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Abstract

In deep learning, often the training process �nds an interpolator (a solution with 0 training loss), but
the test loss is still low. This phenomenon, known as benign over�tting, is a major mystery that received
a lot of recent attention. One common mechanism for benign over�tting is implicit regularization, where
the training process leads to additional properties for the interpolator, often characterized by minimizing
certain norms. However, even for a simple sparse linear regression problem y = β�>x+� with sparse β�,
neither minimum `1 or `2 norm interpolator gives the optimal test loss. In this work, we give a di�erent
parametrization of the model which leads to a new implicit regularization e�ect that combines the
bene�t of `1 and `2 interpolators. We show that training our new model via gradient descent leads to an
interpolator with near-optimal test loss. Our result is based on careful analysis of the training dynamics
and provides another example of implicit regularization e�ect that goes beyond norm minimization.

1 Introduction

Benign over�tting { the phenomenon that the training loss becomes 0, but the test loss remains low {
is a major mystery in deep learning. Recently, a long line of works (Belkin et al., 2019; Bartlett et al.,
2020; Belkin et al., 2020; Hastie et al., 2022; Advani et al., 2020; Koehler et al., 2021) tried to explain
why interpolators (solutions with 0 training loss) can still enjoy good test loss for various models. This
phenomenon is interesting and was studied extensively even for simple models of linear regression (see e.g.,
Bartlett et al. (2020); Tsigler and Bartlett (2020); Hastie et al. (2022)), where data (x; y) is generated as

y = β�>x+ �:

Here, β� is an unknown vector that we hope to learn, x is generated from a data distribution and � represents
the noise.

One of the major explanations for benign over�tting is implicit regularization, which suggests that the
training process promotes additional properties for the interpolator that it �nds. In the context of the simple
linear regression, it was known that �tting the model y = β>x directly by gradient descent gives the β with
minimum `2 norm; while parametrizing β as β = w�2 − u�2 (here �2 represents entry-wise square) gives
the β with minimum `1 norm.

However, for sparse linear regression, implicit regularization in the form of `1 or `2 norm minimization
does not lead to benign over�tting. More precisely, if β� 2 Rd is an s-sparse vector, given n samples (xi; yi)
for i = 1; 2; :::; n where n� d, xi � N(0; I) and �i � N(0; �2), one can still hope to �nd a parameter β such
that the test loss 1

2E[(y − β>x)2] is on the order of �2s log(d=s)=n. Neither minimum `1 or `2 interpolator

achieves anything near this guarantee: the best `2 norm interpolator achieves a test loss of 
(kβ�k22) (Bartlett
et al., 2020; Hastie et al., 2022) while the best `1 norm interpolator achieves a test loss of 
(�2= log(d=n))
(Chatterji and Long, 2022; Wang et al., 2022).
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In the sparse regression setting, Muthukumar et al. (2020) showed that when the model is signi�cantly
overparametrized (d � n), it is still possible to �nd an interpolator with near-optimal test loss. The
interpolator in Muthukumar et al. (2020) has to be constructed explicitly through a 2-stage process which
combines `1 and `2 norm minimization. In this paper, we ask whether such an interpolator can be found via
implicit regularization { by directly minimizing the loss using a new parametrization.

1.1 Our result and technique

We show that implicit regularization can indeed give near-optimal interpolators (up to polylog factors) and
therefore achieve benign over�tting in the sparse regression setting:

Theorem 1 (Informal). In the sparse linear regression setting with unknown s-sparse target β�, suppose we
parametrize linear function β>x as

β = v + �(w�2 − u�2):

If ~
(s4) � n � eO(
p
d), with proper choice of parameters, gradient descent converges to a solution β with 0

training loss and test loss

kβ − β�k2 = O

0@�
s
s log5(d)

n

1A :

More formal versions of this theorem appear as Theorem 3 and Corollary 4. Note that the test loss is
within polylog factor to the minimax rate.

The model we use is similar to a 2-layer scalar network (which gives the w�2 − u�2 term) with a skip-
through connection (the v term) like in the ResNet (He et al., 2016). Intuitively, the term �(w�2 − u�2)
promotes minimum `1 norm properties and can be used to �t the sparse signal β�, while the term v promotes
minimum `2 norm properties and can be used to �t the noise.

Of course, showing that training this model via gradient descent leads to the correct trade-o� between
�tting the signal and noise is still challenging. We rely on dynamics analysis and show that the term
�(w�2 − u�2) �rst grows fast to recover the sparse signal and then the term v grows to �t the noise.
Interactions between all parameters v;w;umakes it di�cult to directly derive an accurate dynamics analysis.
To address this issue, we introduce a new way to decompose v that allows us to separate the e�ect of learning
signal and �tting noise and leads to a better characterization of the training dynamics. See details in Section 4
and Section 5.

1.2 Related works

There is a long line of work trying to understand implicit regularization e�ect, we refer the readers to
some surveys for more complete discussions (Bartlett et al., 2021; Dar et al., 2021; Vardi, 2022). Here, we
�rst summarize implicit regularization e�ect for interpolating linear models and their variants in regression
setting. We then discuss related works for implicit regularization that are more related to training dynamic
analysis instead of norm-minimizing.

Min-`2-norm interpolator When using linear model β>x for regression 1
2n

P
i(β
>xi− yi)2, it is known

that gradient 
ow/descent with 0 initialization will converge to the solution that minimizes its `2 norm (e.g.,
Gunasekar et al. (2018)). Recently, many papers have studied the generalization error of such min-`2-norm
interpolator in the overparametrized regime where the dimension is much larger than then number of samples
(Hastie et al., 2022; Bartlett et al., 2020; Tsigler and Bartlett, 2020; Belkin et al., 2020; Zhou et al., 2020;
Negrea et al., 2020; Mitra, 2019; Koehler et al., 2021). In particular, these results suggest that min-`2-norm
interpolator can achieve benign over�tting when the spectrum of input data covariance matrix has certain
structure. On the other hand, it su�ers from large test loss with isotropic features (identity covariance matrix
for x).
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Min-`1-norm interpolator Going beyond the simplest linear model β>x, when the underlying signal is
known to be sparse, one could reparametrize β by β(w;u) = w�L−u�L, where �L represents element-wise
L-th power for integer L � 2. Woodworth et al. (2020); Azulay et al. (2021); Yun et al. (2021) showed that
gradient 
ow with such parametrization converges to min-`1-norm solution when using small initialization
and min-`2-norm solution when using large initialization. Researchers have studied the test loss of the min-
`1-norm interpolator in the sparse noisy linear regression (Mitra, 2019; Ju et al., 2020; Li and Wei, 2021;
Chinot et al., 2022; Koehler et al., 2021).

Lower bounds are also shown in Chatterji and Long (2022); Wang et al. (2022), which suggests that min-
`1-norm interpolator does not have good generalization performance due to its sparsity. Vaskevicius et al.
(2019); Li et al. (2021a) showed that gradient descent with early stopping can still achieve near-optimal test
loss, but these results do not give interpolating models.

Hybrid Model Muthukumar et al. (2020) proposed an interpolation scheme called hybrid interpolation
(De�nition 5 in their paper) to achieve optimal test loss. Speci�cally, the hybrid interpolation is a 2-step
procedure to achieve benign over�tting: (1) use any estimator to recover signal (e.g., Lasso (Bickel et al.,
2009)); (2) use min-`2-norm interpolator to memorize the remaining noise. Such two-step procedure shares
similarity with the learning dynamics in our analysis: our model will �rst recover the signal using the
second-order term and then �t the noise using the linear term. Di�erent from the hybrid interpolation
scheme that requires a 2-step process, in our setup such learning dynamics arise naturally just by running
gradient descent.

Beyond norm-minimization for implicit regularization Many of the earlier works for implicit reg-
ularization shows that the training process minimizes a certain norm (or maximizes margin with respect
to a norm). The �rst example of implicit regularization that goes beyond norm minimization works in the
setting of matrices. Arora et al. (2019) observed that for low-rank matrix problems the solution found does
not always minimize the nuclear norm. Similar idea has also been exploited in the full-observation matrix
sensing (Gidel et al., 2019; Gissin et al., 2020). Later Li et al. (2021b) was able to characterize the implicit
regularization e�ect in matrix sensing problems via a greedy-low-rank-learning dynamics. Such implicit rank
regularization and dynamics analysis are also studied in tensor problems (Razin et al., 2021, 2022; Ge et al.,
2021) and neural networks (Timor et al., 2022; Frei et al., 2022). Our result shows that dynamics analysis
can be important even in the simpler sparse regression model.

2 Preliminary

In this section we �rst introduce basic notations. Then we de�ne the precise sparse recovery problem we
are solving, and the learner model/algorithms we use. Finally we state several useful properties for the data
that we will use throughout our analysis.

Notation Denote [n] = f1; 2; : : : ; ng. We use bold symbols to represent vectors and matrices. For vector
β 2 Rd, given any set A � [d], let βA :=

P
i2A �iei be the same as β for the entries in set A and 0 for

other entries, where feig is the standard basis. We use standard big-O notations 
; O to hide constants ande
; eO to hide constants and all logarithmic factors including log(d); log(n); log(1=�). We will drop the time
sub/superscripts when the context is clear.

Target function and data Suppose the ground-truth function is

f�(x) = β�>x;

where β� 2 Rd is s-sparse. Without loss of generality, we assume j��1 j � : : : � j��s j > 0 and ��s+1 = : : : =
��d = 0. Denote S+ := fi : ��i > 0g be the set of positive signal entries, S− := fi : ��i < 0g be the set of
negative signal entries, and S := S+ [ S− = [s] be the set of all signal entries. We use βS :=

P
i:β∗

i 6=0 �iei
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to be the vector that is same as β for the signal entries in S and 0 for other entries, and βe :=
P
i:β∗

i =0 �iei
to be the vector that is the same as β for the non-signal entries that are not in S and 0 for other entries.
We similarly de�ne βS+

;βS− ;βe+ ;βe− . Let �max := j��1 j be the maximum absolute value entry of β�S and
�min := j��s j be the minimum absolute value entry of β�S . We assume �min; �max = �(1) for simplicity. Our
results can generalize to arbitrary �max; �min with the cost of an additional polynomial dependency on them.

We generate n training data f(xi; yi)gni=1 by

y = f�(x) + �;

where x is the input data, � � N(0; �2) is the label noise and y is the target. Denote the n � d matrix
X = [x1;x2; : : : ;xn]> as the input data matrix, y = (y1; : : : ; yn)> as the target vector and ξ = (�1; : : : ; �n)>

as the noise vector.

Learner model, loss and algorithm To learn the target function f�(x), we use the following model

fu,w,v(x) = (v + �w�2 − �u�2)>x: (1)

Here w�2 := w � w and u�2 := u � u is the element-wise square of w and u. In general we use u � v
to denote the element-wise product of u and v. Our model can be viewed as a linear model β>x with
reparametrization β = v + �w�2 − �u�2. Such element-wise product reparametrization w�2 − u�2 is
common in the implicit bias literature (Woodworth et al., 2020; Azulay et al., 2021; Yun et al., 2021). In
the view of neural networks, the learner model can also be viewed as a 2-layer diagonal linear network with
a shortcut connection (He et al., 2016). For simplicity of notation, denote β = v + �w�2 − �u�2. We are
particular interested in the overparametrized regime n � d, where the model has the ability to over�t the
data without learning the target β�.

