range of dimensions. For example, when we use piecewise constant basis, we can
setn = [%J with ¢;(z) = §(z; — z), and we get B,, = Diag(p¥;). Thus, we estimate the kernel as
a vector of its values on the mesh points, with L2(p]{,) being a vector space with a discrete-measure
PN o

With these regression data, the triplet (A, by, B,,) can be efficiently evaluated for any basis
functions using a numerical integrator to approximate the corresponding integrals. For example,
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with Riemann sum approximation, we compute the normal matrix A,, and vector b,, and the basis
matrix B,, as

An(iy§) = L &5) = Y, i) b (r1) G rg, ) Az,

ol
by (i) ~ Z i (ri) gk (i) Az, (B.8)
2

By(i,) ~ Y. ¢i(ri) 5 (rie) ok (i) A
k

The triplet (A,,, b,, By,) is all we need for regression with regularization in the next step.

Step 3: Regression with DARTR. Our DARTR method uses the norm of the SIDA-RKHS.
That is, our estimator is the minimizer of the regularized loss in (2.7) with the regularization norm
R(¢) = |¢[F,, defined in (3.8).

Computation of the RKHS norm In practice, we can effectively approximate the RKHS norm
H(;SH%{G using the triplet (A, by, By,). It proceeds in three steps. First, we solve the generalized
eigenvalue problem A,V = B,V A, where A is a diagonal matrix of the generalized eigenvalues
and the matrix V has columns being eigenvectors orthonormal in the sense that V' B,V = I,.
Here these eigenvalues approximate the eigenvalue of L in (3.6), and sz = Vr¢; approximates
the eigenfunctions of L. Then, we compute the square RKHS norm of ¢ = » ., c;¢; as

|67, = " Brinsc, with Bygps = (VAVT) ™ (B.9)

where the inverse is taken as pseudo-inverse, particularly when A has zero eigenvalues.
With the RKHS-norm ready, we write the regularized loss for each function ¢ = ). ¢;¢; as

Ex(o) = CT(Zn + ABkhs)C — 2¢"b, + C]J:,.

The regularized estimator is
n

ox =Y choi, ex = (An + AByns) b (B.10)
1=1

Then, we select the hyper-parameter A by the L-curve method (see Section B.2).

Remark B.1 (Least squares to avoid matrix inverse) The matrix inverses can cause numerical
issues when the normal matrix A is ill-conditioned or singular. Fortunately, the matrix inversions in
By khs and in solving (Ay, + AByghs)ca = by, can be avoided by using minimum norm least squares

. .. . . “T/2— 5—1/2 ~ —T/2+
solution. Note that this linear equation is equivalent to (Brkhé AnBrkh/ .t A )e\ = BTkhé bn,

o~ —1/2 -T/2 . . y—1/2 .
with ¢\ = Brkh/ < C\, Where BTkhé is the transpose of the square root matrix BTkh/ - Meanwhile,

the square root B;{lh/f = (VAV )2 comes directly from (B.9). Thus, these treatments avoid the
matrix inversions and lead to more robust estimators.

We summarize the method in Algorithm 2.
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Algorithm 2 Nonparametric learning of the kernel in operator with DARTR

Input: The data {uy, fi}o_, = {ug(z;), fr(z;) ivjil with z; = jAux to construct the nonlocal model
Ry[u] = f.
Output: Estimator ¢
1: Estimate the exploration measure p']]\, from data as in (B.1), and estimate the support of the kernel from
data as in (B.2). Let R be the upper bound of the support.
2: Get regression data (G, g{v) in (B.6).
3: Select a class of hypothesis spaces H,, = span{®;}_; by selecting a type of basis functions, e.g.,
polynomials or B-splines, n in the range | £ | x [0.2,1].
4: For each n, compute (A,,b,,B,) as in (B.8) for H, = span{¢;}™,, using (G,g{v,p}{,) obtained
above. If the basis matrix B,, is singular, remove n from the range. For the (Zn, by, B,,), find the best
regularized estimator ¢,, by DARTR in Algorithm 1, as well as corresponding loss value £(Cy, ).

5: Select the optimal dimension n* (and degree if using B-spline basis) that has the minimal loss value

. . . . .. . . > n* ;
(along with other cross-validation criteria if available). Return the estimator ¢ = > .." | ¢!, ¢;.

B.2. Hyper-parameter by the L-curve method

We select the parameter A by the L-curve method Hansen (2000); Lang and Lu (2022). Let [ be a
parametrized curve in R?:

1) = (@(\),y(V) := (log(£(), log(R()),

where £ (q/b;) = c] Apey—2¢) by — c{., and R(¢) is the regularization term, for example, R(g/b;) =
| AH%% = cI B, inscxh. The optimal parameter is the maximizer of the curvature of [. In practice,
we restrict A in the spectral range [ Ayin, Amaz| Of the operator L,

//

I
Ty —2Y (B.11)

Ao = argmax rs({(A\)) = argmax ————— =
Amin SA< Amax Amin SA< Amax ($, 2 + y/ 2)3/2 ’

where A\, and A, are computed from the smallest and the largest generalized eigenvalues of
(Zn, B,,). This optimal parameter A\ balances the loss £ and the regularization (see Hansen (2000)
for more details). Figure 4 shows a few typical L-curve plots in the selection of the parameter.
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Figure 4: The L-curve selection of the optimal regularization parameter Ao with maximal curvature. From
left to right (each with an L-curve plot and a curvature plot): 12, L? and the RKHS. These optimal
Ao’s lead to the regularized estimators for the Gaussian kernel in Figure 2 (left), whose L?(p)
errors are 0.34, 0.14, and 0.02, respectively. The RKHS-norm leads to the best shaped L-curve,
and it has the most accurate estimator.
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