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Abstract

In deep learning, often the training process finds an interpolator (a solution with 0 training loss), but
the test loss is still low. This phenomenon, known as benign overfitting, is a major mystery that received
a lot of recent attention. One common mechanism for benign overfitting is implicit reqularization, where
the training process leads to additional properties for the interpolator, often characterized by minimizing
certain norms. However, even for a simple sparse linear regression problem y = 8* "« + ¢ with sparse 3",
neither minimum ¢; or ¢2 norm interpolator gives the optimal test loss. In this work, we give a different
parametrization of the model which leads to a new implicit regularization effect that combines the
benefit of ¢; and {2 interpolators. We show that training our new model via gradient descent leads to an
interpolator with near-optimal test loss. Our result is based on careful analysis of the training dynamics
and provides another example of implicit regularization effect that goes beyond norm minimization.

1 Introduction

Benign overfitting — the phenomenon that the training loss becomes 0, but the test loss remains low —
is a major mystery in deep learning. Recently, a long line of works (Belkin et al., 2019; Bartlett et al.,
2020; Belkin et al., 2020; Hastie et al., 2022; Advani et al., 2020; Koehler et al., 2021) tried to explain
why interpolators (solutions with 0 training loss) can still enjoy good test loss for various models. This
phenomenon is interesting and was studied extensively even for simple models of linear regression (see e.g.,
Bartlett et al. (2020); Tsigler and Bartlett (2020); Hastie et al. (2022)), where data (x,y) is generated as

y=p8"z+¢

Here, 3* is an unknown vector that we hope to learn, « is generated from a data distribution and £ represents
the noise.

One of the major explanations for benign overfitting is implicit regularization, which suggests that the
training process promotes additional properties for the interpolator that it finds. In the context of the simple
linear regression, it was known that fitting the model y = B directly by gradient descent gives the 3 with
minimum /¢, norm; while parametrizing B as 8 = w®? — u®? (here ®2 represents entry-wise square) gives
the B with minimum ¢; norm.

However, for sparse linear regression, implicit regularization in the form of ¢; or 5 norm minimization
does not lead to benign overfitting. More precisely, if 3* € R is an s-sparse vector, given n samples (x;, ;)
fori=1,2,..,n where n < d, ; ~ N(0,I) and & ~ N(0,0?), one can still hope to find a parameter 3 such
that the test loss SE[(y — 8T@)?] is on the order of 02slog(d/s)/n. Neither minimum ¢; or ¢, interpolator
achieves anything near this guarantee: the best £5 norm interpolator achieves a test loss of Q(||3* ||§) (Bartlett
et al., 2020; Hastie et al., 2022) while the best ¢; norm interpolator achieves a test loss of Q(0?/log(d/n))
(Chatterji and Long, 2022; Wang et al., 2022).
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In the sparse regression setting, Muthukumar et al. (2020) showed that when the model is significantly
overparametrized (d > n), it is still possible to find an interpolator with near-optimal test loss. The
interpolator in Muthukumar et al. (2020) has to be constructed ezplicitly through a 2-stage process which
combines /1 and /5 norm minimization. In this paper, we ask whether such an interpolator can be found via
implicit reqularization — by directly minimizing the loss using a new parametrization.

1.1 Our result and technique

We show that implicit regularization can indeed give near-optimal interpolators (up to polylog factors) and
therefore achieve benign overfitting in the sparse regression setting:

Theorem 1 (Informal). In the sparse linear regression setting with unknown s-sparse target 3*, suppose we
parametrize linear function BT x as
B =v+ MNw®? —u®?).

IfQ(s*) <n < 6(\/&), with proper choice of parameters, gradient descent converges to a solution B with 0
training loss and test loss
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More formal versions of this theorem appear as Theorem 3 and Corollary 4. Note that the test loss is
within polylog factor to the minimax rate.

The model we use is similar to a 2-layer scalar network (which gives the w®? — u®? term) with a skip-
through connection (the v term) like in the ResNet (He et al., 2016). Intuitively, the term \(w®? — u®?)
promotes minimum ¢; norm properties and can be used to fit the sparse signal 3*, while the term v promotes
minimum /5 norm properties and can be used to fit the noise.

Of course, showing that training this model via gradient descent leads to the correct trade-off between
fitting the signal and noise is still challenging. We rely on dynamics analysis and show that the term
AMw®2 — u®?) first grows fast to recover the sparse signal and then the term v grows to fit the noise.
Interactions between all parameters v, w, u makes it difficult to directly derive an accurate dynamics analysis.
To address this issue, we introduce a new way to decompose v that allows us to separate the effect of learning
signal and fitting noise and leads to a better characterization of the training dynamics. See details in Section 4
and Section 5.

1.2 Related works

There is a long line of work trying to understand implicit regularization effect, we refer the readers to
some surveys for more complete discussions (Bartlett et al., 2021; Dar et al., 2021; Vardi, 2022). Here, we
first summarize implicit regularization effect for interpolating linear models and their variants in regression
setting. We then discuss related works for implicit regularization that are more related to training dynamic
analysis instead of norm-minimizing.

Min-/;-norm interpolator When using linear model 3T« for regression ﬁ Zi(ﬁ—rwi —y;)?, it is known
that gradient flow/descent with 0 initialization will converge to the solution that minimizes its £ norm (e.g.,
Gunasekar et al. (2018)). Recently, many papers have studied the generalization error of such min-¢3-norm
interpolator in the overparametrized regime where the dimension is much larger than then number of samples
(Hastie et al., 2022; Bartlett et al., 2020; Tsigler and Bartlett, 2020; Belkin et al., 2020; Zhou et al., 2020;
Negrea et al., 2020; Mitra, 2019; Koehler et al., 2021). In particular, these results suggest that min-¢s-norm
interpolator can achieve benign overfitting when the spectrum of input data covariance matrix has certain
structure. On the other hand, it suffers from large test loss with isotropic features (identity covariance matrix
for ).



Min-/;-norm interpolator Going beyond the simplest linear model 8T, when the underlying signal is
known to be sparse, one could reparametrize 3 by B(w, u) = w® —u®L where ®L represents element-wise
L-th power for integer L > 2. Woodworth et al. (2020); Azulay et al. (2021); Yun et al. (2021) showed that
gradient flow with such parametrization converges to min-¢;-norm solution when using small initialization
and min-f5-norm solution when using large initialization. Researchers have studied the test loss of the min-
¢1-norm interpolator in the sparse noisy linear regression (Mitra, 2019; Ju et al., 2020; Li and Wei, 2021;
Chinot et al., 2022; Koehler et al., 2021).

Lower bounds are also shown in Chatterji and Long (2022); Wang et al. (2022), which suggests that min-
{1-norm interpolator does not have good generalization performance due to its sparsity. Vaskevicius et al.
(2019); Li et al. (2021a) showed that gradient descent with early stopping can still achieve near-optimal test
loss, but these results do not give interpolating models.

Hybrid Model Muthukumar et al. (2020) proposed an interpolation scheme called hybrid interpolation
(Definition 5 in their paper) to achieve optimal test loss. Specifically, the hybrid interpolation is a 2-step
procedure to achieve benign overfitting: (1) use any estimator to recover signal (e.g., Lasso (Bickel et al.,
2009)); (2) use min-¢o-norm interpolator to memorize the remaining noise. Such two-step procedure shares
similarity with the learning dynamics in our analysis: our model will first recover the signal using the
second-order term and then fit the noise using the linear term. Different from the hybrid interpolation
scheme that requires a 2-step process, in our setup such learning dynamics arise naturally just by running
gradient descent.

Beyond norm-minimization for implicit regularization Many of the earlier works for implicit reg-
ularization shows that the training process minimizes a certain norm (or maximizes margin with respect
to a norm). The first example of implicit regularization that goes beyond norm minimization works in the
setting of matrices. Arora et al. (2019) observed that for low-rank matrix problems the solution found does
not always minimize the nuclear norm. Similar idea has also been exploited in the full-observation matrix
sensing (Gidel et al., 2019; Gissin et al., 2020). Later Li et al. (2021b) was able to characterize the implicit
regularization effect in matrix sensing problems via a greedy-low-rank-learning dynamics. Such implicit rank
regularization and dynamics analysis are also studied in tensor problems (Razin et al., 2021, 2022; Ge et al.,
2021) and neural networks (Timor et al., 2022; Frei et al., 2022). Our result shows that dynamics analysis
can be important even in the simpler sparse regression model.

2 Preliminary

In this section we first introduce basic notations. Then we define the precise sparse recovery problem we
are solving, and the learner model/algorithms we use. Finally we state several useful properties for the data
that we will use throughout our analysis.

Notation Denote [n] = {1,2,...,n}. We use bold symbols to represent vectors and matrices. For vector
B € R%, given any set A C [d], let B4 = > _ica Bi€; be the same as B for the entries in set A and 0 for
other entries, where {e;} is the standard basis. We use standard big-O notations €, O to hide constants and
fNZ, O to hide constants and all logarithmic factors including log(d),log(n),log(1/0). We will drop the time
sub/superscripts when the context is clear.

Target function and data Suppose the ground-truth function is
fo(z) = *Twa

where 3* € R? is s-sparse. Without loss of generality, we assume || > ... > [BZ] > 0 and 85, = ... =
B = 0. Denote S; := {i : BF > 0} be the set of positive signal entries, S_ := {i : 8F < 0} be the set of
negative signal entries, and S := S U S_ = [s] be the set of all signal entries. We use 8s 1= 3, 5. Bi€i



to be the vector that is same as 3 for the signal entries in .S and 0 for other entries, and 3. := Zi:ﬁ?‘:o Bie;

to be the vector that is the same as B for the non-signal entries that are not in .S and 0 for other entries.

We similarly define Bs.,B8s_, 8¢, ,Bc_. Let Bmax := 57| be the maximum absolute value entry of 3% and

Bmin = |B%| be the minimum absolute value entry of 8%. We assume Bumin, Bmax = O(1) for simplicity. Our

results can generalize to arbitrary Bmax, Bmin With the cost of an additional polynomial dependency on them.
We generate n training data {(x;,y;)}7-, by

where @ is the input data, & ~ N(0,02) is the label noise and y is the target. Denote the n x d matrix
X = [xz1,%Ta,..., 2, as the input data matrix, y = (y1,...,y,)  as the target vector and £ = (&1,...,&,)"

as the noise vector.

