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Towards Predicting Traffic Shockwave Formation

and Propagation: A Convolutional
Encoder—Decoder Network

Mohammadreza Khajeh Hosseini' and Alireza Talebpour, Ph.D.?

Abstract: Traffic management strategies have been relying on various congestion prediction methodologies. The prediction accuracy of
these methodologies has improved over the years, offering reasonable short-term and midterm predictions of macroscopic traffic measures
(i.e., flow, speed, and occupancy/density). Unfortunately, by relying on fixed infrastructure sensors and aggregated data, these prediction
methodologies fail to include microscopic traffic flow dynamics in their prediction algorithms. Accordingly, they usually fail to capture the
onset of congestion and can only predict the propagation of existing shockwaves. That is, in fact, critical for utilizing effective traffic man-
agement strategies because predicting the onset of congestion can significantly help with mitigating it. Addressing this shortcoming in traffic
predcition algorithms, this study proposes a deep learning methodology to predict the formation and propagation of traffic shockwaves at the
vehicle trajectory level. Assuming the existence of communications between vehicles and infrastructure, the time-space diagram of the study
segment serves as the input of the deep neural network, and the output of the network is the predicted propagation of shockwaves on that
segment. It is the capability to extract the features embedded in a time-space diagram that allows this methodology to predict the propagation
of traffic shockwaves. The proposed approach was tested on both simulation and real-world data, and results show that it can accurately
predict shockwave formation and propagation. DOI: 10.1061/JTEPBS. TEENG-7209. © 2023 American Society of Civil Engineers.

Introduction and Background

Traffic shockwaves denote the transition between two different
traffic states. With changes in vehicle speeds and space between
vehicles, driving dynamics change from state to state. Therefore,
vehicles need to react by adjusting their speed and acceleration
when the traffic condition changes, which causes shockwaves to
propagate. Traffic shocwaves are the main indicator of congestion
formation and propagation. They are also important to safety
because failure to respond adequately and timely to the change in the
traffic conditions (e.g., abrupt speed variations) can result in unsafe
driving instances (Chen et al. 2010; Rahman et al. 2012; Gaweesh
et al. 2021). Accordingly, capturing and predicting the onset of
shockwave formation and predicting its dynamics (i.e., magnitude
and propagation speed) can significantly improve traffic safety and
operational efficiency.

Accurate characterization and prediction of traffic shockwaves
also play key roles in the operations of automated vehicles. One of
the core competencies of automated vehicle software is the plan-
ning system, which is in charge of making decisions at different
levels to take the automated vehicle from an origin to a destination.
One of the challenges with the planning process is that the driving
environment is dynamic (due to the evolution of the traffic state,
e.g., traffic shockwaves, and the movement of traffic agents).
Consequently, the planner needs to continuously predict the
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changes in the driving environment to plan a safe path (i.e., local
path planning) and adjust the speed and spacing of the vehicle with
respect to the surrounding driving environment (i.e., local feedback
control) (Pendleton et al. 2017; Bautista-Camino et al. 2022).

An accurate prediction of the driving environment dynamics
can ensure safety and efficiency [including reducing the energy
consumption based on the needed power demand (Zhou et al.
2019)] of automated driving. For instance, currently, the ap-
proaches adopted for the guidance of automated vehicles (e.g., lane
changing) involve the consideration of predicting the future state of
the surrounding vehicles based on their current state in terms of
their location and speed (physics-based models) without taking into
account the other vehicles’ response to their environment and how
the traffic state could change (e.g., shockwaves) (Claussmann et al.
2019; Lefevre et al. 2014). Thus, predicting how traffic shockwaves
propagate in space and time can help improve both the safety and
performance of automated vehicles.

Based on the valuable information that connected vehicles
could provide through vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communications, this study proposes a
methodology to predict the formation and propagation of traffic
shockwaves that accounts both for individual drivers’ behavior as
well as collective traffic state changes. Density, flow, and speed of
traffic, as well as their evolution over time and space, are consid-
ered indicators of traffic state. Van Lint and Van Hinsbergen (2012)
categorized traffic prediction methodologies into three general
categories: naive, parametric, and nonparametric. Naive approaches
have no data-driven model parameters, and they are generally
established on the average of the historical observations or the
prediction based on the current state (Eglese et al. 2000).

