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ABSTRACT

Mixup is a data augmentation technique that relies on training using random convex
combinations of data points and their labels. In recent years, Mixup has become
a standard primitive used in the training of state-of-the-art image classification
models due to its demonstrated benefits over empirical risk minimization with
regards to generalization and robustness. In this work, we try to explain some
of this success from a feature learning perspective. We focus our attention on
classification problems in which each class may have multiple associated features
(or views) that can be used to predict the class correctly. Our main theoretical results
demonstrate that, for a non-trivial class of data distributions with two features per
class, training a 2-layer convolutional network using empirical risk minimization
can lead to learning only one feature for almost all classes while training with a
specific instantiation of Mixup succeeds in learning both features for every class.
We also show empirically that these theoretical insights extend to the practical
settings of image benchmarks modified to have additional synthetic features.

1 INTRODUCTION

Data augmentation techniques have been a mainstay in the training of state-of-the-art models for a
wide array of tasks - particularly in the field of computer vision - due to their ability to artificially
inflate dataset size and encourage model robustness to various transformations of the data. One such
technique that has achieved widespread use is Mixup (Zhang et al., 2018), which constructs new data
points as convex combinations of pairs of data points and their labels from the original dataset. Mixup
has been shown to empirically improve generalization and robustness when compared to standard
training over different model architectures, tasks, and domains (Liang et al., 2018; He et al., 2019;
Thulasidasan et al., 2019; Lamb et al., 2019; Arazo et al., 2019; Guo, 2020; Verma et al., 2021b;
Wang et al., 2021). It has also found applications to distributed private learning (Huang et al., 2021),
learning fair models (Chuang and Mroueh, 2021), semi-supervised learning (Berthelot et al., 2019b;
Sohn et al., 2020; Berthelot et al., 2019a), self-supervised (specifically contrastive) learning (Verma
et al., 2021a; Lee et al., 2020; Kalantidis et al., 2020), and multi-modal learning (So et al., 2022).

The success of Mixup has instigated several works attempting to theoretically characterize its
potential benefits and drawbacks (Guo et al., 2019; Carratino et al., 2020; Zhang et al., 2020; 2021;
Chidambaram et al., 2021). These works have focused mainly on analyzing, at a high-level, the
beneficial (or detrimental) behaviors encouraged by the Mixup-version of the original empirical loss
for a given task.

As such, none of these previous works (to the best of our knowledge) have provided an algorithmic
analysis of Mixup training in the context of non-linear models (i.e. neural networks), which is
the main use case of Mixup. In this paper, we begin this line of work by theoretically separating
the full training dynamics of Mixup (with a specific set of hyperparameters) from empirical risk
minimization (ERM) for a 2-layer convolutional network (CNN) architecture on a class of data
distributions exhibiting a multi-view nature. This multi-view property essentially requires (assuming
classification data) that each class in the data is well-correlated with multiple features present in the
data.

Our analysis is heavily motivated by the recent work of Allen-Zhu and Li (2021), which showed that
this kind of multi-view data can provide a fruitful setting for theoretically understanding the benefits
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of ensembles and knowledge distillation in the training of deep learning models. We show that Mixup
can, perhaps surprisingly, capture some of the key benefits of ensembles explained by Allen-Zhu and
Li (2021) despite only being used to train a single model.

Main Contributions and Outline. Our main contributions are three-fold. In Sections 2 and 3, we
introduce the main ideas behind Mixup and analyze a simple, linearly separable multi-view data
distribution which we use to lay the groundwork for our main results. In analyzing this distribution,
we motivate the use of a particular setting of Mixup - which we refer to as Midpoint Mixup - in which
training is done on the midpoints of data points and their labels.

Section 4 contains our main results; we prove that, for a highly noisy class of data distributions with
two features per class, minimizing the empirical cross-entropy using gradient descent can lead to
learning only one of the features in the data while minimizing the Midpoint Mixup cross-entropy
succeeds in learning both features. While our theory focuses on the case of two features/views per
class to be consistent with Allen-Zhu and Li (2021), our techniques can readily be extended to more
general multi-view data distributions.

Lastly, in Section 5, we conduct experiments illustrating that our theoretical insights in Sections 3 and
4 can apply to the training of realistic models on image classification benchmarks. We show for each
benchmark that, after modifying the training data to include additional spurious features correlated
with the true labels, both Mixup (with standard settings) and Midpoint Mixup outperform ERM on
the original test data, with Midpoint Mixup closely approximating the performance of regular Mixup.

Related Work. The idea of training on midpoints (or approximate midpoints) is not new; both Guo
(2021) and Chidambaram et al. (2021) empirically study settings resembling what we consider in this
paper, but they do not develop theory for this kind of training (beyond an information theoretic result
in the latter case). As mentioned earlier, there are also several theoretical works analyzing the Mixup
formulation and it variants (Carratino et al., 2020; Zhang et al., 2020; 2021; Chidambaram et al.,
2021; Park et al., 2022), but none of these works contain optimization results (which are the focus
of this work). Additionally, we note that there are many Mixup-like data augmentation techniques
and training formulations that are not (immediately) within the scope of the theory developed in this
paper. For example, Cut Mix (Yun et al., 2019), Manifold Mixup (Verma et al., 2019), Puzzle Mix
(Kim et al., 2020), Co-Mixup (Kim et al., 2021), and Noisy Feature Mixup (Lim et al., 2021) are all
such variations.

Our work is also influenced by the existing large body of work theoretically analyzing the benefits of
data augmentation (Bishop, 1995; Dao et al., 2019; Wu et al., 2020; Hanin and Sun, 2021; Rajput
et al., 2019; Yang et al., 2022; Wang et al., 2022; Chen et al., 2020; Mei et al., 2021). The most
relevant such work to ours is the recent work of Shen et al. (2022), which also studies the impact of
data augmentation on the learning dynamics of a 2-layer network in a setting motivated by that of
Allen-Zhu and Li (2021). However, Midpoint Mixup differs significantly from the data augmentation
scheme considered in Shen et al. (2022), and consequently our results and setting are also of a
different nature (we stick much more closely to the setting of Allen-Zhu and Li (2021)). As such, our
work can be viewed as a parallel thread to that of Shen et al. (2022).

2 PRELIMINARIES AND MOTIVATION FOR MIDPOINT MIXUP

We will introduce Mixup in the context of k-class classification, although the definitions below easily
extend to regression. As a notational convenience, we will use [k] to indicate {1, 2, ..., k}.
Recall that, given a finite dataset X ⊂ Rd × [k] with |X| = N , we can define the empirical
cross-entropy loss J(g,X ) of a model g : Rd → Rk as:

J(g,X ) = − 1

N

∑
i∈[N ]

log φyi
(
g(xi)

)
where φy(g(x)) =

exp(gy(x))∑
s∈[k] exp(gs(x))

(2.1)

With φ being the standard softmax function and the notation gy, φy indicating the y-th coordinate
functions of g and φ respectively. Now let us fix a distribution Dλ whose support is contained in
[0, 1] and introduce the notation zi,j(λ) = λxi + (1− λ)xj (using zi,j when λ is clear from context)
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where (xi, yi), (xj , yj) ∈ X . Then we may define the Mixup cross-entropy JM (g,X ,Dλ) as:

JM (g,X ,Dλ) = − 1

N2

∑
i∈[N ]

∑
j∈[N ]

Eλ∼Dλ
[
λ log φyi(g(zi,j)) + (1− λ) log φyj (g(zi,j))

]
(2.2)

We mention a minor differences between Equation 2.2 and the original formulation of Zhang et al.
(2018). Zhang et al. (2018) consider the expectation term in Equation 2.2 over N randomly sampled
pairs of points from the original dataset X , whereas we explicitly consider mixing all N2 possible
pairs of points. This is, however, just to make various parts of our analysis easier to follow - one could
also sample N mixed points uniformly, and the analysis would still carry through with an additional
high probability qualifier (the important aspect is the proportions with which different mixed points
show up; i.e. mixing across classes versus mixing within a class).

3 MOTIVATING MIDPOINT MIXUP: THE LINEAR REGIME

As can be seen from Equation 2.2, the Mixup cross-entropy JM (g,X ,Dλ) depends heavily on the
choice of mixing distribution Dλ. Zhang et al. (2018) took Dλ to be Beta(α, α) with α being a
hyperparameter. In this work, we will specifically be interested in the case of α→∞, for which the
distributionDλ takes the value 1/2 with probability 1. We refer to this special case as Midpoint Mixup,
and note that it can also be viewed as a case of the Pairwise Label Smoothing strategy introduced by
Guo (2021). We will write the Midpoint Mixup loss as JMM (g,X ) (here zi,j = (xi + xj)/2 and
there is no Dλ dependence as it is deterministic):

JMM (g,X ) = − 1

2N2

∑
i∈[N ]

∑
j∈[N ]

(
log φyi(g(zi,j)) + log φyj (g(zi,j))

)
(3.1)

We focus on this version of Mixup for a few key reasons. Firstly, we will show that JMM (g,X )
exhibits the nice property that its global minimizer corresponds to a model in which all of the features
in the data are learned equally (in a sense to be made precise below). We will also show that this is
not the case for JM (g,X ,Dλ) when Dλ is any other non-trivial distribution. Additionally, from a
technical perspective, the Midpoint Mixup loss lends itself to a much cleaner optimization analysis
due to the fact that the structure of its gradients is not changing with each optimization iteration (i.e.
we do not need to sample new mixing proportions at each step). This allows us to more easily show
how the gradient descent dynamics encourage learning all of the features in the data. That being
said, we are not trying to claim that Midpoint Mixup is a superior practical alternative to standard
Mixup - our goal is simply to show that it better accentuates the theoretical benefits of Mixup, and is
empirically comparable to standard Mixup settings. Full proofs for all of the results presented in the
next subsection can be found in Section C of the Appendix.

3.1 MIDPOINT MIXUP WITH LINEAR MODELS ON LINEARLY SEPARABLE DATA

To make clear what we mean by feature learning, we first turn our attention to the simple setting
of learning linear models gy(x) = 〈wy, x〉 (i.e. one weight vector associated per class) on linearly
separable data, as this setting will serve as a foundation for our main results. Namely, we consider
k-class classification with a dataset X of N labeled data points generated according to the following
data distribution (with N sufficiently large):

Definition 3.1. [Simple Multi-View Setting] For each class y ∈ [k], let vy,1, vy,2 ∈ Rd be orthonor-
mal unit vectors also satisfying vy,` ⊥ vs,`′ when y 6= s for any `, `′ ∈ [2]. Each point (x, y) ∼ D is
then generated by sampling y ∈ [k] uniformly and constructing x as:

x = βyvy,1 + (1− βy)vy,2 βy ∼ Uni([0.1, 0.9]) (3.2)

Definition 3.1 is multi-view in the following sense: for any class y, it suffices (from an accuracy
perspective) to learn a model g that has a significant correlation with either the feature vector vy,1 or
vy,2. In this context, one can think of feature learning as corresponding to how positively correlated
the weight wy is with each of the same class feature vectors vy,1 and vy,1 (we provide a more rigorous
definition in our main results).
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If one now considers the empirical cross-entropy loss J(g,X ), it is straightforward to see that it is
possible to achieve the global minimum of J(g,X ) by just considering models g in which we take
〈wy, vy,1〉 → ∞ for every class y. This means we can minimize the usual cross-entropy loss without
learning both features in the dataset X .

However, this is not the case for Midpoint Mixup. Indeed, we show below that a necessary (with
extremely high probability) and sufficient condition for a linear model g to minimize JMM (when
taking its scaling to∞) is that it has equal correlation with both features for every class (sufficiency
relies also on having weaker correlations with other class features). In what follows, we use
inf JMM (h,X ) to indicate the global minimum of JMM over all functions h : Rd → Rk (i.e. this is
the smallest achievable loss).
Lemma 3.2. [Midpoint Mixup Optimal Direction] A linear model g satisfies the following:

lim
γ→∞

JMM (γg,X ) = inf JMM (h,X ) (3.3)

If g has the property that for every class y we have 〈wy, vy,`1〉 = 〈ws, vs,`2〉 > 0 and 〈wy, vs,`2〉 ≤ 0
for every s 6= y and `1, `2 ∈ [2]. Furthermore, with probability 1 − exp(−Θ(N)) (over the
randomness of X ), the condition 〈wy, vy,`1〉 = 〈ws, vs,`2〉 is necessary for g to satisfy Equation 3.3.

Proof Sketch. The idea is that if g has equal correlation with both features for every class, its
predictions will be constant on the original data points due to the fact that the coefficients for each
feature in each data point are mirrored as per Equation 3.2. With the condition 〈wy, vs,`〉 ≤ 0 (this
can be weakened significantly), this implies the softmax output of g on the Midpoint Mixup points
will be exactly 1/2 for each of the classes being mixed (and 0 for all other classes), which is optimal.

As mentioned earlier, we can also show that if we consider JM (g,X ,Dλ) for any other non-point-
mass distribution, we can prove that the analogue of Lemma 3.2 does not hold true.
Proposition 3.3. For any distribution Dλ that is not a point mass on 0, 1, or 1/2, and any linear
model g satisfying the conditions of Lemma 3.2, we have that with probability 1 − exp(−Θ(N))
(over the randomness of X ) there exists an ε0 > 0 depending only on Dλ such that:

JM (g,X ,Dλ) ≥ inf JM (h,X ,Dλ) + ε0 (3.4)

Proof Sketch. In the case of general mixing distributions, we cannot achieve the Mixup optimal
behavior of φyi(g(zi,j(λ))) = λ for every λ if the outputs gy are constant on the original data points.

Lemma 3.2 outlines the key theoretical benefit of Midpoint Mixup - namely that its global optimizers
exist within the class of models that we consider, and such optimizers learn all features in the data
equally. And although Lemma 3.2 is stated in the context of linear models, the result naturally carries
through to when we consider two-layer neural networks of the type we define in the next section. That
being said, the interpretation of Proposition 3.3 is not intended to disqualify the possibility that the
minimizer of JM (g,X ,Dλ) when restricted to a specific model class is a model in which all features
are learned near-equally (we expect this to be the case in fact for any reasonable Dλ). Proposition 3.3
is moreso intended to motivate the study of Midpoint Mixup as a particularly interesting choice of
the mixing distribution Dλ.