Learner model, loss and algorithm To learn the target function f.(x), we use the following model
fu,w,v (-73) = ('U + A'IU@Q — )\’U,®2)T:13. (1)

Here w®? := w ® w and u®? := u ® u is the element-wise square of w and w. In general we use u ® v
to denote the element-wise product of u and v. Our model can be viewed as a linear model 8" a with
reparametrization 8 = v + Aw®2 — A\u®2. Such element-wise product reparametrization w®? — u®? is
common in the implicit bias literature (Woodworth et al., 2020; Azulay et al., 2021; Yun et al., 2021). In
the view of neural networks, the learner model can also be viewed as a 2-layer diagonal linear network with
a shortcut connection (He et al., 2016). For simplicity of notation, denote 8 = v + Aw®? — \u®?. We are
particular interested in the overparametrized regime n < d, where the model has the ability to overfit the
data without learning the target 3*.

Denote residual 7; := fuy (i) — i for i € [n] and 7 := (r1,...,7,) . We will use gradient descent to
minimize mean-square loss, that is

L(u,w,v) :22171; Fuwwo (@) —:)° .
The gradient for this loss is given below:
WD — ® — 57 Lw®, w® o®) = w® _p <711XTr(t)> o 2w®)
w1 — 4 — 7 Lw®, w®, o) = u® 4 (iXT’m) o (27u®) 2)
o) 50 v L, w®, 5®) = p® _ ,,%XT,,M,

Properties the input data We use several key properties of the input data matrix X and noise £. First
is the classic notion of Restricted Isometry Property (RIP).

Definition 1 ((k,6)-RIP). A n x d matriz X /y/n is said to be (k,8)-RIP if for any k-sparse vector 3 we
have

(1=8) 1812 < | X8/l < (1+6)I1BI3.

We will assume data matrix X /\/n satisfies (s + 1,6)-RIP with § = O(1/(1 4+ n/v/d)s*?) and some
regularity conditions on X, €, as summarized in the Assumption 1 below. These conditions can be easily
satisfied under some choice of X, &, as shown later in Lemma 2.



Assumption 1. Input data matriz X /v/n satisfies (s 4+ 1,8)-RIP with 6 < ¢s/(1 + n/+/dlogd)s®/?log®(d)
where cs is a small enough constant, and X, € satisfy the following regularity conditions:

I€ll, = O(ov/n),
<Be:=0 (0 loid> ,

N =0 <\'8/ll12> for any vector 3,

(1-0(v/n/d)d < Auin(X X T) € Amax(X X 7) < (1 + O(y/n/d))d.

Note that the notation B = O(o+/log(d)/n) not only is for notation simplicity, but also intuitively
stands for the best error in fo, that one could hope with Gaussian noise. Indeed, Lounici et al. (2011)
showed that the minimax optimal ¢, test error is (o +/log(d/s)/n). Later in our analysis, we show the test
loss is closely related with Be.

When each entry of data matrix X is i.i.d. Gaussian and noise £ is i.i.d. sampled from N(0,0%I), all
the conditions above are satisfied as long as (s*) < n < O(d/s*). See Appendix A.1 for details.

Lemma 2. Suppose X is a Gaussian random matriz and & ~ N(0,021I). Then if Q(s*) < n < O(d/s*), we
have Assumption 1 is satisfied with probability at least 1 — 1/d.

3 Main Result

Our main result, formalized in the theorem below, shows that gradient descent on the learner model (1)
achieves benign overfitting.

Theorem 3 (Main result). Under Assumption 1, suppose there exists constant C' such that o < C. We
train model (1) with initialization v(© = 0, w® = u®) = a1 and follow the gradient descent update (2). If

Q(s)<n<O (min{d/s,d*/®}) and we choose A\ = © (d/an(\/log(d)/n ++/n/d) 10g(n)) , a = 1/poly(d),
n < O(y/n/sd/)\3), then for every t > T = O(log(n/ag)n/nd) with any given € > 0 we have training loss

L(u®,w® v®) < ¢ and test loss
log(d /
:O<\/§10g2(d) (O’\/?()‘FU n))
2 n d

Note that the final test error depends on log(1/a). Since we choose o = 1/poly(d), it appears as log(d)
in the final error bound. Also, the test loss does not depend on 1/¢, so it remains small when ¢ is very close
to 0.

For any interpolator 3, its test loss has lower bound ||3 — 8*||, = Q(o/slog(d/s)/n+oc+/n/d) (Muthuku-
mar et al., 2020), where o+/n/d comes from the min-f5-norm interpolator that fits the noise. Thus, the
above test loss is optimal up to poly(logd, s) factors. The additional logd, s dependencies in our result
(and the fact that n cannot be larger than d?/3) are due to technical difficulties in analyzing the dynam-
ics. When n = O(y/dlogd), the first term dominates the second term, and the above test loss becomes

O(oy/slog®(d)/n). This is close to the minimax optimal rate Q(o+/slog(d/s)/n) up to polylog(d) factors
(Raskutti et al., 2011).

For the Gaussian data case (z ~ N(0,I)), by Lemma 2 we in addition need n = Q(s*) to satisfy
Assumption 1. This leads to the following corollary:

jpo-




100 ——— ] . 1.07

\ ! —— train loss — ||AW®Z = Au®?||;
1
1

\ test loss 08 [IV]]2

" toomwo

o

-1 J
10 F0.008

1072 5 L 0.006

0.4

0.2

0.0 -

10° 10t 102 10 10* 10° 10! 102 103 104
iteration iteration

1074 F0.004

[Aw®? = Au®?||;
o
o

1074 4 r0.002

1051 F0.000

Figure 1: Training dynamics of model (1) following gradient descent update (2) under d = 5 x 10%,
n = 3Vd, o = 0.1, B = (1/v/3,-1//3,1/4/3,0,...,0)T and Gaussian data z; ~ N(0,I). We set
A = 100d/onlog(n)(y/log(d)/n + /n/d) and run gradient descent with n = 107% from initialization a1
with a = 107! until training loss reaches 107°. Red vertical line stands for the transition between Stage 1
and Stage 2. Left: training loss L goes to 0 and test loss ||3 — ,B*Hg remain small at the end. Right: norm
of second-order term \(w®? — u®?) grows large to recover the signal in Stage 1 and linear term v remain
small during the training. Both z-axis are in log scale as Stage 1 is significantly shorter than Stage 2.

Corollary 4 (Near minimax rate). Under the setting of Theorem 3 and the choice of A, «,n, suppose input
data X is Gaussian matriz and noise & ~ N(0,0°I). If Q(s*) < n < O(Vd), then for every t > T =
O(log(n/ag)n/nd) with any given & > 0 we have training loss L(u®,w® v®) < e and test loss
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which is near-optimal up to polylog(d) factors.

4 Intuitions for the Training Dynamics

Consider the training of our model (1) using gradient descent. Ideally, one would hope the training process
to combine the advantages of min-f1-norm and min-fo-norm interpolator as done explicitly in Muthukumar
et al. (2020): first use w®? — u®? to learn the sparse target 3* and then use v to memorize the noise with
small #3 norm. This would require us to fix v = 0 when learning the signal and fix w®? — u®? when fitting
the noise. However, since training is done on all parameters simultaneously, it’s unclear why it follows this
ideal dynamics.

Stages of training At a higher level, we show that the actual training dynamics of parameters v, w, u
approximately follow the above ideal dynamics in 2 stages (Figure 1):

e In Stage 1, the linear term v remains small so that essentially the second-order term w®? — u®? learns
the signal using its bias towards sparse solution.

e In Stage 2, v moves to memorize the noise while w®? — u®? roughly stays the same. Since v is biased
towards small £ norm, the final test loss remain small after interpolating the data.

However, things are not as simple when we examine the dynamics carefully. It turns out that even though
v does not grow to be too large in Stage 1, it still becomes large enough so that existing analysis on w and u
will no longer apply. To address this problem, we keep track of the dynamics of v very carefully throughout
the training process. This is done through introducing the following decompositions of X " Xv/n and wv.



Decompositions of X " Xwv/n and v To keep track of the dynamics of X " Xv/n and v, we first consider
the ideal dynamics for v. We hope v to fit the noise. If we were actually given the noise, we can use the loss
function || Xv — §||§ /2n. Running gradient descent on this function gives a trajectory for v, which can be
computed explicitly. Our decomposition tries to highlight that the true trajectory of v is close to this ideal
trajectory.

There are a few more issues that we need to work with. First, for simplicity, in the ideal trajectory we
approximate X X T by dI (which is accurate as long as d > n). Second, because of the signal, the entries of
v in S may deviate significantly and in fact contribute a little bit to the fitting of the signal.

Based on these observations, we decompose both v and X " Xwv into three terms — a signal term, a
noise-fitting term and an approximation error term. They are defined in the following equations:

1 d
~X T Xo") = va“ +b(XTE)e + Ty, (3)
o® = vg) +a:XTe+ A, (4)
where
d 1
biia :bt—”(bt—>,
n

Here ||I‘(t)}|oo <, As,t)
Bs = Zi:ﬁ;;&o Biei, Be = Zi:ﬁ{ _o Bie;. Intuitively in the decomposition of v, vg part tries to fit the signal,

’ < (¢ give £o-norm bounds on the approximation error. Also recall the notation
o0

X T¢ part tries to fit the noise and the remaining term is approximation error (the decomposition of X " Xv
has the same structure). We will show in our analysis that vg contributes little for learning the signal while
X T¢ fits all the noise and approximation errors remain small.

The recursions of a; and b; are exactly the dynamics of v in the ideal setting, where we fit || Xv — 5“; /2n
(and approximate X X " by dI).

Finally, the d/n factor appears in front of vg in the decomposition of X " Xv/n. This is because in the
ideal setting (approximate X X ' by dI) the change of X X Tv/n is d/n times larger than the change of v.
One can then use simple calculations to show that the signal part (X " Xv/n)g corresponds to (d/n)vs. The
non-signal part has the same factor but the £, norm there is small and hence bundled into the approximation
error term.

5 Proof Sketch

In this section, we give the proof sketch of our main result Theorem 3 with several key proof ideas. We first
combine the tools we discussed in Section 2 and the decomposition of X " Xv/n and v defined in Section 4
to give the approximation of gradient. Then, we give the proof sketch of Stage 1 and Stage 2 in Section 5.1
and Section 5.2 respectively.

Approximation of gradient Given that X is a (s + 1,d)-RIP matrix, the following lemma gives useful
approximation that allows us to approximate the gradient in Lemma 6. The proof is a standard consequence
of RIP property, which is deferred to Appendix A.2.

Lemma 5. Given n x d matriz X //n satisfying (k +1,0)-RIP, for any B € RY, let A = (%XTX — I) 3,
then the following hold:

o If B is k-sparse, then | Al < VES|B,-

e For any vector B, we have |A|| <d8;-



The following lemma gives the approximation of the gradient. For the gradient of w,w, it would become
the same as the gradient on the population loss H)\wQ2 —u®? -3 if (d/n)vs and A, are small. In
particular, this suggests that the second-order term Aw®2? — \u®? will learn the target when v remains small.