Parametric methodologies apply to traffic prediction models that
utilize a traffic flow model with parameters estimated based on
historical data or in conjunction with new observations. Several
well-researched parametric models of the macroscopic characteristics
of traffic states have been developed, including the fundamental
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diagram and first- and second-order traffic flow models (Zheng and
Su 2016). Balancing between accuracy and model complexity to
address irregularities and time changing dynamics is one of the
challenges of adopting a parametric traffic prediction methodology.
In detail, macroscopic traffic flow models fail to capture the inter-
actions among vehicles and only focus on changes in average traffic
states. On the other hand, although microscopic traffic flow models
address this limitation of macroscopic models, they often contain
strong assumptions and they are computationally expensive.

Nonparametric refers to methodologies that do not depend on
traffic flow models and are built on data-driven techniques such
as linear regression (Wilby et al. 2014), neural networks (Polson
and Sokolov 2017; Lee et al. 2019; Ke et al. 2020), and support
vector regression (Castro-Neto et al. 2009), as well as time-series
analysis (Kumar and Vanajakshi 2015). With the increased avail-
ability of data resources in the last decades, data-driven approaches
for traffic prediction have become more popular (Akhtar and
Moridpour 2021; Razali et al. 2021). Currently, nonparametric
models are mainly based on macro-level data, including flow, den-
sity, and speed, but few studies considered individual-level trajec-
tory data for traffic state prediction (Elfar et al. 2018; Khajeh
Hosseini and Talebpour 2019; Bogaerts et al. 2020). The impact
of abrupt individual behavior on traffic state increases with the in-
crease in flow and density levels. As a result, this study considers
the microscopic level interactions for better prediction of the traffic
state. A more comprehensive review of traffic prediction models
has been given by Seo et al. (2017).

The connected vehicle technology provides opportunities for
sharing valuable data with drivers or complementing onboard
sensors for automated vehicles. Connected vehicles share safety-
related data about their speed and location with other vehicles
and traffic control centers to enhance road safety and improve travel
efficiency. With such information, it is possible to monitor traffic
and track its evolution over time and space. A time-space diagram
can be constructed using the individual-level location data transmit-
ted by connected vehicles. Time-space diagrams visualize traffic
without abstraction or aggregation. The time-space diagram inte-
grates traffic flow dynamics, vehicle interactions, and shockwave
formation and propagation. Khajeh Hosseini and Talebpour (2019)
utilized a matrix representation of the time-space diagram to predict
the traffic state. Building upon the findings of that study, the ob-
jective of this study is to develop a methodology for predicting

traffic shockwaves’ formation and propagation (i.e., the change
of flow and density over time and space) using a similar matrix
representation of the time-space diagram. The proposed methodol-
ogy incorporates a model that can learn from the features embedded
in the time-space diagram to predict the propagation of traffic
shockwaves.

The remainder of this paper is organized as follows: In the next
section, we present details of the proposed methodology, a problem
description, and the training process. Following that section, we
will discuss the model’s qualitative and quantitative performance.
This is followed by a validation of the calibrated model using
the Next Generation Simulation Models (NGSIM) data set and a
discussion of the findings. Finally, the paper ends with concluding
remarks.

Methodology

The proposed approach relies heavily on the concept of time-space
diagrams. This diagram represents the trajectory of every vehicle
traversing a roadway segment over a particular time period.
Accordingly, this diagram can provide accurate estimation of the
traffic state based on individual vehicle movements. Moreover, traf-
fic shockwavese can be captured as the boundary between different
traffic states. Considering all the invaluable insights that can be
collected from the time-space diagram to understand traffic flow
dyanmics, this study utilizes this concept as the input to the
proposed methodology and predicts the propagation of shockwaves
using a time-space diagram.

Time-Space Diagram

The construction of the time-space diagram follows the concept
proposed by Khajeh Hosseini and Talebpour (2019). Accordingly,
assuming a connected driving environment, the time-space diagram
is constructed based on the information received from the basic
safety message (BSM) (SAE 2016) (i.e., location and speed of
every vehicle in the segment every 0.1 s). The time-space diagram
can be generated in the form of a time-space matrix, as proposed by
Khajeh Hosseini and Talebpour (2019). The time-space matrix
(Fig. 1) approximates the time-space diagram by dividing the time
and space domains into bins of 3.048 m (10 ft) by 100 ms
(discretization).
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Fig. 1. Time-space diagram: (a) time-space diagram; (b) time-space bins; and (c) time-space matrix. [M. Khajeh Hosseini and A. Talebpour, “Traffic
Prediction using Time-Space Diagram: A Convolutional Neural Network Approach.” Transportation Research Record 2673 (7): 425-435, © 2019 by

SAGE, reprinted by permission of SAGE Publications, Ltd.]
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Fig. 2. Shockwave prediction: a convolutional encoder—decoder approach.