We now proceed one step further from the above results and show that the feature learning benefit
of Midpoint Mixup manifests itself even in the optimization process (when using gradient-based
methods). We show that, if significant separation between feature correlations exists, the Midpoint
Mixup gradients correct the separation. For simplicity, we suppose WLOG that 〈wy, vy,1〉 >
〈wy, vy,2〉. Now letting ∆y = 〈wy, vy,1 − vy,2〉 and using the notation ∇wy for ∂

∂wy
, we can prove:

Proposition 3.4. [Mixup Gradient Lower Bound] Let y be any class such that ∆y ≥ log k, and
suppose that both 〈wy, vy,1〉 ≥ 0 and the cross-class orthogonality condition 〈ws, vu,`〉 = 0 hold for
all s 6= u and ` ∈ [2]. Then we have with high probability that:〈

−∇wyJMM (g,X ), vy,2
〉
≥ Θ

(
1

k2

)
(3.5)

Proof Sketch. The key idea is to analyze the gradient correlation with the direction vy,1 − vy,2 via a
concentration of measure argument.
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Proposition 3.4 shows that, assuming nonnegativity of within-class correlations and an orthogonality
condition across classes (which we will show to be approximately true in our main results), the
feature correlation that is lagging behind for any class y will receive a significant gradient when
optimizing the Midpoint Mixup loss. On the other hand, we can also prove that this need not be the
case for empirical risk minimization:

Proposition 3.5. [ERM Gradient Upper Bound] For every y ∈ [k], assuming the same conditions as
in Proposition 3.4, if ∆y ≥ C log k for any C > 0 then with high probability we have that:〈

−∇wyJ(g,X ), vy,2
〉
≤ O

(
1

k0.1C−1

)
(3.6)

Proof Sketch. This follows directly from the form of the gradient for J(g,X ).

While Proposition 3.5 demonstrates that training using ERM can possibly fail to learn both features
associated with a class due to increasingly small gradients, one can verify that this does not naturally
occur in the optimization dynamics of linear models on linearly separable data of the type in Definition
3.1 (see for example, the related result in Chidambaram et al. (2021)). On the other hand, if we move
away from linearly separable data and linear models to more realistic settings, the situation described
above does indeed show up, which motivates our main results.

4 ANALYZING MIDPOINT MIXUP TRAINING DYNAMICS ON GENERAL
MULTI-VIEW DATA

For our main results, we now consider a data distribution and class of models that are meant to more
closely mimic practical situations.

4.1 GENERAL MULTI-VIEW DATA SETUP

We adopt a slightly simplified version of the setting of Allen-Zhu and Li (2021). We still consider the
problem of k-class classification on a dataset X of N labeled data points, but our data points are now
represented as ordered tuples x = (x(1), ..., x(P )) of P input patches x(i) with each x(i) ∈ Rd (so
X ⊂ RPd × [k]).

As was the case in Definition 3.1 and in Allen-Zhu and Li (2021), we assume that the data is multi-
view in that each class y is associated with 2 orthonormal feature vectors vy,1 and vy,2, and we once
again consider N and k to be sufficiently large. As mentioned in Allen-Zhu and Li (2021), we could
alternatively consider the number of classes k to be fixed (i.e. binary classification) and the number
of associated features to be large, and our theory would still translate. We now precisely define the
data generating distribution D that we will focus on for the remainder of the paper.

Definition 4.1. [General Multi-View Data Distribution] Identically to Definition 3.1, each class y is
associated with two orthonormal feature vectors, after which each point (x, y) ∼ D is generated as:.

1. Sample a label y uniformly from [k].

2. Designate via any method two disjoint subsets Py,1(x), Py,2(x) ⊂ [P ] with |Py,1(x)| =
|Py,2(x)| = CP for a universal constant CP , and additionally choose via any method a
bijectionϕ : Py,1(x)→ Py,2(x). We then generate the signal patches of x in corresponding
pairs x(p) = βy,pvy,1 and x(ϕ(p)) = (δ2 − βy,p)vy,2 = βy,ϕ(p)vy,2 for every p ∈ Py,1(x)
with the βy,p chosen according to a symmetric distribution (allowed to vary per class y)
supported on [δ1, δ2 − δ1] satisfying the anti-concentration property that βy,p takes values
in a subset of its support whose Lebesgue measure is O(1/ log k) with probability o(1).1

3. Fix, via any method, Q distinct classes s1, s2, ..., sQ ∈ [k] \ y with Q = Θ(1). The
remaining [P ] \ (Py,1(x) ∪ Py,2(x)) patches not considered above are the feature noise
patches of x, and are defined to be x(p) =

∑
j∈[Q]

∑
`∈[2] γj,`vsj ,`, where the γj,` ∈ [δ3, δ4]

can be arbitrary.
1This assumption is true for any distribution with reasonable variance; for example, the uniform distribution.
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Note that there are parts of the data-generating process that we leave underspecified, as our results
will work for any choice. Henceforth, we use X to refer to a dataset consisting of N i.i.d. draws from
the distribution D. Our data distribution represents a very low signal-to-noise (SNR) setting in which
the true signal for a class exists only in a constant (2CP ) number of patches while the rest of the
patches contain low magnitude noise in the form of other class features.

We focus on the case of learning the data distributionD with the same two-layer CNN-like architecture
used in Allen-Zhu and Li (2021). We recall that this architecture relies on the following polynomially-
smoothed ReLU activation, which we refer to as R̃eLU:

R̃eLU(x) =


0 if x ≤ 0
xα

αρα−1 if x ∈ [0, ρ]

x−
(

1− 1
α

)
ρ if x ≥ ρ

The polynomial part of this activation function will be very useful for us in suppressing the feature
noise in D. Our full network architecture, which consists of m hidden neurons, can then be specified
as follows.
Definition 4.2. [2-Layer Network] We denote our network by g : RPd → Rk. For each y ∈ [k], we
define gy as follows.

gy(x) =
∑
r∈[m]

∑
p∈[P ]

R̃eLU

(〈
wy,r, x

(p)
〉)

(4.1)

We will use w(0)
y,r to refer to the weights of the network g at initialization (and w(t)

y,r after t steps
of gradient descent), and similarly gt to refer to the model after t iterations of gradient descent.
We consider the standard choice of Xavier initialization, which, in our setting, corresponds to
w

(0)
y,r ∼ N (0, 1d Id).

For model training, we focus on full batch gradient descent with a fixed learning rate of η applied to
J(g,X ) and JMM (g,X ). Once again using the notation ∇

w
(t)
y,r

for ∂

∂w
(t)
y,r

, the updates to the weights

of the network g are thus of the form:

w(t+1)
y,r = w(t)

y,r − η∇w
(t)
y,r
JMM (g,X ) (4.2)

In defining our data distribution and model above, we have introduced several hyperparameters.
Throughout our results, we make the following assumptions about these hyperparameters.
Assumption 4.3. [Choice of Hyperparameters] We assume that:

d = Ω(k20) P = Θ(k2) CP = Θ(1) m = Θ(k)

δ1, δ2 = Θ(1) δ3, δ4 = Θ(k−1.5) ρ = Θ(1/k) α = 8

Discussion of Hyperparameter Choices. We make concrete choices of hyperparameters above
for the sake of calculations (and we stress that these are not close to the tightest possible choices),
but only the relationships between them are important. Namely, we need d to be a significantly
larger polynomial of k than P , we need δ3, δ4 = o(1) but large enough so that Pδ3 � δ2 (to avoid
learnability by linear models, as shown below), we need α sufficiently large so that the network can
suppress the low-magnitude feature noise, and we need δ1, δ2 = Θ(1) so that the signal feature
coefficients significantly outweigh the noise feature coefficients.

To convince the reader that our choice of model is not needlessly complicated given the setting, we
prove the following result showing that there exist realizations of the distribution D on which linear
classifiers cannot achieve perfect accuracy.
Proposition 4.4. There exists a D satisfying all of the conditions of Definition 4.1 and Assumption
4.3 such that with probability at least 1− k2 exp

(
Θ(−N/k2)

)
, for any classifier h : RPd → Rk of

the form hy(x) =
∑
p∈[P ]

〈
wy, x

(p)
〉

and any X consisting of N i.i.d. draws from D, there exists a
point (x, y) ∈ X and a class s 6= y such that hs(x) ≥ hy(x).

6



Proof Sketch. The idea, as was originally pointed out by Allen-Zhu and Li (2021), is that there
are Θ(k2) feature noise patches with coefficients of order Θ(k−1.5). Thus, because the features are
orthogonal, these noise patches can influence the classification by an order Θ(

√
k) term away from

the direction of the true signal.

The full proof can be found in Section C of the Appendix.

4.2 MAIN RESULTS

Having established the setting for our main results, we now concretely define the notion of feature
learning in our context.

Definition 4.5. [Feature Learning] Let (x, y) ∼ D. We say that feature vy,` is learned by g if
argmaxs g

s(x′) = y where x′ is x with all instances of feature vy,3−` replaced by the all-zero vector.

Our definition of feature learning corresponds to whether the model g is able to correctly classify
data points in the presence of only a single signal feature instead of both (generalizing the notion of
weight-feature correlation to nonlinear models). By analyzing the gradient descent dynamics of g for
the empirical cross-entropy J , we can then show the following.

Theorem 4.6. For k and N sufficiently large and the settings stated in Assumption 4.3, we have that
the following hold with probability at least 1−O(1/k) after running gradient descent with a step size
η = O(1/poly(k)) for O(poly(k)/η) iterations on J(g,X ) (for sufficiently large polynomials in k):

1. (Training accuracy is perfect): For all (xi, yi) ∈ X , we have argmaxs g
s
t (xi) = yi.

2. (Only one feature is learned): For (1− o(1))k classes, there exists exactly one feature that
is learned in the sense of Definition 4.5 by the model gt.

Furthermore, the above remains true for all t = O(poly(k)) for any polynomial in k.

Proof Sketch. The proof is in spirit very similar to Theorem 1 in Allen-Zhu and Li (2021), and
relies on many of the tools therein. The main idea is that, with high probability, there exists a
separation between the class y weight correlations with the features vy,1 and vy,2 at initialization.

This separation is then amplified throughout training due to the polynomial part of R̃eLU. Once
one feature correlation becomes large enough, the gradient updates to the class y weights rapidly
decrease, leading to the remaining feature not being learned.

Theorem 4.6 shows that only one feature is learned (in our sense) for the vast majority of classes. As
mentioned, our proof is quite similar to Allen-Zhu and Li (2021), but due to simplifications in our
setting (no added Gaussian noise for example) and some different ideas the proof is much shorter
- we hope this makes some of the machinery from Allen-Zhu and Li (2021) accessible to a wider
audience.

The reason we prove Theorem 4.6 is in fact to highlight the contrast provided by the analogous result
for Midpoint Mixup.

Theorem 4.7. For k and N sufficiently large and the settings stated in Assumptions 4.3, we have
that the following hold with probability 1−O(1/k) after running gradient descent with a step size
η = O(1/poly(k)) for O(poly(k)/η) iterations on JMM (g,X ) (for sufficiently large polynomials
in k):

1. (Training accuracy is perfect): For all (xi, yi) ∈ X , we have argmaxs g
s(xi) = yi.

2. (Both features are learned): For each class y ∈ [k], both vy,1 and vy,2 are learned in the
sense of Definition 4.5 by the model g.

Furthermore, the above remains true for all t = O(poly(k)) for any polynomial in k.

Proof Sketch. The core idea of the proof relies on similar techniques to that of Proposition 3.4,
but the nonlinear part of the R̃eLU activation introduces a few additional difficulties due to the
fact that the gradients in the nonlinear par are much smaller than those in the linear part of R̃eLU.
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Nevertheless, we show that even these smaller gradients are sufficient for the feature correlation that
is lagging behind to catch up in polynomial time.

The full proofs of Theorems 4.6 and 4.7 can be found in Section B of the Appendix.

Remark 4.8. Theorems 4.6 and 4.7 show a separation between ERM and Midpoint Mixup with
respect to feature learning, as we have defined. They are not results regarding the test accuracy of the
trained models on the distribution D; even learning only a single feature per class is sufficient for
perfect test accuracy on D. The significance (and our desired interpretation) of these results is that,
when the training distribution D has some additional spurious features when compared to the testing
distribution, ERM can potentially fail to learn the true signal features whereas Midpoint Mixup will
likely learn all features (including the true signal). One may also interpret the results as generalization
that is robust to distributional shift; the test distribution in this case has dropped some features present
in the training distribution.

5 EXPERIMENTS

The goal of the results of Sections 3 and 4 was to provide theory (from a feature learning and
optimization perspective) for why Mixup has enjoyed success over ERM in many practical settings.
The intuition is that, for image classification tasks, one could reasonably expect images from the same
class to be generated from a shared set of latent features (much like our data distribution in Definition
4.1), in which case it may be possible to achieve perfect training accuracy by learning a strict subset
of these features when doing empirical risk minimization. On the other hand, based on our ideas,
we would expect Mixup to learn all such latent features associated with each class (assuming some
dependency between them), and thus potentially generalize better.

A direct empirical verification of this phenomenon on image datasets is tricky (and a possible avenue
for future work) due to the fact that one would need to clearly define a notion of latent features with
respect to the images being considered, which is outside the scope of this work. Instead, we take
for granted that such features exist, and attempt to verify whether Mixup is able to learn the “true”
features associated with each class better than ERM when spurious features are added.

For our experimental setup, we consider training ResNet-18(He et al., 2015) on versions of Fashion
MNIST (FMNIST) (Xiao et al., 2017), CIFAR-10, and CIFAR-100 (Krizhevsky, 2009) in which
every training data point is transformed such that a randomly sampled training point from a different
(but randomly fixed) class is concatenated (along the channels dimension) to the original point.
Additionally, to introduce a dependency structure akin to what we have in Definitions 3.1 and 4.1,
we sample a γ ∼ Uni([0, 1]) and scale the first part of the training point (the true image) by γ while
scaling the concatenated part by 1− γ during training.

Figure 1: Visualization of data modification in CIFAR-10.

If we work under the intuition that images from each class are generated by relatively different latent
features, then this modification process corresponds to adding patches of (fixed) spurious features to
each class that have a dependency (from the scaling factor γ) on the original features of the data. We
leave the test data for each dataset unmodified, except for the concatenation of an all-zeros vector of
the same shape to each point so that the shape of the test data matches that of the training data (in
effect, this penalizes models that learned only the spurious features we concatenated in the training
data). This zeroing out of the additional channels is also intended to replicate Definition 4.5 in our
experimental setup.