Lemma 6 (Gradient approximation). Under Assumption 1, we have the following gradients and their useful
approximation:

1 d
va:<XTr)®(2)\w)—2)\< vs+)\w Augz—,@*+Ar>®w
" -

Vol = — <iXTr) © (2 \u) = —2A ( vg + )\w - \ul? - B+ Ar> Ou

1 d
Vol = —XTr = —vg + Mwg” — g? - 8* + A,
n n -

where

[A][oo =O ((1+ [nb—1]) Be) + \f5* [vslly + 56

‘dvs +Awg? — Au§? - g

‘o (ﬁx) (e 12, + e [I2) +7

b and ||T||, <~ are defined in (3), and recall Si,S_ are the set of positive and negative entries of 3* and
er =[d]\ Sy, e— = [d]\ S— are the corresponding complement set.

Note that the factor d/n in front of vg naturally arises when we using the decomposition of X " Xv/n
n (3). This suggests that the actual part to fit the signal 8* is (d/n)vs +Mw$? — Au$?, instead of the naive
vs + Aw§? — Au$? from the form of learner model. On the other hand, since vg remains small, it does not
affect the final test error because they are all close to /\w?Q — )\qu.

The forms of gradients highlight the difference between the parametrization v and w®? — u®2. For each
coordinate, w; (same for u;) moves according to w; < (1+n\;)w; for some growth rate A;, which would grow
exponential fast when A; > 0. However, the gradient for v is not proportional to v, so it only grows linearly
with time. Such difference allows us to control the order of learning dynamics (v or w®? — u®? grows up
first). Thus, we could have the desired 2-stage learning dynamics by properly choosing the growth rate A.

5.1 Stage 1: learning the signal

In Stage 1, our goal is to show that the linear term v will be characterized by the decompositions (3)(4),
and the second-order term w®?2, u®? will recover the signal 3*.

The following lemma gives the ending criteria for Stage 1. We can see only the signal entries wg, ,us_
grow large to recover 3* and others such as non-signal entries w., ,u._ and linear term v are remain small.
Also, the loss reduces to O(o/n), which is essentially the norm of noise ||£||,. The detailed proof is deferred
to Appendix B.

Lemma 7 (Stage 1). Let Cy be a large enough universal constant, denote

= C1(Be + ax/n/d)}.

d
T, :=inf {t : H (Tl + )\w(Tl)®2 /\ug})@2 _

o0

Then we know Ty = O(log(1/a)/m\) and the following hold:

(Tv) ’U;((ng )

= O(a).

o

)

‘we
oo

= O(y/5(n/d)log?(d) (B¢ 4+ o+/n/d)) and H'U(Tl)”2 = O(o+/n/d).

e




o [[r™]l, = Otovn).
©

Recall B is the target infinity norm error for recovering the entries in 8*, when d >> n, %vg+)\w Sf—)\ugf

achieves this error at the end of Stage 1. We focus on this term instead of vg + )\wgf —Au$? due to its
connection with the gradient shown in Lemma 6. Given that vg is small, these two terms are in fact roughly
the same.

As we discussed, a key step in the analysis is to characterize each term in the decomposition of X " Xv/n
and v, which would imply that v remains small in Stage 1. This is formalized in the following lemma.

Lemma 8 (Informal). Consider the decomposition of X " Xv/n and v in (3) (4), we have fort < O(log(1/a/n\))
by = (1— (1 —nd/n)")/n<1/n,
a; = (1— (1 —nd/n)")/d<1/d
ITillo <7 =O(ov/n/d+ Be),
1Al < G = O(avn/d).

Note that v will memorize the noise when b; = 1/n and a; = 1/d as Xv® ~ X (a; X T€) ~ €. However,

since Ty = O(nA) = o(n/nd), we know a; = o(1/d) in Stage 1. This shows that v is still small and does not
yet interpolate the noise part.
Combine the above lemma with Lemma 6, we have the following gradient approximation

1 d
Vel = (nXTr) © (2w) = 2\(~vs + Mwd? - Ml? - B+ A,) 0w,
1 d
Vol =— (XU») ® (22u) = 2\ (—vs + Aw$? — Mug? - B*+ A,) O,
n n

where

|l =O(Be +0+/n/d) + 56

d
@ 02 _ 4, @2 _ 3%
’nvs —l—)\ws+ Aug” — 3

o

Intuitively, this suggests if a coordinate of the residual %vs + /\w§2 — )\u§2 — B3* has large absolute value,
then one of w or u will grow exponentially depending on the sign of the residual.

Given such gradient approximation, our goal is to show that vg and A, remain small so that w and u
essentially follow the gradient on population loss ||)\w®2 —Au®? - g* ||;/2 to recover the target 3*.

In the simplest case of s = 1, we can see that whenever the signal error |(d/n)v; + Awi — \u? — 85| >
O(B¢ + o4/n/d) is still large, it leads to a large gradient for either w; or wq, which in turn decreases the
error. Therefore, at the end the error will decrease to O(Bg¢ + g+/n/d). In fact, due to the parameterization
of w®% u®?, their growing rate would be exponential so they will grow up fast to recover the signal.

At the same time, we can control the growth of v; by choosing a large enough A to ensure the length of
Stage 1 T is short. The non-signal entries we, ,u._ will also remain almost as small as their initialization,
as their growth rate is much smaller compared with the signal entries.

For higher sparsity s, the analysis becomes significantly more complicated because of the signal error
%vs + )\wgf — )\ug_Q - B*

in different growth rates in the entries of w and u. The entries with larger 8 will be learned faster than

term

in ||A;||- Not all the entries of 3* are of the same size, which results
oo

is much larger than the

the smaller ones, which could lead to the case where H %'vs + )\wgf —\u$? - g
oo

error for a particular entry k € S of (%'vs + /\'wgl2 - )\ugf — B

To deal with such issue, we show the following lemma that bound the time for reducing the signal error
by half. Similar result was shown in Vaskevicius et al. (2019) where they do not have the linear term v. The
proof relies on the observation from the gradient approximation above that the signal error will monotone

decrease before reaching ||A, ||, and is made possible by the decomposition of v.



‘ ‘ t t t .
Lemma 9 (Informal). Given any time ty, assume H%”(SO) + )\('w(si))2 - )\(u(sf))2 -B
Let

> Q(Be+oy/n/d).

g

Repeatedly using the above lemma, we know it takes T} = 5(1 /M) time to reach the desired accuracy.
Other claims follow directly. Detailed proofs are deferred to Appendix B.

+

. d .
T/ = inf {t — to 2 0: ang) + A(wg) )2 _ )\(Ug?)2 o ﬂ

d
= Hn” + AW)? = Aug?)? - 8°

oo

be the time that signal error reduces by half. Then, we know T' = O(1/nA).

5.2 Stage 2: memorizing the noise

Given that in Stage 1 we know Aw®2 — \u®? has already recovered signal 8%, in Stage 2 we show that the
remaining noise will be memorized by the linear term v without increasing the test loss by too much. This
allows us to recover the ground-truth B* despite interpolating the data to € training error, as formalized in
the following lemma. The proof is deferred to Appendix C.

Lemma 10 (Stage 2). Let Ty := inf{t > 0: L(w® u® v®) < el. Then, we have the length of Stage 2 is
Ty — Ty = O((n/nd)log(n/e)) and the following hold for every t > Ts:

= O(B¢ + 04/n/d)

° %vg) + AwHO2 _ /\ugz®2 - B*

St
° wé? , ’Uu(et_) ‘ = O(a).
o [0 , = O0Ws(n/d) log?(d)(Bg + 0/n/d)) and [[v" |, = O(0\/n/d).

Similar as in Stage 1, we still need to characterize each term in the decomposition of X " Xwv/n and v.

Lemma 11 (Informal). Consider the decomposition of X' Xwv/n and v in (3) (4), we have for t <
O((n/nd)log(n/c))

by =(1—(1—nd/n)")/n<1/n,

ar = (1= (1 —nd/n))/d < 1/d

ITtllo <7 =O0(ov/n/d+ By),

1Al < G = O((Bg + ov/n/d)nlog(n)/d).

Unlike in Stage 1, the signal has mostly been fitted in Stage 2. This makes the gradient smaller and the
time it takes for Stage 2 (Ty — 171 = O((n/nd)log(n/¢))) is much longer than Stage 1. Because of this longer
time, we now have by &~ 1/n, a; &~ 1/d at the end of Stage 2. This implies that we essentially use linear term
v to interpolate the noise as Xv® ~ X (a;, X "€) ~ €.

In the analysis of Stage 2, we have two major goals that are closely related: first, we want non-signal

entries of w, u to stay small; second, we want the residual ||r|, to decrease exponentially.
For w, u, combine the above lemma with Lemma 6, we know

Vol = (1XTT> o (2\w),
n

Vol = — <1XTr> ® (2\u),
n

10



where

‘ = ‘ %ver)\wg?Qf)\u?Qfﬁ*JrAr
o0

The infinity norm bound on %X Tr follows from a case analysis for signal and non-signal entries. For
the signal entries, using the above gradient approximation similar as in Stage 1, we can show that the signal
error H%US + Aw%ﬂ — )\ugz - B+ ATHOO remains O(B¢ + oy/n/d). For the non-signal entries We, , Ue_,
we know its exponential growth rate is O(A(Bg + 0+/n/d)) from the gradient approximation.

The bound on H%XTTHOO limits the movement of w and w. Aslong as O(nA(Be+o+/n/d)(T>—T1)) < 1,
the non-signal part of w and w will remain small.

On the other hand, for the decrease rate of ||7|,, the standard approach is to use ideas from Neural
Tangent Kernel (NTK) (Jacot et al., 2018; Du et al., 2019; Allen-Zhu et al., 2019), and approximate the
dynamics of r as #**+Y = (I — nH®)7r® where H® is the neural tangent kernel. The decreasing rate of
lr|l, can then be bounded by lowerbounding the minimum eigenvalue of H (). However, bounding H )
naively by its distance to some initial H*) does not work in our case.

To fix this problem, we again rely on the dynamics of v. Lemma 11 suggests that v(*) gets close to X " &
with a rate of Q(d/n) (this can also be viewed as the minimum eigenvalue of the NTK kernel restricted to
v). This convergence rate gives a bound on the length of 75 — 77, which allow us to choose an appropriate
A to keep we, , u._ small.

Once we have the bounds for the convergence rate and non-signal entries of w,w, other claims follow
directly. Details are deferred to Appendix C.