The time-space matrix is a binary matrix where the rows
represent the discrete space domain and the columns represent
the discrete time domain. In this matrix, a cell value of one indicates
the presence of a vehicle in that space and time bin, and the value of
zero indicates an empty bin. Such a binary representation of the
time-space diagram results in a two-dimensional (2D) tensor that
can be directly utilized in the convolution process.

Convolutional Encoder—Decoder

This study proposes the use of a deep neural network to predict the
propagation of the traffic shockwave from the current time-space
diagram of the vehicles, as shown in Fig. 2. The convolutional
encoder—decoder structure is an appealing type of mapping func-
tion for this study because the input and output of the networks are
2D tensors with similar properties. The convolution is the process
of sliding a fixed-size filter (e.g., a three-dimensional receptive win-
dow) over the input tensor. Each convolutional layer applies the
convolution process to the output of the previous layer and provides
an output tensor. The convolution process accounts for the spatial
correlation between the units that fit in the receptive window of the
filter. Also, sliding the same filter over the input space ensures fea-
ture detection independent of its location. This location independ-
ence aspect of the convolutional layers makes them a practical
choice to encode the time-space matrix because traffic shockwaves
can occur at any point in time and space.

There are different convolutional encoder—decoder network
architectures depending on the use of convolutional, deconvolutional,
pooling, and upsampling layers. Some networks only use convolu-
tional layers in both encoder and decoder components, such as the
fully convolutional network (FCN) (Long et al. 2015) and Seg-Net
(Badrinarayanan et al. 2017). Other networks such as DeconvNet
(Noh et al. 2015) and RED-Net (Mao et al. 2016) use deconvolu-
tional layers in the decoder component. Some of the challenges in
the convolutional encoder—decoder networks are the vanishing
gradient and reconstructing lost features from the max-pooling
and convolution process. The use of skip connections (Mao et al.
2016) and memorizing the maximum features of the pooling
process to use for the upsampling (Noh et al. 2015) are the solu-
tions. The skip connections were inspired by the residual network
(ResNet) (He et al. 2016) and allow the signal to be propagated to
the bottom layers and address the vanishing gradient.

The proposed encoder—decoder architecture of Fig. 2 was
inspired by RED-Net (Mao et al. 2016) developed for image
restoration. It consists of symmetric layers of convolution and
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deconvolution with skip-layer connections. The encoder compo-
nent of the network contains three pairs of convolutional layers
with a small receptive window of 3 x 3 and increasing channels
from 16 to 64. Using pairs of convolutional layers with small
receptive windows was motivated by the work of Simonyan and
Zisserman (2014). A stack of smaller filter size convolutional layers
not only can provide the same overall receptive window as one
layer with a large window size but also introduce more nonlinearity
to the model and reduce the number of trainable parameters.

The decoder component of the network contains pairs of decon-
volutional layers with a window size of 3 x 3 and a number of
channels comparable to the convolutional layers, including 64,
32, and 16, creating a symmetrical network architecture. The
deconvolution process associates a single input with multiple
outputs, unlike the convolution process. Moreover, the rectified
linear activation function (ReLU) was adopted as the activation
function for both the convolutional and deconvolutional layers.
In addition, both the convolutional and deconvolutional layers were
used with a stride of one and zero padding to preserve the original
input (time-space matrix) size for the output 2D tensor.

The skip layers connect the symmetric convolution and decon-
volution layers every two layers. The skip-layer connection sums
the convolutional feature map with the deconvolutional feature map
elementwise and passes it to the next layer. The encoding convolu-
tional layers focus on extracting the key features that can determine
the propagation of shockwaves and traffic flow dynamics, and the
deconvolution layers utilize the extracted information to predict
the propagation of shockwaves in the traffic stream. Due to the deep
nature of the proposed network, the training process can suffer from
the the vanishing gradient problem. Accordingly, the skip-layer
connections were introduced to allow the propagation of the gra-
dient to the beginning layers of the network. Another key feature of
this network is its ability to accept time-space matrices with various
sizes as input. This is possible becaduse the network only utilizes
the convolutional and deconvolutional layers.

