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Abstract. The lymphatic system is a networked structure used by bil-
lions of immune cells, including T cells and Dendritic cells, to locate and
identify invading pathogens. Dendritic cells carry pieces of pathogens to
the nearest lymph node, and T cells travel through the lymphatic vessels
and search within lymph nodes to find them. Here we investigate how
the topology of the lymphatic network affects the time for this search
to be completed. Building on prior work that maps out the human lym-
phatic network, we develop and extend a method to infer the lymphatic
network topology of mice. We compare search times for the modeled
and observed topologies and show that they are similar to each other
and consistent with observed immune response times. This is relevant
for translating immune response times in mice, where most experimen-
tal work occurs, into expected immune response times in humans. Our
analysis predicts that for large systemic infections, the topology of the
lymphatic network allows immune response times to remain fast even as
animal mass increases by orders of magnitude. This work advances our
understanding of how the structure of the lymphatic network supports
the swarm intelligence of the immune system. It also elucidates general
principles relating swarm size and organization to search speed.

1 Introduction

Adaptive immunity evolved in vertebrates to recognize and remember novel
pathogens, enabling a faster response time to subsequent infections. In contrast
to most biological rates, which are systematically slower in larger animals (scal-
ing as M1/4, where M is body mass [11, 26, 2]), the adaptive immune response
time is relatively invariant across several orders of magnitude of mammalian
body mass [6, 4]. Immune response is a swarm intelligence problem with billions
of interacting agents searching for pathogens without central control, and it is a
model for scale-invariant search in swarms.

T cells are adaptive immune cells that can recognize novel pathogens in
lymph nodes, and then replicate and disperse into tissues to find and kill cells
infected by those pathogens. The movement of T cells through the lymphatic
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system increases contact with antigens and amplifies the immune response [23].
Similar to eusocial insects, information transmission in this liquid brain [21] is
mediated through direct agent contact and chemical signals among agents that
navigate complex and varied environments [16].

Each T cell can bind to a particular subset of cognate antigens. Dendritic
cells (DCs) gather antigen from tissues, travel to and enter nearby lymph nodes
(LNs) through the lymphatic network, and display the antigen on their surfaces.
T cells search LNs for DCs displaying cognate antigen, and if a match is made,
the T cells activate, proliferate, and circulate to the site of infection where they
kill infected cells. The time it takes to initiate an adaptive immune response
depends on two factors: 1) the speed with which T cells travel through the
lymphatic system to LNs containing DCs displaying antigen, and 2) how quickly
T cells find those DCs once inside the LN.

In this work, we analyze T cell travel time through the lymphatic network to
find DC’s in mice and humans by extending the algorithm of Savinkov et al. [20],
that models only the human lymphatic networks. While most lab studies that
show how the immune system works are conducted on mice, most of the literature
on modeling the lymphatic network is based on humans. The lack of data makes
it challenging to build a general model of lymphatic networks for mice and
other mammals.The model parameters are updated based on best-fit values by
comparing empirically observed anatomical data with the graph resulting from
the algorithm. We expand the network metrics used by the algorithm to better fit
the model to empirical data. Using the inferred network model we compute the
expected time for T cells to find LNs containing DCs presenting cognate antigen.
We run a random walk search on the simulated and observed lymphatic networks
to find the average time T cells need to reach the LNs containing cognate DCs.
We find that the generated and actual anatomical graphs have similar statistics.
The resulting search time over the network is similar in mice and humans for
systematic or mass-dependent infections, but it is longer in humans than in mice
for small infections that only reach a single LN.

2 Related Work

Several studies have modeled the human lymphatic system [19, 24, 20]. In [24],
the authors use computational geometry to build graph models of the human
lymphatic network in order to explain the general features underlying the 3D
structural organization of the lymphatic system. The model is based on available
anatomical data (from the PlasticBoy project [1]), which estimates the lymphatic
system’s structure and analyzes the topological properties of the resulting mod-
els. In [20], the authors developed and implemented a computational algorithm
to generate the algorithm-based random graph of the human lymphatic system.
Some fundamental characteristics of the observed data-based graph [24] and the
algorithm-based graph of human lymphatic system graph models are analyzed.

In [27] Wiegel and Perelson hypothesize that LN number and size evolved to
minimize two competing goals: the time to transport antigen from an infected
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Fig. 1. Fig. 2.

Fig. 3. Comparison of simulated and observed lympahtic networks. (a) Mouse lym-
phatic network graph based on anatomical data with 36 nodes and 49 edges. edges.
(b) Example simulated graph of the mouse lymphatic system. Algorithm parameters:
Nv = 36, Ninp = 13, Nl = 5, Pe = 0.851, Po = 0.66.

area to the nearest LN and the time for immune cells to find the antigen inside
the LN. Banerjee and Moses [3] use an ODE model to estimate that, empirically,
immune response times are independent of host body size.