Denote residual ri := fu,w,v(xi)− yi for i 2 [n] and r := (r1; : : : ; rn)>. We will use gradient descent to
minimize mean-square loss, that is

L(u;w;v) :=
1

2n

nX
i=1

(fu,w,v(xi)− yi)2
:

The gradient for this loss is given below:8>>>>>><>>>>>>:

w(t+1) = w(t) − �rwL(u(t);w(t);v(t)) = w(t) − �
�

1

n
X>r(t)

�
� (2�w(t))

u(t+1) = u(t) − �ruL(u(t);w(t);v(t)) = u(t) + �

�
1

n
X>r(t)

�
� (2�u(t))

v(t+1) = v(t) − �rvL(u(t);w(t);v(t)) = v(t) − � 1

n
X>r(t):

(2)

Properties the input data We use several key properties of the input data matrix X and noise ξ. First
is the classic notion of Restricted Isometry Property (RIP).

De�nition 1 ((k; �)-RIP). A n � d matrix X=
p
n is said to be (k; �)-RIP if for any k-sparse vector β we

have
(1− �) kβk22 �



Xβ=pn

2

2
� (1 + �) kβk22 :

We will assume data matrix X=
p
n satis�es (s + 1; �)-RIP with � = eO(1=(1 + n=

p
d)s3/2) and some

regularity conditions on X; ξ, as summarized in the Assumption 1 below. These conditions can be easily
satis�ed under some choice of X; ξ, as shown later in Lemma 2.
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Assumption 1. Input data matrix X=
p
n satis�es (s + 1; �)-RIP with � � cδ=(1 + n=

p
d log d)s3/2 log3(d)

where cδ is a small enough constant, and X; ξ satisfy the following regularity conditions:

kξk2 = O(�
p
n);



 1

n
X>ξ






1
� Bξ := O

 
�

r
log d

n

!
;



X>ξ


2

= O
�
�
p
dn
�
;



 1

n
X>β






1

= O

�
kβk2p
n

�
for any vector β;

(1−O(
p
n=d))d � �min(XX>) � �max(XX>) � (1 +O(

p
n=d))d:

Note that the notation Bξ = O(�
p

log(d)=n) not only is for notation simplicity, but also intuitively
stands for the best error in `1 that one could hope with Gaussian noise. Indeed, Lounici et al. (2011)
showed that the minimax optimal `1 test error is 
(�

p
log(d=s)=n). Later in our analysis, we show the test

loss is closely related with Bξ.
When each entry of data matrix X is i.i.d. Gaussian and noise ξ is i.i.d. sampled from N(0; �2I), all

the conditions above are satis�ed as long as e
(s4) � n � eO(d=s4). See Appendix A.1 for details.

Lemma 2. Suppose X is a Gaussian random matrix and ξ � N(0; �2I). Then if e
(s4) � n � eO(d=s4), we
have Assumption 1 is satis�ed with probability at least 1− 1=d.

3 Main Result

Our main result, formalized in the theorem below, shows that gradient descent on the learner model (1)
achieves benign over�tting.

Theorem 3 (Main result). Under Assumption 1, suppose there exists constant C such that � � C. We
train model (1) with initialization v(0) = 0, w(0) = u(0) = �1 and follow the gradient descent update (2). Ife
 (s) � n � eO (minfd=s; d2/3g

�
and we choose � = �

�
d=�n(

p
log(d)=n+

p
n=d) log(n)

�
, � = 1=poly(d),

� � O(
p
n=sd=�3), then for every t � T = O(log(n=�")n=�d) with any given " > 0 we have training loss

L(u(t);w(t);v(t)) � " and test loss




β(t) − β�





2
= O

 
p
s log2(d)

 
�

r
log(d)

n
+ �

r
n

d

!!
:

Note that the �nal test error depends on log(1=�). Since we choose � = 1=poly(d), it appears as log(d)
in the �nal error bound. Also, the test loss does not depend on 1=", so it remains small when " is very close
to 0.

For any interpolator β, its test loss has lower bound kβ − β�k2 = 
(�
p
s log(d=s)=n+�

p
n=d) (Muthuku-

mar et al., 2020), where �
p
n=d comes from the min-`2-norm interpolator that �ts the noise. Thus, the

above test loss is optimal up to poly(log d; s) factors. The additional log d, s dependencies in our result
(and the fact that n cannot be larger than d2/3) are due to technical di�culties in analyzing the dynam-
ics. When n = O(

p
d log d), the �rst term dominates the second term, and the above test loss becomes

O(�
q
s log5(d)=n). This is close to the minimax optimal rate 
(�

p
s log(d=s)=n) up to polylog(d) factors

(Raskutti et al., 2011).
For the Gaussian data case (x � N(0; I)), by Lemma 2 we in addition need n = ~
(s4) to satisfy

Assumption 1. This leads to the following corollary:
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Figure 1: Training dynamics of model (1) following gradient descent update (2) under d = 5 � 104,
n = 3

p
d, � = 0:1, β� = (1=

p
3;−1=

p
3; 1=
p

3; 0; : : : ; 0)> and Gaussian data xi � N(0; I). We set
� = 100d=�n log(n)(

p
log(d)=n +

p
n=d) and run gradient descent with � = 10−6 from initialization �1

with � = 10−10 until training loss reaches 10−5. Red vertical line stands for the transition between Stage 1
and Stage 2. Left: training loss L goes to 0 and test loss kβ − β�k22 remain small at the end. Right: norm
of second-order term �(w�2 − u�2) grows large to recover the signal in Stage 1 and linear term v remain
small during the training. Both x-axis are in log scale as Stage 1 is signi�cantly shorter than Stage 2.

Corollary 4 (Near minimax rate). Under the setting of Theorem 3 and the choice of �; �; �, suppose input

data X is Gaussian matrix and noise ξ � N(0; �2I). If e
(s4) � n � eO(
p
d), then for every t � T =

O(log(n=�")n=�d) with any given " > 0 we have training loss L(u(t);w(t);v(t)) � " and test loss




β(t) − β�





2
= O

0@�
s
s log5(d)

n

1A ;

which is near-optimal up to polylog(d) factors.

4 Intuitions for the Training Dynamics

Consider the training of our model (1) using gradient descent. Ideally, one would hope the training process
to combine the advantages of min-`1-norm and min-`2-norm interpolator as done explicitly in Muthukumar
et al. (2020): �rst use w�2 − u�2 to learn the sparse target β� and then use v to memorize the noise with
small `2 norm. This would require us to �x v = 0 when learning the signal and �x w�2 − u�2 when �tting
the noise. However, since training is done on all parameters simultaneously, it's unclear why it follows this
ideal dynamics.

Stages of training At a higher level, we show that the actual training dynamics of parameters v;w;u
approximately follow the above ideal dynamics in 2 stages (Figure 1):

• In Stage 1, the linear term v remains small so that essentially the second-order term w�2−u�2 learns
the signal using its bias towards sparse solution.

• In Stage 2, v moves to memorize the noise while w�2 −u�2 roughly stays the same. Since v is biased
towards small `2 norm, the �nal test loss remain small after interpolating the data.

However, things are not as simple when we examine the dynamics carefully. It turns out that even though
v does not grow to be too large in Stage 1, it still becomes large enough so that existing analysis on w and u
will no longer apply. To address this problem, we keep track of the dynamics of v very carefully throughout
the training process. This is done through introducing the following decompositions of X>Xv=n and v.
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Decompositions of X>Xv=n and v To keep track of the dynamics of X>Xv=n and v, we �rst consider
the ideal dynamics for v. We hope v to �t the noise. If we were actually given the noise, we can use the loss
function kXv − ξk22 =2n. Running gradient descent on this function gives a trajectory for v, which can be
computed explicitly. Our decomposition tries to highlight that the true trajectory of v is close to this ideal
trajectory.

There are a few more issues that we need to work with. First, for simplicity, in the ideal trajectory we
approximate XX> by dI (which is accurate as long as d� n). Second, because of the signal, the entries of
v in S may deviate signi�cantly and in fact contribute a little bit to the �tting of the signal.

Based on these observations, we decompose both v and X>Xv into three terms { a signal term, a
noise-�tting term and an approximation error term. They are de�ned in the following equations:

1

n
X>Xv(t) :=

d

n
v

(t)
S + bt(X

>ξ)e + Γt; (3)

v(t) := v
(t)
S + atX

>ξ + �(t)
v ; (4)

where

bt+1 := bt −
�d

n

�
bt −

1

n

�
;

at+1 := at − �
�
bt −

1

n

�
;

Here


Γ(t)




1 � 
t,




�(t)
v





1
� �t give `1-norm bounds on the approximation error. Also recall the notation

βS =
P
i:β∗

i 6=0 �iei, βe =
P
i:β∗

i =0 �iei. Intuitively in the decomposition of v, vS part tries to �t the signal,

X>ξ part tries to �t the noise and the remaining term is approximation error (the decomposition of X>Xv
has the same structure). We will show in our analysis that vS contributes little for learning the signal while
X>ξ �ts all the noise and approximation errors remain small.

The recursions of at and bt are exactly the dynamics of v in the ideal setting, where we �t kXv − ξk22 =2n
(and approximate XX> by dI).

Finally, the d=n factor appears in front of vS in the decomposition of X>Xv=n. This is because in the
ideal setting (approximate XX> by dI) the change of XX>v=n is d=n times larger than the change of v.
One can then use simple calculations to show that the signal part (X>Xv=n)S corresponds to (d=n)vS . The
non-signal part has the same factor but the `1 norm there is small and hence bundled into the approximation
error term.

5 Proof Sketch

In this section, we give the proof sketch of our main result Theorem 3 with several key proof ideas. We �rst
combine the tools we discussed in Section 2 and the decomposition of X>Xv=n and v de�ned in Section 4
to give the approximation of gradient. Then, we give the proof sketch of Stage 1 and Stage 2 in Section 5.1
and Section 5.2 respectively.

Approximation of gradient Given that X is a (s + 1; �)-RIP matrix, the following lemma gives useful
approximation that allows us to approximate the gradient in Lemma 6. The proof is a standard consequence
of RIP property, which is deferred to Appendix A.2.

Lemma 5. Given n� d matrix X=
p
n satisfying (k + 1; �)-RIP, for any β 2 Rd, let � =

(
1
nX

>X − I
�
β;

then the following hold:

• If β is k-sparse, then k�k1 �
p
k� kβk2.

• For any vector β, we have k�k1 � � kβk1.

7



The following lemma gives the approximation of the gradient. For the gradient of w;u, it would become

the same as the gradient on the population loss


�w�2 − �u�2 − β�



2

2
=2 if (d=n)vS and �r are small. In

particular, this suggests that the second-order term �w�2−�u�2 will learn the target when v remains small.