The presented approach captures the interaction between the
vehicles by adopting the time-space diagram as an input to the pre-
diction model. The vehicles interact with their surrounding vehicles
and the traffic environment by adjusting their speed, spacing, and
lane-changing maneuvers. These interactions are embedded in the
trajectory of the vehicles in the time-space diagram. The proposed
deep learning model takes the averaged time-space matrix as the
input, and the model learns the features embedded in the averaged
time-space matrix directly from the data without the need for
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manual feature extraction. The encoder component encodes the
features embedded in the time-space diagram. The decoder com-
ponent predicts the propagation of the traffic shockwaves in the
form of a new time-space matrix.

Data

Simulation

The proposed approach requires a comprehensive and extensive
data set for training. The training data set should cover a wide range
of traffic shockwaves’ formation and propagation. Unfortunately,
there are limited vehicle trajectory data sets to create an extensive
data set for the training of the proposed deep neural network that
can generalize well. As a result, to construct a comprehensive and
large data set, this study used a microscopic simulator written in
the Python programming language to collect the trajectory of the
vehicles. The microscopic simulator adopted the Intelligent Driver
Model (IDM) (Treiber et al. 2000) as its car-following logic and
minimizing overall braking induced by lane changes (MOBIL)
(Kesting et al. 2007) as its lane-changing logic.

A 12,192-m (40,000-ft) three-lane highway was simulated over
15 min. Multiple runs of the simulation were conducted with
unique and random IMD and MOBIL parameters to introduce
various behaviors to the simulation. In addition, in order to create
a data set with different traffic states (from free flow to fully
congested), two types of disturbances were used in the simulation.
Sudden deceleration of a random vehicle for a small period
(e.g., 15 s) createed a speed drop perturbation and disturbed the
traffic stream. Another type of disturbance used in the simulation
was forcing a random slow-moving vehicle for a more extended
period, such as 5 min, to create congestion and traffic breakdown.
Both of the disturbances resulted in the formation of shockwaves in
the traffic stream.

Additionaly, to introduce further randomness to the simulation,
the start time of these two disturbances were selected randomly
from the periods of (207, 20i + 20) s, where i denotes even num-
bers between zero and 45. This assumption is necessary to exclude
the start of these disturbances from the output data, when construct-
ing pairs of input and output data for the training of the model. This
is necessary because the model cannot predict random occurrences
of these disturbances. Moreover, the desired speed was randomly

(a)

(uniform distribution) selected from each run from the following
set: 48 km/h (30 mi/h), 70 km/h (45 mi/h), 80 km/h (50 mi/h),
90 km/h (55 mi/h), 105 km/h (65 mi/h), 110 km/h (70 mi/h),
and 120 km/h (75 mi/h), to create a more comprehensive data set.

Input and Output Data

The proposed encoder—decoder (Fig. 2) of this study takes the time-
space matrix as input and predicts the propagation of the traffic
shockwaves in the same time-space matrix form. The binary
time-space matrix (Fig. 1) not only presents the traffic shockwaves
but also depicts the crisp location of the individual vehicles in time
and space domains. Training the network to output a binary tensor
of shape (200,200) is challenging, and breaking the binary con-
straint improves the training. Averaging the cells of the time-space
matrix with their neighbors [Fig. 3(a)] blurs the exact location of
the vehicles on time and space domains; however, averaging over a
small window maintains the propagation of traffic shockwaves
[Fig. 3(b)]. The points on the averaged time-space diagram
[Fig. 3(b)] change proportional to the value of the cell ranging from
zero to one.

Taking the averaged time-space matrix as the type of output
improves the training of the network. At every time f, the
encoder—decoder model takes as an input an averaged time-space
matrix of the last 20 s (#—20,7) and predicts the averaged
time-space matrix for the future 20 s (#,7+ 20). The averaged
time-space matrix (TS) is created by replacing every cell of the
binary time-space matrix (TS) with the average of itself and all
the neighboring cells within a specified range on both row (space)
and column (time) domains similar to the concept of rolling average
filter in image processing based on the following equation:

- 1 "

TS(r,c) S GmaDons D Z i TS(r+ic+j) (1)

i=—m j=—n

where TS(r, ¢) = value of the cell at row r and column ¢ of the
averaged time-space matrix; and variables m and n = size of the
averaging window along the row and column domains, respectively.