Note that in the argument above, since the length of Stage 2 T» — T} is proportional to log(1/¢), it cannot
be used when ¢ is very close to 0 as A is proportional to 1/(T5 — T1) and would become very small. In fact,
we can get rid of the dependency on log(1/¢) with a more careful analysis. In the actual proof, we have two
sub-stages for Stage 2, which uses different ways to bound the growth rate HXTr/nHOO. For Stage 2.1, we
use the argument above until |||, = O(c). In Stage 2.2, given the training loss is already small enough, we
use a NTK-type analysis to bound HXTr/nH00 = (1 - Q(nd/n))""110(c/y/n) as ||r|, decreases with rate
Q(d/n). See Appendix C for details.

%XTT = O(B¢ +o+/n/d).

oo

6 Conclusion

In this paper, we give a new parametrization for the sparse linear regression problem, and showed that
gradient descent for this new parametrization can learn an interpolator with near-optimal test loss. This
highlights the importance of choosing the correct parametrization, especially the role of linear terms in fitting
noise. Our proof is based on a new dynamic analysis that shows it is possible to first learn the features,
and then fit the noise using an NTK-like process. We suspect similar training dynamics may apply to more
complicated problems such as low-rank matrix factorization or neural networks.
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A Preliminary

In this section, we prepare some useful lemmas for the later analysis. In Section A.1, we show that Assump-
tion 1 is true when data matrix X is a Gaussian random matrix and noise & ~ N(0,02I). In Section A.2,
we give the proof of Lemma 5 and Lemma 6 for gradient approximation.

A.1 RIP and regularity conditions

In this subsection, we show that Assumption 1 can be satisfied when X is a Gaussian random matrix and
¢ is a Gaussian random vector with variance o2.

We use standard proof to show the RIP property, and the rest of the properties follow from simple
concentration. First, the following shows random Gaussian matrix is a (s + 1,0)-RIP matrix with § =
O(y/(s/n)log(d/s)). To satisfy Assumption 1, with simple calculation we see that we only require (s*) <

n < 0(d/s?).

Proposition A.1. Let X be a n x d Gaussian random matriz. Then, there exists universal constant ¢y, co

such that X /v/n is (k,0)-RIP for any k < cin/log(d/k) and & > car/(k/n)log(d/k) with probability at least
1—(k/d)* >1-1/d.

Proof. From the proof of Theorem 5.2 in (Baraniuk et al., 2008), we know the error probability is at most
¢—co(0/2)n+kllog(ed/k)+log(12/8)]+1og(2)

where co(e) = €2/4 — 3 /6. Note that it suffices to consider § < 1, which implies that c¢o(§/2) > §2/48 and

k <n/c3/log(d/k). Then the exponent can be upper bounded by with § > ca+/(k/n)log(d/k)

—n6? /48 + (4 +log(1/c2))klog(d/k) < —(c3/48)klog(d/k) + (4 +1og(1/ca))klog(d/k) < —(c3/50)k log(d/k),

where the last inequality is true since we can choose c2 to be large enough constant. O

The following lemma shows that the regularity conditions on X, & in the second part of Assumption 1
are satisfied with high probability when X is a Gaussian matrix and £ is sampled from N (0,021I).

Lemma A.2 (Regularity conditions). Suppose X is a Gaussian matriz and & ~ N(0,0%I). With probability
at least 1 — de=") | We have

1€lly = O(av/n),

I
| §35::o<a Ogd>,
00 n

IX7e]l, = 0 (ovn) .

N =0 (%) for any vector 3,

(1= 0(v/n/d)d < Anin(X X T) < Apax (XX ) < (14 O(y/n/d))d.
Proof. The first three and the last one are standard consequences of Gaussian vector/matrix concentration,
see e.g., Lemma A.5 in Vaskevicius et al. (2019) for the proof of || X T¢/n||_ and Theorem 3.1.1 and
Theorem 4.4.5 in Vershynin (2018) for the rest. For the third one, denote X[:,1] is the i-th column of X.

Then, ||XTﬁ/n||oO < max; |37 X[:,i]|/n < |8, max; || X[:,i]||, /n. Then it follows from standard Gaussian
concentration. O

1
o
n

1
bl
n

Now we are ready to prove Lemma 2 that shows Assumption 1 holds under Gaussian input and Gaussian
noise. It immediately follows from Proposition A.1 and Lemma A.2 above.

Lemma 2. Suppose X is a Gaussian random matriz and & ~ N(0,021I). Then if Q(s*) < n < O(d/s*), we
have Assumption 1 is satisfied with probability at least 1 — 1/d.

Proof. Tt suffices to combine Proposition A.1 and Lemma A.2. O
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A.2 Gradient approximation

Lemma 5 and Lemma 6 give ways to approximate several important terms in the gradient. Here we give
their proofs.

Lemma 5. Given n x d matriz X /\/n satisfying (k+1,6)-RIP, for any B € R?, let A = (LXTX — 1),
then the following hold:

o If B is k-sparse, then | Al < VES| B,
e For any vector B, we have |Al| < 68;-

Proof. For the first part, it is a standard consequence of the RIP condition, see e.g., Lemma A.3 in Vaskevicius
et al. (2019). For the second part, notice that 3 = Y, B;e; where {e;}¢; is the standard basis, it then
follows from the first part. O

Lemma 6 (Gradient approximation). Under Assumption 1, we have the following gradients and their useful
approximation:

1 d
VLl = <nXTr) ® (20w) = 2\ (nvs +Awg? — g’ — B + Ar> O w,

1
Vol = — (nXTr) © (2Au) = =2\ (sz + )\wgf — )\ugf - B+ Ar> Ou,

1 d
Vol =—-XTr=—-vg+ /\'wgD2 — )\ugz - B+ A,
n n + -
where
d d ®2 ®2 *
18 e =0 (1 4 [nb— 1) Be) + V3 wsl, + 56 | Dos + 2ug? — xug? — 8
£ 0 (L0 (e, |2+ e |2) + 7.
\/ﬁ +lloo = lloco
b and ||T||, <~ are defined in (3), and recall Si,S_ are the set of positive and negative entries of 3* and
er =[d]\ Sy, e— = [d]\ S— are the corresponding complement set.

Proof. By the decomposition of X " Xwv/n in (3), we have

1 1 1 1 1
“X'r=—X"Xv- X"+ -X"XOw§? - G -8+ X"\ Xw?? - A\Xu?)
n n n n + - n * B

1 1 d 1 .
=(b— E)(XTf)e - E(XT@S + s + HXTX(MU?E - dug? - B%)
+ lXT(AXwng —AXuP*) 4T

n

1

:(b_ﬁ)(XTs)e_ (XTé')S_A'_%vS—F)\wgf—/\ug?_ﬁ*

S|

+ (%XTX —I)(

Sl

. 1 d
vs + Awg? — dug? - §7) - (EXTX —1I)-vs
+ %XT(AX'w?f —AXuP*H 4T
d *
=—vs+ )\wgf - \ul? -3
+ (b — l)(XTs)e - l(XTs)S + (lXTX - 1)(%3 + A wd? - \uf? - g%) - (lXTX — I)évg
n n n n S+ S- n n

1
+ EXT()\Xw?f ~AXu?) +T.
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Denote the last two lines in in the last equation above as A,.. We know

1 d
—XTr=—vs+ 2 w? - G -+ A,.
n n + -

To bound [|A,| ., by Lemma 5 and Assumption 1, we know

1 1
6= DxTe. - LxTes| =0+ -1 B
1 T d ®2 ®2 * d ®2 ®2 *
(EX X - I)(Evs +Awg! —Aug” - BY)|| =Vso s+ Awg? — dug” - B
o0 2
<sd ‘dvg—i—)\w )\ugz B*
(=X X —1I)-vs S\/§5* lvsl
n n 7
1 ©2 ©2 ©2
X (A Xw.” —AXu”) N 7 HXw - Xug ‘2

d
o (ﬁx) (e 2+ e 1),

Thus, we have

Al =O (1 + [nb —1]) Be) + 56

’ vs + )\w —\ug? - g

d
V58 s,

0 (G20 (e | + e |2+

B Proof for Stage 1

Recall that our goal in Stage 1 is to show (1) variables wg and ug grow large to recover 3* (specifically, wg
recovers the positive entries of 8* and ug recovers the negative entries of 8*); (2) the other variables w,,
u. and v remain small. This is summarized in the following main lemma:

Lemma 7 (Stage 1). Let Cy be a large enough universal constant, denote

d
T, :=inf {t : Hv(sTl) + Awé{l)m A (Tl - B
n

= C1(Be + U\/n/d)}.

Then we know Ty = O(log(1/a)/nA) and the following hold:

Tl) uéTl)

=0(w).

)
oo

= O(y/s(n/d)log?(d) (B¢ + o+/n/d)) and Hv(Tl)H2 = O(o+/n/d).
o O, = 0o

To prove this lemma, we need to maintain the following inductive hypothesis which assumes the approx-
imate error comes from the non-signal entry is small and other regularity conditions. Later we will use these
assumptions to bound different error terms and finish the induction.

o0

b
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Lemma B.1 (Inductive Hypothesis for Stage 1). For t < Ty := Cr, log(1/a)/n\Bmin with large enough
universal constant Cr,, the following hold:

=O(w).

oo

b
o0

( ) 4+ \w (t)®2 )‘u,(gtEQQ - 6*

(t)o2 (t)o2 "
S, —Aug’ " -

=0(1),

oo

=0(1).
o [rOf, < 7™, = O(vsn).

B.1 Dynamics of v

As we discussed earlier, even though in Stage 1 we hope to use the corresponding entries of u, w to learn
the signal, the same entries of v will also grow and it’s important to understand the dynamics of v.

The dynamics of v roughly follows the trajectory for optimizing || Xv — 5”3 /2n. We formalize that in the
following two lemmas. First, we give a decomposition of X X "v/n as follow. This term plays an important
role when we estimate the gradient as shown in Lemma 6, therefore we here give a careful analysis.

Lemma B.2. Recall the decomposition in (3)

1 d
ﬁXTX'U(t) = ﬁ’v‘(st) + bt(XTg)e + Fta
d 1
bm:bt—?;(bt—n),

where HI‘(t)HOO < v¢ and recall the notation Bg = Zi:ﬂ*#o Biei, Be = Zi:ﬁf“zo Bie;. Suppose Lemma B.1
holds. We have fort < fl
b= (1= (1 = nd/n))/n < 1/,
v < O((v/sd/n+ dsd/n)nt) = O(o+/n/d + Be).
We then give the decomposition of v.
Lemma B.3. Recall the decomposition in (4)

v® = US) +aXTe+AD,

arr1 = ag —n(by —1/n)

where HAS, < (. and recall the notation Bs = Zi:ﬁ.*;éo Biei, Be = Zi:ﬂf:O Bie;. Suppose Lemma B.1
oo N ; ;
holds. We have fort < T}

= (1 - (1= Ud/n)t)/d <1/d
G = O((Be + s6 + ov/n/d)nt) = O(oy/n/d).

