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ABSTRACT

The traffic dynamics are expected to change with the widespread utilization of advanced driver assistance
systems (ADAS). Currently, simulation tools are adopted to capture the impacts of ADAS technologies on traffic
dynamics. Real-world data collection of different ADAS technologies is required to support realistic modeling
of these technologies in simulation tools. Vehicle trajectories are one of the cornerstones of modern traffic
flow theory with applications in driver behavior studies and automated vehicle (AV) research. Unfortunately,
the current trajectory datasets fail to provide any information on the utilization of ADAS technologies. This
study proposes collecting and using a new trajectory dataset that contains multiple instances of probe vehicles
using adaptive cruise control (ACC) to identify ACC-type behavior across the entire trajectory dataset. Since
the trajectory data is not labeled based on ACC utilization, clustering is an excellent approach to arrange
similar trajectories in the dataset into the same group. Using this dataset combined with clustering, this study

identifies the vehicle trajectories with similar dynamics to the vehicles using ACC.

1. Introduction and background

SAE Internationl (2021) classifies vehicles into six automation levels
ranging from level zero with no automation feature to level five with
full automation of driving tasks in all driving conditions. The lower
levels of automation (levels 0-2) include Advanced Driver Assistance
Systems (ADAS), which are developed to support drivers and improve
safety by automating some of the driving tasks. The driver-assistance
features include adaptive cruise control (ACC), traction control, lane
maintenance, and emergency braking, which have become more preva-
lent on roads. Most of these existing ADAS technologies support the
local motion planning of the vehicles, which could result in different
driving behavior compared to conventional driving behaviors. The
underlying dynamics of Traffic flow are expected to change with the
widespread adoption of Advanced Driver Assistant Systems (ADAS) and
automated driving technologies (Rahmati, Khajeh Hosseini, Talebpour,
Swain, & Nelson, 2019). Meanwhile, utilizing simulation tools is the
only feasible approach to capturing such technologies’ impacts on
traffic flow dynamics at high market penetration rates (MPR). Unfortu-
nately, there is a clear mismatch between how these technologies are
being developed and how they are being modeled in traffic simulation
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tools (Dosovitskiy, Ros, Codevilla, Lopez, & Koltun, 2017). Accord-
ingly, bridging that gap is a critical step towards realistic modeling
of the impacts of automation on traffic flow dynamics. Achieving such
an objective is only possible through real-world data collection from
various automated driving technologies. Several studies have collected
data from various levels of vehicle automation (Caesar et al., 2020;
Maddern, Pascoe, Linegar, & Newman, 2017). Unfortunately, these
studies mainly focus on the vehicle and its vicinity and do not provide
a comprehensive view of the entire traffic stream, essential information
to analyze traffic flow dynamics. Accordingly, there is a critical need
to collect such a dataset that contains information from all vehicles in
the segment of interest. One meaningful format of such a dataset can
be in the form of vehicle trajectories.

Vehicle trajectory is a concise yet comprehensive way to store data
of an individual or collective group of vehicles for both micro- and
macro-level traffic analyses. With the advancements in sensing and
imaging technologies, the trajectories can be generated using cameras,
infrared sensors, RADAR, and LiDAR. However, video-based imaging
has been the most popular method of extracting vehicle trajectories.
The early studies collected vehicle trajectories using pole-mounted
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cameras at intersections (Michalopoulos, 1991; Zhou, Gao, & Zhang,
2007). Aerial imagery for trajectory extraction overcomes issues related
to occlusion and cluttering that are associated with using pole-mounted
cameras. Satellites, helicopters, Unmanned Aerial Vehicles (UAVs), and
airplanes are the primary means of obtaining aerial videos and images.

Some of the existing vehicle trajectory datasets are FHWA Next
Generation Simulation Models (NGSIM) (FHWA, 2006), Strategic High-
way Research Program (SHRP2) (Hankey, Perez, & McClafferty, 2016)
and TrafficNet (Zhao, Guo, & Jia, 2017). NGSIM is a well-known
open-source trajectory dataset collected in 2006 using digital cameras
at different locations, including US Highway 101 and Interstate 80
freeway. The vehicle trajectories are extracted from the images of
multiple cameras combined to create a single image that looks like an
aerial shot. The NGSIM trajectory data contains the location of each
vehicle at a frequency of 10 Hz over a 1600 to 3200 ft (488 to 975 m)
stretch of roadway. However, the NGSIM data suffers from noise and
inaccurate detection due to the low-resolution cameras at a consider-
able distance. Coifman and Li (2017) analyzed the NGSIM dataset and
confirmed inaccuracies in the speed and positioning of vehicles. The
SHRP2, in collaboration with Virginia Tech Transportation Institute
(VTTI), had collected naturalistic driving data in 2012 (Hankey et al.,
2016). The dataset includes more than 5 million trips that include
sensory data such as speed, location, acceleration, and also vehicle
and driver characteristics. The SHRP2 dataset is not freely available to
public access and has a limited preview. This dataset is collected using
probe vehicles, and the collected data is limited to the field of view of
the onboard sensors and does not entirely define the surrounding vehi-
cles and traffic dynamics. The TrafficNet provides processed naturalistic
data with libraries for researchers to perform data analytics (Zhao
et al., 2017). TrafficNet separated driving into six scenarios, such as
free flow, car-following, cut-in, and the like, and classified the entire
dataset into these scenarios curated to research. It is a web-based plat-
form with MYSQL database used to store the information. The HighD
dataset (Krajewski, Bock, Kloeker, & Eckstein, 2018) is another dataset
that offers vehicle trajectories on German Autobahn. HighD accounts
for variability in traffic composition by collecting data at six different
locations. It has a truck ratio varying from 0%-50% and trajectories
collected at different times of the day. The trajectories are analyzed
and classified into specific maneuver types, such as lane changes and
critical maneuvers. More recently, the pNEUMA dataset (Barmpounakis
& Geroliminis, 2020) used a swarm of drones to collect arterial traffic
data in sequential sessions with blind gaps in between sessions. Their
objective was to study Origin-Destination information, travel time and
congestion propagation, and lane-changing behavior.

While the datasets mentioned earlier provide the means to analyze
driver behavior, they fail to provide any information on the utilization
of the ADAS by drivers. This is unfortunate, as ADAS technologies
are becoming an integral part of our roadways, and capturing their
impacts on traffic flow dynamics and congestion is critical. There is
another key challenge associated with utilizing the existing datasets:
considering that ADAS technologies have a compound annual growth
rate of 12% (Bhutani & Bhardwaj, 2019), there is a very high chance
that some of the vehicles in the existing datasets already utilized ADAS
technologies. Assuming that ADAS technologies can potentially change
the interactions among drivers on the road and lead to new traffic
flow dynamics and possibly new types of high-risk driving instances,
utilizing these datasets with the assumption that human drivers control
all vehicles can lead to unrealistic assessments and bias. One of the
more recent studies by Makridis, Mattas, Anesiadou, and Ciuffo (2021)
has also recognized these shortcomings and developed the OpenACC
database. It is an open-access database with two public and two private
test campaigns conducted in Sweden and Hungary. The data collection
process involves using onboard sensors such as accelerometers and
global navigation satellite systems (GNSS) to record the trajectories of
the probe vehicles. This limits the microscopic and macroscopic analy-
sis to only probe vehicles, and the interaction between the adaptive
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cruise control (ACC) and conventional vehicles in the traffic is not
captured.

Considering the challenges mentioned earlier and focusing on ACC
as the ADAS technology of interest, the main contributions of this study
are : (1) to develop a robust and scalable methodology to identify vehi-
cles with ACC-type behavior in a vehicle trajectory dataset, and (2) to
investigate the difference in the behavior of conventional vehicles and
the vehicles using a full range ACC, or the ones with similar dynamics,
in a real-world setting. In the process of achieving these objectives, this
study also introduces a robust, scalable, and cost-effective methodology
for vehicle trajectory data collection through aerial imagery using
aerial videography. This data collection approach can be utilized for
collecting vehicle trajectory data from different levels of automated
driving. Furthermore, to test and validate the proposed algorithms, a
vehicle trajectory dataset is collected on Interstate 35 near Austin, TX.
This trajectory dataset contains information on five platoons of three
ACC-operated vehicles mixed with human-driven vehicles on Interstate
35 in Austin, TX. Table 1 summarizes different aspects of the existing
trajectory datasets discussed in this section as well as the new vehicle
trajectory dataset collected in this study (Austin-ACC). In this table,
the column for view specifies if the data collection is performed in the
bird’s eye view (BEV) or first-person view (FPV). BEV refers to the data
collection using aerial videography (HighD, pNEUMA, and Austin-ACC)
or videography from tall structures (NGSIM). FPV refers to the data
collection using cameras and sensors mounted on probe vehicles. BEV
data collection is usually performed over a fixed region and captures
the trajectory of all the vehicles traveling through the fixed segment.
FPV is performed by the probe vehicles traveling through the study area
and is limited to the trajectory of the vehicles in the surrounding probe
vehicles. Moreover, Table 1 also specifies if the dataset contains the
naturalistic behavior of road users or is collected in a controlled testing
environment. Moreover, in this table, the travel time and segment
length are only reported for the datasets collected over a fixed segment
of the roadway rather than the transportation network. According to
Table 1, OpenACC and the vehicle trajectory dataset collected in this
study (Austin-ACC) are the only datasets that include ACC-operated
trajectories. In addition, the vehicle trajectory collected in this study
is performed in bird’s eye view and includes not only the trajectory
of the ACC-operated vehicles but also all the vehicles traveling the
study area. This comprehensive dataset provides the opportunity to
further investigate the impacts of the ACC-operated vehicles on the
traffic stream and identify the vehicles with ACC-type behavior in the
traffic stream.