While we consider the above setup to be intuitive and resemble our theoretical setting, it is fair to
ask why we chose this setup compared to the many possible alternatives. Firstly, we found that
using synthetic spurious features (i.e. random orthogonal vectors scaled to have the same norm as
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(a) FMNIST (b) CIFAR-10 (c) CIFAR-100

Figure 2: Test error comparison between Uniform Mixup (green), Midpoint Mixup (orange), and
ERM (blue). Each curve represents the average of 5 model runs (over the randomness of the data
augmentations and model initializations), while the surrounding area represents 1 standard deviation.

the images) as opposed to images from different classes was far too noisy (training error went to 0
immediately); the test errors on each dataset degraded to near-random levels, so it was difficult to
make comparisons. Additionally, we found the same to be true if we considered adding spurious
features as opposed to concatenating them.

For each of our image classification tasks, we train models using Mixup with Dλ = Beta(1, 1) (the
choice used in Zhang et al. (2018) for CIFAR, which we refer to as Uniform Mixup), Midpoint
Mixup, and ERM. Our implementation is in PyTorch (Paszke et al., 2019) and uses the ResNet
implementation of Kuang Liu, released under an MIT license. All models were trained for 100
epochs with a batch size of 750, which was the largest feasible size on our compute setup of a single
P100 GPU (we use a large batch size to approximate the full batch gradient descent aspect of our
theory). For optimization, we use Adam (Kingma and Ba, 2015) with the default hyperparameters
of β1 = 0.9, β2 = 0.999 and a learning rate of 0.001. We did a modest amount of hyperparameter
tuning in preliminary experiments, where we compared Adam and SGD with different log-spaced
learning rates in the range [0.001, 0.1], and found that Adam with the default hyperparameters almost
always worked the best. We report our results for each dataset in Table 1, and accompanying test
error plots are shown in Figure 2.

Model FMNIST CIFAR-10 CIFAR-100
Uniform Mixup 9.66 18.52 ±1 53.42 ±1
Midpoint Mixup 14.84 ±1 22.29 ±2 53.61 ±2

ERM 16.55 ±2 27.77 ±2 69.28 ±2

Table 1: Final test errors on unmodified test data (mean over 5 runs) along with 1 standard deviation
range for Uniform Mixup, Midpoint Mixup, and ERM.

From Table 1 we see that Uniform Mixup performs the best in all cases, and that Midpoint Mixup
tracks the performance of Uniform Mixup reasonably closely. We stress that the ordering of model
performance is unsurprising; a truly fair comparison with Midpoint Mixup would require training
on all N2 possible mixed points, which is infeasible in our compute setup (we opt to randomly mix
points per batch, as is standard). Our experiments are intended to show that Midpoint Mixup still
non-trivially captures the benefits of Mixup in an empirical setting that is far from the asymptotic
regime of our theory, while Mixup using standard hyperparameter settings significantly outperforms
ERM in the presence of spurious features. A final observation worth making is that we find Midpoint
Mixup performs significantly better than ERM when moving from the 10-class settings of FMNIST
and CIFAR-10 to the 100-class setting of CIFAR-100, and this is in line with what our theory predicts
(a larger number of classes more closely approximates our setting).

6 CONCLUSION

To summarize, the main contributions of this work have been theoretical motivation for an extreme
case of Mixup training (Midpoint Mixup), as well as an optimization analysis separating the learning
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dynamics of a 2-layer convolutional network trained using Midpoint Mixup and empirical risk
minimization.

Our results show that, for a class of data distributions satisfying the property that there are multiple,
dependent features correlated with each class in the data, Midpoint Mixup can outperform ERM
(both theoretically and empirically) in learning these features. We hope that the ideas introduced in
the theory can be a useful building block for future theoretical investigations into Mixup and related
methods in the context of training neural networks.
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A SUPPORTING LEMMAS AND CALCULATIONS

In this section we collect several technical lemmas and computations that will be necessary for the
proofs of our main results.

A.1 GAUSSIAN CONCENTRATION AND ANTI-CONCENTRATION RESULTS

The following are well-known concentration results for Gaussian random variables; we include proofs
for the convenience of the reader.
Proposition A.1. Let Xi ∼ N (0, σ2

i ) with i ∈ [m] and let σ = maxi σi. Then,

E[max
i
Xi] ≤ σ

√
2 logm

Proof. Let Z = maxiXi. Then by Jensen’s inequality and the MGF of N (0, σ2
i ), we have:

exp
(
tE[Z]

)
≤ E exp(tZ) = E[exp

(
tmax

i
Xi

)
]

≤ E
[∑

i

exp(tXi)
]

=
∑
i

exp
(
t2σ2

i /2
)

≤ m exp
(
t2σ2/2

)
=⇒ E[Z] ≤ logm

t
+
tσ2

2

Minimizing the RHS yields t =
√

2 logm/σ, from which the result follows.

Proposition A.2. Let Xi be as in Proposition A.1. Then,

P (max
i
Xi ≥ t+ σ

√
2 logm) ≤ exp

(
−t2/(2σ2)

)
Proof. We simply union bound and use the fact that P (Xi ≥ t) ≤ exp

(
−t2/(2σ2)

)
(Chernoff bound

for zero mean Gaussians) to get:

P (max
i
Xi ≥ t+ σ

√
2 logm) ≤

∑
i

P (Xi ≥ t+ σ
√

2 logm)

≤ m exp
(
−(t+ σ

√
2 logm)2/(2σ2)

)
≤ exp

(
−t2/(2σ2)

)
Proposition A.3. Let X1, X2, ..., Xm be i.i.d. Gaussian variables with mean 0 and variance σ2.
Then we have that:

P
(

max
i
Xi > Θ

(
σ
√

log(m/ log(1/δ))
))

= 1−Θ(δ)

Proof. We recall that:

P (Xi > x) = Θ
(σ
x
e−x

2/(2σ2)
)

A proof of this fact can be found in Vershynin (2018). We additionally have that:

P (maxXi > x) = 1− (1− P (Xi > x))m

So from the previous asymptotic characterization of P (Xi > x) we have that choosing x =

Θ
(
σ
√

log(m/ log(1/δ))
)

gives P (Xi > x) = Θ(log(1/δ)/m), from which the result follows.

We will also have need for a recent anti-concentration result due to Chernozhukov et al. (2014), which
we restate below.
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Proposition A.4 (Theorem 3 (i) Chernozhukov et al. (2014)). Let Xi ∼ N (0, σ2) for i ∈ [m] with
σ2 > 0. Defining am = E[maxiXi/σ], we then have for every ε > 0:

sup
x∈R

P
(∣∣∣max

i
Xi − x

∣∣∣ ≤ ε) ≤ 4ε(1 + am)/σ

Corollary A.5. Applying Proposition A.1, we have supx∈R P
(
|maxiXi − x| ≤ ε

)
≤ 4ε(1 +√

2 logm)/σ.

A.2 GRADIENT CALCULATIONS

Here we collect the gradient calculations used in the proofs of the main results. We recall that we use
∇
w

(t)
y,r

to indicate ∂

∂w
(t)
y,r

and zi,j = (xi + xj)/2. Additionally, we will omit parentheses after R̃eLU

when function application is clear.
Calculation A.6. For any (xi, yi) ∈ X :

∇
w

(t)
yi,r

gyit (xi) =
∑
p∈[P ]

R̃eLU
′ 〈
wyi,r, x

(p)
i

〉
x
(p)
i

Proof.

∇
w

(t)
yi,r

gyt (xi) =
∂

∂w
(t)
yi,r

∑
u∈[m]

∑
p∈[P ]

R̃eLU
〈
w(t)
yi,u, x

(p)
i

〉
=
∑
p∈[P ]

R̃eLU
′ 〈
w(t)
yi,r, x

(p)
i

〉
x
(p)
i

Calculation A.7. For any (xi, yi) ∈ X , if maxu∈[k]

〈
w

(t)
yi,r, vu,`

〉
< ρ/(δ2 − δ1) and s 6= yi, then:

〈
∇
w

(t)
yi,r

gyit (xi), vyi,`

〉
=

∑
p∈Pyi,`(xi)

βαi,p

〈
w

(t)
yi,r, vyi,`

〉α−1
ρα−1

〈
∇
w

(t)
yi,r

gyit (xi), vs,`

〉
≤ Θ

Pδα4 maxu 6=y

〈
w

(t)
yi,r, vu,`

〉α−1
ρα−1


Proof. When maxu∈[k]

〈
w

(t)
yi,r, vu,`

〉
< ρ/(δ2 − δ1), we are in the polynomial part of R̃eLU for

every patch in xi, since maxp∈Pyi,`(xi)

〈
w

(t)
yi,r, x

(p)
i

〉
< ρ since βi,p ≤ δ2 − δ1. The first line then

follows from Calculation A.6 and the fact that all of the feature vectors are orthonormal (so only
those patches that have the features vyi,` are relevant). The second line follows from the fact that
there are at most P − 2CP feature noise patches containing the vector vs,`, and in each of these
patches there are only a constant number of feature vectors (which we do not constrain).

Calculation A.8. For any (xi, yi) ∈ X , if
〈
w

(t)
yi,r, vyi,`

〉
≥ ρ/δ1, then:〈

∇
w

(t)
yi,r

gyit (xi), vyi,`

〉
=

∑
p∈Pyi,`(xi)

βi,p

Proof. When
〈
w

(t)
yi,r, vyi,`

〉
≥ ρ/δ1 we necessarily have minp∈Pyi,`(xi)

〈
w

(t)
yi,r, x

(p)
i

〉
≥ ρ since

βi,p ≥ δ1, and then the result again follows from Calculation A.6 and the fact that R̃eLU
′

= 1 in the
linear regime.

Calculation A.9 (ERM Gradient).

∇
w

(t)
y,r
J(gt,X ) = − 1

N

∑
i∈[N ]

(
1yi=y − φy

(
g(xi)

))
∇
w

(t)
y,r
gyt (xi)
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Proof. First let us observe that:

log φyi(gt(xi)) = gyit (xi)− log
∑
s

exp(gst (xi))

=⇒ ∂ log φyi(gt(xi))

∂wy,r
= 1yi=y∇w

(t)
y,r
gyt (xi)− φy(g(xi))∇w

(t)
y,r
gyt (xi)

Summing (and negating) the above over all points xi gives the result.

Calculation A.10 (Midpoint Mixup Gradient).

∇
w

(t)
y,r
JMM (gt,X ) = − 1

2N2

∑
i∈[N ]

∑
j∈[N ]

(
1yi=y + 1yj=y − 2φy

(
gt(zi,j)

))
∇
w

(t)
y,r
gyt (zi,j)

Proof. Follows from applying Calculation A.9 to each part of the summation in JMM (g,X ).

B PROOFS OF MAIN RESULTS

This section contains the proofs of the main results in this paper. We have opted to present the proofs
in a linear fashion - inlining several claims and their proofs along the way - as we find this to be more
readable than the alternative. The proofs of inlined claims are ended with the � symbol, while the
proofs of the overarching results are ended with the � symbol.

For convenience, we recall the assumptions (as they were stated in the main body) that are used in
these results:

Assumption 4.3. [Choice of Hyperparameters] We assume that:

d = Ω(k20) P = Θ(k2) CP = Θ(1) m = Θ(k)

δ1, δ2 = Θ(1) δ3, δ4 = Θ(k−1.5) ρ = Θ(1/k) α = 8

B.1 PROOF OF THEOREM 4.6

Theorem 4.6. For k and N sufficiently large and the settings stated in Assumption 4.3, we have that
the following hold with probability at least 1−O(1/k) after running gradient descent with a step size
η = O(1/poly(k)) for O(poly(k)/η) iterations on J(g,X ) (for sufficiently large polynomials in k):

1. (Training accuracy is perfect): For all (xi, yi) ∈ X , we have argmaxs g
s
t (xi) = yi.

2. (Only one feature is learned): For (1− o(1))k classes, there exists exactly one feature that
is learned in the sense of Definition 4.5 by the model gt.

Furthermore, the above remains true for all t = O(poly(k)) for any polynomial in k.

Proof. We break the proof into two parts. In part one, we prove that (with high probability) each
class output gyt becomes large (but not too large) on data points belonging to class y and stays small
on other data points, which consequently allows us to obtain perfect training accuracy at the end
(thereby proving the first half of the theorem). In part two, we show that (again with high probability)
the max correlations with features vy,1 and vy,2 for a class y have a separation at initialization that
gets amplified over the course of training, and due to this separation one of the feature correlations
becomes essentially irrelevant, which will be used to prove the second half of the theorem.

Part I.

In this part, we show that the network output gyit (xi) reaches and remains Θ(log k) while gst (xi) =
o(1) for all t = O(poly(k)) and s 6= yi. These two facts together allow us to control the 1 −
φyi(gt(xi)) terms that show up throughout our analysis (see Calculation A.9), while also being
sufficient for showing that we get perfect training accuracy. The intuition behind these results is that,
when gyit (xi) > c log k, we have that exp(gyit (xi)) > kc so the 1−φyi(gt(xi)) terms in the gradient
updates quickly become small and gyit stops growing. Throughout this part of the proof and the next,
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we will use the following notation (some of which has been introduced previously) to simplify the
presentation.

Ny = {i : i ∈ [N ] and yi = y} Py,`(xi) = {p : p ∈ [P ] and
〈
x
(p)
i , vy,`

〉
> 0}

B
(t)
y,` = {r : r ∈ [m] and

〈
w(t)
y,r, vy,`

〉
≥ ρ/δ1} (B.1)

Here, Ny represents the indices corresponding to class y points, Py,`(xi) (as used in Definition 4.1)
represents the patch support of the feature vy,` in xi (recall the features are orthonormal), and B(t)

y,`

represents the set of class y weights that have achieved a big enough correlation with the feature vy,`
to necessarily be in the linear regime of R̃eLU on all class y points at iteration t.

Prior to beginning our analysis of the network outputs gyt , we first prove a claim that will serve as the
setting for the rest of the proof.