Lemma 6 (Gradient approximation). Under Assumption 1, we have the following gradients and their useful
approximation:

rwL =

�
1

n
X>r

�
� (2�w) = 2�

�
d

n
vS + �w�2

S+
− �u�2

S−
− β� + �r

�
�w;

ruL = −
�

1

n
X>r

�
� (2�u) = −2�

�
d

n
vS + �w�2

S+
− �u�2

S−
− β� + �r

�
� u;

rvL =
1

n
X>r =

d

n
vS + �w�2

S+
− �u�2

S−
− β� + �r;

where

k�rk1 =O ((1 + jnb− 1j)Bξ) +
p
s�
d

n
kvSk2 + s�





 dnvS + �w�2
S+
− �u�2

S−
− β�






1

+O

�
dp
n
�

�
(


we+

2

1 +


ue−

2

1) + 
;

b and kΓk1 � 
 are de�ned in (3), and recall S+; S− are the set of positive and negative entries of β� and
e+ = [d] n S+, e− = [d] n S− are the corresponding complement set.

Note that the factor d=n in front of vS naturally arises when we using the decomposition of X>Xv=n
in (3). This suggests that the actual part to �t the signal β� is (d=n)vS +�w�2

S −�u
�2
S , instead of the na��ve

vS + �w�2
S − �u

�2
S from the form of learner model. On the other hand, since vS remains small, it does not

a�ect the �nal test error because they are all close to �w�2
S − �u

�2
S .

The forms of gradients highlight the di�erence between the parametrization v and w�2 −u�2. For each
coordinate, wi (same for ui) moves according to wi  (1+��i)wi for some growth rate �i, which would grow
exponential fast when �i > 0. However, the gradient for v is not proportional to v, so it only grows linearly
with time. Such di�erence allows us to control the order of learning dynamics (v or w�2 − u�2 grows up
�rst). Thus, we could have the desired 2-stage learning dynamics by properly choosing the growth rate �.

5.1 Stage 1: learning the signal

In Stage 1, our goal is to show that the linear term v will be characterized by the decompositions (3)(4),
and the second-order term w�2;u�2 will recover the signal β�.

The following lemma gives the ending criteria for Stage 1. We can see only the signal entries wS+ ;uS−

grow large to recover β� and others such as non-signal entries we+ ;ue− and linear term v are remain small.
Also, the loss reduces to O(�

p
n), which is essentially the norm of noise kξk2. The detailed proof is deferred

to Appendix B.

Lemma 7 (Stage 1). Let C1 be a large enough universal constant, denote

T1 := inf

(
t :





 dnv(T1)
S + �w

(T1)�2
S+

− �u(T1)�2
S−

− β�





1

= C1(Bξ + �
p
n=d)

)
:

Then we know T1 = O(log(1=�)=��) and the following hold:

•



w(T1)

e+





1
;



u(T1)

e−





1

= O(�).

•



v(T1)

S





2

= O(
p
s(n=d) log2(d)(Bξ + �

p
n=d)) and



v(T1)




2
= O(�

p
n=d).
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•


r(T1)




2

= O(�
p
n).

RecallBξ is the target in�nity norm error for recovering the entries in β�, when d� n, dnvS+�w�2
S+
−�u�2

S−

achieves this error at the end of Stage 1. We focus on this term instead of vS + �w�2
S+
− �u�2

S−
due to its

connection with the gradient shown in Lemma 6. Given that vS is small, these two terms are in fact roughly
the same.

As we discussed, a key step in the analysis is to characterize each term in the decomposition of X>Xv=n
and v, which would imply that v remains small in Stage 1. This is formalized in the following lemma.

Lemma 8 (Informal). Consider the decomposition of X>Xv=n and v in (3) (4), we have for t � O(log(1=�=��))

bt = (1− (1− �d=n)t)=n � 1=n;

at = (1− (1− �d=n)t)=d � 1=d

kΓtk1 � 
t = O(�
p
n=d+Bξ);

k�vk1 � �t = O(�
p
n=d):

Note that v will memorize the noise when bt = 1=n and at = 1=d as Xv(t) �X(atX
>ξ) � ξ. However,

since T1 = eO(��) = o(n=�d), we know at = o(1=d) in Stage 1. This shows that v is still small and does not
yet interpolate the noise part.

Combine the above lemma with Lemma 6, we have the following gradient approximation

rwL =

�
1

n
X>r

�
� (2�w) = 2�(

d

n
vS + �w�2

S − �u
�2
S − β

� + �r)�w;

ruL = −
�

1

n
X>r

�
� (2�u) = −2�(

d

n
vS + �w�2

S − �u
�2
S − β

� + �r)� u;

where

k�rk1 =O(Bξ + �
p
n=d) + s�





 dnvS + �w�2
S+
− �u�2

S−
− β�






1
:

Intuitively, this suggests if a coordinate of the residual dnvS +�w�2
S −�u

�2
S −β� has large absolute value,

then one of w or u will grow exponentially depending on the sign of the residual.
Given such gradient approximation, our goal is to show that vS and �r remain small so that w and u

essentially follow the gradient on population loss


�w�2 − �u�2 − β�



2

2
/2 to recover the target β�.

In the simplest case of s = 1, we can see that whenever the signal error j(d=n)v1 + �w2
1 − �u2

1 − ��1 j �
O(Bξ + �

p
n=d) is still large, it leads to a large gradient for either u1 or w1, which in turn decreases the

error. Therefore, at the end the error will decrease to O(Bξ + �
p
n=d). In fact, due to the parameterization

of w�2;u�2, their growing rate would be exponential so they will grow up fast to recover the signal.
At the same time, we can control the growth of v1 by choosing a large enough � to ensure the length of

Stage 1 T1 is short. The non-signal entries we+ ;ue− will also remain almost as small as their initialization,
as their growth rate is much smaller compared with the signal entries.

For higher sparsity s, the analysis becomes signi�cantly more complicated because of the signal error

term



 dnvS + �w�2

S+
− �u�2

S−
− β�





1

in k�rk1. Not all the entries of β� are of the same size, which results

in di�erent growth rates in the entries of w and u. The entries with larger ��i will be learned faster than

the smaller ones, which could lead to the case where



 dnvS + �w�2

S+
− �u�2

S−
− β�





1

is much larger than the

error for a particular entry k 2 S of ( dnvS + �w�2
S+
− �u�2

S−
− β�)k.

To deal with such issue, we show the following lemma that bound the time for reducing the signal error
by half. Similar result was shown in Vaskevicius et al. (2019) where they do not have the linear term v. The
proof relies on the observation from the gradient approximation above that the signal error will monotone
decrease before reaching k�rk1, and is made possible by the decomposition of v.
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Lemma 9 (Informal). Given any time t0, assume



 dnv(t0)

S + �(w
(t0)
S+

)2 − �(u
(t0)
S−

)2 − β�




1
� 
(Bξ+�

p
n=d).

Let

T 0 := inf

(
t− t0 � 0 :





 dnv(t)
S + �(w

(t)
S+

)2 − �(u
(t)
S−

)2 − β�





1
�




 dnv(t0)

S + �(w
(t0)
S+

)2 − �(u
(t0)
S−

)2 − β�





1
=2

)

be the time that signal error reduces by half. Then, we know T 0 = O(1=��).

Repeatedly using the above lemma, we know it takes T1 = eO(1=��) time to reach the desired accuracy.
Other claims follow directly. Detailed proofs are deferred to Appendix B.

5.2 Stage 2: memorizing the noise

Given that in Stage 1 we know �w�2 − �u�2 has already recovered signal β�, in Stage 2 we show that the
remaining noise will be memorized by the linear term v without increasing the test loss by too much. This
allows us to recover the ground-truth β� despite interpolating the data to " training error, as formalized in
the following lemma. The proof is deferred to Appendix C.

Lemma 10 (Stage 2). Let T2 := infft � 0 : L(w(t);u(t);v(t)) � "g. Then, we have the length of Stage 2 is
T2 − T1 = O((n=�d) log(n=")) and the following hold for every t � T2:

•



 dnv(t)

S + �w
(t)�2
S+

− �u(t)�2
S−

− β�




1

= O(Bξ + �
p
n=d)

•



w(t)

e+





1
;



u(t)

e−





1

= O(�).

•



v(t)

S





2

= O(
p
s(n=d) log2(d)(Bξ + �

p
n=d)) and



v(t)




2
= O(�

p
n=d).

Similar as in Stage 1, we still need to characterize each term in the decomposition of X>Xv=n and v.

Lemma 11 (Informal). Consider the decomposition of X>Xv=n and v in (3) (4), we have for t �
O((n=�d) log(n="))

bt = (1− (1− �d=n)t)=n � 1=n;

at = (1− (1− �d=n)t)=d � 1=d

kΓtk1 � 
t = O(�
p
n=d+Bξ);

k�vk1 � �t = O((Bξ + �
p
n=d)n log(n)=d):

Unlike in Stage 1, the signal has mostly been �tted in Stage 2. This makes the gradient smaller and the
time it takes for Stage 2 (T2 − T1 = O((n=�d) log(n="))) is much longer than Stage 1. Because of this longer
time, we now have bt � 1=n, at � 1=d at the end of Stage 2. This implies that we essentially use linear term
v to interpolate the noise as Xv(t) �X(atX

>ξ) � ξ.
In the analysis of Stage 2, we have two major goals that are closely related: �rst, we want non-signal

entries of w, u to stay small; second, we want the residual krk2 to decrease exponentially.
For w, u, combine the above lemma with Lemma 6, we know

rwL =

�
1

n
X>r

�
� (2�w);

ruL = −
�

1

n
X>r

�
� (2�u);
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where 



 1

n
X>r






1

=





 dnvS + �w�2
S − �u

�2
S − β

� + �r






1

= O(Bξ + �
p
n=d):

The in�nity norm bound on 1
nX

>r follows from a case analysis for signal and non-signal entries. For
the signal entries, using the above gradient approximation similar as in Stage 1, we can show that the signal
error



 d
nvS + �w�2

S − �u
�2
S − β� + �r




1 remains O(Bξ + �

p
n=d). For the non-signal entries we+ ;ue− ,

we know its exponential growth rate is O(�(Bξ + �
p
n=d)) from the gradient approximation.

The bound on


 1
nX

>r



1 limits the movement of u and w. As long as O(��(Bξ+�

p
n=d)(T2−T1)) < 1,

the non-signal part of u and w will remain small.
On the other hand, for the decrease rate of krk2, the standard approach is to use ideas from Neural

Tangent Kernel (NTK) (Jacot et al., 2018; Du et al., 2019; Allen-Zhu et al., 2019), and approximate the
dynamics of r as r(t+1) = (I − �H(t))r(t) where H(t) is the neural tangent kernel. The decreasing rate of
krk2 can then be bounded by lowerbounding the minimum eigenvalue of H(t). However, bounding H(t)

na��vely by its distance to some initial H(t) does not work in our case.
To �x this problem, we again rely on the dynamics of v. Lemma 11 suggests that v(t) gets close to X>ξ

with a rate of 
(d=n) (this can also be viewed as the minimum eigenvalue of the NTK kernel restricted to
v). This convergence rate gives a bound on the length of T2 − T1, which allow us to choose an appropriate
� to keep we+ ;ue− small.

Once we have the bounds for the convergence rate and non-signal entries of u,w, other claims follow
directly. Details are deferred to Appendix C.