3 Methods

3.1 Lymphatic Network Simulation Algorithm

Savinkov et al [20] developed an algorithm that generates a random directed
human lymphatic network graph with no cycle from a reference human graph.
We extend their work by adding another step to the algorithm to simulate T
cells traveling through the circulatory system to enter LNs. The steps are given
in Algorithm 1.We used data from [9] to create a reference graph of mice to
compare with the simulated graph. Out of 5 input parameters in the algorithm,
three parameters, number of nodes Nv, number of input nodes Ninp, and number
of layers Nl are explicitly set to match the anatomy-based graph’s properties.
Based on the comparison metrics characterizing the topology of an anatomy-
based graph (described in Section 3.2), the value of the other two parameters,
probability of new edge creation Pe at each step and probability that the created
edge connects nodes from different layers Po, are set to produce graphs with
similar topological structures.

3.2 Comparing simulated graphs to observation

We have used the following topological properties defined in [20] to compare the
observed graph with the current state of the simulated graph for humans and
mice: The number of input nodes Ninp, Maximum degree of graph ∆G, Girth
of the graph, g, The diameter of the graph, D, Radius of the graph, r, Average
path length, IG, The energy of the graph, En, The spectral radius of the graph,
ρ, Edge density of the graph, ρd, The clustering coefficient, C (transitivity). We
also introduced the following graph properties to the list: Number of separators,
nsep: is the number of nodes removal of which disconnects the graph ndegi : is
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the number of nodes with degree i. Gl: is the average degree of of nodes in each
layer l and, nl: is the number of nodes in each layer l.

Since number of node connections and layers are larger in larger animals,
ndegi and nl are also larger. Thus, the objective function has more parameters
in larger animals. To produce a similar graph that matches these topological
properties, we tune the parameters Pe and Po. We collect these parameter values
for the minimum value of the objective function, ω. For a number of properties,
the objective function is defined as:

ω =

a∑

i=1

(
si(G)− si(G∗)

si(G∗)
)2 (1)

where
s(G) = (n,m, ninp, ∆G, g,D, r, IG, En, ρ, ρd, C, nsep, ndeg1 , .., ndegmax

, G1, .., Gl,

n1, .., nl)
T

This objective function penalizes the topological discrepancies of graph G from
the target graph G∗ and weighs them with (si(G∗))−2 to bring discrepancies of
different components of vector s to a single scale.

3.3 Search Algorithm

To run the search algorithm, we randomly choose a source node ns from which
the T cell initiate a random walk through the graph. We consider that the
LNs that contain matching DC, designated V ′ ∈ V , are distributed within the
lymphatic network in three ways for different kinds of infections.

– Random Systemic: Systemic infections can spread to multiple lymph nodes
throughout the body, i.e., in HIV. For this case, we assume that the V ′ are
distributed randomly over the lymphatic network.

– Clustered: A cluster of LN can contain antigen if an animal gets a vaccine
injection with inoculation dose adjusted to size, or if an animal breathes in a
respiratory virus where the amount of inhaled virus is proportional to lung
size. For such cases, we distribute the V ′ nodes in clusters. We randomly
pick one node and run Breadth-First Search (BFS) to make the clusters. We
exclude the circulation node 0 from being in the cluster.

– Single: If an animal steps on a thorn and gets a local infection of a fixed
size, or a mosquito bite transmits an illness into the blood, then the same
small amount of infection is injected into the animal regardless of its size.
For both of these cases, we randomly pick one node |V ′| = 1 that contain
cognate DC.

We compute the time it takes for each T cell using a random walk to reach
the first LNs that contains DCs holding cognate antigen. We follow Perelson and
Weigel’s prediction that the number of LNs in mammals scale with ∝ M

1

2 [18],

for the random systemic and clustered scenarios, |V ′| ∝ M
1

2 . For the uniform
random and clustered V ′, we assume the number of LNs that are bearing the cog-
nate antigen-bearing DCs (|V ′| are 5 and 275 in mice and humans, respectively
representing 7% and 3.6% of LN.
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Table 1. Summary statistics for observed and simulated graphs of mice and humans
characterizing their topological properties. For the predicted graphs, we present the
statistics obtained over 10,000 graphs for human and 500 for mice.

Parameter Mice observed graph Mice simulated graph Human observed graph Human simulated graph

G(n,m) (36, 53) (36, 49) (996, 1117) (996, 1029)

Ninp 13 13 357 357

Maximum degree, ∆G 24 26 8 16

Girth, g 3 3 3 4

Diameter, D 4 4 40 39.96

Radius, r 3 3 30 28

Average path length, lG 1.34 1.42 12.79 15.3

Energy, En 37.17 36.40 1224.5 1190

Spectral radius, ρ 5.81 5.91 3.51 4.18

Edge density, ρd 0.04 0.04 0.001127 0.001038

Clustering coefficient, C 0.12 0.11 0.027 0.0004

Number of separators, nsep 5 9 401 496

4 Results

4.1 Modeled Lymphatic Network

We run the extended algorithm to generate lymphatic networks for humans and
mice. Figure 1, and Figure 2 show the resulting observed and simulated graphs for
mice. The first three parameters of the algorithm for mice are collected from [9].
For P0 and Pe, we take their values that give the objective function’s minimum
value in Equation (1). They are compared numerically in Table 1 based on the
topological properties, described in Section 3.2.