In this study, the time-space matrix [Fig. 3(a)] approximates the
time-space diagram by dividing the time and space domains into
cells of 3.048 m (10 ft) by 0.1 s. The averaged time-space matrix
is created by replacing the value of each cell in the binary
time-space matrix with the average of itself and its neighbors

1.0
0.8
0.6
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Fig. 3. Averaged time-space diagram: (a) time-space diagram; and (b) averaged time-space diagram.
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[Eq. (D] up to 15.24 m (50 ft) (m =5 rows) and 0.5 s (n =5
columns) on each side [i.e., averaging window of 30.48 m
(100 ft) by 1 s]. The encoder—decoder network approximates the
mapping function from the averaged time-space matrix of segment
x over the period of (7 — 20, t) to the averaged time-space matrix of
the segment x over the period of (z, 7 + 20).

Training Data

The microscopic traffic simulator provides a 12,192 m (40,000 ft)
by 900 s time-space diagram for each lane and every simulation
run. This diagram can be divided into 900 smaller time-space dia-
grams for segments of 609.6 m (2,000 ft) and a shorter period of
20 s. The 900 smaller time-space diagrams are divided into 450
pairs of input and output data. One could extract more pairs of input
and output if they relax the limitation on keeping the start of the
artificial disturbances in the input data. This study collected data
from more than 2,000 simulation runs resulting in more than
0.9 million data points. The collected data were divided into three
groups of training, validation, and testing sets with ratios of 80%,
10%, and 10%, respectively.

Training

Training is the iterative process of adjusting the trainable parame-
ters of the model to gradually minimize the loss function. The
convolutional encoder—decoder of this study contained 180,449
trainable parameters. Adopting the small receptive window of
3 x 3 as well as fully convolutional and deconvolutional layers kept
the number of network parameters relatively small. The model
parameters were updated in multiple iterations (steps). At each
iteration, the loss function was estimated for a batch of data points,
and the parameters were adjusted based on their loss gradient times
the learning rate (a small constant). The Adam optimizer (Kingma
and Ba 2014) is a stochastic gradient-based optimizer that was
adapted for the training of the network of this study.

Loss Function

The prediction model of this study is a regression model that maps
the current averaged time-space diagram to the future averaged
time-space diagram. The mean squared error (MSE) [Eq. (2)] is
a standard performance measure used as the loss function for
the training of regression-type neural networks. The output of
network (model) F with parameters © for input X' is F(X';©),
and the true output value is Y. Mean absolute error (MAE)
[Eq. (3)] is another performance measure for regression problems.
Although the MAE is not useful as the loss function and estimation
of gradients in neural networks, it is used for evaluating the
performance of the proposed network

1< . .
MSE:ZZHF(X’;@)—Y’Hz (2)
i=1
1< . .
MAE:;ZHF(X’;@)—Y’H (3)
i=1

The input and output of the model of this study are 2D tensors
of size (200,200). A smoothed version of the output can be con-
structed by replacing each cell of the output tensor with the average
of itself and its neighboring cells [Eq. (1)]. A well-trained neural
network model is expected to predict outputs comparable to the true
outputs. Besides, it is expected that the smoothed versions of the

Loss = MSE + 1,000(MSE,, + MSEs + MSE;)  (4)

where MSE |, MSEs, and MSE; = estimated MSE between the true
and predicted outputs when smoothed with sliding average win-
dows of size 10 x 10, 3 x 3, and 5 x 5, respectively. The sliding
window size indicates the extent of neighboring cells considered
in the estimation of the average for that cell. Adopting this custom
loss function improved the convergence of the training process
significantly.

The training process of the model was conducted in two steps.
In the first step, the model was trained using the loss function of
Eq. (4) until the loss value on the validation set starts increasing. In
the second step, the model was retrained using MSE [Eq. (2)] as the
loss function.