Moreover, for every t < T, ||v(lt)||2 = O(o+/n/d), ’ )H V3(n/d)log*(d)(Be + o+/n/d)).

B.2 Implications of Inductive Hypothesis Lemma B.1

Given the understanding of dynamics of v and X " X v in Appendix B.1, we have the following approximation
of gradient, using Lemma 6.
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Lemma B.4. In the setting of Lemma B.2 and Lemma B.3, we have for t < ﬁ
1 T d ®2 *
Vwl=|=-X"7r) 0o (2\w) —2)\( vSJr)\w - it -F"+A)Ow
" _

1
Vol =— (nxﬂ«) ® (2\u) = —2>\(dvs +awg? =g - B+ A) Ou

1 d
VoL =-X"r=—vg+ wd? -\’ - 8"+ A,
n n + -
where
d
(a9 =0 (Be+ovnjd) +50 | Sold + awl) xS - |

=:B;

Now we are ready to estimate the dynamics for the relevant entries of w and w using Lemma B.4.
We first show in Lemma B.5 that wg, ,us_ will grow to Q(Bmin). Then in Lemma B.6 we show that it
takes O(1/nABmin) to decrease H d (t + Mw ()) /\(ugz)2 - B*
Appendix B.4.

by half. The proofs are deferred to

Lemma B.5. Suppose Lemma B.1 hold Then for every T1; <t < fl with Tyy = O(log(1/Aa?) /N Buin),
)\( ) > Bmin/4 for k € S4 and )\( ) > Bmin/4 for k€ S_

Lemma B.6. Suppose Lemma B.1 and Lemma B.5 hold. Given any time tg, assume at time ty By :=
4 (tO) + AMw (f")) — /\(ug:f))2 — B*|| > 4B, where By is defined in Lemma B.j. Let
2}

As a technical condition in proving the two lemmas above, we need to make sure that once we fit the
signal using the corresponding entries in w,w, v up to error pu, the error will not become much worse later.
We formalize this as the following stability lemma.

T’;:mf{t—tozo:Hd P Aw) ) - Ml )? - B

d
< [0+ M2 - A2 -

oo

be the time that signal error reduces by half. Then, we know T' = O(1/9\Bmin)-

Lemma B.7 (Stability). Suppose Lemma B./ and Lemma B.5 hold. Assume ||%v(t“) + Aw ()02 _ \q ()02 _ ﬁ*Hoo =

1 at time to, then |Lv)] ® 4 Aw (t))Q - )\(u,(:))2 — B85 <max{p,2(Bs+ sou)} for allt >ty and k € S, where
B, is definied in Lemma B.4.

Now we are ready to bound the time 73 for Stage 1 using the above lemmas.

Lemma B.8. Suppose Lemma B.1 hold. Recall

T: := inf {t : Hd ® + Aw (t )) /\(ng>2 _

< Cu(Be + /) }.
where Cy is a large enough universal constant. Then, we know Ty = O(log(1/a) /nA\Bmin)-

B.3 Proof of Inductive Hypothesis Lemma B.1 and Lemma 7
Finally, we are ready to prove in the induction hypothesis and finish the proof of Lemma 7.

Lemma B.1 (Inductive Hypothesis for Stage 1). For t < Ty := Cyp, log(1/a)/n\Bmin with large enough
ungversal constant Cr,, the following hold:
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@l [l

=O(w).

oo

o0

o (02 _ 3,007 _ e

+ dwg

(t)o2 (t)o2 *
. —Aug’ " -

=0(1).

=0(1),

oo

o [IrOl, < 7O, = 0/sm).

O [u®

)

= 06(1‘1'0(77)\ Bg-ﬁ-o'\/i—}—sé and H d (t + A'LU t)®2 )\ugZQQ _ ,6*

O(1). If such claim is true, then we prove the first 2 points as t < T and (d/n) lvsll o = O(l) by Lemma B.3.
We show the above claim by induction. We know all the conditions hold at ¢ = 0. Suppose before time

t it holds, then consider the time t + 1.
For d (t+1) L ow (t+1)®2 )\ugﬂ)@z e

Proof. We claim H'w
o0

, if )x(tt}l(:Jrl))2 + )\(u,(fﬂ))2 < Bmin/4, then it is easy to
see it is bounded by O( ) Otherwise, we can see it from the proof of Lemma B.6 and Lemma B.8.
H)H ugt_H)H . By Lemma B.4 we have for £ ¢ S

oo

Now consider ||we

[ "] (14 220O0(Be + o/n/d + 56))|wy”|,

which implies that \w,(fﬂ)\ < (14 O0M(Be +o+/n/d+ s0))) o as w,(CO) = . Similarly, we get the same
bound for uy with k & S.

It remains to consider wy with k € S_ and uy with k € S;. We will focus on wy with k € S_, the other
follows the same calculation. We have

wl(€t+1)u](€t+1) — (1 — 21\ (1XT7.(t)> > wl(ct) . <1 + 20\ <1XTr(t)) ) (t) < w(t) l(c) < o,
n k n k

From the proof of Lemma B.8 we know u( ) > «. This implies that |w( )| <a.
We now prove the last part on Hr(t‘*‘l) H We have

P X (D) L\ Xap(tHDO2 ) Xq (D02 _ ¢
1 4 54N
=r® _pXx . ﬁXTr(t) +AX (—n(XT ) © w®? 4 p? (X—r )92 ® w®2>

24)\

4
—AX (nn(XTr) Ou? + 9 —(Xr)% 0 u®2> .

This suggests that

[=2) S(“nAmin(XXU A\
2 n

(- () bl

where we use Lemma B.10 and Assumption 1. We finish the induction. O

I i (X diag(w®? + u®?)XT) ) H (t)H +A\d- O( zdlrlg)

Now we are ready to proof the main result Lemma 7 for Stage 1.

Lemma 7 (Stage 1). Let C be a large enough universal constant, denote

= C1(Be + a\/n/d)}.

o0

T := inf {t : HZ M) 4w T1)®2 /\ug{l)@z - B
Then we know Ty = O(log(1/a)/n\) and the following hold:
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(Tv) ugl)

‘w

=O(w).

)
oo

= O(v/3(n/d) log?(d)(Bg + o+/n/d)) and H'U(Tl)H2 = O(o+/n/d).
o O, = Olov

Proof. Combine Lemma B.1, Lemma B.3, Lemma B.8 we prove the first 2 points and bound the time 73.
For the last point, by Lemma 5 and Assumption 1

o0

e

o

i < HX)\wgl)mH n HX/\ugl)mH n HX ,U(Tl) 4 )\w(Tl)Gz _ )\u(siil)m s

X - o)~
<O(M\da?) + O(v/ns(Bg + a+/n/d)) + (d/n — 1) HXU(Tl)

<O(1) [l¢]l, + O(da?) + O(v/ns Bgmﬁ + O(s(Be + ov/m]d)) + Ve,
=0(o /),

where we use ap, < 1/d and ¢, = O(0+/n/d) from Lemma B.3. O

+||[n XX T - Dg+ A

B.4 Omitted Proofs in Section B.1 and Section B.2

In this subsection, we give the proof of Lemma B.2, Lemma B.3, Lemma B.4, Lemma B.5, Lemma B.6,
Lemma B.7 and Lemma B.8 in previous subsections.

Lemma B.2. Recall the decomposition in (3)

1 d
EXTX’U(t) = Ev(t) + bt(XTg)e + rt?
nd 1
biy1 =0 by — —
t+1 t ( t n)

where ||1"(t)||OO < ¢ and recall the notation Bg = Zi:ﬁwo Biei, Be = Zi:/ﬁf=0 Bie;. Suppose Lemma B.1
holds. We have fort < T

by = (1— (1 —nd/n)")/n<1/n,

ve < O((v/sd/n+ dsd/n)nt) = O(o+/n/d+ Be).

Proof. We first write the update of b, and I'; using the update of v.
1 d
bt-‘rl(XTE)e + Ft+1 :EX—er(t-‘rl) _ ﬁvg+1)
L xmxe0 - L0y Tx x4 (1XTr(t)>
n n n n n\n S
d (1
=by(X "€). + Ty — —XTXXT ® 4 p= (XTM)
n s
d (1
=0 (X T€) + Ty — —XT(XXT dr)yr® — = (XTN)) :
n\n .

We bound the last two terms one by one. For W%XT(XXT — dI)r(t), we have by Assumption 1 and
Lemma B.1

H"XT (XXT —dDr| <7 (— Vdn - v/sm) = O(ny/sd/n).

S
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For n4 (%XTT(”)E, we have

(1XTr(t)) (1 XTx0® + XTX()\ R IxTeq lXT(Aer};g@2 - )\Xugt)®2)>
n e n n n

€

’I’L e

d 1 1
( o4 XTX(A $ — g — B + (b — DX TEAT, X T(AXw)? - AXugt_)GQ))

1 1 1
=(be = (X&) + ((nXTX ~ DOwf?® =2l — %) + T, + nXT(/\X'w(t — AXuMo?)

€

Therefore, by Lemma B.1 we know

d 1
brar = by — Lo (b — =),
n n

d
Yer1 < %+ O(1y/sdfn) +050(s8 + (d/Vm)Aa?) = 5 +nO(/sdfn + dsb /n).
This implies

b= (1~ (1—nd/n)")/n<1/n,

v < O((+/sd/n+ dsd/n)nt) = O(o+/n/d + Be).

Lemma B.3. Recall the decomposition in (4)

o® = v(s.t) +a, X e+ AW,
aty1 = ar —n(by —1/n)

where ’

< (;. and recall the notation Bs = Zi:ﬁﬁﬁo Biei, Be = Zi:ﬁ;‘=0 Bie;. Suppose Lemma B.1
holds. We hmo)oe fort < Tvl

=(1-(1-nd/n)")/d<1/d
¢ = O((Be + 50 + a+/n/d)nt) = O(ov/n/d).

Moreover, for every t < T, [|[v®) |, = O(oy/n/d), ’ v O(y/3(n/d)log*(d)(Be + o+/n/d)).

2

Proof. We write the update of a; and Agf) using the update of v
at+1XT£ + Agt+1) —pt+D) _ U(St+1) — o _ vg) —n (1XT,',,(t))
n €
1
=, X e+ AD —p (XTN)) .
n e
For (%XTr(t))e, using the decomposition of X T Xv/n in Lemma B.2, we have

(:LXTT(t)) ( XTXo® 4 XTX()\ e XT£—|— XT(AXw AXu(t)®2)>

€

d 1
- <n”(5t) I 7XTX(>\wg+)®2 % - g%y 4 (b, — E)XTE + T+ £XT(AXw£j+>®2 - AXugt)@?))

e

b= DTG+ (XX - DO - )+ T XX - AXul)?))