The remainder of this paper is organized as follows: the next section
presents the details and steps of the proposed methodology for detect-
ing ACC-type behavior. This section is followed by the details of the
data collection methodology, as well as the location and procedure of
data collection. The paper continues by presenting the clustering results
of different distance measures and statistical and qualitative discussion
on the results. Finally, the paper is concluded with a summary of
findings and future research needs.

2. Methodology

Despite fundamental differences between ACC behavior and human
drivers, it is pretty challenging to differentiate between the vehicles
utilizing ACC and conventional vehicles in a vehicle trajectory dataset
(not labeled based on the ACC utilization). This is due to several factors,
including noise in data, limited length of the trajectory, multi-vehicle
interactions, and the like.

Clustering is an unsupervised approach to identify and group similar
data points. Accordingly, Clustering seems to be an excellent approach
to arrange similar trajectories in the dataset into multiple groups. A
recent study by Makridis et al. (2021) indicated that the ACC-driven
behave much more homogeneously even among different makes and
models compared to human-driven vehicles. In order to distinguish
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Table 1
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Comparison of the existing vehicle trajectory datasets and the trajectory dataset collected in this study on Interstate 35 near Austin, TX.

Dataset View Sensors Traffic condition Vehicle type =~ ADAS technology  Environment Behavior Travel time Segment length Year
NGSIM BEV Camera Congested Small, - Highway Naturalistic 74.4 s 1870 ft 2006
large
SHRP2 FPV Speedometer, Variable Small - Highway, Naturalistic N/A N/A 2012
accelerometer rural
camera,
radar,
GPS
TrafficNet FPV Camera, Variable Small - Urban Naturalistic N/A N/A 2017
radar,
CAN
HighD BEV Camera Variable Small, - Highway Naturalistic 14.6 s 1345 ft 2018
large
PNEUMA BEV Camera Congested Small, - Urban Naturalistic N/A N/A 2020
large
OpenACC FPV Accelerometer, Variable Small ACC Highway, Naturalistic, N/A N/A 2021
GPS testing facility =~ experimental
Austin-ACC  BEV Camera Congested Small, ACC Highway Naturalistic 14.2's 500 ft 2019
large

ACC-driven vehicles from human-driven vehicles, this study proposes
the use of probe vehicles equipped with ACC in the traffic stream during
the data collection. The behavior of these probe vehicles provides the
basis to identify the trajectories that have comparable dynamics to the
vehicles using ACC. Clustering helps to categorize the vehicles with
similar behavior to the probe ACC vehicles into the same group. It is
assumed that the behavior of vehicles is captured in their trajectory.
As a result, comparing the similarity between the trajectories is an
essential step in grouping them into the same or different clusters.

It is important to note that several studies utilized different clus-
tering algorithms on vehicle trajectory data. A good example of these
studies is a study by Talebpour, Mahmassani, and Bustamante (2016).
They utilized a clustering approach to minimize the broadcasting need
for Vehicle-to-Vehicle (V2V) communications. In their approach, each
cluster member can only communicate with its cluster head and cluster
heads disseminate the information among all their cluster members as
well as other cluster heads. This approach was shown to reduce signal
interference and information loss in V2V communications network. The
goal of their clustering, however, was fundamentally different from
this study (i.e., they did not consider similarity in the behavior as the
base for clustering). Their clustering aimed at increasing the life of a
cluster considering the communications range and vehicles’ speed. Note
that they selected that objective based on the fact that re-clustering
the vehicles is a computationally costly process and increases commu-
nications loss significantly in the network as all the vehicles had to
broadcast their information. In another recent study, Zhong, Lee, Nejad,
and Lee (2020) utilized clustering to group vehicles for more efficient
Cooperative Adaptive Cruise Control (CACC) strategies that reduce the
disturbance in the traffic stream. Another recent study by Wang, Lin,
Wu, and Yu (2020) presents a methodology to group vehicles into a
pre-defined number of classes based on their behavior. The outcome of
the proposed clustering methodology can be utilized to improve motion
planning for automated vehicles. There is, however, a key difference
between the objectives of this study with the aforementioned studies:
This study aims for a more strict objective, i.e., any mis-classification
of the probe ACC vehicles is considered a failure.

2.1. Vehicle trajectory as a time series of data points

A full range ACC system, which is among the core features of
automated vehicles, can adjust the vehicle’s speed (i.e., longitudinal
driving) in all ranges of traffic state from the stop and go to free flow.
The ACC system automatically adjusts the vehicle’s speed using the
throttle and brake to maintain a desired distance or a desired time head-
way to the leading vehicle (He et al., 2019). Consequently, this study

considers the speed, acceleration, time headway, and space headway,
as well as their changes over time as potential features in the clustering
process. Each vehicle trajectory is a time series of data points with
features, including time, location, speed, and acceleration. Based on
the location and time, the vehicle’s leader and follower are identified,
and consequently, the time and space headways are estimated. Fig. 1
presents examples of time series of speed, acceleration, time headway,
and space headway of three ACC-driven vehicles and their three im-
mediate leading and following vehicles. According to this figure, the
time series of the vehicles using ACC (3541, 3544, and 3548) are more
similar compared to the other immediate surrounding vehicles. This
similarity is more noticeable for the time headway (Fig. 1(c)) and space
headway (Fig. 1(d)) series. The similarity between the trajectories can
be quantified based on a distance measure between the trajectories.

2.2. Distance measure between trajectories

A vehicle trajectory is a time series of different features, including
location and other features such as speed and acceleration. Comparing
the similarity or dissimilarity between the trajectories is an essential
step in grouping them into the same or different clusters (Yuan, Sun,
Zhao, Li, & Wang, 2017). A typical distance measure used in the
clustering approaches for static data points is the Euclidean distance.
The Euclidean distance is also used to compare the distance between
the data points of two trajectories referring to the same time step. The
Euclidean distance can be used to measure the similarity of trajectories,
Ti, and T/ with a similar length of n time steps and d dimensional data
points, p:

i i 1 d < im j,m

Dy .. T T/ =~ mo_ o jmyg 1

Euclldean( ) n[; m=1(pk ﬁL ) ( )
where p;;”" refers to the mth feature of kth point of trajectory T*, and
p;(”’ refers to the mth feature of kth point of trajectory T/. One of
the challenges with the Euclidean distance is that each data point
in one trajectory is only compared to one data point in the second
trajectory with the same time step. However, in most cases, including
this study, the trajectories’ length (time steps) are not equal, and
the euclidean distance is not a suitable distance measure. To address
this issue, Besse, Guillouet, Loubes, and Royer (2016) divides the
distance measurements between trajectories with different lengths into
two groups of warping-based distances and shape-based distances. The
warping-based distances and shape-based distances allow measuring
the distance between trajectories with different lengths.
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Fig. 1. Trajectory data example: first run.

2.2.1. Warping-based distance measures

Warping-based distance measures address the challenge of length
difference by finding an optimal (i.e., matching) alignment between
the two trajectories regardless of their length. The objective of these
distance measures is to find the warping path, w, between two tra-
jectories, T' (with n' points) and T/ with (with »/ points), with the
optimal cost when arranging two trajectories in the form of a n'xn/ grid.
The minimum or maximum warping cost depends on the cost function
to measure dissimilarity or similarity between points. The warping
path allows us to match data points from one trajectory to those with
different indexing in the second trajectory. Two of the common warping
distances include the dynamic time warping (DTW) (Berndt & Clifford,
1994) and longest common subsequence (LCSS) (Vlachos, Kollios, &
Gunopulos, 2002).

DTW distance identifies the minimum cost of the warping path
between two trajectories 7' and T/ recursively:

0 ifni=n/=0
© ifnn=0o0rn =0
costDTW(p’i,p{)
Dy (rest(T"), rest(T)),
+min< Dy (rest(T7), T9),
Dy (T rest(TV)),

Dy (T, TY) =

otherwise

@

where rest(T") refers to the time series 7' without its first time step data
point. The cost structure in the DTW is the dissimilarity between the
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data points based on the Euclidean distance:

cost prw (p1>p2) = lIp1p2ll2 3

LCSS distance finds the longest common subsequence between two
trajectories, 7' and T/, by counting the number of times the difference
between pairs of data points is less than ¢ (a model parameter to be
selected) recursively:

DicssseTTY)
0 ifnf=0o0rn =0
1+ Dy cgs(rest(T"), rest(T/))

Dy cgs(rest(TH),TY)
max ) )
Dy cgs(T!, rest(T7))

if costLCSS(p"l,pjl.) =1land |[n—m| <=6

otherwise

4

where § controls how far in time the measurement can go to find
a matching data point. The cost structure of the LCSS distance is as
follows:

L if Ipypall, <€
0 otherwise

costycss(p1py) = { (5)
The final LCSS distance between two trajectories is divided by the
minimum of the length of the two trajectories resulting in a value
between 0 and 1. Unlike the DTW, the LCSS distance is a similarity
measure between two trajectories. 5 and e are the two parameters of
the LCSS distance that give some control over noise. If ¢ is too small,
the longest common subsequence could become too small, resulting in
a very low similarity, and if the € is too large, the common subsequence
could become too large, resulting in a high similarity.