Note that in the argument above, since the length of Stage 2 T2−T1 is proportional to log(1="), it cannot
be used when � is very close to 0 as � is proportional to 1=(T2 − T1) and would become very small. In fact,
we can get rid of the dependency on log(1=") with a more careful analysis. In the actual proof, we have two
sub-stages for Stage 2, which uses di�erent ways to bound the growth rate



X>r=n

1. For Stage 2.1, we
use the argument above until krk2 = O(�). In Stage 2.2, given the training loss is already small enough, we
use a NTK-type analysis to bound



X>r=n

1 = (1 − 
(�d=n))t−T1O(�=
p
n) as krk2 decreases with rate


(d=n). See Appendix C for details.

6 Conclusion

In this paper, we give a new parametrization for the sparse linear regression problem, and showed that
gradient descent for this new parametrization can learn an interpolator with near-optimal test loss. This
highlights the importance of choosing the correct parametrization, especially the role of linear terms in �tting
noise. Our proof is based on a new dynamic analysis that shows it is possible to �rst learn the features,
and then �t the noise using an NTK-like process. We suspect similar training dynamics may apply to more
complicated problems such as low-rank matrix factorization or neural networks.
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A Preliminary

In this section, we prepare some useful lemmas for the later analysis. In Section A.1, we show that Assump-
tion 1 is true when data matrix X is a Gaussian random matrix and noise ξ � N(0; �2I). In Section A.2,
we give the proof of Lemma 5 and Lemma 6 for gradient approximation.

A.1 RIP and regularity conditions

In this subsection, we show that Assumption 1 can be satis�ed when X is a Gaussian random matrix and
ξ is a Gaussian random vector with variance �2.

We use standard proof to show the RIP property, and the rest of the properties follow from simple
concentration. First, the following shows random Gaussian matrix is a (s + 1; �)-RIP matrix with � =

�(
p

(s=n) log(d=s)). To satisfy Assumption 1, with simple calculation we see that we only require e
(s4) �
n � eO(d=s4).

Proposition A.1. Let X be a n� d Gaussian random matrix. Then, there exists universal constant c1; c2
such that X=

p
n is (k; �)-RIP for any k � c1n= log(d=k) and � � c2

p
(k=n) log(d=k) with probability at least

1− (k=d)k � 1− 1=d.

Proof. From the proof of Theorem 5.2 in (Baraniuk et al., 2008), we know the error probability is at most

e−c0(δ/2)n+k[log(ed/k)+log(12/δ)]+log(2);

where c0(") = "2=4 − "3=6. Note that it su�ces to consider � < 1, which implies that c0(�=2) � �2=48 and
k � n=c22= log(d=k). Then the exponent can be upper bounded by with � � c2

p
(k=n) log(d=k)

−n�2=48 + (4 + log(1=c2))k log(d=k) � −(c22=48)k log(d=k) + (4 + log(1=c2))k log(d=k) < −(c22=50)k log(d=k);

where the last inequality is true since we can choose c2 to be large enough constant.

The following lemma shows that the regularity conditions on X; ξ in the second part of Assumption 1
are satis�ed with high probability when X is a Gaussian matrix and ξ is sampled from N(0; �2I).

Lemma A.2 (Regularity conditions). Suppose X is a Gaussian matrix and ξ � N(0; �2I). With probability
at least 1− de−Ω(n), We have

kξk2 = O(�
p
n);



 1

n
X>ξ






1
� Bξ := O

 
�

r
log d

n

!
;



X>ξ


2

= O
�
�
p
dn
�
;



 1

n
X>β






1

= O

�
kβk2p
n

�
for any vector β;

(1−O(
p
n=d))d � �min(XX>) � �max(XX>) � (1 +O(

p
n=d))d:

Proof. The �rst three and the last one are standard consequences of Gaussian vector/matrix concentration,
see e.g., Lemma A.5 in Vaskevicius et al. (2019) for the proof of



X>ξ=n

1 and Theorem 3.1.1 and
Theorem 4.4.5 in Vershynin (2018) for the rest. For the third one, denote X[:; i] is the i-th column of X.
Then,



X>β=n

1 � maxi jβ>X[:; i]j=n � kβk2 maxi kX[:; i]k2 =n. Then it follows from standard Gaussian
concentration.

Now we are ready to prove Lemma 2 that shows Assumption 1 holds under Gaussian input and Gaussian
noise. It immediately follows from Proposition A.1 and Lemma A.2 above.

Lemma 2. Suppose X is a Gaussian random matrix and ξ � N(0; �2I). Then if e
(s4) � n � eO(d=s4), we
have Assumption 1 is satis�ed with probability at least 1− 1=d.

Proof. It su�ces to combine Proposition A.1 and Lemma A.2.
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A.2 Gradient approximation

Lemma 5 and Lemma 6 give ways to approximate several important terms in the gradient. Here we give
their proofs.

Lemma 5. Given n� d matrix X=
p
n satisfying (k + 1; �)-RIP, for any β 2 Rd, let � =

(
1
nX

>X − I
�
β;

then the following hold:

• If β is k-sparse, then k�k1 �
p
k� kβk2.

• For any vector β, we have k�k1 � � kβk1.

Proof. For the �rst part, it is a standard consequence of the RIP condition, see e.g., Lemma A.3 in Vaskevicius
et al. (2019). For the second part, notice that β =

P
i �iei where feigdi=1 is the standard basis, it then

follows from the �rst part.

Lemma 6 (Gradient approximation). Under Assumption 1, we have the following gradients and their useful
approximation:

rwL =

�
1

n
X>r

�
� (2�w) = 2�

�
d

n
vS + �w�2

S+
− �u�2

S−
− β� + �r

�
�w;

ruL = −
�

1

n
X>r

�
� (2�u) = −2�

�
d

n
vS + �w�2

S+
− �u�2

S−
− β� + �r

�
� u;

rvL =
1

n
X>r =

d

n
vS + �w�2

S+
− �u�2

S−
− β� + �r;

where

k�rk1 =O ((1 + jnb− 1j)Bξ) +
p
s�
d

n
kvSk2 + s�





 dnvS + �w�2
S+
− �u�2

S−
− β�






1

+O

�
dp
n
�

�
(


we+

2

1 +


ue−

2

1) + 
;

b and kΓk1 � 
 are de�ned in (3), and recall S+; S− are the set of positive and negative entries of β� and
e+ = [d] n S+, e− = [d] n S− are the corresponding complement set.

Proof. By the decomposition of X>Xv=n in (3), we have

1

n
X>r =

1

n
X>Xv − 1

n
X>ξ +

1

n
X>X(�w�2

S+
− �u�2

S−
− β�) +

1

n
X>(�Xw�2

e+ − �Xu
�2
e− )

=(b− 1

n
)(X>ξ)e −

1

n
(X>ξ)S +

d

n
vS +

1

n
X>X(�w�2

S+
− �u�2

S−
− β�)

+
1

n
X>(�Xw�2

e+ − �Xu
�2
e− ) + Γ

=(b− 1

n
)(X>ξ)e −

1

n
(X>ξ)S +

d

n
vS + �w�2

S+
− �u�2

S−
− β�

+ (
1

n
X>X − I)(

d

n
vS + �w�2

S+
− �u�2

S−
− β�)− (

1

n
X>X − I)

d

n
vS

+
1

n
X>(�Xw�2

e+ − �Xu
�2
e− ) + Γ

=
d

n
vS + �w�2

S+
− �u�2

S−
− β�

+ (b− 1

n
)(X>ξ)e −

1

n
(X>ξ)S + (

1

n
X>X − I)(

d

n
vS + �w�2

S+
− �u�2

S−
− β�)− (

1

n
X>X − I)

d

n
vS

+
1

n
X>(�Xw�2

e+ − �Xu
�2
e− ) + Γ:
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Denote the last two lines in in the last equation above as �r. We know

1

n
X>r =

d

n
vS + �w�2

S+
− �u�2

S−
− β� + �r:

To bound k�rk1, by Lemma 5 and Assumption 1, we know



(b− 1

n
)(X>ξ)e −

1

n
(X>ξ)S






1

=O ((1 + jnb− 1j)Bξ)



(
1

n
X>X − I)(

d

n
vS + �w�2

S+
− �u�2

S−
− β�)






1

=
p
s�





 dnvS + �w�2
S+
− �u�2

S−
− β�






2

�s�




 dnvS + �w�2

S+
− �u�2

S−
− β�






1



(

1

n
X>X − I)

d

n
vS






1
�
p
s�
d

n
kvSk2



 1

n
X>(�Xw�2

e+ − �Xu
�2
e− )






1

=O

�
�p
n




Xw�2
e+ −Xu

�2
e−





2

�
=O

�
dp
n
�

�
(


we+

2

1 +


ue−

2

1);

Thus, we have

k�rk1 =O ((1 + jnb− 1j)Bξ) + s�





 dnvS + �w�2
S+
− �u�2

S−
− β�






1

+
p
s�
d

n
kvSk2

+O

�
dp
n
�

�
(


we+

2

1 +


ue−

2

1) + 


B Proof for Stage 1

Recall that our goal in Stage 1 is to show (1) variables wS and uS grow large to recover β� (speci�cally, wS
recovers the positive entries of β� and uS recovers the negative entries of β�); (2) the other variables we,
ue and v remain small. This is summarized in the following main lemma:

Lemma 7 (Stage 1). Let C1 be a large enough universal constant, denote

T1 := inf

(
t :





 dnv(T1)
S + �w

(T1)�2
S+

− �u(T1)�2
S−

− β�





1

= C1(Bξ + �
p
n=d)

)
:

Then we know T1 = O(log(1=�)=��) and the following hold:

•



w(T1)

e+





1
;



u(T1)

e−





1

= O(�).

•



v(T1)

S





2

= O(
p
s(n=d) log2(d)(Bξ + �

p
n=d)) and



v(T1)




2
= O(�

p
n=d).

•


r(T1)




2

= O(�
p
n).

To prove this lemma, we need to maintain the following inductive hypothesis which assumes the approx-
imate error comes from the non-signal entry is small and other regularity conditions. Later we will use these
assumptions to bound di�erent error terms and �nish the induction.
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Lemma B.1 (Inductive Hypothesis for Stage 1). For t � eT1 := CT1 log(1=�)=���min with large enough
universal constant CT1 , the following hold:

•



w(t)

e+





1
;



u(t)

e−





1

= O(�).

•



�w(t)�2

S+
− �u(t)�2

S−
− β�





1

= O(1),



 dnv(t)

S + �w
(t)�2
S+

− �u(t)�2
S−

− β�




1

= O(1).

•


r(t)




2
�


r(0)




2

= O(
p
sn).

B.1 Dynamics of v

As we discussed earlier, even though in Stage 1 we hope to use the corresponding entries of u, w to learn
the signal, the same entries of v will also grow and it's important to understand the dynamics of v.

The dynamics of v roughly follows the trajectory for optimizing kXv − ξk22 =2n. We formalize that in the
following two lemmas. First, we give a decomposition of XX>v=n as follow. This term plays an important
role when we estimate the gradient as shown in Lemma 6, therefore we here give a careful analysis.