Calibration Results

Deep neural networks are prone to overfitting due to the significant
number of trainable parameters. In the case of training a deep learn-
ing model using a variant of stochastic gradient descent (e.g., Adam
optimizer in this study), batch size and the number of training
epochs are among the hyperparameters that could impact the gen-
eralization capability (good performance on the testing data set) of
the trained model. A smaller batch size is expected to offer a regu-
larization effect and lower generalization error due to the noise
added to the learning process when using a smaller batch size
(Goodfellow et al. 2016). Each training epoch is a complete iter-
ation over the entire training data set using stochastic gradient
descent. With the increase in the number of training epochs, the
model’s error on the training data set reduces; however, continuous
training beyond an optimal number of epochs can result in over-
fitting the training data set and lower generalization performance.
This study adopted a policy known as early stopping to ensure that
the model had trained for a sufficiently large number of training
epochs, not underfitting (too little training) and overfitting (too
much training). The early stopping policy stops the training when
a monitored metric (e.g., validation loss) has stopped improving for
a certain number of training epochs (Goodfellow et al. 2016; Zhang
et al. 2021).

In this study, the training was stopped when the loss function on
the validation data set was not improved after five consecutive
training epochs. In the training process of the model, a batch size
of 60 and the early stopping policy were used to prevent overfitting
the training data. The loss function was estimated at the end of
every epoch (a complete iteration over the entire data set), and
the training was stopped after five epochs from the one with the
minimum loss on the validation data set. Tables 1 and 2 present
the prediction ability of the proposed network on the validation
and testing data sets.

Table 1. Model performance on time-space matrix on validation data set

Model MSE MSE + MSEs + MSE;
Model after training Step 1 0.0037 0.0071
Model after training Step 2 0.0029 N/A

Table 2. Model performance on time-space matrix on testing data set

predicted and true outputs are also comparable. In order to speed up Model MSE MAE
the training (convergence) of the model and to guide the gradients, Fullv trained model 0.0030 0.0408
this study proposes the use of the following custom loss function: 4y framed moce ’ ’
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Training the model with the custom loss function [Eq. (4)]
helped the convergence in the first step of training. Also, retrain-
ing the model in the second step by adopting the original MSE as
the loss function further improved the performance of the model
from the MSE error of 0.0037 to 0.0029. According to Tables 1
and 2, the performance of the fully trained model in terms of MSE
and MAE on the testing data set was 0.0030 and 0.0408,
respectively.

Results and Discussion

Traffic Shockwave Propagation Prediction

Fig. 4 presents the results of shockwave prediction using the
proposed approach. As discussed previously, the prediction model
received an averaged time-space matrix covering (¢ —20,7) as
input (x), and predicts the future averaged time-space matrix for

X y predicted y
X y predicted y
X y predicted y
X y predicted y
X y predicted y

Fig. 4. Traffic shockwave propagation prediction results.
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(t,t+20) (y). The results indicate the model’s capability in pre-
dicting various traffic flow states and shockwave propagation.
The predicted averaged time-space diagrams present dissemination,
propagation, and forward and backward movements of the traffic
shockwaves over the evaluated segment of the roadway.

Density Time-Space Matrix

The traffic shockwave propagation prediction of the network can be
evaluated more quantitatively. A traffic shockwave is the boundary
between two states of traffic. Edie (1961) estimated the average
density k(A) for a time-space block of A [e.g., 30.48 m (100 ft)
by 1 s] based on the following equation:

t(A)

k(a) =T (5)

where |A| = area of the time-space block A; and #(A) = total time
spent by all the vehicles going through block A. As specified in the
“Methodology” section, the time-space matrix is a binary matrix
constructed by dividing time and space domains into bins of
3.048 m (10 ft) by 100 ms. In this matrix, one represents the pres-
ence of a vehicle in that time and space bin, and zero represents
an empty bin. The number of occupied bins of the time-space
block A is equal to the summation of all the bins of its
representative binary time-space matrix [i.e., sum(A)]. As a result,
the total time spent by all the vehicles going through any arbitrary
time-space block of A is equal to multiplying the number of occu-
pied bins in that block by 0.1 s

t(A) = 0.1 x sum(A) (6)

Considering Edie’s (1961) definition of the average density of a
time-space block, the averaged time-space matrix (TS) can be used
to estimate the density time-space matrix (K). Similar to the time-
space matrix, the rows of this matrix represent the discrete space
domain, and their columns represent the discrete time domain. The
values of each cell in the matrix K is the average density of a time-
space block [e.g., 30.48 m (100 ft) by 1 s] centered at that location
in time and space. The density time-space matrix depicts the change
in traffic state over time and space and, consequently, the propa-
gation of the traffic shockwaves.

