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Abstract

Wearable Cognitive Assistance (WCA) applications use com-
puter vision models that require thousands of labeled train-
ing images. Capturing and labeling these images requires a
substantial amount of work. By using synthetically generated
images for training, we avoided this labor-intensive step. The
performance of these models was comparable to that of mod-
els that were trained on real images.

Introduction

Wearable Cognitive Assistance (WCA) applications are a
new class of cyber-human systems that leverage machine
learning models, mobile devices, and edge computing (Ha
et al. 2014; Chen et al. 2017; Wang et al. 2019; Pham et al.
2021). These applications guide users step-by-step through
complex tasks with visual and audio guidance, just as turn-
by-turn GPS navigation systems guide drivers. Using com-
puter vision, the application determines when a step has
been completed correctly, and then gives the user the next
instruction. Images are captured using the camera on a head-
mounted wearable device or a smartphone. These images
are transmitted over a wireless network to a cloudlet (i.e.,
a server with close network proximity), where they are ana-
lyzed by computer vision models to determine task progress.

Most of the models used by WCA applications are deep
neural networks (DNNs). Training these DNNs requires
thousands of labeled images. Capturing and labeling these
images requires substantial effort. Bounding boxes must be
drawn around the region of each image that contains the ob-
ject being assembled. The bounding box must then be la-
beled with the step of the assembly process that is depicted
in the image. Collecting and labeling a training set of im-
ages is a major barrier to entry for anyone who wants to
develop a WCA application for a new task. For example,
this effort took over 50 person hours for a WCA application
that could recognize 17 different states in the assembly of an
IKEA cart. This time-consuming and labor-intensive aspect
of WCA is the biggest bottleneck to its widespread adoption.

Previous papers have proposed the use of synthetically
generated images for training sets. In this approach, pre-
labeling is done by construction (Hinterstoisser et al. 2019b;
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Tremblay et al. 2018b; Gupta, Vedaldi, and Zisserman 2016;
Hinterstoisser et al. 2019a; Rajpura, Hegde, and Bojinov
2017; Tremblay et al. 2018a; Dwibedi, Misra, and Hebert
2017). Since programs that generate synthetic images have
information about the objects that are visible and their loca-
tions, there is no need for manual input of this information.
In addition, synthetic images of objects can easily be ren-
dered in a wide variety of different lighting conditions and
environments. In contrast, capturing real images of objects
in a variety of conditions requires the images of the object to
be captured in every such environment. Overall, the use of
synthetic data may save considerable manual effort.

In this paper, we examine whether synthetically generated
images are an adequate substitute for real images in training
sets. More specifically, we ask how well synthetic images
work for creating a WCA application for guiding the assem-
bly of a particular Meccano Erector kit. We use the follow-
ing procedure to answer this question. We first generate a
set of synthetic (pre-labeled) images using the Unity Percep-
tion package (Borkman et al. 2021), and then train computer
vision models on this data. Next, we collect and manually
label a set of real images for the same task, and then train
computer vision models on this data. Finally, we compare
the accuracy of these two families of models on a held-out
test set of real images. Our results show that models created
with a training set size of 75,000 synthetic images perform
slightly better than models created with roughly 15,000 real
images. However, this ordering is reversed when fewer syn-
thetic images are used for training.

Caution is advisable in generalizing our results. They per-
tain to one data point: a specific example (Meccano Erector
kit) of a specific class of Al tasks (WCA). Yet, it is also
true that WCA is representative of an emerging class of “Al
in the wild” applications. Our positive experience with syn-
thetic training data suggests that more extensive efforts to
investigate their use in real-world Al is warranted.

Background & Related Work
Wearable Cognitive Assistance

A WCA application provides just-in-time guidance and er-
ror detection for a user who is performing an unfamiliar task.
Prompt error detection is also valuable for a user who is per-
forming familiar tasks, since human errors cannot be com-



App Example Input | Description Symbolic Example

Name | Video Frame Representa- | Guidance

tion

Pool Helps a novice pool player aim correctly. Gives continu- | <Pocket,
ous visual feedback (left arrow, right arrow, or thumbs up) | object ball,
as the user turns his cue stick. The symbolic representation | cue ball,
describes the positions of the balls, target pocket, and the | cue top, cue
top and bottom of cue stick. bottom>

Ping- Tells novice to hit ball to the left or right, depending on | <InRally, “Left!”

pong which is more likely to beat opponent. Uses color, line and | ball po-
optical-flow based motion detection to detect ball, table, | sition,
and opponent. Video URL: https://youtu.be/_Ip32sowyUA | opponent

position>

Work- Counts out repetitions in physical exercises. Classification | <Action, “8”

out is done using Volumetric Template Matching on a 10-15 | count>
frame video segment. A poorly-performed repetition is
classified as a distinct type of exercise (e.g. “good pushup”
versus “bad pushup”).