Lemma B.2. Recall the decomposition in (3)

1

n
X>Xv(t) =

d

n
v

(t)
S + bt(X

>ξ)e + Γt;

bt+1 = bt −
�d

n

�
bt −

1

n

�
;

where


Γ(t)




1 � 
t and recall the notation βS =

P
i:β∗

i 6=0 �iei, βe =
P
i:β∗

i =0 �iei. Suppose Lemma B.1

holds. We have for t � eT1

bt = (1− (1− �d=n)t)=n � 1=n;


t � O((
p
sd=n+ ds�=n)�t) = O(�

p
n=d+Bξ):

We then give the decomposition of v.

Lemma B.3. Recall the decomposition in (4)

v(t) = v
(t)
S + atX

>ξ + �(t)
v ;

at+1 = at − �(bt − 1=n)

where



�(t)

v





1
� �t. and recall the notation βS =

P
i:β∗

i 6=0 �iei, βe =
P
i:β∗

i =0 �iei. Suppose Lemma B.1

holds. We have for t � eT1

at = (1− (1− �d=n)t)=d � 1=d

�t = O((Bξ + s� + �
p
n=d)�t) = O(�

p
n=d):

Moreover, for every t � eT1,


v(t)




2

= O(�
p
n=d),




v(t)
S





2

= O(
p
s(n=d) log2(d)(Bξ + �

p
n=d)).

B.2 Implications of Inductive Hypothesis Lemma B.1

Given the understanding of dynamics of v andX>Xv in Appendix B.1, we have the following approximation
of gradient, using Lemma 6.
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Lemma B.4. In the setting of Lemma B.2 and Lemma B.3, we have for t � eT1

rwL =

�
1

n
X>r

�
� (2�w) = 2�(

d

n
vS + �w�2

S+
− �u�2

S−
− β� + �r)�w;

ruL = −
�

1

n
X>r

�
� (2�u) = −2�(

d

n
vS + �w�2

S+
− �u�2

S−
− β� + �r)� u;

rvL =
1

n
X>r =

d

n
vS + �w�2

S+
− �u�2

S−
− β� + �r;

where 


�(t)
r





1

=O
�
Bξ + �

p
n=d

�
| {z }

=:Bs

+s�





 dnv(t)
S + �w

(t)�2
S+

− �u(t)�2
S−

− β�





1
;

Now we are ready to estimate the dynamics for the relevant entries of u and w using Lemma B.4.
We �rst show in Lemma B.5 that wS+

;uS− will grow to 
(�min). Then in Lemma B.6 we show that it

takes O(1=���min) to decrease



 dnv(t)

S + �(w
(t)
S+

)2 − �(u
(t)
S−

)2 − β�




1

by half. The proofs are deferred to

Appendix B.4.

Lemma B.5. Suppose Lemma B.1 hold. Then for every T11 � t � eT1 with T11 = O(log(1=��2)=���min),

�(w
(t)
k )2 � �min=4 for k 2 S+ and �(u

(t)
k )2 � �min=4 for k 2 S−.

Lemma B.6. Suppose Lemma B.1 and Lemma B.5 hold. Given any time t0, assume at time t0 B0 :=


 dnv(t0)
S + �(w

(t0)
S+

)2 − �(u
(t0)
S−

)2 − β�




1
� 4Bs where Bs is de�ned in Lemma B.4. Let

T 0 := inf

�
t− t0 � 0 :





 dnv(t)
S + �(w

(t)
S+

)2 − �(u
(t)
S−

)2 − β�





1
�




 dnv(t0)

S + �(w
(t0)
S+

)2 − �(u
(t0)
S−

)2 − β�





1
=2

�
be the time that signal error reduces by half. Then, we know T 0 = O(1=���min).

As a technical condition in proving the two lemmas above, we need to make sure that once we �t the
signal using the corresponding entries in u;w;v up to error �, the error will not become much worse later.
We formalize this as the following stability lemma.

Lemma B.7 (Stability). Suppose Lemma B.4 and Lemma B.5 hold. Assume


 d
nv

(t0) + �w(t0)�2 − �u(t0)�2 − β�



1 �

� at time t0, then j dnv
(t)
k + �(w

(t)
k )2 − �(u

(t)
k )2 − ��k j � maxf�; 2(Bs + s��)g for all t � t0 and k 2 S, where

Bs is de�nied in Lemma B.4.

Now we are ready to bound the time T1 for Stage 1 using the above lemmas.

Lemma B.8. Suppose Lemma B.1 hold. Recall

T1 := inf

�
t :





 dnv(t)
S + �(w

(t)
S+

)2 − �(u
(t)
S−

)2 − β�





1
� C1(Bξ + �

p
n=d)

�
;

where C1 is a large enough universal constant. Then, we know T1 = O(log(1=�)=���min).

B.3 Proof of Inductive Hypothesis Lemma B.1 and Lemma 7

Finally, we are ready to prove in the induction hypothesis and �nish the proof of Lemma 7.

Lemma B.1 (Inductive Hypothesis for Stage 1). For t � eT1 := CT1
log(1=�)=���min with large enough

universal constant CT1
, the following hold:
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•



w(t)

e+





1
;



u(t)

e−





1

= O(�).

•



�w(t)�2

S+
− �u(t)�2

S−
− β�





1

= O(1),



 dnv(t)

S + �w
(t)�2
S+

− �u(t)�2
S−

− β�




1

= O(1).

•


r(t)




2
�


r(0)




2

= O(
p
sn).

Proof. We claim



w(t)

e+





1
;



u(t)

e−





1

= �(1+O(��(Bξ+�
p
n=d+s�)))t and




 dnv(t)
S + �w

(t)�2
S+

− �u(t)�2
S−

− β�




1

=

O(1). If such claim is true, then we prove the �rst 2 points as t � eT1 and (d=n) kvSk1 = O(1) by Lemma B.3.
We show the above claim by induction. We know all the conditions hold at t = 0. Suppose before time

t it holds, then consider the time t+ 1.

For



 dnv(t+1)

S + �w
(t+1)�2
S+

− �u(t+1)�2
S−

− β�




1

, if �(w
(t+1)
k )2 + �(u

(t+1)
k )2 � �min=4, then it is easy to

see it is bounded by O(1). Otherwise, we can see it from the proof of Lemma B.6 and Lemma B.8.

Now consider



w(t+1)

e+





1

and



u(t+1)

e−





1

. By Lemma B.4 we have for k 62 S

jw(t+1)
k j �(1 + 2��O(Bξ + �

p
n=d+ s�))jw(t)

k j;

which implies that jw(t+1)
k j � (1 + O(��(Bξ + �

p
n=d + s�)))t+1� as w

(0)
k = �. Similarly, we get the same

bound for uk with k 62 S.
It remains to consider wk with k 2 S− and uk with k 2 S+. We will focus on wk with k 2 S−, the other

follows the same calculation. We have

w
(t+1)
k u

(t+1)
k =

�
1− 2��

�
1

n
X>r(t)

�
k

�
w

(t)
k �

�
1 + 2��

�
1

n
X>r(t)

�
k

�
u

(t)
k � w

(t)
k u

(t)
k � �

2:

From the proof of Lemma B.8 we know u
(t)
k � �. This implies that jw(t)

k j � �.
We now prove the last part on



r(t+1)




2
. We have

r(t+1) =Xv(t+1) + �Xw(t+1)�2 − �Xu(t+1)�2 − ξ

=r(t) − �X � 1

n
X>r(t) + �X

�
−� 4�

n
(X>r)�w�2 + �2 4�2

n2
(X>r)�2 �w�2

�
− �X

�
�

4�

n
(X>r)� u�2 + �2 4�2

n2
(X>r)�2 � u�2

�
:

This suggests that


r(t+1)





2
�
�

1− �

n
�min(XX>)− 4��2

n
�min(Xdiag(w�2 + u�2)X>)

�


r(t)





2
+ �
p
d �O

�
�2 �

2

n2
d krk22

�
�
�

1− 


�
�d

n

��


r(t)





2

where we use Lemma B.10 and Assumption 1. We �nish the induction.

Now we are ready to proof the main result Lemma 7 for Stage 1.

Lemma 7 (Stage 1). Let C1 be a large enough universal constant, denote

T1 := inf

(
t :





 dnv(T1)
S + �w

(T1)�2
S+

− �u(T1)�2
S−

− β�





1

= C1(Bξ + �
p
n=d)

)
:

Then we know T1 = O(log(1=�)=��) and the following hold:
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•



w(T1)

e+





1
;



u(T1)

e−





1

= O(�).

•



v(T1)

S





2

= O(
p
s(n=d) log2(d)(Bξ + �

p
n=d)) and



v(T1)




2
= O(�

p
n=d).

•


r(T1)




2

= O(�
p
n).

Proof. Combine Lemma B.1, Lemma B.3, Lemma B.8 we prove the �rst 2 points and bound the time T1.
For the last point, by Lemma 5 and Assumption 1


r(T1)





2
�



X�w(T1)�2

e+





2

+



X�u(T1)�2

e−





2

+



X(v

(T1)
S + �w

(T1)�2
S+

− �u(T1)�2
S−

− β�)





2
+



X(v(T1) − v(T1)

S )− ξ





2

�O(�d�2) +O(
p
ns(Bξ + �

p
n=d)) + (d=n− 1)




Xv(T1)
S





2

+



(aT1XX

> − I)ξ + �(T1)
v





2

�O(1) kξk2 +O(�d�2) +O(
p
ns(Bξ + �

p
n=d)) + eO(

p
ns(Bξ + �

p
n=d)) +

p
d�T1

=O(�
p
n);

where we use aT1
� 1=d and �T1

= O(�
p
n=d) from Lemma B.3.

B.4 Omitted Proofs in Section B.1 and Section B.2

In this subsection, we give the proof of Lemma B.2, Lemma B.3, Lemma B.4, Lemma B.5, Lemma B.6,
Lemma B.7 and Lemma B.8 in previous subsections.