2.2.2. Shape based distances

Shape-based distances capture the geometric similarity between two
time series (Besse et al., 2016). Two of the common shape-based dis-
tance measures for time series are Fréchet distance (Fréchet, 1906) and
Hausdorff distance (Hausdorff, 1914). Fréchet distance is a measure of
similarity between two curves, A and B:

D precner(A, B) = a}ﬁllefx tg%g))}ﬁj{ | ACa()), B(BO)I2} (6)

One intuitive definition of the Fréchet distance is the minimum cord
length sufficient to connect two travelers along two different curves,
each traveling forward at a different speed. a(¢) and (r) are continuous
and increasing functions such that a(0) = 0, a(1) = m, f0) = 0
and (1) = n, and m and n are the last vertices of curve A and B
respectively. Therefore, A(a(r)) and B(f(1)) are the location of the two
travelers at time 7 on curve A and curve B. The Frechet distance
between two trajectories can be estimated using the discrete Fréchet
distance algorithm proposed by Eiter and Mannila (1994).

Hausdorff distance is another shape-based distance that can be
used to measure the distance between two trajectories T' and T/. The
maximum distance of the points in one trajectory to the nearest point
in the other trajectory is the Hausdorff distance. Accordingly, for each
point in trajectory T", the infimum of distances from this point to all the
points in trajectory T/ are estimated, and the supremum of these infima
is found for each trajectory. The Hausdorff distance is the maximum of
the two suprema from the two trajectories:

Dyrous T, Ty =max { sup inf ||p'p’|l,, sup inf |p'p/ )
Hau.sdorff( ) {piegipieTj ||P P’“z p/esj"j seri ”p Plllz}

2.3. Clustering algorithm for non-metric distance

A distance measure is considered a metric if it satisfies
non-negativity, symmetry, reflexivity, triangle inequality, and indis-
cernible identity. Fréchet and Hausdorff distances meet metric require-
ments, while the warping distances, DTW and LCSS, do not satisfy
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the triangle inequality (Besse et al., 2016). Hierarchical clustering and
affinity propagation (AP) (Frey & Dueck, 2007) are among the cluster-
ing algorithms capable of handling non-metric distance measures in the
clustering process by directly taking the distance matrix between the
trajectories. Alternatively, some clustering methods, such as DBSCAN
clustering, may perform better with metric distances. This study adopts
affinity propagation to increase the robustness of the clustering process
as it does not require metric distance matrix or specifying the number
of clusters (unlike hierarchical clustering).

2.3.1. Affinity Propagation (AP)

Affinity propagation (AP) clustering considers the similarity be-
tween the trajectories and evaluates all the potential cluster heads
(exemplars). Two types of messages, responsibility, and availability,
are exchanged between trajectories in AP. The responsibility message,
r(i, j), is sent from the trajectory, T to a candidate exemplar trajectory,
T/, and quantifies the appropriateness of trajectory T/ to serve as the
exemplar for trajectory T’ considering all the other candidate exem-
plars. The availability message, a(i, j), is sent from exemplar candidate,
trajectory T/, to trajectory T*, and indicates the fitness of T/ to serve as
the exemplar of T’ considering the support from other trajectories that
take TV as their exemplar. AP starts by considering the similarity matrix
between the trajectories and setting the availability between all pairs
of trajectories to zero. AP updates the responsibility and availability
messages between pairs of trajectories through an iterative process until
they converge. For each trajectory, T/, the trajectory 7/ that maximizes
sum of the r(i, j) and a(i, j) is its exemplar (cluster head).

The similarity between a pair of trajectories is defined based on the
distance measures considered in the previous section. LCSS is the only
distance measure in this study that directly provides the similarity be-
tween two trajectories. All the DTW, Hausdorff, and Fréchet distances
are dissimilarity measures; thus, the negative of those distances are
considered as the similarity measure between two trajectories.

3. Data collection

Recent years have seen a significant increase in using aerial vehicles
for remote sensing applications such as photogrammetry imaging. Such
an increase is mainly due to the lower operating costs than hiring an
aircraft. This study also proposes the use of aerial videography of the
traffic stream. The trajectory of the vehicles can be extracted from the
video frames recorded in the bird’s-eye view from a segment of the
roadway (Fig. 2.a). In every video frame, the location of the vehicles
can be estimated for a fixed coordinate system and reference point on
the ground. Every video recording is converted to a sequence of images
(i.e., frames) separated at a constant rate over time (e.g., 25 frames
per second). Tracking the location of any vehicle over the sequence of
images enables extracting the vehicle’s trajectory over time. The vehicle
trajectory extraction is performed in four steps: image stabilization,
vehicle detection (Fig. 2.b), vehicle tracking (Fig. 2.c), and trajectory
construction. All the images are transformed to match a reference field
of view in the image stabilization step. Then the vehicles are detected
in every frame and tracked over the sequence of images. Finally, the
vehicle’s location and trajectories are constructed by converting the
image coordinates to the adopted reference coordinates on the ground.

The key contribution of this section is to present a pipeline to
convert video files to vehicle trajectories. Although the utilized models
and algorithms mostly exists outside of this pipeline, to the best of
our knowledge, this paper is one of the very few research studies
that outline the pipeline and steps needed to extract the trajectory
of vehicles using aerial videography. Accordingly, while none of the
models are developed by the authors (although carefully calibrated),
this detailed information is included in the paper to help interested
readers with replicating the process. It should be noted that the pro-
posed trajectory extraction methodology is modular, and there exist
different candidate models and algorithms that can be adopted for
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each of the four steps. This study does not focus on comparing all the
possible candidate models for each of the trajectory extraction steps.
In return, this study focuses on keeping the methodology simple and
introducing some practical and popular models that could be utilized in
each step. These steps are further elaborated in the following sections.

3.1. Image stabilization

The location of every vehicle in an image frame is estimated by
converting its position on the image map to the fixed coordinate
system picked on the ground. Consequently, it is essential to find the
mapping function between the image coordinate to the adopted ground
coordinate. Image stabilization is the process of converting the field
of view of all the image frames to a reference image for which the
mapping function to the ground coordinate is known. Fig. 3 presents
an example of a reference image and the input and output of the image
stabilization. Ensuring that the input image covers all (or majority) of
the study segment is vital. Otherwise, as depicted in Fig. 3, the missing
areas will be black in the stabilized image.

The image stabilization is performed in three steps; first, detecting
the key features in both reference and input images, second, finding
the matching features between the two images, and third, estimat-
ing transformation between them. The process searches for specific
unique patterns, such as corners, which are good features that can
be tracked from one image to another image. There exists differ-
ent algorithms for good features detection in images such as Harris
corner detector (Derpanis, 2004), Scale-Invariant Feature Transform
(SIFT) (Lowe, 2004), Speeded up Robust Feature (SURF) (Bay, Tuyte-
laars, & Van Gool, 2006), and Oriented FAST and Rotated BRIEF
(ORB) (Rublee, Rabaud, Konolige, & Bradski, 2011). ORB and Harris
corner detectors are among the fast feature detectors. However, SIFT
and SURF are the top-performing feature detectors in terms of scale and
transformation. The result of the comparison between the SIFT, SURF,
and ORB by Karami, Prasad, and Shehata (2017) suggested that SIFT
has the best performance in most image distortion scenarios. As a result,
this study employs the SIFT algorithm to detect good features. The SIFT
algorithm improves the image stabilization by identifying features in
both reference and input images that are invariant to distortions such
as rotation, scale, and point of view (see Fig. 3).

The second step in image stabilization is matching the features
between the reference image and the input image. One naive approach
is to compare every feature in the reference image with every feature in
the input image to find the best matching pairs. This approach is known
as brute-force matching. The deficiency with this approach is that it
takes a lot of computation time that is impractical for a video data
collection at a high frame rate (e.g., 25 frames per second). Instead,
to improve the computation speed, the Fast Library for Approximate
Nearest Neighbors (FLANN) matcher (Muja & Lowe, 2013) is utilized
to match features between the images. The FLANN algorithm adopts
a distance measure (e.g., L2 norm) to compare the level of matching
between the descriptors of two features from two images. A lower
distance between the descriptors indicates a better match between the
two features. For every feature in the first image, the FLANN algorithm
finds the approximate K best (i.e., nearest) matching features in the
second image.

The algorithm may identify many matching features; however, the
top matching pairs are picked considering Lowe’s ratio test (Lowe,
2004). In this test, features m (in reference image) and » (in input
image) are a top matching pair if »n is the best match for m. Also,
the distance between the descriptors of m and n should be less than
a threshold multiplied by the distance between m and its second-best
match. Accordingly, K = 2 for the FLANN algorithm and the threshold
of 0.7, as recommended by Lowe (2004), are adopted to find the top
pairs of matching points.