Face Jogs your memory on a familiar face whose name you can- | ASCII text | “Barack
not recall. Detects and extracts a tightly-cropped image of | of name Obama”
each face, and then applies a state-of-art face recognizer.

Whispers the name of the person recognized.

Lego Guides a user in assembling 2D Lego models. The sym- | [[0,2, 1, 1], | “Put a 1x3
bolic representation is a matrix representing color for each | [0, 2, 1, 6], | green piece
brick. Video URL: https://youtu.be/7L9U-n29abg [2,2,2,2]] | ontop”

Draw Helps a user to sketch better. Builds on third-party
app for desktops. Our implementation preserves the
back-end logic. A Glass-based front-end allows a user
to use any drawing surface and instrument. Displays
the error alignment in sketch on Glass. Video URL: .
https://youtu.be/nuQpPtVJIC60 ] ;

Sand- Helps a cooking novice prepare sandwiches according to | Object: “Put a piece of

wich a recipe. Since real food is perishable, we use a food | “E.g. Let- | bread on the
toy with plastic ingredients. Object detection uses Faster- | tuce on top | lettuce”
RCNN deep neural net approach. (Ren et al. 2015) of ham and
Video URL: https://youtu.be/USakPP45WvM bread”

Table 1: Example Wearable Cognitive Assistance Applications. The input frame is sent to a cloudlet, which converts it
to the symbolic representation. The symbolic representation is then used to give guidance. (Source: Adapted from Satya-

narayanan (Satyanarayanan 2017))

pletely avoided, especially when the user is tired or stressed.
Informally, WCA is like having “an angel on your shoul-
der.” (Ha et al. 2014) It broadens, the metaphor of GPS nav-
igation tools that provide real-time step-by-step guidance,
with prompt error detection and correction.

Table 1 lists some examples of WCA applications that we
have developed. In total, we have developed over 15 WCA
applications. This paper focuses on applications that that
help users assemble physical objects. We have developed
such applications for an IKEA lamp, a Lego kit, a toy sand-
wich, an IKEA cart, and a Stirling engine.

These applications are a compelling use case for edge
computing. They first capture images using the camera on

a mobile device, such as a smartphone or head-mounted
wearable device. The images are then sent to a cloudlet
for processing, using the Gabriel platform (Ha et al. 2014).
The computational limitations of lightweight mobile de-
vices that have acceptable battery life prevent us from
being able to process these images using the devices’
own hardware (Satyanarayanan et al. 2009). Table 2 lists
the resource consumption and end-to-end latency bounds
of five offloading-based WCA applications. It shows that
WCA applications are simultaneously compute-intensive,
bandwidth-hungry, and latency-sensitive.



| [

| Ping-pong [ Face [ Lego | Sandwich |

Cloudlet CPU load(%) 72.10 45.40 75.60 5220 [ 85.10
End-to-end latency bounds (tight-loose, ms)* || 95-105 | 150-230 | 370-1000 600-2700
Video streaming bandwidth requirement 480p: 3.6/7.0
(Average / Peak, Mbps) 720p: 6.8/9.9
1080p: 8.1/12.7

Table 2: CPU load, latency bounds, and the required bandwidth of example WCA applications. The implementations of the
application servers (Chen et al. 2017) were tested on a laptop (with an Intel® Core™ i7-8500Y processor and 8GB RAM),
running the frontend on an Android phone, using 480p, 720p, and 1080p video resolutions. (*) End-to-end latency includes
both the round trip time (RTT) from the Android phone to the cloudlet and compute time in the cloudlet. Tight and loose
bounds are adopted from Chen, et al, (Chen et al. 2017) where they are defined: “The tight bound represents an ideal target,
below which the user is insensitive to improvements. Above the loose bound, the user becomes aware of slowness, and user

experience and performance is significantly impacted.”