Claim B.1. With probability 1 − O(1/k), all of the following are (simultaneously) true for every
class y ∈ [k]:

• |Ny| = Θ(N/k)

• maxs∈[k],r∈[m],`∈[2]

〈
w

(0)
s,r , vy,`

〉
= O(log k/

√
d)

• ∀` ∈ [2], maxr∈[m]

〈
w

(0)
y,r, vy,`

〉
= Ω(1/

√
d)

Proof of Claim B.1. We prove each part of the claim in order, starting with showing that |Ny| =
Θ(N/k) with the desired probability for each y. To see this, we note that the joint distribution of
the |Ny| is multinomial with uniform probability 1/k. Now by a Chernoff bound, we have that
|N1| = Θ(N/k) with probability at least 1− exp(Θ(−N/k)). Conditioning on |N1| = Θ(N/k), we
have that the joint distribution of |N2|, ..., |Nk| is multinomial with uniform probability 1/(k− 1), so
we obtain an identical Chernoff bound for |N2|. Repeating this argument and taking a union bound
gives that |Ny| = Θ(N/k) for all y ∈ [k] with probability at least 1− k exp(Θ(−N/k)).

The fact that for every y we have maxs∈[k],r∈[m],`∈[2]

〈
w

(0)
s,r , vy,`

〉
= O(log k/

√
d) with probability

1 − O(1/k) follows from Proposition A.2. Namely, using Proposition A.2 with t = 2σ
√

2 logm

(here σ = 1/
√
d by our choice of initialization) yields that maxr

〈
w

(0)
s,r , vy,`

〉
≥ 3
√

2 log k/
√
d with

probability bounded above by 1/k3 for any s, y. Taking a union bound over s, y then gives the result.
The final fact follows by near identical logic but using Proposition A.3 (note that the correlations〈
w

(0)
s,r , vy,`

〉
are i.i.d. N (0, 1/d) due to the fact that the features are orthonormal and the weights

themselves are i.i.d.). �

In everything that follows, we will always assume the conditions of Claim B.1 unless otherwise
stated. We begin by proving a result concerning the size of softmax outputs φy(gt(x)) that we will
repeatedly use throughout the rest of the proof.

Claim B.2. Consider i ∈ Ny and suppose that both maxs∈[k], r∈[m], `∈[2]

〈
w

(t)
s,r, vs,`

〉
= O(log k)

and maxs6=y, r∈[m], `∈[2]

〈
w

(t)
s,r, vy,`

〉
= O(log(k)/

√
d) hold true. If we have gyt (xi) ≥ a log k for

some a ∈ [0,∞), then:

1− φy(gt(xi)) =

{
O
(
1/ka−1

)
if a > 1

Θ (1) otherwise

Proof of Claim B.2. By assumption, all of the weight-feature correlations are O(log k) at t. Further-
more, for s 6= y, all of the off-diagonal correlations

〈
w

(t)
s,r, vy,`

〉
are O(log(k)/

√
d). This implies
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that (using δ4 = Θ(k−1.5), ρ = Θ(1/k), P = Θ(k2), and α = 8):

gst (xi) ≤ O

mPδα4 maxu 6=y

〈
w

(t)
s,r, vu,`

〉α
ρα−1


≤ O

(
k2+α log(k)

α

k1.5α

)
= O

(
log(k)

α

k3

)
=⇒ exp(gst (xi)) ≤ 1 +O

(
log(k)

α

k3

)
(B.2)

Where above we disregarded the constant number (2CP ) of very low order correlations
〈
w

(t)
s,r, vy,`

〉
and used the inequality that exp(x) ≤ 1 + x + x2 for x ≤ 1. Now by the assumption that
gyt (xi) ≥ a log k, we have exp(gyt (xi)) ≥ ka, so:

1− φy(gt(xi)) ≤ 1− ka

ka + (k − 1) + o(1)

=
k − 1 + o(1)

ka + (k − 1) + o(1)
(B.3)

From which the result follows. �

Corollary B.3. Under the same conditions as Claim B.2, for s 6= y, we have:

φs(gt(xi)) = O

(
1

kmax(a,1)

)
Proof of Corollary B.3. Follows from Equations B.2 and B.3. �

With these softmax bounds in hand, we now show that the “diagonal” correlations
〈
w

(t)
y,r, vy,`

〉
grow

much more quickly than the the “off-diagonal” correlations
〈
w

(t)
y,r, vs,`

〉
(where s 6= y). This will

allow us to satisfy the conditions of Claim B.2 throughout training.

Claim B.4. Consider an arbitrary y ∈ [k]. Let A ≤ ρ/(δ2 − δ1) and let TA denote the first iteration
at which maxr∈[m],`∈[2]

〈
w

(TA)
y,r , vy,`

〉
≥ A. Then we must have both that TA = O(poly(k)) and

that maxr∈[m],s6=y,`∈[2]

〈
w

(TA)
y,r , vs,`

〉
= O

(
log(k)/

√
d
)

.

Proof of Claim B.4. Firstly, all weight-feature correlations are o(ρ) at initialization (see Claim B.1).
Now for s 6= y and

〈
w

(0)
y,r, vs,`

〉
> 0, we have for every t at which

〈
w

(t)
y,r, vs,`

〉
< ρ/(δ2 − δ1) that

(using Calculations A.7 and A.9):

〈
−η∇

w
(t)
y,r
J(g,X ), vs,`

〉
≤ − η

N

∑
i∈Ns

φy
(
gt(xi)

) ∑
p∈Ps,`(xi)

βαi,p

〈
w

(t)
y,r, vs,`

〉α−1
ρα−1

+
η

N

∑
i∈Ny

(
1− φy

(
gt(xi)

))
Θ

Pδα4 maxu6=y, `′∈[2]

〈
w

(t)
y,r, vu,`′

〉α−1
ρα−1


− η

N

∑
i/∈Ny∪Ns

φy
(
gt(xi)

)
Θ

Pδα3 minu 6=y, `′∈[2]

〈
w

(t)
y,r, vu,`′

〉α−1
ρα−1


≤ η

N

∑
i∈Ny

(
1− φy

(
gt(xi)

))
Θ

Pδα4 maxu6=y, `′∈[2]

〈
w

(t)
y,r, vu,`′

〉α−1
ρα−1


(B.4)
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Similarly, for
〈
w

(0)
y,r, vy,`

〉
> 0, we have for every t at which

〈
w

(t)
y,r, vy,`

〉
< ρ/(δ2 − δ1) that:

〈
−η∇

w
(t)
y,r
J(g,X ), vy,`

〉
≥ η

N

∑
i∈Ny

(
1− φy

(
gt(xi)

)) ∑
p∈Ps,`(xi)

βαi,p

〈
w

(t)
y,r, vy,`

〉α−1
ρα−1

− η

N

∑
i/∈Ny

φy
(
gt(xi)

)
Θ

Pδα4 maxu6=y, `′∈[2]

〈
w

(t)
y,r, vu,`′

〉α−1
ρα−1


(B.5)

From Equation B.5, Claim B.2, and Corollary B.3 we get that for t ≤ TA:

〈
−η∇

w
(t)
y,r
J(g,X ), vy,`

〉
≥ Θ

η
〈
w

(t)
y,r, vy,`

〉α−1
kρα−1

 (B.6)

Where above we also used the fact that |Ny| = Θ(N/k). On the other hand, also using Claim B.2

and Corollary B.3, we have that for all t for which
〈
w

(t)
y,r, vs,`

〉
< ρ/(δ2 − δ1):

〈
−η∇

w
(t)
y,r
J(g,X ), vs,`

〉
≤ Θ

ηPδα4 maxu 6=y, `′∈[2]

〈
w

(t)
y,r, vu,`′

〉α−1
ρα−1

 (B.7)

Now suppose that
〈
w

(0)
y,r, vs,`

〉
is the maximum off-diagonal correlation at initialization. Then using

Equation B.7, we can lower bound the number of iterations T it takes for
〈
w

(t)
y,r, vs,`

〉
to grow by a

fixed constant C factor from initialization:

TΘ

ηPδα4Cα−1
〈
w

(0)
y,r, vs,`

〉α−1
ρα−1

 ≥ (C − 1)
〈
w(0)
y,r, vs,`

〉

=⇒ T ≥ Θ

 ρα−1

ηPδα4

〈
w

(0)
y,r, vs,`

〉α−2


= Θ

(
k1.5α−2ρα−1dα/2−1

η

)
(B.8)

As there exists at least one
〈
w

(0)
y,r, vy,`

〉
= Ω(1/

√
d), it immediately follows from comparing to

Equation B.6 and recalling that α = 8 in Assumption 4.3 that T >> TA, and that TA = O(poly(k)),
so the claim is proved. �

Having established strong control over the off-diagonal correlations, we are now ready to prove the
first half of the main result of this part of the proof - that gyt (xi) reaches Ω(log k) for all i ∈ Ny in
O(poly(k)) iterations. In proving this, it will help us to have some control over the network outputs
gyt across different points xi and xj at the later stages of training, which we take care of below.

Claim B.5. For every y ∈ [k] and all t such that maxi∈Ny g
y
t (xi) ≥ log k

and maxr∈[m],s6=y,`∈[2]

〈
w

(t)
y,r, vs,`

〉
= O

(
log(k)/

√
d
)

, we have maxi∈Ny g
y
t (xi) =

Ω(mini∈Ny g
y
t (xi)).

Proof of Claim B.5. Let j = argmaxi∈Ny g
y
t (xi). Since gyt (xj) ≥ log k, we necessarily have that

By,` is non-empty for at least one ` ∈ [2] (sincemρ = Θ(1)). Only those weights w(t)
y,r with r ∈ By,`
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for some ` ∈ [2] are asymptotically relevant (as any weights not considered can only contribute a
O(1) term), and we can write:

gyt (xj) ≤
∑
`∈[2]

 ∑
p∈Py,`(xi)

βi,p

 ∑
r∈B(t)

y,`

〈
w(t)
y,r, vy,`

〉
+ o(log k)

For any other j ∈ Ny , we have that βj,p ≥ δ1βi,p/(δ2 − δ1), from which the result follows. �

Now we may show:

Claim B.6. For each y ∈ [k], let Ty denote the first iteration such that maxi∈Ny g
y
Ty

(xi) ≥ log k.

Then Ty = O(poly(k)) and maxr∈[m],s 6=y,`∈[2]

〈
w

(Ty)
y,r , vs,`

〉
= O

(
log(k)/

√
d
)

. Furthermore,

mini∈Ny g
y
t (xi) = Ω(log k) for all t ≥ Ty .

Proof of Claim B.6. Applying Claim B.4 to an arbitrary y ∈ [k] yields the existence of a corre-
lation

〈
w

(t)
y,r∗ , vy,`∗

〉
≥ ρ/(δ2 − δ1). Reusing the logic of Claim B.4, but this time replacing〈

w
(t)
y,r∗ , vy,`∗

〉
in Equation B.6 with ρ/(δ2 − δ1), shows that in O(poly(k)) additional iterations we

have
〈
w

(t)
y,r∗ , vy,`∗

〉
≥ ρ/δ1 (implying r ∈ B(t)

y,`∗) while the off-diagonal correlations still remain
within a constant factor of initialization.

Now we may lower bound the update to
〈
w

(t)
y,r∗ , vy,`∗

〉
as (using Calculation A.8):〈

−η∇
w

(t)

y,r∗
J(g,X ), vy,`∗

〉
≥ η

N

∑
i∈Ny

(
1− φy

(
gt(xi)

)) ∑
p∈Ps,`(xi)

βi,p

− η

N

∑
i/∈Ny

φy
(
gt(xi)

)
Θ

Pδα4 maxu6=y, `′∈[2]

〈
w

(t)
y,r∗ , vu,`′

〉α−1
ρα−1


(B.9)

So long as maxi∈Ny g
y
t (xi) < log k (which is necessarily still the case at this point, as again

mρ = Θ(1)), we have by the logic of Claim B.2 that we can simplify Equation B.9 to:〈
−η∇

w
(t)

y,r∗
J(g,X ), vy,`∗

〉
≥ Θ(η/k) (B.10)

Where again we used the fact that |Ny| = Θ(N/k). Now we can upper bound Ty by the number

of iterations it takes
〈
w

(t)
y,r∗ , vy,`∗

〉
to grow to log(k)/δ1. From Equation B.10, we clearly have

that Ty = O(poly(k)) for some polynomial in k. Furthermore, comparing to Equation B.7, we

necessarily still have maxr∈[m],s6=y,`∈[2]

〈
w

(Ty)
y,r , vs,`

〉
= O

(
log(k)/

√
d
)

. Finally, as the update in
Equation B.9 is positive at Ty (and the absolute value of a gradient update is o(1)), it follows that
mini∈Ny g

y
t (xi) = Ω(log k) for all t ≥ Ty by Claim B.5. �

The final remaining task is to show that gyt (xi) = O(log k) and gst (xi) = o(1) for all t = O(poly(k))
and i ∈ Ny for every y ∈ [k].

Claim B.7. For all t = O(kC) for any universal constant C, and for every y ∈ [k] and s 6= y, we
have that gyt (xi) = O(log k) and maxr∈[m],s 6=y,`∈[2]

〈
w

(t)
y,r, vs,`

〉
= O

(
log(k)/

√
d
)

for all i ∈ Ny .

Proof of Claim B.7. Let us again consider any class y ∈ [k] and t ≥ Ty. The idea is to show that
maxi∈Ny 1 − φy(gt(xi)) is decreasing rapidly as mini∈Ny g

y
t (xi) grows to successive levels of

a log k for a > 1.
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Firstly, following Equation B.9, we can form the following upper bound for the gradient updates to
r ∈ B(t)

y,`: 〈
−η∇

w
(t)

y,r∗
J(g,X ), vy,`∗

〉
≤ η

N

∑
i∈Ny

(
1− φy

(
gt(xi)

)) ∑
p∈Ps,`(xi)

βi,p

≤
(

1− min
i∈Ny

φy
(
gt(xi)

))
Θ(η/k) (B.11)

From Equation B.11 it follows that it takes at least Θ(k log(k)/(mη) iterations (since the correlations
must grow at least log(k)/m) from Ty for gyt (xi) to reach 2 log k. Now let Ta denote the number of
iterations it takes for mini∈Ny g

y
t (xi) to cross a log k after crossing (a− 1) log k for the first time.

For a ≥ 3, we necessarily have that Ta = Ω(kTa−1) by Claim B.2 and Equation B.11.