As mentioned in the “Methodology” section, the averaged time-
space matrix (TS) of this study is estimated by replacing every cell
in the time-space matrix with the average of itself and its neighbors
[Eq. (1)] up to 30.48 m (100 ft) and 1 s. Each cell in the time-space
matrix is representative of a bin with dimensions of 3.048 m (10 ft)
in the space domain and 0.1 s in the time domain. The averaging
window of 30.48 m (100 ft) by 1s is equivalent to a 10 x 10 aver-
aging window on the time-space matrix. In other words, each cell of
the averaged time-space matrix (TS) is the average of 100 cells in
the time-space matrix. Therefore, if the averaged time-space matrix
(TS) is multiplied by 100, the cells of the resulting matrix indicate
the number of occupied cells in the blocks of 30.48 m (100 ft) by 1 s
centered on that location on the time-space matrix. As a result,
the density time-space matrix (K) can be estimated based on the
following equation:

t(A) 100 x TS x 0.1

K=-—""/=
A 100 x 1

x3,280.84 = 528 x TS (7)

where the constant 3,280.84 is applied for the unit conversion from
feet to miles. Vehicles per mile (vpm) is the unit for the values in the
resulting density time-space matrix (K). According to Eq. (7), the
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Table 3. Network performance on density time-space matrix on validation

data set

Model MSE MSE,(+MSEs+MSE;
Model after training Step 1 1,031.50 1,979.36
Model after training Step 2 808.47 NA

Table 4. Network performance on density time-space matrix on testing
data set

Model MSE MAE
Fully trained model 836.35 21.54

averaged time-space matrix (TS) can be converted to the density
time-space matrix (K) by a constant scalar. Therefore, the predic-
tion (output) of the model is proportional to the density time-space
matrix. The performance of the model in Tables 1 and 2 is updated
for the density time-space matrix presented in Tables 3 and 4. Ac-
cording to Tables 3 and 4, the mean absolute error of the model in
predicting the density for small blocks of 30.48 m (100 ft) by 1 s is
13.38 vehicles per km.

Root-mean squared error (RMSE) is another valuable perfor-
mance measure that has the same unit as the output. Based on
Tables 3 and 4, the RMSE of the model in the prediction of the
density on the testing data set was estimated as 17.96 vehicles
per km. Considering a range of 125 vehicles per km for the density,
the MAE and RMSE of the model are between 10% to 14% of the
density range.

Validating Model on the NGSIM Data Set

The proposed encoder—decoder model in this study was also evalu-
ated using a real-world vehicle trajectory data set. Some of the
existing real-world vehicle trajectory data sets are the Federal
Highway Administration (FHWA) NGSIM (FHWA 2007),
Strategic Highway Research Program (SHRP2) (Hankey et al.
2016), TrafficNet (Zhao et al. 2017), HighD data set (Krajewski
et al. 2018), pNEUMA data set (Barmpounakis and Geroliminis
2020), and high-granularity highway simulation (HIGH-Sim)
(Shi et al. 2021). This study utilizes the NGSIM data set for the
evaluation of the proposed model. NGSIM is a well-known
open-source trajectory data set collected in 2006 using digital
cameras at different locations, including US Highway 101 and the
Interstate 80 freeway. This data set covers three 15-min periods
during the morning peak.

The time-space diagram for each lane was recreated from the
trajectory data for the middle 609.6 m (2,000 ft) of the segment
every 20 s. The NGSIM data sum up to 660 data points for five
lanes and were directly used to test the previously trained
encoder—decoder model. The performance of the model on this data
set is reported in Table 5 in the form of MSE and MAE for both the
time-space matrix and the density time-space matrix. The MSE and
MAE values for the NGSIM data set were slightly higher than the
respective ones for the testing data set. This difference was
expected because the real-world collected data are different from
simulated data.

According to Table 5, the MAE and RMSE of the model in
predicting the density of small blocks of 30.48 m (100 ft) by
1 s are 16.57 and 21.76 vehicles per km, respectively. The
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Table 5. Network performance on the NGSIM data set

Matrix MSE MAE
Time-space matrix 0.0044 0.0505
Density time-space matrix 1,226.64 26.66

X y predicted y

X y predicted y

X y predicted y

X y predicted y

X y predicted y

Fig. 5. Traffic shockwave propagation prediction results on the
NGSIM data set.