The final step of the image stabilization is finding the perspective
transformation between the reference and input images considering
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¢) Vehicle tracking

Fig. 2. Vehicle detection and tracking in aerial images.
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Fig. 3. Image stabilization.

the best matching features among them. Homography, H, isa 3 x 3
transformation matrix that maps the points (x,,y,) from one image to
the points (x,y;) in another image in accordance with the following
equation:

X1 X2 hoo  hor  hoy || x2
n|=H(»n|=ho hu ho|[» ®
1 1 hyy hy hypll1

Four correct matching points are enough to estimate the homog-
raphy transformation between the two images. However, there are
chances that some of the matches are incorrect. The Random Sample
Consensus (RANSAC) algorithm (Derpanis, 2010) is a technique to find
the model parameters from a dataset with many outliers. The RANSAC
is an iterative process that searches for the model parameters that agree
with most data points. As a result, the RANSAC technique is utilized to
find the homography parameters from the best matches between the
images. Then, every pixel in the input image can be transformed to
the perspective of the reference image using the homography matrix to
create a stabilized image.

3.2. Vehicle detection
Object detection is the task of providing both the class and location

of the objects in an input image. The classical approach for object
detection is to identify the informative regions in the image that contain

objects of interest, then extract semantic and representative features
from them, and finally, classify the objects in those regions. Deep neural
networks (DNN) made a great performance breakthrough in the task
of object detection due to the capacity of the convolutional neural
networks (CNN) to learn more complex features compared to shallower
models (Zhao, Zheng, Xu, & Wu, 2019). There are multiple popular
CNN based object detectors such as R-CNN (Girshick, Donahue, Darrell,
& Malik, 2014), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren, He,
Girshick, & Sun, 2015), SSD (Liu et al., 2016), YOLO (Redmon, Divvala,
Girshick, & Farhadi, 2016) and RetinaNet (Lin, Goyal, Girshick, He, &
Dollar, 2017).

Some of the DNN object detectors, such as the R-CNN family (Gir-
shick et al., 2014; Ren et al., 2015) are two-stage object detectors. In
the first stage, regions of interest are identified, and these regions are
classified in the second stage. Other networks such as the SSD (Liu
et al., 2016), YOLO (Redmon et al., 2016) and RetinaNet (Lin et al.,
2017) are one stage object detectors. One-stage approaches perform
the detection in one shot by classifying fixed and dense regions of the
image and adjusting the location and size of each region to enclose
the object inside it. One-stage object detectors are faster than the two-
stage detectors but usually have lower accuracy. The lower accuracy
of the one-stage approaches is due to the extreme imbalance between
the number of foregrounds (objects of interest) and background regions
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evaluated in every image that affect the network’s training. Convention-
ally, the cross-entropy loss function is used to train the classification
networks. The following equation estimates the cross-entropy loss for
an evaluated region for K different classes.

K
Loss(cmss—emropy) == Z Yz IOg (P,-) +1- Yz) 10g a- P,') 9
i=1

where p; is the probability of class i estimated by the network, and
Y; is equal to 1 for the true class and O for the rest of the classes.
The background regions are considered easy examples (i.e., when p; is
relatively high) to be detected by the classification network. The high
number of backgrounds in the training set dominates the loss function
and prevents training. RetinaNet (Lin et al., 2017) proposes the use of
focal loss for the classification loss function. The focal loss uses the
focusing parameter y that puts less emphasis on the easily classified
examples (i.e., when p; is relatively high) such as backgrounds and puts
more emphasis on hard examples (i.e., when p; is relatively low). In
addition, the balancing parameter «; is used to mitigate the effect of the
imbalance between different classes. The following equation presents
the focal loss estimation for one region and K classes of objects.

K
LossS(focai—loss) = — z a;Y;(1 — p)) log(p) + (1 —a;)(1 — Y,-)p,.y log (1 - p;)

i=1

(10)

Adopting the focal loss for the classification significantly improves the
accuracy of the RetinaNet compared to other one-stage networks and
makes the RetinaNet an ideal object detector in terms of speed and
accuracy.

3.2.1. RetinaNet

This study utilizes the RetinaNet to detect vehicles in the aerial
images; however, it should be noted that any of the modern CNN-
based object detection models have the potential to serve as the vehicle
detection module in the proposed model. Fig. 4 presents a high level
network architecture of RetinaNet. This network comprises four types
of subnetworks, including ResNet, feature pyramid network, and mul-
tiple boxes and classification subnets. The resNet component of the
network is the fully convolutional part of the ResNet, which enables
the RetinaNet to take input images with any size (He, Zhang, Ren, &
Sun, 2016). At every layer of the ResNet, the feature map from the
previous layer is transformed into a new feature map with a stronger
semantic level. The feature map transforms from the bottom (i.e., input
layer) of the ResNet to the top of it, while the spatial resolution
of the feature map decreases, which is concerning for small objects.
The classification and box subnetworks evaluate regions with fixed
sizes and aspect ratios centered at every location in the feature map
for potential objects. Consequently, both a strong semantic level and
proper spatial resolution are the requirements to detect objects in every
feature map. The ResNet is complemented with the feature pyramid
network to address these requirements. The feature maps are upscaled
using the nearest neighbor upsampling, moving from the top of the
feature pyramid network to its bottom. Each feature map in the feature
pyramid network has a corresponding feature map with the same scale
in the ResNet connected to it with lateral connections to improve its
spatial resolution. The bottom-up and top-down transformation of the
feature maps, as well as the lateral connections, are presented in Fig. 4.
ResNet and feature pyramid network construct the backbone of the
RetinaNet that provides five levels of semantically and spatially strong
feature maps (only three levels shown in Fig. 4).

Each feature map level is used as the input to separate classifica-
tion and box subnetworks. At every location on the feature map, A
rectangular regions with different aspect ratios and sizes centered at
that location are evaluated for the presence of any of the K object
classes inside it. These rectangular regions are also known as anchor

Expert Systems With Applications 208 (2022) 118060

Table 2
Training dataset for aerial vehicle detection.

Complete training dataset

Small vehicles 11379
Large vehicles 751
Total 12130

boxes. These anchor boxes are the initial estimate of the areas enclosing
a single object. The classification subnetworks are fully convolutional
networks that output a tensor with size (W, H, Kx A). W and H are the
height and width of the feature map that is proportional to the input
image size. The box subnetwork estimates four offset variables for each
anchor box. These offsets are the differences between the center, height,
and width of the anchor box and the actual bounding box enclosing the
object. The box subnetwork is also a fully convolutional network that
outputs a tensor with the size of (W, H,4 x A). The fully convolutional
structure of all the subnetworks of the RetinaNet enables it to take any
image size as the input for inference.

3.2.2. Training RetinaNet

The open source Keras library for RetinaNet, developed by Gaiser
et al. (2019), is used to build the network for vehicle detection in aerial
images. The vehicles can be grouped into small and large vehicles based
on their size and appearance. Accordingly, the classification subnet
is adjusted to accommodate two classes of objects. In addition, the
ResNet-50 (He et al., 2016) pretrained on Microsoft coco dataset (Lin
et al., 2014) is adopted as the backbone for the RetinaNet. The resulting
network contains more than 37.2 million parameters; however, the
parameters of the backbone are fixed, which reduces the trainable
parameters to nearly 13.7 million.

More than two hundred images are sampled from the collected
aerial images to create a training dataset. The sampled images are
manually annotated using the annotating software developed by Dutta
and Zisserman (2019). This training dataset includes annotated aerial
images of large and small vehicles. For this study, car, van, and pick-up
truck instances are combined into the small vehicle class, and trucks,
buses, and recreational vehicles (RVs) are combined into the large
vehicle class. The training dataset consists of 220 aerial images with
4K (4096 x 2160 pixels) resolution, and the number of instances for
each class is presented in Table 2.

The dataset is divided into training (training and validation) and
testing sets with the proportions of 0.9 and 0.1, respectively. In addi-
tion, data augmentation in the form of random image transformation
and scaling is used to further improve the training dataset’s size and,
ultimately, the generalization of the network. The loss function of the
RetinaNet considers both the focal loss for classification task (Eq. (10))
and the standard smooth L, loss (Girshick, 2015) for box regression.
Training is the iterative process of adjusting the trainable parameters
of the model to gradually minimize the loss function. The focusing
parameter, y = 2, and balancing parameter, a« = 0.25 are adopted for
the focal loss based on the findings of Lin et al. (2017). The model is
trained with a batch size of four images due to the large image size
(4096 x 2160 pixels). The batch size could be increased by reducing
the image size by cropping out the study area’s background or resizing
the images. The model trained up to 45 epochs (45 complete iterations
over the entire dataset) is selected as the vehicle detector in the aerial
images. Table 3 presents the performance of the trained model on the
test dataset in the form of average precision for each class and the
mean Average Precision (mAP) for Intersection over Union threshold
(IoU) of 0.5. The trained RetinaNet is used for the vehicle detection
step of the trajectory extraction. The input to the vehicle detection is
a stabilized image, and the output is the coordinates of the bounding
boxes enclosing the vehicles in the image. Fig. 2.b presents the detected
vehicles and their visualized bounding boxes.
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Classification and box subnets

Fig. 4. RetinaNet architecture (Lin et al., 2017).