Let us now further define Tf to be the first iteration at which maxi∈Ny g
y
Tf

(xi) ≥ f(k) log k for
some f(k) = ω(1). By Claim B.5, at this point mini∈Ny g

y
Tf

(xi) = Ω(f(k) log k). However, we
have from the above discussion that:

Tf ≥ Ω(poly(k)) +

f(k)−3∑
a=0

Ω

(
ka log k

η

)

≥ Ω

(
log k

(
kf(k)−2 − 1

)
η(k − 1)

)
≥ ω(poly(k)) (B.12)

So maxi∈Ny g
y
t (xi) = O(log k) for all t = O(poly(k)). An identical analysis also works for the

off-diagonal correlations
〈
w

(t)
y,r, vs,`

〉
but forming an upper bound using Equation B.4, so we are

done. �

We get the following two corollaries as straightforward consequences of Claim B.7.

Corollary B.8 (Perfect Training Accuracy). We have that there exists a universal constant C such
that argmaxs g

s
t (xi) = yi for every (xi, yi) ∈ X for all t ≥ kC but with t = O(poly(k)).

Corollary B.9 (Softmax Control). We have that for all y ∈ [k] and any t = O(poly(k)) for any
polynomial in k that maxi∈Ny

∑
s6=y exp(gst (xi)) = k + o(1).

Corollary B.8 finishes this part of the proof.

Part II.

For the next part of the proof, we characterize the separation between maxr∈[m]

〈
w

(0)
y,r, vy,1

〉
and

maxr∈[m]

〈
w

(0)
y,r, vy,2

〉
, and show that this separation (when it is significant enough) gets amplified

over the course of training. To show this, we will rely largely on the techniques found in Allen-Zhu
and Li (2021), and finish in a near-identical manner to the proof of Claim B.7.

As with Part I, we first introduce some notation that we will use throughout this part of the proof.

Sy,` =
1

N

∑
i∈Ny

∑
p∈Py,`(xi)

βαi,p Λ
(t)
y,` = max

r∈[m]

〈
w(t)
y,r, vy,`

〉

Here, Sy,` represents the data-dependent quantities that show up in the gradient updates to the

correlations during the phase of training in which the correlations are in the polynomial part of R̃eLU,
while Λ

(t)
y,` represents the max class y correlation with feature vy,` at time t.

Now we can prove essentially the same result as Proposition B.2 in Allen-Zhu and Li (2021), which
quantifies the separation between Λ

(0)
y,1 and Λ

(0)
y,2 after taking into account Sy,1 and Sy,2.
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Claim B.10 (Feature Separation at Initialization). For each class y, we have that either:

Λ
(0)
y,1 ≥

(
Sy,2
Sy,1

) 1
α−2

(
1 + Θ

(
1

log2 k

))
Λ
(0)
y,2 or

Λ
(0)
y,2 ≥

(
Sy,1
Sy,2

) 1
α−2

(
1 + Θ

(
1

log2 k

))
Λ
(0)
y,1

with probability 1−O
(

1
log k

)
.

Proof of Claim B.10. Suppose WLOG that Sy,1 ≥ Sy,2. If neither of the inequalities in the claim
hold, then we have that:

Λ
(0)
y,1 ∈

(
Sy,2
Sy,1

) 1
α−2

(
1±Θ

(
1

log2 k

))
Λ
(0)
y,2

Which follows from the fact that, for a constant A, we have:
1

1 + A
log2 k

≥ 1− A

log2 k

Now we recall that Λ
(0)
y,1 and Λ

(0)
y,2 are both maximums over i.i.d. N (0, 1/d) variables (again, since

the feature vectors are orthonormal), so we can apply Corollary A.5 (Gaussian anti-concentration)
to Λ

(0)
y,1 while taking ε = (Sy,2/Sy,1)

1
α−2 Θ

(
1/ log2 k

)
Λ
(0)
y,2 and x = (Sy,2/Sy,1)

1
α−2 Λ

(0)
y,2. It is

crucial to note that we can only do this because Λ
(0)
y,2 is independent of Λ

(0)
y,1, and both take values

over all of R. From this we get that:

P
(

Λ
(0)
y,1 ∈ (Sy,2/Sy,1)

1
α−2 Λ

(0)
y,2 ± ε

)
≤ 4ε(1 +

√
2 logm)

σ

= O

(
σ
√

logm

log2 k

)
Θ

(√
logm

σ

)
= O

(
1

log k

)
with probability 1− 1

m

Where we used the fact that m = Θ(k) and Proposition A.2 to characterize Λ
(0)
y,2 (also noting that

Sy,2/Sy,1 is Θ(1)). Thus, neither of the inequalities hold with probability O(1/ log k), so we have
the desired result. �

We can use the separation from Claim B.10 to show that, in the initial stages of training, the max
correlated weight/feature pair grows out of the polynomial region of R̃eLU and becomes large
much faster than the correlations with the other feature for the same class. For y ∈ [k], let `∗ be
such that Λ

(0)
y,`∗ is the left-hand side of the satisfied inequality from Claim B.10. Additionally, let

r∗ = argmaxr

〈
w

(0)
y,r, vy,`∗

〉
, i.e. the strongest weight/feature correlation pair at initialization. We

will show that when
〈
w

(t)
y,r∗ , vy,`∗

〉
becomes Ω(ρ), the other correlations remain small. In order to

do so, we need a useful lemma from Allen-Zhu and Li (2021) that we restate below.

Lemma B.11 (Lemma C.19 from Allen-Zhu and Li (2021)). Let q ≥ 3 be a constant and x0, y0 =
o(1). Let {xt, yt}t≥0 be two positive sequences updated as

• xt+1 ≥ xt + ηCtx
q−1
t for some Ct = Θ(1), and

• yt+1 ≤ yt + ηSCty
q−1
t for some constant S = Θ(1).

Where η = O(1/poly(k)) for a sufficiently large polynomial in k. Suppose x0 ≥
y0S

1
q−2

(
1 + Θ

(
1

polylog(k)

))
. For every A = O(1), letting Tx be the first iteration such that

xt ≥ A, we must have that
yTx = O(y0polylog(k))
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To apply Lemma B.11 in our setting, we first prove the following claim.

Claim B.12. For a class y ∈ [k], we define the following two sequences:

ay,t =

(
Sy,`∗

ρα−1

) 1
α−2 〈

w
(t)
y,r∗ , vy,`∗

〉
and by,t =

(
Sy,3−`∗

ρα−1

) 1
α−2 〈

w(t)
y,r, vy,3−`∗

〉
Where the r in the definition of by,t is arbitrary. Then with probability 1 − O

(
1

log k

)
there exist

Ct, S = Θ(1) such that for all t for which
〈
w

(t)
y,r∗ , vy,`∗

〉
< ρ/(δ2 − δ1):

ay,t+1 ≥ ay,t + ηCta
α−1
y,t

by,t+1 ≤ by,t + ηSCtb
α−1
y,t

Additionally (with the same probability), we have that ay,0 ≥ S
1

α−2

(
1 + Θ

(
1

polylog(k)

))
by,0.

Proof of Claim B.12. The update to
〈
w

(t)
y,r∗ , vy,`∗

〉
in this regime can be bounded as follows (using

Corollary B.9 and recalling Equation B.5):〈
−η∇

w
(t)

y,r∗
J(g,X ), vy,`∗

〉
≥ η

N

∑
i∈Ny

(
1− φy

(
gt(xi)

)) ∑
p∈Ps,`(xi)

βαi,p

〈
w

(t)
y,r, vy,`

〉α−1
ρα−1

− η

N

∑
i/∈Ny

φy
(
gt(xi)

)
Θ

Pδα4 maxu 6=y, `′∈[2]

〈
w

(t)
y,r, vu,`′

〉α−1
ρα−1


≥ η

(
1−Θ

(
1

k

))
Sy,`∗

〈
w

(t)
y,r∗ , vy,`∗

〉α−1
ρα−1

(B.13)

Similarly, we have (noting also that
〈
w

(t)
y,r, vy,3−`∗

〉
< ρ/(δ2 − δ1)):

〈
−η∇

w
(t)
y,r
J(g,X ), vy,3−`∗

〉
≤ ηSy,3−`∗

〈
w

(t)
y,r, vy,3−`∗

〉α−1
ρα−1

(B.14)

Multiplying the above inequalities by
(
Sy,`∗/ρ

α−1) 1
α−2 , we see that ay,t and by,t satisfy the inequal-

ities in the claim with Ct = 1−Θ
(
1
k

)
and S = (Sy,3−`∗/Sy,`∗)

(
1 + Θ

(
1
k

))
. Now by Claim B.10

we have:

ay,0 ≥
(
Sy,3−`∗

Sy,`∗

) 1
α−2

(
1 + Θ

(
1

log2 k

))
by,0

≥ S
1

α−2

(
1 + Θ

(
1

polylog(k)

))
by,0

So we are done. �

Now by the fact that |Ny| = Θ(N/k), we have Sy,1, Sy,2 = Θ (1/k) = O(ρ), which implies

that
(
Sy,`∗/ρ

α−1)1/(α−2) = O (1/ρ). From this we get that while ay,t < C/(δ2 − δ1) for some

appropriately chosen constant C, we have
〈
w

(t)
y,r∗ , vy,`∗

〉
< ρ/(δ2 − δ1).

Since Claim B.12 holds in this regime, we can apply Lemma B.11 with A = C/(δ2 − δ1), which
gives us that when ay,t ≥ C/(δ2 − δ1), we have by,t = O(by,0polylog(k)). From this we obtain that

when
〈
w

(t)
y,r∗ , vy,`∗

〉
≥ ρ/(δ2 − δ1) we have that

〈
w

(t)
y,r, vy,3−`∗

〉
is still within a polylog(k) factor

of
〈
w

(0)
y,r, vy,3−`∗

〉
for any r.

Now from the same logic as the proof of Claim B.7, we can show that this separation remains
throughout training.
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Claim B.13. For any class y ∈ [k], with probability 1 − O(1/ log k), we have that
maxr∈[m]

〈
w

(t)
y,r, vy,3−`∗

〉
= O(polylog(k) maxr∈[m]

〈
w

(0)
y,r, vy,3−`∗

〉
) for all t = O(poly(k)) for

any polynomial in k.

Proof of Claim B.13. It follows from the same logic as in the proof of Claim B.6 that at the first
iteration t for which we have mini∈Ny g

y
t (xi) ≥ log k, we still have

〈
w

(t)
y,r, vy,3−`∗

〉
is within some

polylog(k) factor of initialization (here the correlation
〈
w

(t)
y,r, vy,3−`∗

〉
can be viewed as the same

as an off-diagonal correlation from the proof of Claim B.6). The rest of the proof then follows from
identical logic to that of Claim B.7; namely, we can show that for

〈
w

(t)
y,r, vy,3−`∗

〉
to grow by more

than a polylog(k) factor we need ω(poly(k)) training iterations. �

From Claim B.13 along with Claim B.7, it follows that with probability 1 − O(1/ log k), for any
class y (after polynomially many training iterations) we have:

gyt (x′i) = O

(
mpolylog(k)√

d

)
= O

(
kpolylog(k)√

d

)
gst (x

′
i) = Ω

(
P

log(k)
α

ρα−1k2.5α

)
= ω

(
kpolylog(k)√

d

)
for s 6= y, if ∃ Ps,`(xi) 6= ∅ (B.15)

Where x′i is any point xi with i ∈ Ny modified so that all instances of feature vy,`∗ are replaced by

0, and the second line above follows from the fact that by Claim B.7 we must have
〈
w

(t)
s,r, vs,`

〉
=

Ω(log(k)/k) for at least some r, ` for every s (and d = Θ(k20)). This proves that feature vy,3−`∗ is
not learned in the sense of Definition 4.5.

Using Claim B.13 for each class, we have by a Chernoff bound that with probability at least 1−o(1/k)
that for (1− o(1))k classes only a single feature is learned, which proves the theorem.

B.2 PROOF OF THEOREM 4.7

Theorem 4.7. For k and N sufficiently large and the settings stated in Assumptions 4.3, we have
that the following hold with probability 1−O(1/k) after running gradient descent with a step size
η = O(1/poly(k)) for O(poly(k)/η) iterations on JMM (g,X ) (for sufficiently large polynomials
in k):

1. (Training accuracy is perfect): For all (xi, yi) ∈ X , we have argmaxs g
s(xi) = yi.

2. (Both features are learned): For each class y ∈ [k], both vy,1 and vy,2 are learned in the
sense of Definition 4.5 by the model g.

Furthermore, the above remains true for all t = O(poly(k)) for any polynomial in k.

Proof. As in the proof of Theorem 4.6, we break the proof into two parts. The first part mirrors most
of the structure of Part I of the proof of Theorem 4.6, in that we analyze the off-diagonal correlations
and also show that the network outputs gyt can grow to (and remain) Ω(log k) as training progresses.
However, we do not show that the outputs stay O(log k) in Part I (as we did in the ERM case), as
there are additional subtleties in the Midpoint Mixup analysis that require different techniques which
we find are more easily introduced separately.

The second part of the proof differs significantly from Part II of the proof of Theorem 4.6, as our
goal is to now show that any large separation between weight-feature correlations for each class are
corrected over the course of training. At a high level, we show this by proving a gradient correlation
lower bound that depends only on the magnitude of the separation between correlations and the
variance of the feature coefficients in the data distribution, after which we can conclude that any
feature lagging behind will catch up in polynomially many training iterations. We then use the
techniques from the gradient lower bound analysis to prove that the network outputs gyt stay O(log k)
throughout training, which wraps up the proof.
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Part I. We first recall that zi,j = (xi + xj)/2, and we refer to such zi,j as “mixed points”. In this
part of the proof, we show that gyit (zi,j) crosses log k on at least one mixed point zi,j in polynomially
many iterations (after which the network outputs remain Ω(log k)). As before, this requires getting a
handle on the off-diagonal correlations

〈
w

(t)
y,r, vs,`

〉
(with s 6= y).

Throughout the proof, we will continue to rely on the notation introduced in Equation B.1 in the
proof of Theorem 4.6. However, we make one slight modification to the definition of B(t)

y,` for the
Mixup case (so as to be able to handle mixed points), which is as follows:

B
(t)
y,` = {r : r ∈ [m] and

〈
w(t)
y,r, vy,`

〉
≥ 2ρ/δ1} (B.16)

We again start by proving a claim that will constitute our setting for the rest of this proof.