Lemma B.2. Recall the decomposition in (3)

1

n
X>Xv(t) =

d

n
v

(t)
S + bt(X

>ξ)e + Γt;

bt+1 = bt −
�d

n

�
bt −

1

n

�
;

where


Γ(t)




1 � 
t and recall the notation βS =

P
i:β∗

i 6=0 �iei, βe =
P
i:β∗

i =0 �iei. Suppose Lemma B.1

holds. We have for t � eT1

bt = (1− (1− �d=n)t)=n � 1=n;


t � O((
p
sd=n+ ds�=n)�t) = O(�

p
n=d+Bξ):

Proof. We �rst write the update of bt and Γt using the update of v.

bt+1(X>ξ)e + Γt+1 =
1

n
X>Xv(t+1) − d

n
v

(t+1)
S

=
1

n
X>Xv(t) − d

n
v

(t)
S − �

1

n
X>X

1

n
X>r(t) + �

d

n

�
1

n
X>r(t)

�
S

=bt(X
>ξ)e + Γt −

�

n2
X>XX>r(t) + �

d

n

�
1

n
X>r(t)

�
S

=bt(X
>ξ)e + Γt −

�

n2
X>(XX> − dI)r(t) − � d

n

�
1

n
X>r(t)

�
e

:

We bound the last two terms one by one. For η
n2X

>(XX> − dI)r(t), we have by Assumption 1 and
Lemma B.1 


 �

n2
X>(XX> − dI)r(t)





1
� �

n
O(

1p
n
�
p
dn �
p
sn) = O(�

p
sd=n):
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For � dn
(

1
nX

>r(t)
�
e
, we have�

1

n
X>r(t)

�
e

=

�
1

n
X>Xv(t) +

1

n
X>X(�w

(t)�2
S+

− �u(t)�2
S−

− β�)− 1

n
X>ξ +

1

n
X>(�Xw(t)�2

e+ − �Xu(t)�2
e− )

�
e

=

�
d

n
v

(t)
S +

1

n
X>X(�w

(t)�2
S+

− �u(t)�2
S−

− β�) + (bt −
1

n
)X>ξ + Γt +

1

n
X>(�Xw(t)�2

e+ − �Xu(t)�2
e− )

�
e

=(bt −
1

n
)(X>ξ)e +

�
(

1

n
X>X − I)(�w

(t)�2
S+

− �u(t)�2
S−

− β�) + Γt +
1

n
X>(�Xw(t)�2

e+ − �Xu(t)�2
e− )

�
e

:

Therefore, by Lemma B.1 we know

bt+1 = bt −
�d

n
(bt −

1

n
);


t+1 � 
t +O(�
p
sd=n) + �

d

n
O(s� + (d=

p
n)��2) = 
t + �O(

p
sd=n+ ds�=n):

This implies

bt = (1− (1− �d=n)t)=n � 1=n;


t � O((
p
sd=n+ ds�=n)�t) = O(�

p
n=d+Bξ):

Lemma B.3. Recall the decomposition in (4)

v(t) = v
(t)
S + atX

>ξ + �(t)
v ;

at+1 = at − �(bt − 1=n)

where



�(t)

v





1
� �t. and recall the notation βS =

P
i:β∗

i 6=0 �iei, βe =
P
i:β∗

i =0 �iei. Suppose Lemma B.1

holds. We have for t � eT1

at = (1− (1− �d=n)t)=d � 1=d

�t = O((Bξ + s� + �
p
n=d)�t) = O(�

p
n=d):

Moreover, for every t � eT1,


v(t)




2

= O(�
p
n=d),




v(t)
S





2

= O(
p
s(n=d) log2(d)(Bξ + �

p
n=d)).

Proof. We write the update of at and �
(t)
v using the update of v

at+1X
>ξ + �(t+1)

v =v(t+1) − v(t+1)
S = v(t) − v(t)

S − �
�

1

n
X>r(t)

�
e

=atX
>ξ + �(t)

v − �
�

1

n
X>r(t)

�
e

:

For
(

1
nX

>r(t)
�
e
, using the decomposition of X>Xv=n in Lemma B.2, we have�

1

n
X>r(t)

�
e

=

�
1

n
X>Xv(t) +

1

n
X>X(�w

(t)�2
S+

− �u(t)�2
S−

− β�)− 1

n
X>ξ +

1

n
X>(�Xw(t)�2

e+ − �Xu(t)�2
e− )

�
e

=

�
d

n
v

(t)
S +

1

n
X>X(�w

(t)�2
S+

− �u(t)�2
S−

− β�) + (bt −
1

n
)X>ξ + Γt +

1

n
X>(�Xw(t)�2

e+ − �Xu(t)�2
e− )

�
e

=(bt −
1

n
)(X>ξ)e +

�
(

1

n
X>X − I)(�w

(t)�2
S+

− �u(t)�2
S−

− β�) + Γt +
1

n
X>(�Xw(t)�2

e+ − �Xu(t)�2
e− )

�
e

:
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Therefore, we have the update of at and �t by using Assumption 1, Lemma 5 and Lemma B.1

at+1 =at − �(bt − 1=n);

�t+1 � �t + �O(jnbt − 1jBξ + s� + �
p
n=d+Bξ + (d=

p
n)��2):

This implies

at = �t=n− �
X
τ<t

bτ = (1− (1− �d=n)t)=d � 1=d

�t � O((Bξ + s� + �
p
n=d)�t) = O(�

p
n=d):

Thus, we have



v(t) − v(t)

S





2
� atO(�

p
dn) + �t

p
d = O(�

p
n=d). We now bound kvSk2. Since its

gradient norm krvS
Lk2 =



(X>r=n)S




2
� O(

p
s) by Lemma B.1 and Assumption 1, we can bound

kvSk2 as kvSk2 = �
P
τ�t



rvS
L(τ)




2
� O(

p
s�t) = O(

p
s(n=d) log2(d)(Bξ + �

p
n=d)). This also implies

kvk2 = O(�
p
n=d).

Lemma B.4. In the setting of Lemma B.2 and Lemma B.3, we have for t � eT1

rwL =

�
1

n
X>r

�
� (2�w) = 2�(

d

n
vS + �w�2

S+
− �u�2

S−
− β� + �r)�w;

ruL = −
�

1

n
X>r

�
� (2�u) = −2�(

d

n
vS + �w�2

S+
− �u�2

S−
− β� + �r)� u;

rvL =
1

n
X>r =

d

n
vS + �w�2

S+
− �u�2

S−
− β� + �r;

where 


�(t)
r





1

=O
�
Bξ + �

p
n=d

�
| {z }

=:Bs

+s�





 dnv(t)
S + �w

(t)�2
S+

− �u(t)�2
S−

− β�





1
;

Proof. By Lemma B.2 and Lemma B.3 and the choice of parameter, the result directly follows from Lemma 6.

Lemma B.5. Suppose Lemma B.1 hold. Then for every T11 � t � eT1 with T11 = O(log(1=��2)=���min),

�(w
(t)
k )2 � �min=4 for k 2 S+ and �(u

(t)
k )2 � �min=4 for k 2 S−.

Proof. For t � eT1, by Lemma B.4, we have for k 2 S+ (note that (uS−)k = 0 in this case. The case k 2 S−
is similar, we omit for simplicity)

w
(t+1)
k =

�
1− 2��

�
d

n
v

(t)
k + �(w

(t)
k )2 − ��k �O(Bξ + �

p
n=d+ s�)

��
w

(t)
k ;

v
(t+1)
k =v

(t)
k − �

�
d

n
v

(t)
k + �(w

(t)
k )2 − ��k �O(Bξ + �

p
n=d+ s�)

�
:

Since



v(t)

S





1

= O(
p
s(n=d) log2(d)(Bξ+�

p
n=d)) by Lemma B.3, this implies that (d=n)




v(t)
S





1
< �min=4.

Thus,

�(w
(t+1)
k )2 =

�
1− 2��

�
d

n
v

(t)
k + �(w

(t)
k )2 − ��k �O(Bξ + �

p
n=d+ s�)

��2

�(w
(t)
k )2

�
�

1− 2��
�
�(w

(t)
k )2 − ��k=2

��2

�(w
(t)
k )2:

Therefore, by Lemma B.9 within time O(log(1=��2)=���min) we have �(w
(t)
k )2 � �min=4 and will remain for

t � eT1.
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Lemma B.6. Suppose Lemma B.1 and Lemma B.5 hold. Given any time t0, assume at time t0 B0 :=


 dnv(t0)
S + �(w

(t0)
S+

)2 − �(u
(t0)
S−

)2 − β�




1
� 4Bs where Bs is de�ned in Lemma B.4. Let

T 0 := inf

�
t− t0 � 0 :





 dnv(t)
S + �(w

(t)
S+

)2 − �(u
(t)
S−

)2 − β�





1
�




 dnv(t0)

S + �(w
(t0)
S+

)2 − �(u
(t0)
S−

)2 − β�





1
=2

�
be the time that signal error reduces by half. Then, we know T 0 = O(1=���min).

Proof. For t � t0 + T 0, by Lemma B.4, we have for k 2 S+ (note that (uS−)k = 0 in this case. The case
k 2 S− is similar, we omit for simplicity)

w
(t+1)
k =

�
1− 2��

�
d

n
v

(t)
k + �(w

(t)
k )2 − ��k �

�
Bs + s�





 dnv(t)
S + �(w

(t)
S+

)2 − �(u
(t)
S−

)2 − β�





1

���
w

(t)
k ;

v
(t+1)
k =v

(t)
k − �

�
d

n
v

(t)
k + �(w

(t)
k )2 − ��k �

�
Bs + s�





 dnv(t)
S + �(w

(t)
S+

)2 − �(u
(t)
S−

)2 − β�





1

��
:

We claim
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S + �(w
(t)
S+

)2 − �(u
(t)
S−

)2 − β�




1
�



 dnv(t0)

S + �(w
(t0)
S+

)2 − �(u
(t0)
S−

)2 − β�




1

= B0 for t0 �
t � t0 +T 0. We show this by induction. At t = t0 it holds. Suppose before t the claim holds. For time t+ 1,

d

n
v

(t+1)
k + �(w

(t+1)
k )2 =

d

n
v

(t)
k −

d

n
�

�
d

n
v

(t)
k + �(w

(t)
k )2 − ��k �B0=3

�
+

�
1− 2��

�
d

n
v

(t)
k + �(w

(t)
k )2 − ��k �B0=3

��2

�(w
(t)
k )2

� d
n
v

(t)
k + �(w

(t)
k )2 − �

�
d

n
v

(t)
k + �(w

(t)
k )2 − ��k �B0=3

��
d

n
+ 4�2(w

(t)
k )2

�
:

This implies for t � t0 + T 0

d

n
v

(t+1)
k + �(w

(t+1)
k )2 − ��k �

�
d

n
v

(t)
k + �(w

(t)
k )2 − ��k

��
1− �

3

�
d

n
+ 4�2(w

(t)
k )2

��
�
�
d

n
v

(t)
k + �(w

(t)
k )2 − ��k

�
(1− 
(���min)) ;

where in the last line we use Lemma B.5. Thus, if d
nv

(t)
k + �(w

(t)
k )2 − ��k < −B0=2, then it will increase so

that j dnv
(t)
k + �(w

(t)
k )2 − ��k j � B0. Similarly, one can show that if d

nv
(t)
k + �(w

(t)
k )2 − ��k > B0=2, then it will

decrease so that j dnv
(t)
k + �(w

(t)
k )2 − ��k j � B0. In this way, we �nish the induction.

Moreover, from the above calculations, we can see that if dnv
(t)
k +�(w

(t)
k )2−��k < −B0=2, then within time

O(1=���min), j dnv
(t)
k + �(w

(t)
k )2 − ��k j � B0=2. Similarly, if d

nv
(t)
k + �(w

(t)
k )2 − ��k > B0=2, then within time

O(1=���min), j dnv
(t)
k +�(w

(t)
k )2−��k j � B0=2. By Lemma B.7, we know once j dnv

(t)
k +�(w

(t)
k )2−��k j � B0=2,

it will remain bounded by B0=2. Therefore, we know T 0 = O(1=���min).