Table 3
Detection model performance on testing dataset.

Instances Average precision
Small vehicles 1316 0.9938
Large vehicles 98 0.9302
mAP using weighted average of precision 0.9894
mAP 0.9620

3.3. Vehicle tracking

Tracking is the process of linking the new detections to previous
observations. The tracking methodology adopted for this study includes
data association and track maintenance. Data association is the process
of associating the detected vehicles in the current frame to the vehicles
identified in the previous ones. The track maintenance is in charge of
initiating new tracks, maintaining them, and deleting them.

The track maintenance initiates tracks with unique ids to all the
vehicles detected in the first frame. After that, for every frame, all the
newly detected vehicles are compared with the existing tracks using the
data association. The tracks are updated as a new detection is associ-
ated with them. A new track is constructed for any new observation
that is not associated with the current tracks. Moreover, if a track is
not updated in the last n previous frames, the track maintenance deletes
that track. A track object maintained by the track maintenance contains
both the unique id of the track and the coordinates of the center of the
bounding box of its last observation. n = 5 is found to be appropriate
for the images collected at 25 frames per second when using the trained
vehicle detector (i.e., RetinaNet) of this study.

The simple data association considers the euclidean distance be-
tween the center of the bounding boxes of the newly detected vehicles
and the ones for the tracks using a greedy policy. Every new obser-
vation is associated with the closest track, considering the Euclidean
distance between the center of the bounding box of the new detected
vehicle and the ones for the other tracks. This nearest center association
is based on the assumption that the movement of the center of a vehicle
between frames is less than the distance between the center of different
vehicles. This assumption can be validated by estimating the maxi-
mum movement of a vehicle at maximum speed between two frames
compared with the center to center lateral and longitudinal spacing
between the vehicles. Moreover, the tightness of the bounding boxes
from the vehicle detection plays a key role here in reducing the noise
in the measured euclidean distance between the bounding boxes. The
input to the vehicle tracking component is the set of bounding boxes
detected for each frame, and the output is in the same format but with
a vehicle id added to each bounding box. The simple data association
component of the tracking step works very well for this study due to:
(1) images are stabilized and share the same field of view, (2) the high
frequency of images ensures the movement of the vehicles is much less
than the lateral and longitudinal spacing between the vehicles, and

(3) the data is collected in bird’s eye view with no occlusion. For the
cases that the trajectory data collection is performed using cameras
mounted on a structure with the possibility of occlusion in images
and also lower frame rate, more advanced association measures such
as Mahalanobis distance with Kalman Filter, or even more advanced
tracking algorithms such as Deep SORT (Wojke, Bewley, & Paulus,
2017) can be adopted. It should be noted that if the vehicle detection
component fails to detect a vehicle in more than five frames, a new
tracking id will be initiated, which is not desired. Fig. 2.c presents the
vehicle ids tracked for two images, five frames apart for a video with
25 frames per second rate.

3.4. Trajectory construction

The aerial images are transformed and stabilized, considering a
reference image before extracting the vehicle trajectories. The trained
RetinaNet detects the vehicles in the stabilized images, and the result-
ing bounding boxes are used to track the vehicles from one frame to
another. In the case that the vehicle detector (i.e., RetinaNet) fails to
detect a previously seen vehicle in a frame, the track maintenance keeps
its track active up to n frames. If the previously observed vehicle gets
detected again within the » frames, its track is updated, and the same
vehicle id is assigned to its bounding box. Also, the bounding boxes
for the missing frames are interpolated between the frames before and
after the missing frames.

The bounding boxes represent the location of vehicles in image
coordinates (i.e., row and column of pixels). For trajectory extraction,
these coordinates need to be converted to a fixed ground coordinate
system (e.g., meters or feet). A digital image is a 3D tensor, and every
pixel is located by its row and column number in the image tensor. The
location of every vehicle in an image frame is estimated by converting
its position on the image map to the fixed coordinate system picked on
the ground. Consequently, it is essential to find the mapping function
between the image coordinate (row,column) to the adopted ground
coordinate (x, y):

X a b ¢ row
[y] = [d e f] [column] an

The above transformation matrix has six parameters that can be
calibrated using coordinates of three known points on the ground and
image. In the presence of more known matching points with outliers,
the RANSAC algorithm (Derpanis, 2010) introduced in the image stabi-
lization section can be used to find the parameters of the transformation
matrix that agree with most of the matching data points. In this study,
the reference image is picked such that the roadway is parallel to the
row axis in the image map. In this case, the X axis is picked along
the direction of traffic and the Y axis perpendicular to the direction of
travel. In other words, the X axis represents the vehicle’s location on
the roadway with respect to a reference starting point (i.e., center),
and the Y axis estimates the current lane of the vehicle. The pixel
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size, s, on the ground depends on the flight elevation and is the key
to the mapping function between the two coordinate systems. Besides,
keeping the axes of the two coordinate systems parallel makes the
transformation between them simple. The front bumper is taken as the
location of the vehicle on the roadway, and the trajectory of the vehicle
is the list of its location over space and time (x, y, 7).

3.4.1. Kalman filter

The output of image stabilization and vehicle detection could be
noisy. As a result, a Kalman filter is applied to reduce the noise in the
state estimation of the vehicles. The vehicle state at each point, x?, is
characterized by its location and kinematic state. The state attributes
include the position information, p;" , speed, u:." , and acceleration, a?.
The expected state of the vehicle after t seconds (i.e., rate of data
generation), fci."”, can be estimated by multiplying the transition matrix
A by the initial state vector.

[p;'s v} 1" 12
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In the state estimation process, the Kalman filter is usually applied
to estimate the best guess on the current state of the vehicle considering
the previous state and current measurements (i.e., from aerial images).
Previous vehicle state, x? " is transitioned to the expected current state,
x}, based on the process model and applying the transition matrix A:

Process model: xi" = Afc;"_’ +w 13)

where w is the process noise. In this study, the process model considers
o = [,1, l]Tagp, where oﬁp is the acceleration variance. w is assumed
to be normally distributed with covariance matrices of Q:
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The expected current state is converted to the expected measurement,
z;" , through the following measurement model:

Measurement model: 2"." =H xf.’ +v 15)

where v is the measurement noise. Since only the position of the
vehicles is directly measured from the aerial images, the resulting state
to measurement conversion matrix, H, is [1,0,0]. v is assumed to be
normally distributed with covariance matrices of R:

R= [02] 16)

where a[% is the position variance. Note that the measurement covari-
ance matrix considers the variance in position alone. A 2D Cartesian
coordinate system is considered for the measurements, and the state of
the vehicle is evaluated along the two axes, x and y, separately. Taking
o, and o7, equal to 0.5 (3)* and 0.5 m?, respectively, performed well
in addressing the noise in the state estimates. These values are carefully
selected using a grid search method and choosing the values that result

in smooth trajectories and not in losing recent measurements.
3.5. Adaptive Cruise Control (ACC) operated vehicles

One of the primary motivations of this study was to observe how
recent advancements in vehicle technology and ADAS impacts traffic
flow dynamics. This study focuses on the impacts of ACC as a core
feature amongst all automated vehicles. Unfortunately, it is not possible
to determine if a vehicle is using ACC from the birds-eye view without
additional information. A potential solution to deal with this problem is
to use probe vehicles during the data collection. Accordingly, a platoon
of three probe vehicles, including two Toyota Prius and one Toyota
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Avalon, was used under ACC for data collection. In the rare events
of temporary disengagement, the drivers activated the ACC shortly
after the disengagement. However, the disengagement events are not
recorded during the data collection. Therefore, this study assumes that
short-term disengagement and reactivation of the ACC is an expected
behavior among the drivers when using the ADAS technologies. The
probe vehicle drivers were all male with an age between 30 to 35 years.
Note that it is expected to see different mechanical performances
among vehicles with different makes and models. However, according
to Makridis et al. (2021), with enough data from other a few ACC sys-
tems, the proposed methodology can be generalized to capture all ACC
vehicles. Makridis et al. (2021) studied 27 different models of vehicles
and found that the ACC platoons behave much more homogeneously
even among different manufacturers.

The leader of the platoon was following an arbitrary vehicle on the
roadway in front of it using ACC. The other two vehicles were also
following their leaders with ACC. A total of five runs were performed
along the study roadway segment. Note that all vehicles had full-range
ACC with stop-and-go capability. These vehicles, as will be seen in the
next section, serve as the ground truth to identify other ACC-driven ve-
hicles in the traffic stream. The collected vehicle trajectories include the
trajectory of the probe vehicles using ACC and the trajectory of other
vehicles, some of which could be using ACC technologies. Since using
the ACC technology is not known for all the vehicles in the collected
data, this study adopts an unsupervised approach (clustering) to group
the vehicles with similar behavior into the same group. The vehicles
grouped with the probe vehicles in the same cluster are considered to
have similar behavior to the ones using the ACC technologies. Note that
despite the possibility of false positives and false negatives, as long as
the behavior of two vehicles are similar, their impacts on the traffic can
be similar as well.