€
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Therefore, we have the update of a; and (; by using Assumption 1, Lemma 5 and Lemma B.1
ar+1 =a; —n(by — 1/n),
Cip1 < G+ nO(Inby = 1|Be + 56 + o/n/d + Be + (d/v/n)Aa).
This implies

ac=nt/n—n> b, = (L= (L—nd/n))/d < 1/d

T<t
G < O((Be + s6 + avy/n/d)nt) = O(ov/n/d).
Thus, we have Hv(t) - vg)Hz < a;0(0Vdn) + ¢vVd = O(o+/n/d). We now bound ||vs|,. Since its
gradient norm ||VyoLll, = [[(XTr/n)s||, < O(/s) by Lemma B.1 and Assumption 1, we can bound
lvslly as [lvslly = 132, <; [Ves L7, < O(/snt) = O(y/s(n/d)log*(d)(Bg + o/n/d)). This also implies

loll, = O(ov/n/d). O

Lemma B.4. In the setting of Lemma B.2 and Lemma B.3, we have for t < fl
1 d *
Vol = (nXTr> O (2 \w) = 2>\(£vs + Ang — MG - B+ A)Ow
]. T d ®2 *
VuLl=—=X"7| 0 (2\u) = —2)\( vg + )\w — gt -pf"+A)0Ou
n

1 d
VoL ==-X"r=—vg+ w§? - \g? - 5"+ A,
n n + -

where

i
[e.9]

Ja®

N =0 (BE + J\/%) +sd

=:B;

v+ aw()? -l - g

Proof. By Lemma B.2 and Lemma B.3 and the choice of parameter, the result directly follows from Lemma 6.
O

Lemma B.5. Suppose Lemma B.1 hold. Then for every T1; <t < Tl with Tyy = O(log(1/Aa?) /N Buin),
)\(w,(:))2 > Bmin/4 for k € Si and )\(u,(f))2 > Bmin/4 for ke S_.

Proof. For t < ﬁ, by Lemma B.4, we have for k € S; (note that (ug_)r = 0 in this case. The case k € S_
is similar, we omit for simplicity)

d
(Hl) < —2nA (v,(:) + )\(wg)) — B £ O(Be +o/n/d+ sé )) wk ,
n
d
v,itH) :v,(:) -7 (nv,(:) + )\(111,(:'))2 — Br £0(Bg +oy/n/d+ 35)) .

Since va )

= O(y/3(n/d)log?(d)(B¢+0+/n/d)) by Lemma B.3, this implies that (d/n) H'vg)
Thus,

< 6min/4-
[e'S)

HOO

2
)\(w,(fﬂ))2 = (1 —2nA (d (t) + )\( ) — By £ O(Be + aF—&— s9) )) )\(w,(f))2
> (1201 (Aw?)? — 5/2) ) M),

Therefore, by Lemma B.9 within time O(log(1/Aa?)/nABmin) We have )\(wl(f))2 > Bmin/4 and will remain for
t<T. O
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Lemma B.6. Suppose Lemma B.1 and Lemma B.5 hold. Given any time tg, assume at time ty By :=
%'vg") + )\('wg:)) — )\(ugf))Q — B*|| > 4B, where B, is defined in Lemma B.J. Let
2}
(oo}

Proof. For t <ty + T, by Lemma B.4, we have for k € S, (note that (ug_)r = 0 in this case. The case

k € S_ is similar, we omit for simplicity)
wﬁ“)(12nx<d(”+x(“b25;i<35+55 vy + Awd))? = Muf)? - g* >)>w§%
o = _ (Zv,gw FAw®Y - gp+ <Bs T 55| 2o )) |
We claim H )+ AMw (t)) — Mug ® IR -p < H d (to + AMw (to)) —AMu tO)) —B*| = By for ty <
t<to+T. We show this by induction. At ¢t = to it holds Suppose before t the claim holds For time t+ 1,

d tl tl d t d d t *

2
( 2n/\<d " /\(w;(f))QBZiBo/i%)) AMwi!)?

d d d
n (t) + /\( ) -7 <nv](:) + )\(w,(:))Q - B £ Bo/3> (n + 4/\2(11)1(:))2) :

d
T':—inf{t—tOZO:H vl + Mw{))? = Mu§)? - g°
n

d
- Hn'véf“’ + Awg?)? = Aug”)? - 8°

oo

be the time that signal error reduces by half. Then, we know T" = O(1/9\Bmin)-

+AwS))? = Muy)? - B

This implies for ¢ < tg +T"
d d d
ol L @) — g > <U1(f) FA@P)? - /3;;) (1 _n ( +4)\2(w1(:))2>)
n n 3\ n
d "
> (nv,i” + A (wy)? - ﬁk) (1= Q(ABuin)

where in the last line we use Lemma B.5. Thus, if 4v (t) + Mw,, (&) )2 — Bf < —Bo/2, then it will increase so
that | 2ol + A(w{™)? — Bf| < By. Similarly, one can show that if 2o’ + A(w”)? = 7 > Boy/2, then it will
decrease so that | v, ) 4 Aw (t)) — B%] < By. In this way, we ﬁnlsh the 1nduct10n

Moreover, from the above calculations we can see that if < SUL ®) —l—)\( ) — B < —DBy/2, then within time

O(1/nABmin), |d ) 4 )\( — B%| < By/2. Similarly, if d (t) + AMw (t)) ,Bk > BO/2 then within time
O(1/19A\Bmin), |d +/\( ) —B;] < By/2. By Lemma B. 7 we know once |d +/\( ) — B < By/2,
it will remain bounded by Bo /2. Therefore, we know T = O(1/n\Bmin)- O

Lemma B.7 (Stability). Suppose Lemma B.4 and Lemma B.5 hold. Assume || £v(0) 4 Aaw(10)©2 — g (t0)©2 B,

[ at time to, then |4v) ® 4 Aw (t)) )\(u,(:))z — B < max{p,2(Bs + sdp)} for allt >ty and k € S, where
Bs is definied in Lemma B.4.

Proof. By Lemma B.4, we have for k € S; (note that (ug_)r = 0 in this case. The case k € S_ is similar,
we omit for simplicity)

d
wi ) = (1 — 2\ ( A w)? — B+ (Bs + sdu))) w,

d x
UI(;+1) :Ui(f) _q (n (t) 4 )\( ) — B £ (Bs + sd,u)) .
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Since )\(wl(f))2 = Bmin/4 by Lemma B.5, we have
d d d d
,U](Ct—&-l) + )\(wl(ct+1))2 :71)1(:) S ( (f) + )\( ) 5k (Bs + S(Su))
n n n
d 2
+ (1 — 2\ (v,(f) + A w)? = B+ (B, + saﬂ)» A(w?)?

d d d
>0 4 Mw)? = [ S0l + Mw)? = B + (B, + s0p) ( + 4>‘2(w1(€t))2> :
n n —_——— n

=err

This implies for t > tg, if d (t) + AMw (t))2 — B% < —2err, we have
d d d
n (t+1 A w (t+1))2 — B> <Uk + Aw (t))2 _ /3;;) (1 — g (n —|—4)\2(wl(€t))2>>
d x
> (S0l 4 Al = 57 ) (1~ 2B

Thus, < (t) + Aw (t))2 — B will increase in this case. Therefore, we know d (t) + AMw (t))Q - B >
—max{,u,2err} = —max{u,2(Bs + sou)} for all t > to. Similarly, given 7 is small enough, we can also
get a similar upper bound. Thus, we finish the proof. O

Lemma B.8. Suppose Lemma B.1 hold. Recall

T, := inf{t: Hd +>\(w5+) ~ Mug)? - *

scl<Bg+aW>}7

where Cy is a large enough universal constant. Then, we know T1 = O(log(1/a)/MABmin)-

Proof. We can first use Lemma B.5 and then repeatedly using Lemma B.6 log(1/4B;) times. We get within
time O(log(1/Aa? (B + 0 /n/d)) /1ABmin) = O(10g(1/a)/n\Buin), || 408’ + Mwg))? = A(ug))? = 7| <
4B, = C1(Be + 04/n/d). O

B.5 Technical Lemmas

In this subsection, we collect several technical lemmas that are used in the proof.

Lemma B.9. Suppose 211 = (1 —n(zy — p))?2¢ with 0, 1,20 > 0 and 2o < pp— . Then if n < p/2, within
time T = O((1/nu)(log(u/z0) + log(p/€))) we have |zr — u| < e. Moreover, we have |z — u| < e fort >T.

Proof. Denote Ty := inf{t : z; > p/2} and T := inf{¢ : |2, — p| < e}. We bound T; and T» — T3 respectively
in below.

For t < Ty, we have 2,41 > (1 +np/2)%2 > (1 + nu/2)* 29. Therefore, Ty = O((1/np)log(1/20)). For
Ty <t <T,, wehave zi11 > 2¢ — 2n(z¢ — p)2e > z¢ — (24 — p)p. This implies 211 — p > (1 —nu)(z — p) >
(1 — nu)t=T1 (27, — p). Therefore, To — Ty = O((1/nu)log(u/e)). Together we know T = Ty + Ty =
O((1/11) (g {11/ o) + log(1/)).

We then show once |z; — p| < e, it will stay close to p. To see this, if —¢ < z; —p < 0, then from the above
calculation we know zp41 — p > (1 —nu)(ze —p) > —e. 0 < 2 — pu < e, then z,11 = (1 —n(z — p))%2 <
zt < i+ €. Therefore, we know |z; — pu| < e for t > T. O

Lemma B.10. For o, € R?, we have |la ® f|, < |lally 18], |o®F]|, < el for k> 1.
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Proof. We have
la® B3 = Zoﬁﬂ? < llel2 18112 -

la®*[[3 = Za% lellar < llel3®

C Proof for Stage 2

In Stage 2, we will show that the training loss goes to ¢ while the test loss |3 — 8*|, remains small. In
particular, we will split into 2 sub-stages: in Stage 2.1, train loss decreases to [|r||, = O(c) (Lemma C.1),
and in Stage 2.2 we use a NTK-type analysis (Lemma C.6). Note that it suffices to combine Lemma C.1
and Lemma C.6 to get Lemma 10.

Throughout Stage 2, we mostly rely on v, to fit the noise in order to reduce the loss; at the same time,
we show that the variables used in Stage 1 continue to fit the signal and all the other variables remain small.
This can be done by an NTK-type analysis when the loss is very small. However, for the first part of Stage
2 we still need to track the dynamics of v and X " Xwv carefully.

C.1 Stage 2.1: train loss decreases to |||, = O(0)

Our goal in this stage is to show that the loss decreases to O(c?) and that the non-signal entries remain
small. We formalize this in the following main lemma.