Claim B.14. With probability 1−O(1/k), all of the following are (simultaneously) true for every
class y ∈ [k]:

• |Ny| = Θ(N/k)

• maxs∈[k],r∈[m],`∈[2]

〈
w

(0)
s,r , vy,`

〉
= O(log k/

√
d)

• ∀` ∈ [2], maxr∈[m]

〈
w

(0)
y,r, vy,`

〉
= Ω(1/

√
d)

• For Ω(k) tuples (s, `) ∈ [k]× [2] we have
〈
w

(0)
y,r, vs,`

〉
> 0.

Proof of Claim B.14. The first three items in the claim are exactly the same as in Claim B.1, and the
last item is true because the correlations

〈
w

(0)
y,r, vs,`

〉
are mean zero Gaussians. �

Once again, in everything that follows, we will always assume the conditions of Claim B.14 unless
otherwise stated. We now translate Claim B.2 to the Midpoint Mixup setting.

Claim B.15. Consider i ∈ Ny, j ∈ Ns for s 6= y and suppose that maxu/∈{y,s} g
u
t (zi,j) =

O(log(k)/k) holds true. If we have gyt (zi,j) = a log k and gst (zi,j) = b log k for a, b = O(1), then:

1− 2φy(gt(zi,j)) =


−Ω(1) if a > 1, a− b = Ω(1)

±O(1) if a > 1, a− b = ±o(1)

Θ (1) otherwise

Where in the second item above the sign of 1− 2φy(gt(zi,j)) depends on the sign of a− b.

Proof of Claim B.15. In comparison to Claim B.2, the Midpoint Mixup case is slightly more involved
in that gst (zi,j) can be quite large due to the xj part of zi,j . As a result, we directly assume some
control over the different class outputs on the mixed points (which we will prove to hold throughout
training later). By assumption, we have for u 6= y, s:

gut (zi,j) = O(log(k)/k) =⇒ exp(gut (zi,j)) ≤ 1 +O(log(k)/k) (B.17)

Where above we used the inequality exp(x) ≤ 1 + x+ x2 for x ∈ [0, 1]. Now by the assumptions
that gyt (zi,j) = a log k and gst (zi,j) = b log k, we have:

1− 2φy(gt(xi)) ≤ 1− 2ka

ka + kb + (k − 2) + o(k)

=
kb − ka + (k − 2) + o(k)

ka + kb + (k − 2) + o(k)
(B.18)

From which the result follows. �

Corollary B.16. Under the same conditions as Claim B.15, for u 6= y, s we have:

1− 2φu(gt(zi,j)) = Θ(1)
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Proof of Corollary B.16. Follows from Equations B.17 and B.18. �

We observe that Claim B.15 and Corollary B.16 are less precise than Claim B.2, largely because
there is now a dependence on the gap between the class y and class s network outputs as opposed
to just the class y network output. We are now again ready to compare the growth of the diagonal
correlations

〈
w

(t)
y,r, vy,`

〉
with the off-diagonal correlations

〈
w

(t)
y,r, vs,`

〉
. However, this is not as

straightforward as it was in the ERM setting. The issue is that the off-diagonal correlations can
actually grow significantly, due to the fact that the features vy,` can show up when mixing points in
class y with class s.

Claim B.17. Fix an arbitrary class y ∈ [k]. Let A ∈ [Ω(ρ), ρ/(δ2 − δ1)] and let TA be the first
iteration at which maxr∈[m],`∈[2]

〈
w

(TA)
y,r , vy,`

〉
≥ A; we must have both that TA = O(poly(k)) and

that, for every s 6= y and ` ∈ [2]:

〈
w(TA)
y,r , vs,`

〉
= O

(
max
`′∈[2]

〈
w(TA)
y,r , vy,`′

〉
/k

)

Additionally, for all s, ` with
〈
w

(0)
y,r, vs,`

〉
> 0, we have that

〈
w

(TA)
y,r , vs,`

〉
= Ω

(
〈w(0)

y,r,vs,`〉
polylog(k)

)
.

Proof of Claim B.17. By our setting, we must have that there exists a diagonal correlation〈
w

(0)
y,r∗ , vy,`∗

〉
= Ω(1/

√
d), which we will focus our attention on. Using Calculation A.10 and

the ideas from Calculation A.7, we can lower bound the update to
〈
w

(t)
y,r∗ , vy,`∗

〉
from initialization

up to TA as:

〈
−η∇

w
(t)

y,r∗
JMM (g,X ), vy,`∗

〉
≥ η

N2

∑
i∈Ny

∑
j /∈Ny

(
1− 2φy

(
(gt(zi,j))

))
Θ


〈
w

(t)
y,r∗ , vy,`∗

〉α−1
ρα−1


+

η

N2

∑
i∈Ny

∑
j∈Ny

(
1− φy

(
(gt(zi,j))

))
Θ


〈
w

(t)
y,r∗ , vy,`∗

〉α−1
ρα−1


− η

N2

∑
i/∈Ny

∑
j /∈Ny

φy
(
gt(zi,j)

)
Θ

Pσα4 maxu∈[k],q∈[2]

〈
w

(t)
y,r∗ , vu,q

〉α−1
ρα−1


(B.19)

Above we made use of the fact that, for i ∈ Ny and j /∈ Ny, we have
〈
w

(t)
y,r∗ , z

(p)
i,j

〉
≥〈

w
(t)
y,r∗ , vy,`∗

〉
/2 for at least Θ(|Ny|N) mixed points since the correlation

〈
w

(t)
y,r∗ , vu,q

〉
is pos-

itive for Ω(k) tuples (u, q) ∈ [k]× [2] (under Setting B.14). We can similarly upper bound the update
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to
〈
w

(t)
y,r, vs,`

〉
for an arbitrary r ∈ [m] as:

〈
−η∇

w
(t)
y,r
JMM (g,X ), vs,`

〉
≤ − η

N2

∑
i/∈Ny

∑
j∈Ns

φy
(
gt(zi,j)

)
Θ


〈
w

(t)
y,r, vs,`

〉α−1
ρα−1


− η

N2

∑
i/∈Ny∪Ns

∑
j /∈Ny∪Ns

φy
(
gt(zi,j)

)
Θ

Pδα3 minu∈[k],q∈[2]

〈
w

(t)
y,r, vu,q

〉α−1
ρα−1


+

η

N2

∑
i∈Ny

∑
j∈Ns

(
1− 2φy

(
gt(zi,j)

))
Θ

maxq∈[2]

〈
w

(t)
y,r, vs,` + vy,q

〉α−1
ρα−1


+

η

N2

∑
i∈Ny

∑
j /∈Ny∪Ns

(
1− 2φy

(
gt(zi,j)

))
Θ

δ4 maxu∈[k],q∈[2]

〈
w

(t)
y,r, vu,q

〉α−1
ρα−1


+

η

N2

∑
i∈Ny

∑
j∈Ny

(
1− φy

(
gt(zi,j)

))
Θ

Pδα4 maxu6=y,q∈[2]

〈
w

(t)
y,r, vu,q

〉α−1
ρα−1


(B.20)

As the above may be rather difficult to parse on first glance, let us take a moment to unpack the
individual terms on the RHS. The first two terms are a precise splitting of the −2φy(gt) term from
Calculation A.10; namely, the case where we mix with the class s allows for constant size coefficients
on the feature vs,` while the other cases only allow for vs,` to show up in the feature noise patches.
The next three terms consider all cases of mixing with the class y. The first of these terms considers
the case of mixing class y with class s, in which case it is possible to have patches in zi,j that have
both vs,` and vy,`∗ with constant coefficients. The next term considers mixing class y with a class
that is neither y nor s, in which case the feature vs,` can only show up when mixing with a feature
noise patch, so we suffer a factor of at least δ4 = Θ(1/k1.5) (note we do not suffer a δα4 factor as
vy,`∗ can still be in zi,j) from the 〈zi,j , vs,`〉 part of the gradient. Finally, the last term considers
mixing within class y.

The first of the three positive terms in the RHS of Equation B.20 presents the main problem - the
fact that the diagonal correlations can show up non-trivially in the off-diagonal correlation gradient
means the gradients can be much larger than in the ERM case. However, the key is that there are
only Θ(N/k2) mixed points between classes y and class s. Thus, once more using the fact that
Θ(|Nu|) = Θ(N/k) for every u ∈ [k], the other conditions in our setting, and Claim B.15, we obtain
that for all t ≤ TA:〈

−η∇
w

(t)

y,r∗
JMM (g,X ), vy,`∗

〉
≥ Θ

η
〈
w

(t)
y,r∗ , vy,`∗

〉α−1
kρα−1

 (B.21)

〈
−η∇

w
(t)
y,r
JMM (g,X ), vs,`

〉
≤ Θ

ηmaxu∈{s,y},q∈[2]

〈
w

(t)
y,r, vu,q

〉α−1
k2ρα−1

 (B.22)

Crucially we have that Equation B.22 is a Θ(1/k) factor smaller than Equation B.21. Recalling
that all correlations are O(log(k)/

√
d) at initialization, we see that the difference in the updates

in Equations B.21 and B.22 is at least of the same order as Equation B.21. Thus, in O(poly(k))

iterations, it follows that
〈
w

(t)
y,r∗ , vy,`∗

〉
>
〈
w

(t)
y,r, vs,`

〉
(this necessarily occurs for a t < TA by

definition of A and comparison to the bounds above), after which it follows from Equations B.21 and
B.22 that

〈
w

(TA)
y,r , vs,`

〉
= O(

〈
w

(TA)
y,r∗ , vy,`∗

〉
/k) (and clearly TA = O(poly(k))). This proves the

first part of the claim.
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It remains to show that the off-diagonal correlations also do not decrease by too much, as if they were

to become negative that would potentially cause problems in Equation B.19 due to R̃eLU
′

becoming
0. Using Equation B.20, we can form the following lower bound to

〈
w

(t)
y,r, vs,`

〉
:

〈
−η∇

w
(t)
y,r
JMM (g,X ), vs,`

〉
≥ −Θ

η
〈
w

(t)
y,r, vs,`

〉α−1
k2ρα−1

 (B.23)

Now let T denote the number of iterations starting from initialization that it takes
〈
w

(t)
y,r, vs,`

〉
to decrease to

〈
w

(0)
y,r, vs,`

〉
/polylog(k) for some fixed polylog(k) factor. Then it follows from

Equation B.21 that in T iterations
〈
w

(t)
y,r∗ , vy,`∗

〉
has increased by at least a k/polylog(k) factor. As

a result, we have that at TA the correlation
〈
w

(t)
y,r, vs,`

〉
has decreased by at most a polylog(k)C

factor for some universal constant C, proving the claim. �

Corollary B.18. For any class y ∈ [k], and any t ≥ TA (for any TA satisfying the definition in Claim
B.17), we have for any s 6= y and ` ∈ [2]:〈

w(t)
y,r, vs,`

〉
= O

(
max
`′∈[2]

〈
w(t)
y,r, vy,`′

〉
/k

)
Additionally, for all s, ` with

〈
w

(0)
y,r, vs,`

〉
> 0, we have that

〈
w

(t)
y,r, vs,`

〉
> 0.

Proof of Corollary B.18. The O(1/k) factor separation between the updates to diagonal and off-
diagonal correlations shown in Equations B.21 and B.22 continue to hold once we pass into the linear
regime of R̃eLU. Furthermore, the logic used to prove the lower bound for positive correlations in
Claim B.17 easily extends to showing that the correlations remain positive throughout training. �

As noted above, the bound on the off-diagonal correlations obtained in Claim B.17 and Corollary
B.18 is much weaker than what it was in Claim B.4, which is why we weakened the assumptions in
Claim B.15. We now prove the Midpoint Mixup analogues to Claims B.5, B.6, and B.7.

Claim B.19. Consider y ∈ [k] and t such that maxi∈Ny, j∈[N ] g
y
t (zi,j) = Θ(log k). Then

maxi∈Ny, j∈[N ] g
y
t (zi,j) = Θ(mini∈Ny, j∈[N ] g

y
t (zi,j)).

Proof of Claim B.19. For any t satisfying the conditions of the claim, we necessarily have that
Corollary B.18 holds. As a result, we have:∑

r∈[m]

∑
`∈[2]

〈
w(t)
y,r, vy,`

〉
= O(log k) =⇒

∑
r∈[m]

∑
`∈[2]

〈
w(t)
y,r, vs,`

〉
= O(log(k)/k)

Thus, we may disregard the off-diagonal correlations in considering the class y output on zi,j (i.e. we
do not need to worry about the xj part of zi,j), and the rest is identical to Claim B.5. �

Claim B.20. For each y ∈ [k], let Ty denote the first iteration at which maxi∈Ny, j /∈Ny g
y
Ty

(zi,j) ≥
log(k − 1). Then we have that Ty = O(poly(k)) (for a sufficiently large polynomial in k) and that
mini∈Ny, j /∈[N ] g

y
t (zi,j) = Ω(log k) for all t ≥ Ty .

Proof of Claim B.20. As in the proof of Claim B.6, applying Claim B.17 to any class y yields
the existence of a correlation

〈
w

(t)
y,r∗ , vy,`∗

〉
and a t = O(poly(k)) such that

〈
w

(t)
y,r∗ , vy,`∗

〉
>

ρ/(δ2−δ1). And again, reusing the logic of Claim B.17 but replacing
〈
w

(t)
y,r∗ , vy,`∗

〉
in Equation B.21

with ρ/(δ2 − δ1) yields that in an additional O(poly(k)) iterations we have
〈
w

(t)
y,r∗ , vy,`∗

〉
> 2ρ/δ1

(implying that w(t)
y,r∗ has reached the linear regime of R̃eLU on effectively all mixed points) while

the off-diagonal correlations continue to lag behind by a O(1/k) factor.
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At this point we may lower bound the update to
〈
w

(t)
y,r∗ , vy,`∗

〉
as:〈

−η∇
w

(t)

y,r∗
JMM (g,X ), vy,`∗

〉
≥ η

N2

∑
i∈Ny

∑
j /∈Ny

Θ
(

1− 2φy
(
(gt(zi,j))

))
+

η

N2

∑
i∈Ny

∑
j∈Ny

Θ
(

1− φy
(
(gt(zi,j))

))

− η

N2

∑
i/∈Ny

∑
j /∈Ny

φy
(
gt(zi,j)

)
Θ

Pσα4 maxu∈[k],q∈[2]

〈
w

(t)
y,r∗ , vu,q

〉α−1
ρα−1


(B.24)

Using Claim B.15, we have that so long as maxi∈Ny, j /∈Ny g
y
t (zi,j) < log(k − 1), we get (using

|Nu| = Θ(N/k) for all u ∈ [k]):〈
−η∇

w
(t)

y,r∗
JMM (g,X ), vy,`∗

〉
≥ Θ(η/k) (B.25)

This also implies, by the logic of Claim B.17, that the off-diagonal correlations
〈
w

(t)
y,r, vs,`

〉
have

updates that can be upper bounded as:〈
−η∇

w
(t)
y,r
JMM (g,X ), vs,`

〉
≤ Θ(η/k2) (B.26)

Comparing Equations B.25 and B.26, we have that gyt (zi,j) ≥ log(k − 1) (and, consequently,
gyt (xi) ≥ log(k − 1)) for at least one mixed point zi,j with i ∈ Ny inO(poly(k)) iterations while the
off-diagonal correlations areO(log(k)/k). This also implies that mini∈Ny, j∈[N ] g

y
t (zi,j) = Ω(log k)

by Claim B.19. Finally, since Equation B.25 is positive, the class y network outputs remain Ω(log k)
for t ≥ Ty (as again we cannot decrease below log(k − 1) by more than o(1) since the gradients are
o(1)). �

Part II. Having analyzed the growth of diagonal and off-diagonal correlations in the initial stages of
training, we now shift gears to focusing on the gaps between the correlations for each class. The key
idea is that JMM will push the correlations for the features vy,1 and vy,2 closer together throughout
training (so as long as they are sufficiently separated), for every class y.