3.6. Location and procedure

The data is collected on the southbound of Interstate Highway 35
between Exit 237B and Exit 238A in Austin, Texas (see Fig. 5). A single
stretch of nearly 160 meters roadway was recorded for 2 h between
07:30 AM and 09:30 AM on a Friday. The trajectory data is collected
during the morning peak hour such that the ACC vehicles are exposed
to changes in traffic dynamics and speed from uncongested to stop-
and-go traffic. In a free-flow traffic state, the driving behavior of ACC
vehicles and human-driven vehicles are not expected to be much differ-
ent since the vehicles are traveling at their desired speeds. Moreover,
Flying at a higher altitude could help collect data from a more extended
study segment and longer trajectory data. This segment has four lanes
in the southbound direction. Note that this highway has directional
traffic with congested southbound in the morning and congested north-
bound in the afternoon. The traffic video is recorded with 4K resolution
at 25 frames per second. Table 4 presents a summary of the collected
trajectory dataset. The complete dataset includes the trajectory of 8927
small vehicles (i.e., cars, vans, and pick-up trucks) and the trajectory
of 718 large vehicles (i.e., trucks, buses, and recreational vehicles). In
this dataset, each trajectory is represented with a unique identification
number. For each trajectory, the driving lane, lateral and longitudinal
location (front bumper), speed, acceleration of the vehicle over time,
and type of the vehicle are reported.

3.7. Complete vehicle trajectory data

One of the main features of this dataset is the continuity in data
recording for over two hours during the morning traffic peak hours. The
continuity in data collection ensures that no information or interaction
between the vehicles is lost. A vehicle trajectory is recorded from the
first time the vehicle was seen on the study segments. For most of the
vehicles, the starting point of the trajectory would be at the beginning
of the study segment. However, at the start of the recording, some of
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Fig. 5. Data collection location.

Table 4
Vehicle trajectory dataset collected on the Southbound of I-35 between Exit 237B and
238A, Austin, TX.

Trajectories 9645
Small vehicles 8927
Large vehicles 718
Labeled ACC trajectories 15
Number of ACC runs 5
Probe ACC vehicles 3
Data collection period 2h
Study area length 160 m

the vehicles were further downstream of the study segment, and the
trajectory of those vehicles starts from where they were seen first. Fig. 6
presents the examples of the time-space diagram of the trajectories
extracted using the methodology of this study on a roadway segment
of nearly 160 meters over 10 min. Note that some of the trajectories
are not continuous in this figure due to lane-changing maneuvers in
most cases. However, there are few cases that the vehicle detector
(RetinaNet) has failed to detect a vehicle in the image, causing a
discontinuity in its trajectory. In this study, two actions are applied to
address these types of errors. First, the false-negative error in detection
is mitigated in the tracking process by combining a high frame rate
(i.e., 25 frames per second) and maintaining track of the vehicle for
five consecutive frames after the last time it was seen. Second, the
false-positive error is reduced by eliminating the trajectories with less
than three data points. The trajectories with less than three data points
account for less than 0.02 percent of the total data points. In future
trajectory data collection studies, it would be a good practice to also
record vehicles’ trajectories using onboard sensors in the probe vehicles
(e.g., GPS and IMU sensors) to compare with the collected trajectories
using the proposed methodology.

Travel-time, flow, and density can be directly extracted from the
vehicle trajectory data. Fig. 7 presents the distribution of the travel
time of all the vehicles over the study segment and for the whole study
duration. The travel time is estimated for the middle 120 meters part
of the study segment (locations 15 meters to 135 m). This segment
selection is due to the partial observation of the large vehicles at
the edges of the images, which results in inaccurate bumper location
estimation at those edges. Basic statistics on the collected travel-time
are presented in Table 5. Flow and density plots with an aggregation
level of 30 s for individual lanes as well as their average are presented
in Fig. 8. According to these plots, the traffic dynamics of the leftmost
lanes (Figs. 8(a), 8(b)) are different from the traffic dynamics of the
rightmost lanes (Figs. 8(c), 8(d)). The flow and density data points for

10
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Table 5
Basic statistics on travel-time.

Travel-time

Segment length (middle part of the study segment) 120 m
Minimum 521 s
Maximum 53.90 s
Median 13.21 s
Mean 14.19 s

lanes one and two (leftmost lanes) are more in the congested region
compared to the data points for lanes three and four (rightmost lanes).

3.8. ACC platoon data

This study introduces one of the first collected comprehensive tra-
jectory datasets from both ACC and human-driven vehicles. Five runs
of the platoon of probe vehicles using ACC are recorded during the
data collection. The first three runs are conducted in the rightmost
lane (lane 4), and the last two runs are performed in the second
rightmost lane (lane 3). Figs. 9 and 10 illustrate the overview of the
platoons and the traffic dynamics for each of the five runs. The platoon
overview, Fig. 9, presents the identification number of the ACC vehicles
in the platoon, as well as the leader of the first ACC vehicle and three
human-driven vehicles behind the last ACC vehicle. The identification
numbers are arbitrary and unique numbers assigned to each of the
vehicle trajectories in the dataset. The time-space diagrams of Fig. 10
are generated for the period of 30 s before the ACC platoons enter the
segment and up to 30 s after exiting the study segment. The trajectories
of the ACC vehicles are depicted with blue lines in the time-space
diagrams.

4. Results and discussion

The key objectives of this study are to (1) to develop a robust
and scalable methodology to identify vehicles with ACC-type behavior
in a vehicle trajectory dataset, and (2) to investigate the difference
in the behavior of conventional vehicles and the vehicles using a
full range ACC, or the ones with similar dynamics, in a real-world
setting. Accordingly, a clustering approach is adopted to identify the
trajectories that have comparable traffic dynamics to the three probe
vehicles using ACC during the data collection.

The trajectory dataset collected in this study includes five runs of
data collection for probe vehicles using ACC. Each vehicle trajectory
(i.e., time series) is unique due to different vehicle dynamics, driver
behavior, and the time of data collection (and the existence of different
traffic states). This study investigates the vehicle trajectories of each
run separately to control for the difference in traffic states. The period
of each run is considered ten seconds before the first probe vehicle
entrance onto the study segment to ten seconds after the last probe
vehicle exiting the segment. For each run, all the trajectories of the
vehicles observed during that period are considered in the analysis.

4.1. Feature normalization and feature selection

Acceleration, speed, time headway, and space headway, as well as
their changes from the previous time step, are the eight features that
are considered for each data point in the trajectory dataset. For the
instances that a vehicle did not have a leader, a space headway of
100 meters is considered to avoid missing features for any data point.
Each feature has a different scale, and it could contribute differently to
the measurement based on the similarity/dissimilarity measure adopted
in the clustering process. For example, in the case of using Euclidean
distance as the dissimilarity measure, the feature with a larger scale
and dispersion could dominate the measurement. Accordingly, all the
features are normalized using the mean and variance of the data points
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Fig. 6. Time-space diagram of the vehicles for ten minutes on the Southbound of I-35 between Exit 237B and 238A, Austin, TX, during the morning peak time.
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Table 6

Feature statistics.
Feature Mean Standard deviation Unit
Speed 7.36 2.98 =
Acceleration —-0.01 0.76 z
Time headway 9.26 26.30 s
Space headway 34.78 30.91 m
Speed change —-0.02 0.14 %
Acceleration change —-0.02 0.18 ?
Time headway change 0.10 4.73 s
Space headway change 0.31 5.21 m

in all five runs (as shown in Table 6) to maintain a similar scale and
dispersion. Besides, normalizing features before principal component
analysis helps prevent the domination of the first component with the
feature with the highest variance.

The eight normalized features of acceleration, speed, time, and
space headway and their changes have high correlations. In the cases
that the features are highly correlated, the same information con-
tributes higher in the measurements (Sambandam, 2003). Principal

component analysis (PCA) is applied to transform the eight correlated
features to construct new uncorrelated features and potentially reduce
the number of features. The principal components are estimated consid-
ering all the normalized data points for all trajectories of the five runs.
The first seven principal components (presented in Table 7) are kept to
maintain a minimum of 95 percent of the variance to be retained. Each
principal component is a weighted combination of the eight original
features. Also, a whitening transformation is applied by multiplying the
components by the square root of the number of samples divided by the
singular values to keep the variance of all features as unit components.

4.2. Clustering results based on different distance measures

Four different distance measures, including DTW, LCSS, Fréchet,
and Hausdorff, along with affinity propagation (AP) clustering, are
considered to group similar trajectories for each data collection run.
LCSS distance requires two hyperparameters of ¢ and 6 that control the
similarity margin and how far in time the measurement can go to find a
matching data point, respectively. Three values for ¢ € [0.01,0.05,0.1]
and three values for § € [10,50,100] are examined in the clustering
process when using LCSS.

The purpose of clustering is to identify trajectories with the traffic
dynamics similar to the three probe vehicles using ACC during the data
collection. The performance of the different distance measures in the
clustering process is compared based on their effectiveness in identify-
ing a similar behavior between the three probe vehicles or assigning
them into the same cluster. Clustering helps group the vehicles with
similar traffic dynamics and behavior into the same group. It should
be noted that such an approach will result in both false positives and
false negatives. False negatives are easier to evaluate and have been the
focus of this study. In other words, the performance of the proposed
clustering process is evaluated based on its effectiveness in identifying
a similar behavior between the three probe vehicles or assigning them
to the same cluster. The false positives cannot be captured based on this
dataset. However, from the behavior prediction perspective, as long as
the behavior of a vehicle is similar to ACC, its impact on the traffic
can be similar and its behavior can be accurately predicted under the
ACC models. Accordingly, false positives, unlike false negatives, will
not introduce a major challenge.