Lemma C.1 (Stage 2.1). Let Ty; := inf{¢t : Hr(t)Hz < Cy0} with large enough universal constant Cay.
Then, we have Ty — Ty = O((n/nd)log(n)) and the following hold:

’%v‘(sTm)/\ng;m)@Q . /\uf97:21)®2 - B _ O(Bg + 0\/7/(1)

Ta1) u(T21)

€ _

= O(a).

‘we
oo

)
oo

o [0, = O(av/n/ andH (|| = O(vs(n/d)log?(d)(Be + o/n]d)

To prove this, we will maintain the following inductive hypothesis, which shows the non-signal entries
remain small. The overall strategy is to show that entries of v will allow us to fit the noise and hence reduce
loss, and we do this by using a similar strategy to track the dynamics of v as in Stage 1.

Lemma C.2 (Inductive Hypothesis for Stage 2.1). For Ty <t < Toy =Ty + Cr,, (nlog(n)/nd) with a large
enough universal constant Cr,,, we have the following hold:

= 0B+ a/n/d)

‘ ® Jr)\w(t)®2 M2 _ ge

ul

= O(a).

s

ol

] >H = O(y/5(n/d) 1og?(d)(Be + o+/n/d))
o [rO, = (1 = Qnd/n)"T0(c/n).

In particular, the first point and third point imply that H)\w(t)®2 )\ugzm - B*

= O(Vs(Bg+o/n/d)log?(d))

2
The last point implies that To;—T1 = O((n/nd)log(n)). Moreover, by the choice of parameters, O(d/~/n)A ng? =

O(Be/logd), O(d/\/m)X Hu(t) zo = O(Be/logd).
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C.1.1 Dynamics of v

As in Stage 1, we analyze the decomposition of X T Xwv/n and v separately. The proofs are very similar
to Lemma B.2 and Lemma B.3 in Stage 1, but several terms will now have a tighter bound. We defer the
proofs to Appendix C.1.4.

For the decomposition of X " Xv/n we have

Lemma C.3. Recall the decomposition in (3)

1 d
gXTXv<t> - gvg) +b(X 7€) +Ty,

d 1
brgr = by — (b, — =),
n

n

where HI‘(t)HOO < ¢ and recall the notation Bg = Zi:ﬁ*#o Biei, Be = Zi:ﬁ,*:o Bie;. Suppose Lemma C.2
holds. We have for Ty <t < T

b= (1 (1~ nd/m)")/n < 1/n,
Ye < 1, + O(o\/d/n + (dBg/nlog d)nt) = O(o/n/d + Be).
For the decomposition of v we have
Lemma C.4. Recall the decomposition in (4)

o® = US) +aXTE+ AW,

apy1 = ag —n(by — 1/n),

where HAS,t) < ;. and recall the notation Bs = Zi:ﬁ*?ﬁo Biei, Be = Zi:ﬂ*:o Bie;. Suppose Lemma C.2
o0 . K3 k3
holds. We have for Ty <t < Th

=(1—(1-nd/n)")/d < 1/d
Ct Cr, + O((Be + ov/n/d)n(t — T1)) = O((Be + ov/n/d)nlog(n)/d)

In particular, we can show that Hv(t)||2 = O(o+/n/d).

C.1.2 Implications of Inductive Hypothesis Lemma C.2
Given the dynamics of v, we now have the approximation of gradient by Lemma 6.

Lemma C.5. In the setting of Lemma C.3 and Lemma C.4, we have for Ty <t < T
Vwl==-X"r)0Q2\w)= 2>\( vs + A wg? = ug? -+ A)Ow
n
]. T d ®2 *
Vul=—|=-X"7| 0 (2\u) = —2)\( vs + )\w - " —-B"+A)0u
n i

V,L==-XTr,

1
n
where

2],

(Bg—&—a\/i)—i-sé

o)+ 20l % - g

o0
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C.1.3 Proof of Inductive Hypothesis Lemma C.2 and Lemma C.1
Now we are ready to prove the induction hypothesis for Stage 2.1 and Lemma C.1.

Lemma C.2 (Inductive Hypothesis for Stage 2.1). For Ty <t < Ty, := Ty 4+ Cp, (nlog(n) /nd) with a large
enough universal constant Cr,,, we have the following hold:

= O(B¢ 4+ 04/n/d)

(t)

o ||we/

° (t) 4+ A\w (t)@Q AUS)QQ - ﬁ*
o ‘ uel|| = O(a).

o |08, = O(vsn/d) 1082 (@) (Be + 7 /n/d))
o [P, = (1~ Qnd/n)"TO(av/n).

In particular, the first point and third point imply that H)\w

0

(t)o2 /\USEQQ e

V3(Be-+o/nfd) log*(d)

oo

2
The last point implies that T21—T1 = O((n/nd)log(n)). Moreover, by the choice of parameters, O(d/+/n)A Hwéi) =

O(Be/logd), O

Proof. We show these 1nduct1ve1y on t. For t =T}, we know it holds by Lemma 7. Suppose it holds before
time t, then at time ¢ + 1 we will show it still hold.

For H%v(stﬂ) + )\ngl)m — )\u(Stj_l)QQ —B*|| ,let k € S; (the case k € S_ can be handled similarly, we

o0

= O(B¢/logd).

omit for simplicity). Since by the choice of parameter (d/n) va) H < Bmin/2, we know )\(wl(:))2 = Bmin/4
For T <t< Tgh by Lemma B.7 and Lemma C.5, we know H%v(t'H) + Aw D02 _ \q (1102 _ g= -

O(Bg + Oy/n/d).

For k ¢ S, consider wy, (ux can be bounded similarly), we have the dynamics by Lemma C.5

w,(:H) < (1 + 2n\O(B¢ + a\/n/d)) wl(f).

This means |w\”| = (1 4+ O(nA(Be + o/n/d))"T10(a) = O(a).
It remains to consider wy with k € S_ and uy with k € S;. We will focus on wy with k € S_, the other
follows the same calculation. Similar in the proof of Lemma B.1, we have

1 1
w}(€t+1)u](€t+1) _ <1 — 20\ <nXTr(t)>k> w,(:) . <1 + 20\ <nXTr(t)>k> u’(:) < wl(ct)ul(ft) <a?

We know ug) > «. This implies that |w,(:)\ < a.
For |lvgl|,, we have by Lemma C.5 and Lemma 7

, T (XTr(t) , T OWs(Be +av/n/fdn(t = T1))

=0w§<n/d> log2(d) (B¢ + /7

For the bound on ||r(t“) ||2, using the same calculation as in the proof of Lemma B.1, we can show it is
true. O

Jos ), < [l

< H (T1)

Given the above induction hypothesis, we are ready to prove the main result for Stage 2.1.

Lemma C.1 (Stage 2.1). Let Ty; := inf{¢t : Hr(t)H2 < Cy0} with large enough universal constant Coy.
Then, we have Ty — Ty = O((n/nd)log(n)) and the following hold:
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dv.(S‘TM))‘wA(S:lfl)@Q . /\ugﬂ)@2 _ ,6*

= O(B¢ +0+/n/d)

ugjzl)

’w(T2l)

=O(w).

oo

)
oo

||,U(T21 || =0 O.\/i and H (T21) (\/g(n/d) 1Og2(d)(B§ +U\/m))

Proof. The first two points and the bound on T5; — T} follow from Lemma C.2. The last point follow from
Lemma C.4 and Lemma C.2. O

C.1.4 Omitted Proofs in Section C.1.1 and Section C.1.2
In this subsection, we give the proof of Lemma C.3, Lemma C.4 and Lemma C.5.

Lemma C.3. Recall the decomposition in (3)

1 d
—XTXv® = Zol) 4 b,(XTE), +T,
n n
d 1
bt = b — (b — =),

where ||l"(t)Hoo < v and reca~ll the notation Bg = Zi:ﬁﬁéo Biei, Be = Zi:ﬁi*:o Bie;. Suppose Lemma C.2
holds. We have for Ty <t <Ty

by =(1—(1—mnd/n)")/n <1/n,

Y <1, + O(0+/d/n+ (dBe¢/nlogd)nt) = O(o+/n/d + Bg).

Proof. The proof here is almost the same as in the proof of Lemma B.2 in Stage 1. The only difference is
that we know have better bounds on the error terms. We first write the update of b; and I'; using the update
of v.

1
bt+1(XT£)e + Ft+1 :EXTX’U(H_I) — gvg+1)
:lXTX,U(t) _ gfv(st) _ anTXlXTT(t) + ng (1XT’I"(t)>
" n n n n\n s
d (1
=by (X T€)e + Ty — —XTXXT ®) 4 p= (XTru))
n s

=by(XTE) + Ty — —XT(XXT dr)r® — n% (ixﬂm) :

We bound the last two terms one by one. For %XT(XXT - dI)'r(t), we have by Assumption 1 and
Lemma C.2

1
H XT(xxT - dI)r(t)H < ﬁO(T Vdn)(1 — Qnd/n)) " T10(ov/R) = O(no/djn) (1 — Qnd/n))t=T.
[e'e) n n
For n4 (%XTr(t))e, we have
(1XTr<t>) (1XTXv<f> + XTX()\ e XT£—|— XT()\Xw AXu(t)®2)>
n e n e

d 1
- (nv(st) I 7XTX(>\wg+)®2 % - g%y 4 (b, — E)XTg + T+ EXT()\XijBW - AXugt)@?))

e

b= DTG+ (XX - DO - )+ T XX - AXul)?))

€
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Therefore, we know by Lemma C.2

d 1
biyr = by — %(bt - ),

d
Yer1 <7+ (1= O(nd/n)" "1 O(no/d/n) +n—O(Be/logd + (d/vn)ra?)
=5+ (1 = O(nd/n)) =" O(no+/d/n) + nO(dBe /nlog d).
By Lemma B.2, this implies

b = (1= nd/m)" by, + (1 — (1 - nd/n)f*“)/n — (- <1 —nd/n))/n < 1/n,
Y <1, +O(oy/n/d+ (dBe¢/nlogd)n(t — T1)) = O(oy/n/d + Bg).

Lemma C.4. Recall the decomposition in (4)

o® = vg) +a,XTE+ Ag),

atp1 = ag —n(by — 1/n),
where HAq(,t) < (;. and recall the notation Bs = Zi:ﬂ*;&o Biei, Be = Zi:m:o Bie;. Suppose Lemma C.2
holds. We have for Ty <t < T

=(1—(1—nd/n)")/d < 1/d
Ct ¢r, + O((Be + ov/n/d)n(t —Th)) = O((Be + o/n/d)nlog(n)/d)

In particular, we can show that Hv(t)Hz = O(o+/n/d).