MAE and RMSE values of the trained model on the NGSIM data
set are less than 15% of the range of density. Moreover, Fig. 5
compares the model predictions (predicted y) and the true states of
the traffic (y) for a few input examples from the NGSIM data set.
According to this figure, the model is capable of predicting the
propagation of traffic shockwaves on the real-world collected data.
It should be noted that the model’s performance can further improve
by training the model with some of the collected data from NGSIM.
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Conclusion

Traffic state prediction has been historically performed at the
aggregated level, whereas predicting the driving environment at
the individual level has been studied mostly for automated vehicle
motion planning (to plan a safe path and avoid collision with other
traffic agents and obstacles). This study aimed to utilize the data
from connected automated vehicles to link these two approaches
and increase the accuracy of traffic state prediction. Although there
have been several studies that utilized connected vehicle data for
more accurate traffic prediction, the majority of them still followed
the same standard aggregate-based prediction approaches (although
with more comprehensive and accurate data from connected
vehicles). This study aimed to address the existing challenges in
this area and improve traffic prediction by capturing the interac-
tions among vehicles.

Accordingly, this study proposed a methodology to predict the
propagation of traffic shockwaves in the form of the averaged time-
space matrix. The averaged time-space matrix is comparable to a
density time-space matrix derived from Edie’s (1961) definition of
average density. The traffic shockwave is the boundary between
two traffic states, and the density time-space matrix depicts the state
changes in the form of density.

The result of the analysis indicated that the model is capable of
predicting the dissemination, propagation, and forward and back-
ward movements of traffic shockwaves over the study segment. The
model cannot predict random braking or slowing down by a single
driver, causing disturbances in the traffic stream. However, upon
the observance of the disturbances in the input time-space matrix,
the model can predict shockwave propagation. Moreover, the per-
formance of the model in the form of MAE and RMSE for predict-
ing the density time-space matrix was 13.38 and 17.96 vehicles per
km for the simulated testing data set and 16.57 and 21.76 vehicles
per km for the NGSIM data set. Considering a range of 0—125 ve-
hicles per km for the density, the performance of the model is
acceptable for the prediction of the traffic shockwaves propagation.
It is noteworthy that the prediction accuracy based on the propose
approach highly depends on the quality of the training data. Uti-
lizing a more balanced data set that covers more edge cases can
increase the prediction accuracy.

The traffic state prediction proposed in this study was based on
the assumption of complete knowledge of the observed trajectory
of all the vehicles on the study area considering a fully connected
environment or from the sensory data of connected and automated
vehicles. In practice, the future traffic stream could be a mix of con-
ventional, connected, and connected automated vehicles. Although
it is feasible to capture and monitor the majority of the vehicles in
the traffic stream based on the sensory data from the connected and
automated vehicles when their market penetration rate is above a
minimum level, Talebpour et al. (2016) showed that due to signal
interference, many information packets would not reach their
destinations, even in a fully connected driving environment.
Accordingly, it is critical to investigate and improve the proposed
model in this study to predict the traffic state based on partial or
incomplete data from the traffic stream in future studies.

In addition to the aforementioned limitation, the driving envi-
ronment evolves as a result of interactions among the individual
vehicles. These interactions can be defined as a combination of
lateral and longitudinal maneuvers of vehicles in response to their
driving environment. At the individual-vehicle-level prediction,
structuring the driving task into different maneuvers and consider-
ing the vehicles’ interactions can improve the vehicle trajectory
prediction accuracy. As a result of a vehicle’s maneuver, its future
trajectory (e.g., its location and speed) changes. In many driving
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scenarios, more than one maneuver is feasible that could result
in different time-space diagrams. Therefore, it would be more real-
istic to predict the location of the vehicles in a probabilistic manner
based on the different maneuvers in future studies.

Finally, the prediction accuracy usually decays with the increase
in the prediction horizon due to the uncertainty in drivers’ behavior
and an increase in the possibility of various configurations and
outcomes. The prediction horizon is dependent on the planning
horizon, and in general, a longer prediction horizon is preferred
for congestion mitigation methods. In future research studies, it
would be valuable to investigate the trade-off between prediction
accuracy and the prediction horizon, considering the effectiveness
of the congestion mitigation methodologies.
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