Lemma B.7 (Stability). Suppose Lemma B.4 and Lemma B.5 hold. Assume


 d
nv

(t0) + �w(t0)�2 − �u(t0)�2 − β�



1 �

� at time t0, then j dnv
(t)
k + �(w

(t)
k )2 − �(u

(t)
k )2 − ��k j � maxf�; 2(Bs + s��)g for all t � t0 and k 2 S, where

Bs is de�nied in Lemma B.4.

Proof. By Lemma B.4, we have for k 2 S+ (note that (uS−)k = 0 in this case. The case k 2 S− is similar,
we omit for simplicity)

w
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k =

�
1− 2��

�
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k + �(w

(t)
k )2 − ��k � (Bs + s��)
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(t)
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v
(t+1)
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(t)
k − �

�
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n
v

(t)
k + �(w

(t)
k )2 − ��k � (Bs + s��)

�
:

24



Since �(w
(t)
k )2 = �min=4 by Lemma B.5, we have

d

n
v

(t+1)
k + �(w

(t+1)
k )2 =

d

n
v

(t)
k −

d

n
�

�
d

n
v

(t)
k + �(w

(t)
k )2 − ��k � (Bs + s��)

�
+

�
1− 2��

�
d

n
v

(t)
k + �(w

(t)
k )2 − ��k � (Bs + s��)

��2

�(w
(t)
k )2

� d
n
v

(t)
k + �(w

(t)
k )2 − �

0@ d

n
v

(t)
k + �(w

(t)
k )2 − ��k � (Bs + s��)| {z }

=:err

1A� d
n

+ 4�2(w
(t)
k )2

�
:

This implies for t � t0, if d
nv

(t)
k + �(w

(t)
k )2 − ��k < −2err, we have

d

n
v

(t+1)
k + �(w

(t+1)
k )2 − ��k �

�
d

n
v

(t)
k + �(w

(t)
k )2 − ��k

��
1− �

2

�
d

n
+ 4�2(w

(t)
k )2

��
�
�
d

n
v

(t)
k + �(w

(t)
k )2 − ��k

�
(1− 
(���min))

Thus, d
nv

(t)
k + �(w

(t)
k )2 − ��k will increase in this case. Therefore, we know d

nv
(t)
k + �(w

(t)
k )2 − ��k �

−maxf�; 2errg = −maxf�; 2(Bs + s��)g for all t � t0. Similarly, given � is small enough, we can also
get a similar upper bound. Thus, we �nish the proof.

Lemma B.8. Suppose Lemma B.1 hold. Recall

T1 := inf

�
t :





 dnv(t)
S + �(w

(t)
S+

)2 − �(u
(t)
S−

)2 − β�





1
� C1(Bξ + �

p
n=d)

�
;

where C1 is a large enough universal constant. Then, we know T1 = O(log(1=�)=���min).

Proof. We can �rst use Lemma B.5 and then repeatedly using Lemma B.6 log(1=4Bs) times. We get within

time O(log(1=��2(Bξ + �
p
n=d))=���min) = O(log(1=�)=���min),




 dnv(t)
S + �(w

(t)
S+

)2 − �(u
(t)
S−

)2 − β�




1
�

4Bs = C1(Bξ + �
p
n=d).

B.5 Technical Lemmas

In this subsection, we collect several technical lemmas that are used in the proof.

Lemma B.9. Suppose zt+1 = (1− �(zt − �))2zt with �; �; z0 > 0 and z0 � �− ". Then if � � �=2, within
time T = O((1=��)(log(�=z0) + log(�="))) we have jzT − �j � ". Moreover, we have jzt − �j � " for t � T .

Proof. Denote T1 := infft : zt � �=2g and T2 := infft : jzt − �j � "g. We bound T1 and T2 − T1 respectively
in below.

For t � T1, we have zt+1 � (1 + ��=2)2zt � (1 + ��=2)2tz0. Therefore, T1 = O((1=��) log(�=z0)). For
T1 � t � T2, we have zt+1 � zt − 2�(zt − �)zt � zt − �(zt − �)�. This implies zt+1 − � � (1− ��)(zt − �) �
(1 − ��)t−T1(zT1 − �). Therefore, T2 − T2 = O((1=��) log(�=")). Together we know T = T1 + T2 =
O((1=��)(log(�=z0) + log(�="))).

We then show once jzt−�j � ", it will stay close to �. To see this, if −" � zt−� < 0, then from the above
calculation we know zt+1 − � � (1− ��)(zt − �) � −". If 0 � zt − � � ", then zt+1 = (1− �(zt − �))2zt �
zt � �+ ". Therefore, we know jzt − �j � " for t � T1.

Lemma B.10. For �; � 2 Rd, we have k�� �k2 � k�k2 k�k1,


��k



2
� k�kk2 for k � 1.
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Proof. We have

k�� �k22 =
X
i

�2
i�

2
i � k�k

2
2 k�k

2
1 ;



��k

2

2
=
X
i

�2k
i = k�k2k2k � k�k

2k
2 :

C Proof for Stage 2

In Stage 2, we will show that the training loss goes to " while the test loss kβ − β�k2 remains small. In
particular, we will split into 2 sub-stages: in Stage 2.1, train loss decreases to krk2 = O(�) (Lemma C.1),
and in Stage 2.2 we use a NTK-type analysis (Lemma C.6). Note that it su�ces to combine Lemma C.1
and Lemma C.6 to get Lemma 10.

Throughout Stage 2, we mostly rely on ve to �t the noise in order to reduce the loss; at the same time,
we show that the variables used in Stage 1 continue to �t the signal and all the other variables remain small.
This can be done by an NTK-type analysis when the loss is very small. However, for the �rst part of Stage
2 we still need to track the dynamics of v and X>Xv carefully.

C.1 Stage 2.1: train loss decreases to krk2 = O(σ)

Our goal in this stage is to show that the loss decreases to O(�2) and that the non-signal entries remain
small. We formalize this in the following main lemma.

Lemma C.1 (Stage 2.1). Let T21 := infft :


r(t)




2
� C21�g with large enough universal constant C21.

Then, we have T21 − T1 = O((n=�d) log(n)) and the following hold:

•
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S �w
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− �u(T21)�2
S−

− β�




1

= O(Bξ + �
p
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1
;
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1

= O(�).

•


v(T21)




2

= O(�
p
n=d) and




v(T21)
S





2

= O(
p
s(n=d) log2(d)(Bξ + �

p
n=d)).

To prove this, we will maintain the following inductive hypothesis, which shows the non-signal entries
remain small. The overall strategy is to show that entries of v will allow us to �t the noise and hence reduce
loss, and we do this by using a similar strategy to track the dynamics of v as in Stage 1.

Lemma C.2 (Inductive Hypothesis for Stage 2.1). For T1 � t � eT21 := T1 +CT21
(n log(n)=�d) with a large

enough universal constant CT21
, we have the following hold:

•
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− �u(t)�2
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p
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1
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1

= O(�).

•
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2

= O(
p
s(n=d) log2(d)(Bξ + �

p
n=d)).

•


r(t)




2

= (1− 
(�d=n))t−T1O(�
p
n).

In particular, the �rst point and third point imply that



�w(t)�2

S+
− �u(t)�2

S−
− β�





1

= O(
p
s(Bξ+�

p
n=d) log2(d)).

The last point implies that T21−T1 = O((n=�d) log(n)). Moreover, by the choice of parameters, O(d=
p
n)�




w(t)
e+




2

1
=

O(Bξ= log d), O(d=
p
n)�




u(t)
e−




2

1
= O(Bξ= log d).
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C.1.1 Dynamics of v

As in Stage 1, we analyze the decomposition of X>Xv=n and v separately. The proofs are very similar
to Lemma B.2 and Lemma B.3 in Stage 1, but several terms will now have a tighter bound. We defer the
proofs to Appendix C.1.4.

For the decomposition of X>Xv=n we have

Lemma C.3. Recall the decomposition in (3)

1

n
X>Xv(t) =

d

n
v

(t)
S + bt(X

>ξ)e + Γt;

bt+1 = bt −
�d

n
(bt −

1

n
);

where


Γ(t)




1 � 
t and recall the notation βS =

P
i:β∗

i 6=0 �iei, βe =
P
i:β∗

i =0 �iei. Suppose Lemma C.2

holds. We have for T1 � t � eT21

bt = (1− (1− �d=n)t)=n � 1=n;


t � 
T1 +O(�
p
d=n+ (dBξ=n log d)�t) = O(�

p
n=d+Bξ):

For the decomposition of v we have

Lemma C.4. Recall the decomposition in (4)

v(t) = v
(t)
S + atX

>ξ + �(t)
v ;

at+1 = at − �(bt − 1=n);

where
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� �t. and recall the notation βS =

P
i:β∗

i 6=0 �iei, βe =
P
i:β∗

i =0 �iei. Suppose Lemma C.2

holds. We have for T1 � t � eT21

at = (1− (1− �d=n)t)=d � 1=d

�t = �T1
+O((Bξ + �

p
n=d)�(t− T1)) = O((Bξ + �

p
n=d)n log(n)=d):

In particular, we can show that


v(t)




2

= O(�
p
n=d).

C.1.2 Implications of Inductive Hypothesis Lemma C.2

Given the dynamics of v, we now have the approximation of gradient by Lemma 6.

Lemma C.5. In the setting of Lemma C.3 and Lemma C.4, we have for T1 � t � eT21
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�
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n
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�
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n
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�
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� (2�u) = −2�(
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where 
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C.1.3 Proof of Inductive Hypothesis Lemma C.2 and Lemma C.1

Now we are ready to prove the induction hypothesis for Stage 2.1 and Lemma C.1.

Lemma C.2 (Inductive Hypothesis for Stage 2.1). For T1 � t � eT21 := T1 +CT21
(n log(n)=�d) with a large

enough universal constant CT21 , we have the following hold:

•
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− β�




1
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= O(�).

•
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= O(
p
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p
n=d)).

•
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= (1− 
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In particular, the �rst point and third point imply that
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1

= O(
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n=d) log2(d)).

The last point implies that T21−T1 = O((n=�d) log(n)). Moreover, by the choice of parameters, O(d=
p
n)�
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=

O(Bξ= log d), O(d=
p
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2

1
= O(Bξ= log d).

Proof. We show these inductively on t. For t = T1, we know it holds by Lemma 7. Suppose it holds before
time t, then at time t+ 1 we will show it still hold.

For



 dnv(t+1)
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(t+1)�2
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− �u(t+1)�2
S−

− β�




1

, let k 2 S+ (the case k 2 S− can be handled similarly, we

omit for simplicity). Since by the choice of parameter (d=n)



v(t)

S





1
< �min=2, we know �(w

(t)
k )2 = �min=4.

For T1 � t � eT21, by Lemma B.7 and Lemma C.5, we know
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O(Bξ + �
p
n=d).

For k 62 S, consider wk (uk can be bounded similarly), we have the dynamics by Lemma C.5
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�
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k :

This means jw(t)
k j = (1 +O(��(Bξ + �

p
n=d))t−T1O(�) = O(�).