In order to prove this, we will rely on analyzing an expectation form of the gradient for JMM . As the
expressions involved in this analysis can become cumbersome quite quickly, we will first introduce a
slew of new notation to make the presentation of the results a bit easier.

Firstly, in everything that follows, we assume vy,1 to be the better correlated feature at time t for
every class y ∈ [k] in the following sense:∑

r∈B(t)
y,1

〈
w(t)
y,r, vy,1

〉
≥

∑
r∈B(t)

y,2

〈
w(t)
y,r, vy,2

〉
(B.27)

Where the sets B(t)
y,` are as defined in Equation B.16. Furthermore, as we will refer to the quantities

in Equation B.27 many times, we use C(t)
y,1 and C(t)

y,2 to denote the LHS and RHS of Equation B.27,

and ∆
(t)
y = C

(t)
y,1 − C

(t)
y,2.

Now for the aforementioned expectation analysis we introduce several relevant random variables.
We use βy,p (for every y ∈ [k]) to denote a random variable following the distribution of the signal
coefficients for class y from Definition 4.1 and we further use βy to denote a random variable
representing the sum of CP i.i.d. βy,p. Similarly, we use zy,s to denote the average of two random
variables following the distributions of class y and class s points respectively. Finally, we define
A1(βs, βy) and A2(βs, βy) as:

A1(βs, βy) , 1− 2φy
(
(gt(zy,s))

)
(B.28)

A2(βs, βy) , 1− φy
(
(gt(zy,s))

)
(B.29)
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In context, this notation will imply that A1(βy, βs) = 1− 2φs
(
(gt(zy,s))

)
(i.e. swapping the order

of arguments changes which coordinate of the softmax is being considered).

Now we will first prove an upper bound on the difference of gradient correlations in the linear regime,
and then use these ideas to prove that correlations in the poly part of R̃eLU will still get significant
gradient. After we have done that, we will revisit this next claim to show that the separation between
feature correlations continues to decrease even after they reach the linear regime.

Claim B.21. Suppose that maxs∈[k] C
(t)
s,1 = O(log k). Then for any class y ∈ [k] and any r1 ∈ B(t)

y,1

and r2 ∈ B(t)
y,2, we let:

Ψ(r1, r2) ,
〈
−∇

w
(t)
y,r1

JMM (g,X ), vy,1

〉
−
〈
−∇

w
(t)
y,r2

JMM (g,X ), vy,2

〉
(B.30)

After which we have that:

Ψ(r1, r2) ≤ Θ

(
1

k2

)∑
s 6=y

Eβs,βy [A1(βs, βy)(βy − CP δ2/2)]

+ Θ

(
1

k2

)
Eβy [A2(βy, βy)(βy − CP δ2/2)]

+O
(
Pδα4 (log k)α−1

)
(B.31)

Proof of Claim B.21. Using the logic from Equation B.24 as well as the fact that r1 ∈ B
(t)
y,1 and

r2 ∈ B(t)
y,2 (i.e. we are considering weights in the linear regime of R̃eLU for each feature), we get:

Ψ(r1, r2) ≤ 1

N2

∑
i∈Ny

∑
j /∈Ny

(
1− 2φy

(
(gt(zi,j))

)) ∑
p∈Py,1(xi)

βi,p − CP δ2/2


+

1

N2

∑
i∈Ny

∑
j /∈Ny

(
1− φy

(
(gt(zi,j))

)) ∑
p∈Py,1(xi)

βi,p − CP δ2/2


+O

(
Pδα4 (log k)α−1

)
(B.32)

Now since we took N sufficiently large in Assumption 4.3, by concentration for bounded random
variables we can replace the expressions on the RHS above with their expected values, as the
deviation will be within O

(
Pδα4 (log k)α−1

)
(with probability 1 − O(1/k), consistent with our

setting). However, the expectations will be over all of the random variables βu for u ∈ [k], not just
the classes s and y being mixed (or in the case of the second term above, just the class y).

Fortunately, we observe that for the mixed point random variable zy,s, the βu for u 6= y, s can only
show up in the feature noise patches of zy,s. Thus, by an identical calculation to the one controlling
the feature noise contribution to the gradient above (once again, refer to Equation B.24), we see
that we may consider the expectation over just βy and βs while marginalizing out the other random
variables and staying within the error term above, thereby obtaining Equation B.31. �

We will now show that Eβs,βy [A1(βs, βy)(βy − CP δ2/2)] is significantly negative so long as the
separation between feature correlations ∆

(t)
y is sufficiently large. Once again, to simplify notation

even further, we will use β̃y = βy − CP δ2/2 and use P(β̃y) to refer to its associated probability
measure. Furthermore, we will use:

D(t)
y,s = (C

(t)
y,1 + C

(t)
y,2)− (C

(t)
s,1 + C

(t)
s,2)

In other words, D(t)
y,s represents the difference in the linear outputs of classes y and s. With this in

mind, we can prove the aforementioned result.

Claim B.22. Suppose that maxu∈[k] C
(t)
u,1 = O(log k). Let y be any class such that ∆

(t)
y ≥ log k −

o(1), and suppose that there exists at least one class s ∈ [k] such that there is a set U ⊂ [0, CP (δ2/2−
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δ1)] × [−CP (δ2/2 − δ1), CP (δ2/2 − δ1)] with (P(β̃y) × P(β̃s))(U) ≥ 0.01 (i.e. its measure is at
least 0.01) and for all (a, b) ∈ U we have:

(b− CP δ2/2)∆(t)
s − CP δ2D(t)

y,s/2 ≤ (a− CP δ2/2)∆(t)
y (B.33)

Then we have:

Eβs,βy [A1(βs, βy)(βy − CP δ2/2)] = −Θ (1) (B.34)

Proof of Claim B.22. We begin by first showing that the expectation on the LHS of Equation B.34 is
negative. Indeed, this is almost immediate from the fact that β̃y is a symmetric, mean zero random
variable - we need only show that A1 is monotonically decreasing in βy .

From the definition ofA1, we observe that it suffices to show that gyt (zy,s) is monotonically increasing
in βy. However, this is straightforward to see from the assumption that ∆

(t)
y ≥ log k − o(1), as this

implies that an ε increase in βy leads to a O(ε log k)−O(ε) increase in gyt , since the feature noise

and weights that are in the polynomial part of R̃eLU can contribute at most O(1) by the logic of
Claim B.19.

Now we need only show that the expectation is sufficiently negative. To do this, we will rely on the
following facts, which will allow us to write things purely in terms of C(t)

y,` and C(t)
s,` (i.e. disregarding

the weights that are not in the linear regime):

gyt (zy,s) ∈
[
βyC

(t)
y,1 + (CP δ2 − βy)C

(t)
y,2, βyC

(t)
y,1 + (CP δ2 − βy)C

(t)
y,2 +O(1)

]
(B.35)

gst (zy,s) ∈
[
βsC

(t)
s,1 + (CP δ2 − βs)C(t)

s,2, βsC
(t)
s,1 + (CP δ2 − βs)C(t)

s,2 +O(1)
]

(B.36)

gut (zy,s) = O

(
log k

k

)
for u 6= y, s (B.37)

Which follow from Claim B.19 and Corollary B.18 (alongside the assumption that maxu∈[k] C
(t)
u,1 =

O(log k)) respectively. Now we perform the substitution gut ← gut − CP δ2(C
(t)
y,1 + C

(t)
y,2)/2 for all

u ∈ [k], as this can be done without changing the value of φy(gt(zy,s)). Under this transformation
we have that (using Equation B.35):

gyt (zy,s) ∈
[
(βy − CP δ2/2)∆(t)

y , (βy − CP δ2/2)∆(t)
y +O(1)

]
(B.38)

gst (zy,s) ∈
[
(βs − CP δ2/2)∆(t)

s − CP δ2D(t)
y,s/2, (βs − CP δ2/2)∆(t)

s − CP δ2D(t)
y,s/2 +O(1)

]
(B.39)

Which isolates the correlation gap term ∆
(t)
y . Prior to proceeding further we will let Λ

(t)
s ,∑

u 6=y exp(gut (zy,s)), so as to prevent the equations to follow from becoming too unwieldy. Now we
have:

Eβs,βy [A1(βs, βy)(βy − CP δ2/2)]

=

∫ CP (δ2−δ1)

CP δ1

∫ CP (δ2−δ1)

CP δ1

Λ
(t)
s − exp(gyt (zy,s))

Λ
(t)
s + exp(gyt (zy,s))

(βy − CP δ2/2) dP(βy)dP(βs)

≤
∫ CP (δ2/2−δ1)

CP (δ1−δ2/2)

∫ 0

CP (δ1−δ2/2)

Λ
(t)
s − exp

(
β̃y∆

(t)
y +O(1)

)
Λ
(t)
s + exp

(
β̃y∆

(t)
y +O(1)

) β̃y dP(β̃y)dP(β̃s)

+

∫ CP (δ2/2−δ1)

CP (δ1−δ2/2)

∫ CP (δ2/2−δ1)

0

Λ
(t)
s − exp

(
β̃y∆

(t)
y

)
Λ
(t)
s + exp

(
β̃y∆

(t)
y

) β̃y dP(β̃y)dP(β̃s) (B.40)
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Where above we used Equation B.38 to get the upper bound in the last step. We next focus on
bounding the inner integral in Equation B.40. Using the symmetry of β̃y , we have that:

Eβy [A1(βs, βy)(βy − CP δ2/2)]

= −
∫ CP (δ2/2−δ1)

0

Λ
(t)
s − exp

(
−β̃y∆

(t)
y +O(1)

)
Λ
(t)
s + exp

(
−β̃y∆

(t)
y +O(1)

) − Λ
(t)
s − exp

(
β̃y∆

(t)
y

)
Λ
(t)
s + exp

(
β̃y∆

(t)
y

)
 β̃y dP(β̃y)

= −
∫ CP (δ2/2−δ1)

0

2Λ
(t)
s

(
exp
(
β̃y∆

(t)
y

)
− exp

(
−β̃y∆

(t)
y +O(1)

))
(Λ

(t)
s )2 + Λ

(t)
s

(
exp
(
β̃y∆

(t)
y

)
+ exp

(
−β̃y∆

(t)
y +O(1)

))
+ exp(O(1))

β̃y dP(β̃y)

(B.41)

One can sanity check that Equation B.41 is bounded below by -1, as we would expect. The only
tricky aspect of Equation B.41 is the O(1) term in the exponential, which can lead to a positive
contribution (via a negative integrand) when β̃y is close to 0. However, we can safely restrict the
bounds of integration in Equation B.41 to a region [%, CP (δ2/2 − δ1)] for % = Θ(1/ log k) (with
an appropriately chosen constant), as in such a region the integrand is guaranteed to be positive
since ∆

(t)
y ≥ log k − o(1). Furthermore, this restriction does not cost us anything (like an additional

positive term), as concern from Equation B.41 is purely a consequence of how we bounded gyt and gst .
Indeed, by our earlier monotonicity argument it is clear that we can cut out the region corresponding
to [−%, %] from the first line of Equation B.40 without decreasing the RHS.

Furthermore, we also have from ∆
(t)
y ≥ log k−o(1) and Equation B.37 that

∑
u6=y,s exp(gut (zy,s)) =

O(1/kCP δ2−1) (after making the adjustment gut ← gut − CP δ2(C
(t)
y,1 + C

(t)
y,2)/2 that we did above).

Now using our assumption in the statement of the claim that Equation B.33 holds for some set U , we
obtain:

Eβs,βy [A1(βs, βy)(βy − CP δ2/2)]

≤ −
∫ CP (δ2/2−δ1)

CP (δ1−δ2/2)

∫ CP (δ2/2−δ1)

%

Θ

 β̃y exp
(
β̃y∆

(t)
y

)
O(k1−CP δ2) + exp

(
β̃y∆

(t)
y

)
 dP(β̃y)dP(β̃s)

= −Θ(1) (B.42)

Where the last line follows after restricting the bounds of integration of the two integrals to their
intersections with U (this allows us to disregard gst in the asymptotic expression above via Equation
B.39). This proves the claim. �

We proved Claim B.22 in terms of βy (the sum of the individual βy,p) to keep notation manageable
(avoids CP iterated integrals) and to more closely mirror the proof of Proposition 3.4. However, what
we will really use for our remaining analysis is the following corollary, which gives the same result
as Claim B.22 but for each of the individual terms βy,p. Below we use

∑CP
i=1 βy,i to make explicit

the dependence between the sum and each individual random variable βy,p (so as to not mislead one
to think of them as independent random variables).

Corollary B.23. Under the same conditions as Claim B.22, we have for every p ∈ [CP ]:

Eβs,βy,1,...,βy,CP

[
A1(βs,

CP∑
i=1

βy,i)(βy,p − δ2/2)

]
= −Θ (1) (B.43)

Proof of Claim B.23. The proof follows identically to that of Claim B.23 (effectively the only change
in the computations is that β̃y becomes β̃y,p), as the functions A1 and A2 satisfy the same mono-
tonically increasing property in each of the i.i.d. βy,p (and there are only CP = Θ(1) many). One
could also have simply seen this from the symmetry of the βy,p in Equation B.43; indeed, we expect
Equation B.43 to only differ by a factor 1/CP from Equation B.34. �
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Now we can show using Corollary B.23 that there is a significant gradient component towards
correcting the separation between the feature correlations even when the second feature correlation is
in the polynomial part of R̃eLU (which is where it got stuck for a significant number of classes in the
ERM proof).