11
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Fig. 8. Flow and density plots for each lane with aggregation resolution of 30 s.

Table 7

Principal component analysis of the normalized features.

Feature PC1 PC2 PC3 PC4 PC5 PC6 PC7
Speed 0.128 —0.602 —0.111 —0.437 —0.033 —0.096 0.638
Acceleration —0.159 —0.412 —0.197 0.335 —0.680 0.300 —-0.151
Time headway —-0.019 0.639 —0.101 0.063 —0.432 0.067 0.621
Space headway 0.229 0.199 —0.148 -0.761 —0.356 0.127 —0.405
Speed change —0.684 —0.069 0.008 -0.152 -0.110 0.104 —0.023
Acceleration change —0.650 0.099 0.093 -0.291 0.175 —-0.021 0.049
Time headway change 0.123 —0.038 0.681 —-0.072 0.048 0.706 0.118
Space headway change —0.005 —0.055 0.667 —-0.017 —0.422 —0.608 —0.061
Eigenvalue 2.006 1.550 1.170 1.042 0.932 0.819 0.447
Eigenvalue ratio 0.252 0.194 0.147 0.131 0.117 0.103 0.056

Table 8

Table 8 presents the number of clusters discovered for the three
probe vehicles using ACC. In this table, a value of one is the most
favorable and indicates that the three probe vehicles are grouped into
the same vehicle cluster. A value of three is the least desirable value
indicating the probe vehicles are grouped into three different clusters.
According to Table 8, using DTW distance in the clustering process
results in a better performance compared to the other distance mea-
sures. When using DTW distance combined with the AP, the clustering
process grouped the three probe vehicles into the same clusters in all
runs except for the fourth run of data collection. In the fourth run, the
last vehicle in the probe vehicles platoon is clustered in a single group.
Fig. 10(d) presents the time-space diagram of the three probe vehicles
(8806, 8808, and 8813) using ACC during the fourth run. According to
this figure, the first two probe vehicles leave the study segment before
it becomes congested, and the last probe vehicle is left on the study
segment. Since the leader of the last probe vehicle is not on the study
segment, the time series of this trajectory contains a large number of
data points with high space headway and very low speed (as indicated
previously, when a leader is not available, a large value is utilized
for the space headway), which make this trajectory an outlier. As a
result, the last probe vehicle using ACC is clustered separately from the
other two. In the rest of the analysis, the clusters with less than three
members are considered outliers.

4.3. Statistical analysis of clustered trajectories

In the clustering process, DTW distance performed much better than
the other distance measures in grouping the three probe vehicles into
the same cluster. The remainder of this study evaluates the clustering
results when using DTW distance and only for clusters with more
than three vehicles. Moreover, the statistical comparison between the
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Distance measures comparison based on the number of clusters identified for the three
probe vehicles with active ACC.

Distance measure Run 1 Run 2 Run 3 Run 4 Run 5
LCSS (e = 0.01,6 = 10) 3 3 3 3 3
LCSS (e = 0.01,6 = 50) 3 3 3 2 3
LCSS (e =0.01,6 = 100) 3 3 3 2 3
LCSS (e = 0.05,6 = 10) 2 2 3 2 3
LCSS (e = 0.05,6 = 50) 1 1 2 3 1
LCSS (e =0.05,6 = 100) 1 1 2 3 2
LCSS (e =0.10,6 = 10) 1 2 3 1 2
LCSS (e =0.10,6 = 50) 1 2 1 2 2
LCSS (e =0.10,6 = 100) 2 2 1 2 2
DTW 1 1 1 2 1
Fréchet 2 3 1 3 2
Hausdorff 1 3 2 3 2

clusters is performed separately for each run and also separately for
time headway and space headway.

Table 9 presents the average and standard deviation of the time
headway, space headway and speed for each cluster in every run. In
this table, the id of clusters that contain the trajectory of the probe
vehicles using ACC is complemented by “-ACC”. Table 9 also presents
the number of vehicles in each cluster, and according to this table,
the probe vehicles are grouped with multiple other vehicles into the
same cluster, indicating that those vehicles have similar trajectories
compared to the probe vehicles using ACC.

A normality test based on D’Agostino and Pearson’s (D’Agostino &
Pearson, 1973) is applied on the time headway and space headway
of the clusters separately. As expected, the normality tests concluded
that none of the clusters follow a normal distribution at a significance
level of 0.05. The headway distribution is skewed to the right for both
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Statistics of time headway (s), space headway (m), and speed (m/s) for different clusters of the five runs.

Cluster 1d # Vehicles Avg. T-Headway Std. Dev. T-Headway Avg. S-Headway Std. Dev. S-Headway Avg. Speed Std. Dev. Speed
0 7 2.43 0.58 19.70 4.94 8.21 1.77
1 16 3.24 1.33 21.12 11.10 6.81 2.65
2 8 2.29 0.97 26.71 9.98 11.89 1.54
Run 1 3 4 2.75 0.79 15.64 3.42 5.95 1.41
4-ACC 7 2.22 0.65 20.60 4.20 9.7 2.16
5 7 3.38 1.28 19.66 7.93 6.05 2.16
6 4 2.81 1.03 15.26 2.70 5.94 1.72
7 5 2.32 0.68 16.11 4.56 7.41 2.75
1 8 2.26 0.83 24.72 7.66 11.16 1.27
2 4 4.66 1.12 32.15 9.28 6.9 1.1
Run 2 3-ACC 16 2.74 1.11 32.82 10.31 12.44 1.99
4 18 2.33 0.80 16.47 4.73 7.2 0.9
5 7 4.15 1.07 29.05 6.07 7.15 1.04
6 7 3.41 1.09 27.67 9.27 8.48 2.33
7 7 2.44 1.27 20.64 8.55 9.05 1.97
Run 3 8-ACC 15 2.58 1.05 24.60 7.91 9.96 1.83
11 9 2.71 1.25 23.38 6.26 9.44 2.09
12 6 2.96 1.13 34.67 14.28 11.91 2.7
0 7 3.50 1.27 18.6 6.26 5.78 1.96
1 8 1.98 0.59 14.99 2.80 7.83 1.19
2 15 3.29 1.07 26.81 7.59 8.37 1.52
Run 4 3 6 3.81 2.02 40.49 20.16 10.84 0.58
4 4 4.57 0.76 27.57 3.35 10.84 0.58
8 3 3.44 1.09 22.93 4.36 5.34 1.56
10-ACC 4 3.45 0.91 28.8 5.28 8.62 1.4
0 11 4.18 1.51 33.82 11.61 8.28 1.53
2 11 2.89 0.91 16.54 3.84 5.99 1.43
Run 5 3 11 2.86 1.07 31.52 10.83 11.19 1.68
4 5 3.39 1.46 18.85 5.20 6.14 1.73
5-ACC 16 2.82 1.40 18.87 8.00 7.21 1.98
7 3 4.44 1.38 24.81 8.72 5.87 2.12
time headway and space headway due to headway values being positive Table 10
and the existence of some significant headways when the vehicle’s Hypotheses that are failed in the pairwise comparisons of the clusters for each run.
speed is low or when there is a large distance to the leading vehicle. Between Null hypothesis P-value
Following the normality test, Bartlett’s test (Snedecor & Cochran, 1989) Clusters 0 and 5 Equal space headway means 0.37
is conducted to evaluate the homogeneity of variances of headways Rup1  Clusters1and 5 Equal time headway variances 0.33
, . Clusters 2 and 3 Equal time headway variances 0.53
between the clusters of each run. Bartlett’s test does not require close to Clusters 4-ACC and 7 Equal time headway variances 012
normality distribution, unlike Levene’s test (Levene, 1961). The result - -
R L Clusters 1 and 4 Equal time headway variances 0.79
of Bartlett’s tests at a significance level of 0.05 suggested that for each Run 2 Clusters 2 and 5 Equal time headway variances 0.35
run, at least two of the clusters have different variances for both time Rum 3 Clusters 7 and B.ACC Equal time headway means o054
headway and space headway. Besides, the Kruskal-Wallis test (Daniel, - -
. T Clusters 0 and 2 Equal time headway variances 0.56
1990) is conducted to compare the similarity between the headway Clusters 0 and 10-ACC Equal time headway variances 0.48
distribution of clusters in each run. Kruskal-Wallis is a non-parametric Clusters 0 and 10-AGC Equal time headway means 0.37
method and does not require the normal distribution of the samples. Run 4 Clusters 2 and 10-ACC Equal time headway variances 0.73
For each run, and for both time headway and space headway, at a Clusters 4 and 8 Equal space headway variances  0.44
significance level of 0.05, it is concluded that at least two clusters have Clusters 8 and 10-ACC__ Equal time headway means 0.10
a different distribution. Clusters 0 and 3 Equal space headway variances 0.05
Clusters 0 and 4 Equal time headway variances 0.92
For both time headway and space headway, the results of Bartlett’s Clusters 2 and 3 Equal time headway means 0.58
N Run 5 Clusters 2 and 5-ACC Equal time headway means 0.63
test and the Kruskal-Wallis test suggest that at least two of the clusters Clusters 3 and 5-ACC Equal time headway means 0.40
have different variances and distributions in each run. Following these Clusters 4 and 5-ACC Equal space headway means 0.87
two tests, each run’s clusters are compared pairwise for the similarity in Clusters 5-ACC and 7 Equal space headway variances 0.55