It remains to consider wk with k 2 S− and uk with k 2 S+. We will focus on wk with k 2 S−, the other
follows the same calculation. Similar in the proof of Lemma B.1, we have

w
(t+1)
k u

(t+1)
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�
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�
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n
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�
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We know u
(t)
k � �. This implies that jw(t)

k j � �.
For kvSk2, we have by Lemma C.5 and Lemma 7
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 1

n
(X>r(t))S






2
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v(T1)
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For the bound on


r(t+1)




2
, using the same calculation as in the proof of Lemma B.1, we can show it is

true.

Given the above induction hypothesis, we are ready to prove the main result for Stage 2.1.

Lemma C.1 (Stage 2.1). Let T21 := infft :


r(t)




2
� C21�g with large enough universal constant C21.

Then, we have T21 − T1 = O((n=�d) log(n)) and the following hold:
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•



 dnv(T21)

S �w
(T21)�2
S+

− �u(T21)�2
S−

− β�




1

= O(Bξ + �
p
n=d)

•



w(T21)
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1
;



u(T21)
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1

= O(�).

•


v(T21)




2

= O(�
p
n=d) and




v(T21)
S





2

= O(
p
s(n=d) log2(d)(Bξ + �

p
n=d)).

Proof. The �rst two points and the bound on T21 − T1 follow from Lemma C.2. The last point follow from
Lemma C.4 and Lemma C.2.

C.1.4 Omitted Proofs in Section C.1.1 and Section C.1.2

In this subsection, we give the proof of Lemma C.3, Lemma C.4 and Lemma C.5.

Lemma C.3. Recall the decomposition in (3)

1

n
X>Xv(t) =

d

n
v

(t)
S + bt(X

>ξ)e + Γt;

bt+1 = bt −
�d

n
(bt −

1

n
);

where


Γ(t)




1 � 
t and recall the notation βS =

P
i:β∗

i 6=0 �iei, βe =
P
i:β∗

i =0 �iei. Suppose Lemma C.2

holds. We have for T1 � t � eT21

bt = (1− (1− �d=n)t)=n � 1=n;


t � 
T1
+O(�

p
d=n+ (dBξ=n log d)�t) = O(�

p
n=d+Bξ):

Proof. The proof here is almost the same as in the proof of Lemma B.2 in Stage 1. The only di�erence is
that we know have better bounds on the error terms. We �rst write the update of bt and Γt using the update
of v.

bt+1(X>ξ)e + Γt+1 =
1

n
X>Xv(t+1) − d

n
v

(t+1)
S

=
1

n
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n
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1
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1
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d
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�
1

n
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�
S
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�
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�
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�

n2
X>(XX> − dI)r(t) − � d

n

�
1

n
X>r(t)

�
e

:

We bound the last two terms one by one. For η
n2X

>(XX> − dI)r(t), we have by Assumption 1 and
Lemma C.2


 �
n2
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1
� �

n
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n
�
p
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p
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p
d=n)(1− 
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For � dn
(

1
nX
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�
e
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1

n
X>r(t)

�
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�
1

n
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1

n
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n
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n
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�
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n
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n
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Therefore, we know by Lemma C.2

bt+1 = bt −
�d

n
(bt −

1

n
);


t+1 � 
t + (1−O(�d=n))t−T1O(��
p
d=n) + �

d

n
O(Bξ= log d+ (d=

p
n)��2)

= 
t + (1−O(�d=n))t−T1O(��
p
d=n) + �O(dBξ=n log d):

By Lemma B.2, this implies

bt = (1− �d=n)t−T1bT1
+ (1− (1− �d=n)t−T1)=n = (1− (1− �d=n)t)=n � 1=n;


t � 
T1
+O(�

p
n=d+ (dBξ=n log d)�(t− T1)) = O(�

p
n=d+Bξ):

Lemma C.4. Recall the decomposition in (4)

v(t) = v
(t)
S + atX

>ξ + �(t)
v ;

at+1 = at − �(bt − 1=n);

where



�(t)

v





1
� �t. and recall the notation βS =

P
i:β∗

i 6=0 �iei, βe =
P
i:β∗

i =0 �iei. Suppose Lemma C.2

holds. We have for T1 � t � eT21

at = (1− (1− �d=n)t)=d � 1=d

�t = �T1 +O((Bξ + �
p
n=d)�(t− T1)) = O((Bξ + �

p
n=d)n log(n)=d):

In particular, we can show that


v(t)




2

= O(�
p
n=d).

Proof. The proof here is almost the same as in the proof of Lemma B.3 in Stage 1. The only di�erence is

that we know have better bounds on the error terms. We write the update of at and �
(t)
v using the update

of v

at+1X
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S = v(t) − v(t)
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�

1

n
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�
e

=atX
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n
X>r(t)

�
e

:
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(

1
nX

>r(t)
�
e
, using the decomposition of X>Xv=n in Lemma C.3, we have�
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�
e
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:

Therefore, we have the update of at and �t by using Lemma 5, Assumption 1 and Lemma C.2

at+1 = at − �(bt − 1=n);

�t+1 � �t + �O(jnbt − 1jBξ +Bξ= log d+ �
p
n=d+Bξ + (d=

p
n)��2):
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By Lemma B.3, this implies

at = �t=n− �
X
τ<t

bτ = (1− (1− �d=n)t)=d � 1=d

�t � �T1
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We now bound kvk2. Since its gradient norm krvLk2 =


X>r=n



2
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by Lemma C.2 and Assumption 1, we can bound
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p
n=d).

Lemma C.5. In the setting of Lemma C.3 and Lemma C.4, we have for T1 � t � eT21
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p
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(t)�2
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− �u(t)�2
S−

− β�





1
:

Proof. By Lemma C.3 and Lemma C.4 and the choice of parameter, the result directly follows from Lemma 6.

C.2 Stage 2.2

After Stage 2.1, the loss is already very small. This allows us to further tighten the bound of several terms
and use an NTK-type analysis to show that the parameters do not move much while reduce the training loss
to ".

Lemma C.6. Let T22 := infft : L(u(t);w(t);v(t)) =


r(t)



2
=n � "g. Then T22 − T21 = O(n log(�=")=�d)

and the following hold:
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2
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In particular, the above imply that


β(T22) − β�




2

= O(
p
s log2(d)(Bξ + �

p
n=d)). Moreover, for every

t � T22, the above still hold and train loss L(t) � ".

Proof. We show these by induction. At t = T21, we know they hold by Lemma C.1. Suppose before time
t they hold, then at time t + 1 we know



X>r(τ)=n



1 = (1 − 
(�d=n))τ−T21O(�=

p
n) for any � � t by

Assumption 1.

For



 dnv(t+1)

S + �w
(t+1)�2
S+

− �u(t+1)�2
S−
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1

, consider the k-th entry with k 2 S+ (k 2 S− can be

bounded similarly). The proof is similar to the proof in Lemma C.2, we omit for simplicity.
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We now consider
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e+





1

and



u(t+1)
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1

. For k 62 S, consider wk (uk can be bounded similarly)
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p
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where in the second to last line we use the fact that
Q
i(1 + qi) = e

P
i ln(1+qi) � e

P
i qi � 1 + O(

P
i qi) forP

i qi = O(1).
It remains to consider wk with k 2 S− and uk with k 2 S+. We will focus on wk with k 2 S−, the other

follows the same calculation. Similar in the proof of Lemma B.1, we have

w
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2:

We know u
(t)
k � �. This implies that jw(t)

k j � �.
For krk2, we can bound it the same as in the proof of Lemma B.1.
For kvSk, we have by Lemma C.1
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For kvk2, we have
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Note that
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2

= O(�
p
n=d), thus we have
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2
= O(�

p
n=d).

In this way, we �nish the induction proof. It remains to bound T22 − T21. Given


r(t)




2

= (1 −

(�d=n))tO(�), we know T22−T21 = O(n log(�=")=�d). Moreover, we can see in the above proof that it will
still hold after T22, thanks to the geometric decreasing of krk2.

D Proof of main result Theorem 3

In this section, we give the proof of main result. Given that we have already characterized the training
dynamics to the convergence in Stage 1 and Stage 2, it immediately follows from the results for Stage 1
(Lemma 7) and Stage 2 (Lemma 10).

Theorem 3 (Main result). Under Assumption 1, suppose there exists constant C such that � � C. We
train model (1) with initialization v(0) = 0, w(0) = u(0) = �1 and follow the gradient descent update (2). Ife
 (s) � n � eO (minfd=s; d2/3g

�
and we choose � = �

�
d=�n(

p
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p
n=d) log(n)

�
, � = 1=poly(d),

� � O(
p
n=sd=�3), then for every t � T = O(log(n=�")n=�d) with any given " > 0 we have training loss

L(u(t);w(t);v(t)) � " and test loss
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p
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r
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n
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r
n

d

!!
:
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Proof. First note that Lemma 10 follows from the Lemma C.1 for Stage 2.1 and Lemma C.6 for Stage 2.2.
Then, it su�ces to combine Lemma 7 and Lemma 10 in Section 5, since
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2
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E Synthetic Experiments
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Figure 2: Test loss vs. dimension d when �xing the ratio d=n =
p
d=3 for 3 di�erent interpolating method:

hybrid interpolation with Lasso (Muthukumar et al., 2020), model v + �w�2 − �u�2 as we focused in the
paper and model w�2 − u�2 that only keeps the second order term. Solid lines represent the mean and
shaded regions represent the standard deviation of test loss during 3 experiments. Dashed lines represent
the corresponding order.

In this section, we run synthetic experiments to verify our theoretical results. We choose d from 100 to
106 and set n = 3

p
d. The target β� = (1=

p
3;−1=

p
3; 1=
p

3; 0; : : : ; 0)>, data xi � N(0; I) sampled from
Gaussian distribution and noise level � = 0:1. We compare 3 di�erent interpolation method:

• hybrid interpolation (Muthukumar et al., 2020): As a 2-step procedure, we �rst use Lasso (implemented
in sklearn) with `1 regularization coe�cient on the order of �(�

p
log(d)=n) (Theorems 7.13 and

7.20 in Wainwright (2019)). We choose the coe�cient with the best test loss among the choice of
f1=10; 1=5; 1=2; 1; 2; 5; 10g � �

p
log(d)=n. In the second step, we use the min-`2-norm interpolator to

�t the residual.

• Model v + �w�2 − �u�2: As suggested in our main result, we initialize v = 0 and w = u = �1 with
� = 10−10. We set � = 100d=�n log(n)(

p
log(d)=n +

p
n=d) and run gradient descent with stepsize

� = 10−6 until training loss reaches 10−4.

• Model w�2−u�2: We use small initialization that sets w = u = �1 with � = 10−15. We run gradient
descent with stepsize � = 10−6 until training loss reaches 10−4.

Our results are shown in Figure 2. We can see that with �xed ratio d=n =
p
d=3, as d increases, the test

loss of di�erent method decreases with di�erent rate. The hybrid interpolation gives the smallest test loss
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and our learner model v+ �w�2− �u�2 gives a similar performance. This agrees with what our theoretical
result suggests. The model w�2 − u�2 that only uses second-order term performs worse than others. This
is expected as we know such parametrization with small initialization converges to min-`1-norm interpolator
(Woodworth et al., 2020), and min-`1-norm interpolator gives large test loss 
(�2= log(d=n)) in the sparse
noisy regression setting (Chatterji and Long, 2022; Wang et al., 2022).
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