WCA Tools

Ha et al. (2014) introduced the first version of a program-
ming framework called Gabriel. This framework includes
networking and runtime components for WCA applications.
Chen et al. (2017) developed an initial set of WCA appli-
cations, determined how much latency was acceptable for
these applications, and examined how changes to the net-
work, hardware, and algorithms used can affect end to end
latency. Wang et al. (2019) examined how to reduce the load
imposed on a cloudlet by a single WCA user, thereby allow-
ing many more users to share single cloudlet. Pham et al.
(2021) developed a toolchain that allows people to develop
WCA applications without writing any code.

Synthetic Training Data

The idea of avoiding manual labeling has a long and rich
history. Hinterstoisser et al. (2019b) trained an object detec-
tor on synthetic data that outperformed an object detector
trained on real data. They generated backgrounds cluttered
with distractor objects. In addition, they added some distrac-
tor objects to the foreground and varied the lighting con-
ditions that were used to render each of the images. These
images looked 3D, but they were not photo-realistic. Other
works have generated photo-realistic images to use as train-
ing data (Tremblay et al. 2018b; Gupta, Vedaldi, and Zisser-
man 2016), or used real background images (Hinterstoisser
et al. 2019a; Rajpura, Hegde, and Bojinov 2017; Tremblay
et al. 2018a). Dwibedi, Misra, and Hebert (2017) avoided
rendering 3D graphics altogether by cropping objects from
photographs, and pasting these crops into other photographs.
Their models trained on synthetic images performed worse
than their models trained on real images. However, they also
trained models using a mix of real and synthetic images, and
these performed better than models trained on real or syn-
thetic data alone.

Application

We developed a WCA application that helps users assemble
a model bike, using parts from a Meccano Erector kit. The
fully assembled model is depicted in Figure 1. It is made
from over 50 parts. We trained models to recognize five steps
of the task for this work.

Figure 1: The fully assembled model bike. Our application
guides users through the steps required to assemble this.

Our application determines which step of the assembly
task is shown in the camera feed. This is accomplished us-
ing a two stage process inspired by Gebru et al. (2017). The
first stage involves finding the region of the image that con-
tains the assembly that a user is working on, using Faster R-
CNN (Ren et al. 2015). Next, the image is cropped around
this region, and the cropped region is classified using Fast
MPN-COV (Li et al. 2018). The Fast MPN-COV model has
five possible outputs, one for each step of the task that our
application recognizes. The classification result therefore in-
dicates the step of the task that is shown in an image. The
architecture for this application is shown in Figure 2.

Generating Data

We found a CAD model for the Meccano kit on the commu-
nity website GrabCAD'. This CAD model appears to have
been created to replicate the physical Meccano pieces, rather
than being the same model that was used to manufacture the
pieces. In particular, we noticed a number of differences be-
tween the CAD model and the actual Meccano parts. We

'https://grabcad.com/library/meccano-9550-002-1
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Figure 2: The architecture of our WCA application for the
Meccano erector kit. The dashed lines represent a Wi-Fi con-
nection. The solid lines represent a connection over Gigabit
Lan. The dotted lines represent data transmission between
components on a single cloudlet.

Figure 3: A synthetic image showing part of the bike model.
The background is filled with distractor objects that the net-
work should learn not to identify.

selected textures for each part of the model, trying to match
the appearance of the physical object as closely as possible.

We generated synthetic images using the Unity Perception
Package (Borkman et al. 2021). The default setup for this
package fills the background of the images that are generated
with objects that the network should learn to ignore. Figure 3
shows an image generated using this default setup.

We trained a Faster R-CNN object detector using this
data. Training was done using the TensorFlow object de-
tection API. The initial weights came from the TensorFlow
model zoo, for a model pre-trained on the Microsoft COCO
dataset (Lin et al. 2014). We ran transfer learning using the
default hyperparameters from the TensorFlow model zoo.
The Unity package creates a file with bounding box and la-
bel information, and we converted this to the format used by
the TensorFlow API. The perception package drew bound-
ing boxes tightly around the objects. We added padding to
these bounding boxes, to make them more like our hand-
drawn labels (which also had some padding).