Proof. The proof here is almost the same as in the proof of Lemma B.3 in Stage 1. The only difference is
that we know have better bounds on the error terms. We write the update of a; and Agt) using the update
of v

Qi1 X TE + AUTD —glt+D) _ () _ ) _ 0 _ ) (1XTr(t))
n e
1
=, X e+ AD —q (XTr(t)) .
n e
For (%XTr(t))e, using the decomposition of X " Xv/n in Lemma C.3, we have

(ixﬂ«@) ( XTXo® 4+ XTX()\ — % gy - XT§—|— XT(AX AXu(t)®2)>

€

e

d 1
- (ﬁ”g) I EXTX(A“’(S?@Q _ AungQ —B*) + (b, — ﬁ)XTE + T+ EXT()\Xwé?m - Axug?®2)>

1 1 . 1
=(b ~ (X&) + ((nxTX — DO =2 =87 + T+ =X T (A Xw(®? - AXul)?)

€

Therefore, we have the update of a; and (; by using Lemma 5, Assumption 1 and Lemma C.2

agyr = ag —n(by — 1/n),
Gevr < G+ nO(nby — 11Be + Be/logd + o/nfd + Be + (d/v/n)Aa?).
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By Lemma B.3, this implies

a = nt/n - br = (1— (1= nd/n)")/d < 1/d

Tt

G <y, + O((Be + o+/n/d)n(t —T1)) = O((Be + o+/n/d)nlog(n)/d)

We now bound ||v|,. Since its gradient norm ||V,L|, = HX—'—r/nH2 < (1 - Q(nd/n)=T10(a+/d/n)
by Lemma C.2 and Assumption 1, we can bound Hv(t)H2 < Hv(Tl)H2 + WZTlgrgt “VvL(T)’|2 = H'U(Tl)H2 +

O(o+/n/d) = O(c+/n/d).

O

Lemma C.5. In the setting of Lemma C.3 and Lemma C.4, we have for T1 <t < Tgl
1 d
VwLl = <XT’!‘> © (2 w) = 2)\( vg + )\'w — M- B+ A)Ow
o -
1 T d ®2 *
Vul=—|=-X"7|0(2\u) = —2)\( vg + )\w —dug” -8 "+ A)Ou,
n _

VoL=—-XTr,

1
n

where
HA@HOO =0 (Be + 0\/nfd) + 5

Proof. By Lemma C.3 and Lemma C.4 and the choice of parameter, the result directly follows from Lemma 6.
O

’ NONBWCCRPWOL

o0

C.2 Stage 2.2

After Stage 2.1, the loss is already very small. This allows us to further tighten the bound of several terms
and use an NTK-type analysis to show that the parameters do not move much while reduce the training loss
to €.

Lemma C.6. Let Thy := inf{t : L(u®, w® v®) = Hr(t)||2/n < e}. Then Tyy — Toy = O(nlog(o/e)/nd)
and the following hold:

. %vgﬂ) + )\wk(,;j;”)®2 - )\ungz)m - B*|| =0(B¢+oy/n/d)
o [wl=| el =0

o], = Olo/n/d), ||v§
o [r®], = - A

In particular, the above imply that ||E(T22) - B,
t > Ty, the above still hold and train loss L® < ¢,

O(/3(n/d)log*(d)(Bg + o/n/d))

(flog )(Be + oy/n Moreover, for every

Proof. We show these by induction. At ¢ = T51, we know they hold by Lemma C.1. Suppose before time
t they hold, then at time ¢ + 1 we know HXTr(T)/nHOo = (1 = Q(nd/n))"~T10(c/\/n) for any 7 < t by
Assumption 1.

For ‘ d o, (t+1) % consider the k-th entry with & € S, (k € S_ can be

'US + A'LU t+1)@2 ~\u g+l)®2 ,6*
bounded similarly). The proof is similar to the proof in Lemma C.2, we omit for simplicity.
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We now consider Hw(fﬂ) H and Hu(H_l) H For k ¢ S, consider wy, (ug can be bounded similarly)
|w,(:+1)| < (1 +2A\n HXTr(t)/nH ) w](:)

< I 1+ - Qmd/m) " 0mr/vi) Oa)

To1 <7<t

<|1+ > @=Qnd/n)"™0Mmrs/Vn) | O(a)

To1 <7<t
<O(a + Aov/ia/d) = Oa),

where in the second to last line we use the fact that [,(1+ ¢;) = e2:M(1+%) < e2igi <14 0O(Y, ¢;) for
Zi qi = 0(1)

It remains to consider wy with k € S_ and uy with k € S;. We will focus on wy with k € S_, the other
follows the same calculation. Similar in the proof of Lemma B.1, we have

1 1
w,(:H)u,(CHU = <1 —2nA <nXTr(t)>k> w,(;) . <1 + 2nA <nXTr(t)>k> u,(:) < w,(:)u,(;) < a?

We know u,(f) > ov. This implies that |w,(:)\ <a.
For ||r||,, we can bound it the same as in the proof of Lemma B.1.
For ||lvg||, we have by Lemma C.1

o, <o)+

HE QP

<l

,t Y (1=Qnd/n) 0o/ Vn)

—0(V3(n/d) log? (d)(Be + o+/n/d))

For ||v||,, we have

Hv<t+1> _ o(T21) XT (r)

<nz

Ty <7<t

< Y (1=Q@d/n) 1 0(a/v/n) = O(ov/n/d).

2 To1 <7<t

Note that [[v™2))||, = O(o\/n/d), thus we have ||[o*FV||, = O(o+/n/d).

In this way, we finish the induction proof. It remains to bound Ty — T5;. Given Hr(t)H2 = (1-
Q(nd/n))tO(c), we know Ty —To; = O(nlog(o/e)/nd). Moreover, we can see in the above proof that it will
still hold after 755, thanks to the geometric decreasing of ||r||,. O

D Proof of main result Theorem 3

In this section, we give the proof of main result. Given that we have already characterized the training
dynamics to the convergence in Stage 1 and Stage 2, it immediately follows from the results for Stage 1
(Lemma 7) and Stage 2 (Lemma 10).

Theorem 3 (Main result). Under Assumption 1, suppose there exists constant C' such that o < C. We
train model (1) with initialization v(© = 0, w® = u®) = a1 and follow the gradient descent update (2). If

Q(s)<n<O0 (min{d/s,d*/®}) and we choose A\ = © (d/an(\/log(d)/n ++/n/d) log(n)) , a = 1/poly(d),
n < O( \/n/s /A3), then for every t > T = O(log(n/ag)n/nd) with any given € > 0 we have training loss

L(u®,w® v®) < ¢ and test loss
=0 <\/§10g2(d) (O’\/ @ + U\/Z)) :
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Proof. First note that Lemma 10 follows from the Lemma C.1 for Stage 2.1 and Lemma C.6 for Stage 2.2.
Then, it suffices to combine Lemma 7 and Lemma 10 in Section 5, since

* d *
18- 81l < o+ 20§ — xug? - 8 2

e (ﬁlog(n) log(n/a) @/@ . aﬂ»

k
+ ||—vs
2 n

ol + [Awg? - x|
2

E Synthetic Experiments

1071 4 - .
hybrid interpolation
log(d)/Vd

— V+AW®2 = Au®?

10-2 | -== log*(d)/d

wo2 — ©2
---1/log(d)
10—3 4

102 103 104 10° 106
d

Figure 2: Test loss vs. dimension d when fixing the ratio d/n = \/E/ 3 for 3 different interpolating method:
hybrid interpolation with Lasso (Muthukumar et al., 2020), model v + Aw®? — A\u®? as we focused in the
paper and model w®? — u®2 that only keeps the second order term. Solid lines represent the mean and
shaded regions represent the standard deviation of test loss during 3 experiments. Dashed lines represent
the corresponding order.

In this section, we run synthetic experiments to verify our theoretical results. We choose d from 100 to
10% and set n = 3v/d. The target 8* = (1/v/3,—-1/4/3,1/4/3,0,...,0)7, data x; ~ N(0,I) sampled from
Gaussian distribution and noise level o = 0.1. We compare 3 different interpolation method:

e hybrid interpolation (Muthukumar et al., 2020): As a 2-step procedure, we first use Lasso (implemented
in sklearn) with ¢; regularization coefficient on the order of ©(c+/log(d)/n) (Theorems 7.13 and
7.20 in Wainwright (2019)). We choose the coefficient with the best test loss among the choice of
{1/10,1/5,1/2,1,2,5,10} * o4/log(d)/n. In the second step, we use the min-¢5-norm interpolator to
fit the residual.

e Model v + Aw®? — M\u®?: As suggested in our main result, we initialize v = 0 and w = u = a1 with
a = 10710 We set A = 100d/onlog(n)(y/log(d)/n + /n/d) and run gradient descent with stepsize
n = 107% until training loss reaches 10~

e Model w®? —u®2?: We use small initialization that sets w = u = a1 with a = 1075, We run gradient
descent with stepsize 7 = 107% until training loss reaches 10~%.

Our results are shown in Figure 2. We can see that with fixed ratio d/n = v/d/3, as d increases, the test
loss of different method decreases with different rate. The hybrid interpolation gives the smallest test loss
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and our learner model v + Aw®2 — Au®? gives a similar performance. This agrees with what our theoretical
result suggests. The model w®? — u®? that only uses second-order term performs worse than others. This
is expected as we know such parametrization with small initialization converges to min-¢;-norm interpolator
(Woodworth et al., 2020), and min-¢;-norm interpolator gives large test loss Q(0?/log(d/n)) in the sparse
noisy regression setting (Chatterji and Long, 2022; Wang et al., 2022).

34



	1 Introduction
	1.1 Our result and technique
	1.2 Related works

	2 Preliminary
	3 Main Result
	4 Intuitions for the Training Dynamics
	5 Proof Sketch
	5.1 Stage 1: learning the signal
	5.2 Stage 2: memorizing the noise

	6 Conclusion
	A Preliminary
	A.1 RIP and regularity conditions
	A.2 Gradient approximation

	B Proof for Stage 1
	B.1 Dynamics of v
	B.2 Implications of Inductive Hypothesis Lemma B.1
	B.3 Proof of Inductive Hypothesis Lemma B.1 and Lemma 7
	B.4 Omitted Proofs in Section B.1 and Section B.2
	B.5 Technical Lemmas

	C Proof for Stage 2
	C.1 Stage 2.1: train loss decreases to r2=O()
	C.1.1 Dynamics of v
	C.1.2 Implications of Inductive Hypothesis Lemma C.2
	C.1.3 Proof of Inductive Hypothesis Lemma C.2 and Lemma C.1
	C.1.4 Omitted Proofs in Section C.1.1 and Section C.1.2

	C.2 Stage 2.2

	D Proof of main result Theorem 3
	E Synthetic Experiments