their variances and means at a significance level of 0.05. Bartlett’s test
is applied for the pairwise comparison of the variances, and Welch’s
t-test is adopted to evaluate the similarity of means. The advantage of
Welch’s t-test over the student t-test is that it does not require equal
variances and the number of samples. Most of the pairwise comparisons
concluded that there is a statistical difference between the means and
variances of the clusters in each run for both time headway and space
headway. The few pairwise tests that failed to reject the null hypotheses
are presented in Table 10. According to this table, the pairwise tests
were unable to reject equal means and variances between the time
headways of clusters 0 and 10 in run 4; however, the means and
variances of space headways of these two clusters were statistically
different at a significance level of 0.05. From the pairwise comparison
between the clusters, it can be concluded that detected clusters have
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a different distribution of time headway and space headway, and the
clustering approach is capable of grouping the trajectories into different
traffic flow dynamics.

4.4. Traffic flow dynamics within each cluster

This section discusses the macroscopic traffic flow dynamics within
each cluster and compares them with the dynamics in the entire seg-
ment. In particular, speed-flow diagrams are created for each cluster
and the entire segment. In order to create these diagrams for each
cluster, the average value of time headway and speed for all the data



M. Khajeh Hosseini et al.
Direction of Traffic
M——

ID 3538
Human

ID 3541
ACC

ID 3544
ACC

ID 3548
ACC

ID 3552
Human

ID 3554
Human

1D 3561
Human

(a) First run

Direction of Traffic
—_—

ID 5176 ID 5181 ID5184 |ID5189 ID5194 ID5195 ID5199 ID 5202
Human  ACC ACC ACC Human Human Human Human
(b) Second run

Direction of Traffic

——n e TP
) @y W @y @y 6
ID 7021 ID 7025 ID7029 |D7031 ID7034 ID7037 ID7047 ID 7050
Human  ACC ACC ACC Human Human Human Human

Lanechy/

(¢) Third run

Direction of Traffic
—_—

@ (v @ @ @ @

1D 8800 ID 8806 ID8808 |D8813 ID8817 ID8819 ID8826 ID 8831
Human  ACC ACC ACC Human  Human  Truck Human
Human
(d) Fourth run
Direction of Traffic
ocionoT I
@y @ @ ) @ @ @ oy

ID 10425 1D 10434 ID 10435 ID 10440 D 10444 1D 10447 1D 10453 1D 10460

Human ACC ACC ACC Human  Truck Human Human
Human
Lane changes e Lane changes into —
breaks the ACC (") the platoon & lane >~( @B
platoon changes out of it

ID 10445
Human

ID 10456
Human

(e) Fifth run

Fig. 9. Overview of the platoon of the probe vehicles over five runs of data collection.

points of trajectories that fall within a cluster are estimated for each
time step during each run. Besides, the trajectory data points that did
not have a leader or have a speed value of less than 0.1 % are ignored in
the calculation to ensure meaningful time headways. Each cluster’s flow
rate at each time step is approximated by the inverse of the average
time headway of that cluster at that time.

Fig. 11 shows the speed-flow graphs for each cluster in each run.
This figure indicates a clear distinction between the macroscopic be-
havior of clusters that contain ACC vehicles and other clusters in
runs 1 and 2. In the remaining runs, the macroscopic behavior of
clusters that contain ACC vehicles is fundamentally different from the
majority of the clusters. In fact, in runs 3, 4, and 5, only two, one, and
two other clusters show similar behavior, respectively. While the ACC
behavior is significantly different from other human-driven vehicles
in some cases, there are cases where the difference is not very clear.
Those cases mostly happen when the average speed is low, and traffic
contains several instances of complete stops for a considerable amount
of time. Unfortunately, when vehicles are at full stop or travel at very
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Fig. 10. Time-space diagram of the probe vehicles over five runs of data collection.

low speeds, distinguishing ACC vehicles from human-driven vehicles
is impossible, and this can be true regardless of the methodology.
Regardless, these observations suggest that traffic regime plays an
important role in the detection accuracy, and detecting ACC-driven
vehicles might be easier in some traffic regimes compared to others.
Further investigation, however, is necessary to draw a meaningful
conclusion.

From the perspective of scattering in the speed-flow diagram, in-
terestingly enough, clusters that contain ACC vehicles have the least
amount of scattering in all five runs. Lower scattering can potentially
delay breakdown formation. Note that Makridis et al. (2021) reported a
similar finding, i.e., a more homogeneous distribution of headways for
vehicles using ACC technologies compared to human-driven vehicles.
This shows that the behavior of these vehicles is more predictable, and
they are the least likely group of vehicles to contribute to traffic flow
breakdown.
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Fig. 11. Speed and flow for each cluster for each run.

Fig. 12 shows the average speed-flow graphs for the entire segment.
Comparing this figure with Fig. 11 reveals interesting observations.
First, while some clusters have very large flow rates (e.g., the flow
rate in cluster 4 in run 1 reaches 3500 veh/h/lane), the overall seg-
ment has a fairly average flow rate (about 1500 veh/h/lane). This
difference suggests that while some runs show potential to significantly
increase the flow rate through platooning, the impact of platooning
in a mixed driving environment might not be as significant until the
high penetration rates of ACC vehicles. Second, the amount of scatter
in Fig. 12 is significantly less than Fig. 11. This observation suggests
that while different clusters behave differently at different time steps,
their average behavior stays the same. In other words, the impact of
ACC-type behavior on the entire system (if any) remains fairly constant
throughout the data.
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5. Conclusion

The new vehicles equipped with Advanced Driver Assistance Sys-
tems (ADAS), such as adaptive cruise control (ACC), can potentially
change the interaction among drivers on the road. The existing trajec-
tory datasets fail to provide any information on the utilization of ADAS
technologies. Accordingly, this study introduces a clustering approach
to identify ACC-driven vehicles in vehicle trajectory datasets. In the
process of developing this clustering approach, an accurate, scalable,
and cost-effective data collection methodology is introduced to collect
vehicle trajectory data based on aerial images. The methodology for
trajectory extraction is modular, and every component has the potential
for improvement.

The trajectory data is collected for over two hours from a nearly 160
meters long segment of I-35 near Austin, TX. The collected trajectories
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Fig. 12. Speed and flow for all trajectories for each run.

contain five runs of data collection from one platoon consisting of three
vehicles operated based on an ACC system. The vehicle trajectory is a
time series of different features, including location and other features
such as speed and acceleration. Since the trajectory data is not labeled
based on ACC utilization, clustering is an excellent approach to arrange
similar trajectories in the dataset into the same group. Comparing
the similarity between the trajectories is an essential step in grouping
them into the same or different clusters. One of the challenges with
vehicle trajectory data is that the trajectories do not have equal lengths
(i.e., number of time steps), and the typical Euclidean distance is not a
suitable distance measure between trajectories. The distance measures
used to compare time series with different lengths include warping-
based distances such as dynamic time warping (DTW) and longest
common subsequence (LCSS), and shape-based distance such as Fréchet
and Hausdorff. Besides, some of the distance measures between the
trajectories do not satisfy the triangle inequality, limiting the clustering
method to algorithms such as affinity propagation (AP), which can
work directly with the distance matrix.
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The clustering results with different distance measures indicated
that the DTW distance between the trajectories has a better perfor-
mance in keeping the probe vehicles using ACC in the same group.
The statistical analysis of the time headway and space headway indi-
cated a statistical difference between the traffic dynamics of different
clusters. The unique trajectory dataset of this study combined with the
clustering provides the opportunity to identify vehicle trajectories with
comparable traffic dynamics to the vehicles using ACC.

This study proposes a methodology to identify clusters of trajecto-
ries with similar traffic dynamics to the vehicles using ADAS systems.
The clustering results could be used to calibrate different car following
models to gain further information on the behavior of different clusters.
This step is left for future studies. Moreover, one of the key contribu-
tions of this study is to develop and test the ACC detection algorithm
using real-world data with all the noise and unknown elements. While
utilizing a simulation tool can help test more diverse cases, including
higher market penetration rates and various traffic states, the scope of
this study, as a proof-of-concept study, is not to evaluate all possible
cases and variations in ACC vehicles and human behavior. Accordingly,
this approach has also been left for future research. Furthermore, this
study focuses on the ACC system that only helps with longitudinal
motion planning of the vehicle. Other ADAS systems that help with
lateral motion planning, such as lane-keeping or lane changing, are left
for future studies. A similar data collection methodology proposed in
this study can be adopted to collect trajectories for vehicles using other
ADAS technologies. However, it is expected that additional features
that capture lateral maneuvers are needed to be considered in the
clustering process.
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