Unfortunately the training process for this model did not
converge. We attempted to fix this issue by removing the
background objects from the image, and then we tried to

'hn

Figure 4: Our first attempt at making our synthetic images
look more realistic. This image is meant to look like an ob-
ject sitting on a wood floor.
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Figure 5: A case where our model incorrectly detected a
line in the floor as an object of interest. The green bound-
ing boxes are regions of the image that the model detected
an object in.

make the objects look like they were sitting on a wooden
floor. We accomplished this by placing the object at the bot-
tom of the 3D scene in Unity and texturing the floor of the
scene with an image of wood from Adobe’s collection of
stock images. Figure 4 shows one of these images.

The Faster R-CNN model trained on this data converged;
however, it performed poorly. One issue that we noticed was
the object detector mistakenly detected lines in the wood
floor as being a model bike assembly. Figure 5 shows an
example of such an erroneous detection.

We were able to correct this issue by using additional
background textures and randomizing the lighting in the
scene and the position of the camera. We have posted our
code?. Figure 6 shows some examples of this data.

Results

We trained computer vision model pairs to be used in the
pipeline described in the Application section. A model pair
consists of a Faster R-CNN object detector and a Fast MPN-
COV classifier created using the same training set. All of

*https://github.com/exiaohuaz/data-gen



Figure 6: Synthetically generated images from our final set.
The models trained on this data performed well.

our training and testing data relates to uncluttered environ-
ments with good lighting. We assume that a human using a
WCA application can correct environmental issues to reduce
classification complexity. For example, the user can increase
the amount of light shining on an assembly, or remove clut-
ter from the background. Assuming optimal environmental
conditions for a WCA assembly task is thus reasonable.

We trained one model pair on real data that was manu-
ally labeled with bounding boxes and class labels (15,477
images). The remaining model pairs were trained on syn-
thetic data sets of varying size (12,000, 25,000, 50,000 and
75,000 images). The labels for these images were generated
by Unity. We compared the accuracy of these model pairs.

Our test set consists of 4490 real images that are not
included in any training set. Table 3 presents our results.
We observe that the model trained on real data performs
better than the models trained on synthetic datasets with

| Dataset Type || Training Set Size | Accuracy |

Synthetic 12,000 69.6%
Synthetic 25,000 79%
Synthetic 50,000 84.1%
Synthetic 75,000 89%
Real 15,477 84.5%

Table 3: Classification results for our model pairs. Accuracy
is the percentage of our 4490 test images that the pipeline of
models classified correctly.

12,000, 25,000, and 50,000 images. However, this relation-
ship is reversed for a model trained on 75,000 synthetic im-
ages. Somewhere between 50,000 and 75,000 images lies
the cross-over point at which the increased number of syn-
thetic images more than compensates for their lower realism.

Conclusion

Capturing and labeling training images for WCA applica-
tions is a time consuming process. Using synthetic images
is less labor-intensive, and would simplify development of
WCA applications. We have achieved promising results with
this approach for one WCA application. Broader validation
would expand the approach to other WCA assembly tasks,
and include a wide range of different lighting conditions.
Such broader validation would help us to better understand
the robustness of this approach.

Better CAD models would also help. Our CAD model had
some differences from the physical parts that we were trying
to detect and classify. Using the actual CAD models used to
manufacture the parts would minimize these differences.

One limitation of this work is that we are just considering
models for WCA applications for assembly tasks. All of our
images had good lighting, and they only contained the object
that was being assembled. WCA applications for other pur-
poses, such as repairing equipment, have to work in condi-
tions with bad lighting and cluttered backgrounds. Training
models that perform well in these conditions would likely
require a more complicated process for generating synthetic
images. We also did not try modifying the training configu-
rations for any of our models, or comparing any alternative
neural architectures.

Lastly, a CAD model can be used to manufacture objects
out of different materials. Someone generating synthetic im-
ages from a CAD model will likely have to specify the ma-
terials that a certain object was manufactured from, and they
might have to modify textures to match surfaces that result
from manufacturing processes. For example, a certain type
of machine might use a blade that creates a bumpy surface
on a steel part. Using a 3D scanner might be a way to elimi-
nate the need to manually specify the textures for parts. Un-
fortunately, 3D scanners are not common, so many people
generating synthetic data will likely have to manually spec-
ify the textures of parts.

Our results for the one task we looked at offer the tanta-
lizing promise that using synthetic data might eliminate the
need to manually capture and label images in order to de-



velop WCA applications for assembly tasks. The application
described in this work represents an emerging class of appli-
cations that leverage edge computing. We see a lot of value
in reducing the difficulty of developing such applications.
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