From Table 1 we can see that the properties are very similar for observed
and simulated graphs for mice and humans. Some properties vary slightly, but
the statistic from the objective function gives the overall best match of the
simulated graph to the observed graph. We collect the time data the DC takes
in humans and mice respectively to reach the LN containing cognate T cell from
the infected area after running the random walk, shown in Figure 4. The time for
T cells to encounter a target LN is shorter in humans than in mice for random
and clustered target LNs. That is because there are more target LN in humans,
and we consider only the time to find the first target LN. The search to find
a single V ′, takes much longer in humans because there are many more LN in
humans (996) compared to mice (36).

4.2 Predicted Time

We compare the search time of a single T cell to find a target LN to actual
immune response times to determine if our model predictions are reasonable.
We calculate times from hop counts and estimates of the time between hops,
shown in Table 2. Since we only model a portion of the overall adaptive immune
response, that is, the time taken for a single T cell to conduct a random walk
through the lymphatic network to find an infection, we cannot predict the speed
of the overall immune response. For mice LN mean residence time in LN per
hop is approximately 13 h [23], and for sheep 19 h [14]. Since sheep and humans
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Fig. 4. Average Number of Hops to Find a LN with Cognate Antigen after
running the random walk on 500 observed and algorithm-based graph of mice and hu-
man. The random bars represent that |V ′| are randomly distributed over the graphs.
There are 275 LNs containing the cognate T cell out of 996 LNs in human and 5 LNs
out of 36 LNs in mice. The cluster bars represent |V ′| are distributed in clusters over
the graphs. There are 275 LNs containing the cognate T cell out of 996 LNs in human
and 5 LNs out of 36 LNs in mice. The single bars represent that there is only one LN
(|V ′| = 1) chosen at random carrying the cognate T cell out of 996 LNs in human and
36 LNs in mice.

masses are similar (40 kg–160 kg for sheep [5] and 43 kg–140 kg for humans) [25],
we approximate residence times in humans with those of sheep. Multiplying these
residence times by the hop counts from Figure 4 results in Table 2. We find that
the predicted time for a single T cell to find a LN with cognate antigen is on the
same order as observed immune response times for systemic infections in mice
and humans. According to [17, 15, 10, 22, 7] the mean adaptive immune response
time in mice for influenza and LCMV infection is 5.3 days and in humans for
SARS-CoV2 its 5.1 days [13, 8, 12]. This means that for systemic or whole-organ
infections (where the number of LN increases with body mass), typical T cells
can find the a LN with antigen during the time available to proliferate and
amplify the growing immune response. In contrast, the time to find a single LN
with antigen is orders of magnitude longer. This suggests that not many T cells
would reach the single LN during the time of adaptive immune amplification.
However, in small infections, a global response is likely not to be needed. We
expect the T cells that reside in the local LN to be sufficient to respond to small
local infection [3]. The actual timing depends on many factors, including the
fraction of LN containing target DCs, V ′ and the number of cognate T cells
searching for those DCs. We do not consider lymph vessel or blood residency
times in these estimates, because those times are small relative to the time
within LN [23].
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Table 2. Predicted times for T cell to enter LN containing cognate DC based on hop
count. H. sapiens and M. musculus LN residence times are taken to be 19 h. Time given
in days (d).

M. musculus H. sapiens

Observed Simulated Observed Simulated
Random Clustered Random Clustered Random Clustered Random Clustered

Hops 11 15 9.3 13 3.8 4.1 3.9 3.4
Time 5.9 d 8.3 d 5 d 7 d 3 d 3.3 d 3 d 2.7 d

5 Discussion

We simulated the lymphatic network for mice, ran a random walk process on the
resulting graph, and predicted the time for a typical T cell, searching that graph
for a LN with cognate antigen. We examined three scenarios corresponding to
different infection patterns: random systemic infection, clustered infection, and
infection in a single LN. Our results show that the time for each T cell to search
for clustered and randomly distributed systemic infections in lymph nodes are on
the same order as observed immune response times to systemic infections such
as influenza and COVID-19 in humans and mice. In contrast, the time for a T
cell to find a single LN is far longer, requiring thousands of network hops that
would take years of search time in humans or a month in a mouse. However,
we suggest that such long search times for small localized infections may be
adaptive. For systemic infections that require a large response, T cells quickly
discover LN with DCs presenting antigen, but T cells are not recruited to small
local infections when they are not needed – local infections are responded to
only by the small number of T cells that already reside in the lymph node where
the infection is presented on DC.

This analysis shows that the physical structure of the lymphatic network fa-
cilitates scale invariant immune response. For large and systemic infections that
require a large and fast response, T cells navigate the lymphatic network to find
infected LN equally fast in large and small animals. In one sense, the adaptive
immune system exemplifies the kind of decentralized control typical in swarm
intelligence: immune response is fast and adaptable based on the independent
action of billions of immune cells that communicate locally and navigate complex
tissue environments. However, the decentralized search is constrained by the net-
work structure of the lymphatic system that provides a form of global guidance
in physical space. That structure contributes to the extraordinary scalability of
response.
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