Claim B.24. Suppose that maxu∈[k] C
(t)
u,1 = O(log k). Let y be any class such that ∆

(t)
y ≥ log k −

o(1). Then for any r2 /∈ B(t)
y,2 satisfying

〈
w

(0)
y,r2 , vy,2

〉
≥ τ > 0, so long as there exists an r1 ∈ B(t)

y,1

satisfying: 〈
−∇

w
(t)
y,r1

JMM (g,X ), vy,1

〉
≥ 0 (B.44)

We have: 〈
−∇

w
(t)
y,r2

JMM (g,X ), vy,2

〉
≥ Θ

(
τ

ρα−1k2

)
(B.45)

Proof of Claim B.24. By near-identical logic to the steps leading to Equation B.31 and using Equation
B.21, we obtain (following the same notation as before):〈
−∇

w
(t)
y,r2

JMM (g,X ), vy,2

〉
≥ Θ

(
τ

ραk2

)∑
s6=y

Eβs,βy,1,...,βy,CP

[
A1(βs,

CP∑
p=1

βy,p)

CP∑
p=1

(δ2 − βy,p)α
]

(B.46)

Where above we have absorbed a factor of 1/2 resulting from mixing classes and the feature noise
component into the asymptotic term in front of the summation.

Now we break the rest of the proof into two cases: whether Equation B.33 holds or not. In the former
case, using Corollary B.23 and our assumption in the statement of the claim that Equation B.44 holds,
we get (from linearity of expectation):

Θ

(
1

k2

)∑
s6=y

Eβs,βy,1,...,βy,CP

[
A1(βs,

CP∑
p=1

βy,p)(δ2 − βy,p)

]
≥ Θ

(
1

k2

)
(B.47)

Now observing that Cov(A1(βs,
∑CP
p=1 βy,p)(δ2−βy,p), (δ2−βy,p)α−1) > 0 for every p, we obtain:〈

−∇
w

(t)
y,r2

JMM (g,X ), vy,2

〉
≥
∑
s6=y

CP∑
p=1

Eβs,βy,1,...,βy,CP

[
A1(βs,

CP∑
p=1

βy,p)(δ2 − βy,p)

]
Eβs,βy,1,...,βy,CP [(δ2 − βy,p)α−1]

(B.48)

And the result then follows for this case from Equation B.47 and the fact that Eβs,βy,1,...,βy,CP [(δ2 −
βy,p)

α−1] is a data-distribution-dependent constant.

For the second case when Equation B.33 does not hold, we have that for every class s 6= y there exists a
set U ′ ⊂ [0, CP (δ2/2− δ1)]× [−CP (δ2/2− δ1), CP (δ2/2− δ1)] such that (P(β̃y)×P(β̃s))(U

′) ≥
0.49 (note the total measure of the set which U ′ is a subset of is 0.5, by symmetry) and for all
(a, b) ∈ U ′ we have:

(b− CP δ2/2)∆(t)
s − CP δ2D(t)

y,s/2 > (a− CP δ2/2)∆(t)
y (B.49)

By our anti-concentration assumption on the βy,p it immediately follows that D(t)
y,s = −Θ(log k),

from which we obtain that the the expectation terms in Equation B.46 are all Θ(1), so we are
done. �

Having proved Claim B.24, it remains to prove that both Equation B.44 and maxy∈[k] C
(t)
y,1 =

O(log k) hold throughout training, as after doing so we can conclude that the second feature correla-
tion will escape the polynomial part of R̃eLU and become sufficiently large in polynomially many
training steps.
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Claim B.25. For any y ∈ [k], ` ∈ [2], and r ∈ [m], we have that:〈
−∇

w
(t+1)
y,r

JMM (g,X ), vy,`

〉
≥ 0.99

〈
−∇

w
(t)
y,r
JMM (g,X ), vy,`

〉
So long as

∑
s6=y exp

(
gst+1(zi,j)

)
≥
∑
s 6=y exp(gst (zi,j)) for all mixed points zi,j with i ∈ Ny .

Proof of Claim B.25. We proceed by brute force; namely, as long as η is sufficiently small, we can
prove that the gradient for JMM does not decrease too much between successive iterations. As
notation is going to become cumbersome quite quickly, we will use the following place-holders for
the gradient correlations at time t and t+ 1:

Gt ,
〈
−∇

w
(t)
y,r
JMM (g,X ), vy,`

〉
We will now prove the result assuming r ∈ B(t)

y,`, as the the case where r /∈ B(t)
y,` is strictly better

(we will have the upper bound shown below with additional o(1) factors). We have that (compare to
Equation B.24):

Gt −Gt+1 ≤
1

N2

∑
i∈Ny

∑
j /∈Ny

Θ
(
φy
(
(gt+1(zi,j))

)
− φy

(
(gt(zi,j))

))
+

1

N2

∑
i∈Ny

∑
j∈Ny

Θ
(
φy
(
(gt+1(zi,j))

)
− φy

(
(gt(zi,j))

))

+
1

N2

∑
i/∈Ny

∑
j /∈Ny

(
φy
(
(gt+1(zi,j))

)
− φy

(
(gt(zi,j))

))
Θ

Pσα4 maxu∈[k],q∈[2]

〈
w

(t)
y,r∗ , vu,q

〉α−1
ρα−1


(B.50)

Let us now focus on the φy
(
(gt+1(zi,j))

)
−φy

(
(gt(zi,j))

)
terms present in Equation B.50 above. We

will just consider the first case above (mixing between class y and a non-y class), as the other analyses
follow similarly. Furthermore, we will omit the zi,j in what follows (in the interest of brevity) and
simply write gyt+1. Additionally, similar to Claim B.22, we will use the notation Λt =

∑
s6=y exp(gst ).

Now by the assumption in the statement of the claim, we have that Λt+1 ≥ Λt, and since m = Θ(k)
(number of weights per class), we have that gyt+1 ≤ g

y
t + Θ(kηGt) (all of the updates for weights in

the linear regime are identical and strictly larger than updates for those in the poly regime). Thus,

φy(gt+1)− φy(gt) ≤
exp(gyt + Θ(kηGt))

Λt + exp(gyt + Θ(kηGt))
− exp(gyt )

Λt + exp(gyt )

=
Λt exp(gyt )(exp(Θ(kηGt))− 1)

Λ2
t + Λt exp(gyt )(exp(Θ(kηGt)) + 1) + exp(2gyt + Θ(kηGt))

≤ Θ(kηGt + k2η2G2
t ) = Θ(kηGt) (B.51)

Where in the last line we again used the inequality exp(x) ≤ 1 + x + x2 for x ∈ [0, 1]. Plugging
Equation B.51 into Equation B.50 (after similar calculations for the other two pieces of Equation
B.50) yields the result (since again, η = O(1/poly(k)) is suitably small). �

Corollary B.26. For any y ∈ [k], ` ∈ [2], r ∈ [m], and t, we have that:〈
−∇

w
(0)
y,r
JMM (g,X ), vy,`

〉
≥ 0 =⇒

〈
−∇

w
(t)
y,r
JMM (g,X ), vy,`

〉
≥ 0

Proof of Corollary B.26. For every class y, we have
∑
s6=y exp

(
gst+1(zi,j)

)
≥
∑
s6=y exp(gst (zi,j))

for all mixed points zi,j with i ∈ Ny for t = 0 (see the proof of Claim B.17), and the corollary then
follows from an induction argument and Claim B.25. �

And with Corollary B.26 we may prove that maxy∈[k] C
(t)
y,1 = O(log k) holds throughout training.
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Claim B.27. For all t = O(poly(k)), for any polynomial in k, we have that maxy∈[k] C
(t)
y,1 =

O(log k).

Proof of Claim B.27. The idea is to consider the sum of gradient correlations across classes, and
show that the cross-class mixing term in this sum becomes smaller (as this would be our only concern
- we already know the same-class mixing term will become smaller by the logic of Claim B.6).

As in the previous claims in this section, we will proceed with an expectation analysis. We will focus
on the weights wy,r that are in the linear regime for the feature vy,1 for each class y, as these are the
only relevant weights for C(t)

y,1. Additionally, instead of considering the sum of gradient correlations

over all wy,r with r ∈ B(t)
y,1, it will suffice for our purposes to just consider the sum of gradient

correlations over classes while using an arbitrary weight wy,r in the linear regime. Thus, we will
abuse notation slightly and use wy,r to indicate such a weight for each class y for the remainder of
the proof of this claim (note that we do not mean to imply by this that weight r is in the linear regime
for every class simultaneously, but rather that there exists some r for every class that is in the linear
regime).

Now in the same vein as Equation B.31 (referring again to Equation B.24), we have that:∑
y∈[k]

〈
−∇

w
(t)
y,r
JMM (g,X ), vy,1

〉
≤ Θ

(
1

k2

) k∑
y=1

k∑
s=y+1

Eβs,βy [A1(βs, βy)βy] + Eβy,βs [A1(βy, βs)βs]

+ Θ

(
1

k2

) k∑
y=1

Eβy [A2(βy, βy)βy]−O (Pδα4 /poly(k))

(B.52)

And we recall that N is sufficiently large so that the deviations from the expectations above are
negligible compared to the subtracted term. We have carefully paired the expectations in the leading
term of Equation B.52 so as to make use of the following fact:

A1(βs, βy) = −A1(βy, βs) +

∑
u∈[k]\{y,s} exp(gut (zy,s))∑

u∈[k] exp(gut (zy,s))
(B.53)

The second term on the RHS of Equation B.53 is of course o(Pδα4 /poly(k)) so long as gst (zy,s)
and/or gyt (zy,s) are greater than C log k for a large enough constant C, so we obtain:

∑
y∈[k]

〈
−∇

w
(t)
y,r
JMM (g,X ), vy,1

〉
≤ Θ

(
1

k2

) k∑
y=1

k∑
s=y+1

Eβs,βy [A1(βs, βy)(βy − βs)]

+ Θ

(
1

k2

) k∑
y=1

Eβy [A2(βy, βy)βy]−O (Pδα4 /poly(k))

(B.54)

Now again by the logic of Claim B.22 we have that Cov(A1(βs, βy), βy − βs) < 0, so it follows
that:∑

y∈[k]

〈
−∇

w
(t)
y,r
JMM (g,X ), vy,1

〉
≤ Θ

(
1

k2

) k∑
y=1

Eβy [A2(βy, βy)βy]−O (Pδα4 /poly(k))

(B.55)

And if gyt (zy,s) ≥ C log k for a sufficiently large constant C, we have that the RHS above would be
negative, which contradicts Corollary B.26, proving the claim. �

We have now wrapped up all of the pieces necessary to prove Theorem 4.7. Indeed, we can now show
that for every class the correlation with both features becomes large over the course of training.

Claim B.28. For every class y ∈ [k], in O(poly(k)) iterations (for a sufficiently large polynomial in
k) we have that both C(t)

y,1 = Ω(log k) and C(t)
y,2 = Ω(log k).
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Proof of Claim B.28. Claim B.20 guarantees C(t)
y,1 = Ω(log k) in polynomially many iterations. If at

this point C(t)
y,2 = Ω(log k), we are done. If this is not the case, but we have B(t)

y,2 6= ∅, then we are

done by Claim B.21, Corollary B.26, and Claim B.27. On the other hand, if B(t)
y,2 = ∅, then we have

by Claim B.24 that in polynomially many iterations (as we can take τ = Θ(1/
√
d) by our setting)

B
(t)
y,2 6= ∅, after which we have reverted back to the previous case and we are still done. �

Now we may conclude the overall proof by observing that Claims B.20 and B.27 in tandem imply that
we achieve (and maintain) perfect training accuracy in polynomially many iterations, while Claim
B.28 implies that both features are learned in the sense of Definition 4.5.

C PROOFS OF AUXILIARY RESULTS

C.1 PROOFS OF LEMMA 3.2 AND PROPOSITION 3.3

Lemma 3.2. [Midpoint Mixup Optimal Direction] A linear model g satisfies the following:

lim
γ→∞

JMM (γg,X ) = inf JMM (h,X ) (3.3)

If g has the property that for every class y we have 〈wy, vy,`1〉 = 〈ws, vs,`2〉 > 0 and 〈wy, vs,`2〉 ≤ 0
for every s 6= y and `1, `2 ∈ [2]. Furthermore, with probability 1 − exp(−Θ(N)) (over the
randomness of X ), the condition 〈wy, vy,`1〉 = 〈ws, vs,`2〉 is necessary for g to satisfy Equation 3.3.

Proof. We first prove sufficiency. If g satisfies the conditions in the Lemma, then we have for any
data point (xi, yi) that gyi(xi) = 〈wyi , vyi,1 + vyi,2〉 > 0. We also have that gs(xi) = 0 for any
s 6= yi (by the cross-class orthogonality condition). Letting C = 〈wy, vy,1 + vy,2〉 (note that this
correlation is the same independent of y due to the conditions of the lemma), we then get:

φy(γg(zi,j)) = φy(γgyj (zi,j)) =
exp(γC/2)

O(k − 2) + 2 exp(γC/2)
(C.1)

For any mixed point zi,j with yi 6= yj . Equation C.1 tends to 1/2 as γ → ∞, and one can easily
check that this is the global optimal prediction for the classes yi and yj on the Mixup point zi,j (for
any such mixed point). Similarly, if zi,j is a mixed point with yi = yj , then Equation C.1 becomes
the ERM case, we obtain the optimal prediction of 1 for the correct class in the limit.

On the other hand, if there exists a pair of classes (y, s) with s 6= y and `1, `2 ∈ [2] such that
〈wy, vy,`1〉 6= 〈ws, vs,`2〉, then with probability 1−exp(−Θ(N)) there exists a mixed point zi,j in X
(where yi = y, yj = s, and y 6= s) such that gy(zi,j) 6= gs(zi,j), and hence limγ→∞ φy(γg(zi,j)) 6=
1/2, so we cannot achieve the infimum of the Midpoint Mixup loss.

Proposition 3.3. For any distribution Dλ that is not a point mass on 0, 1, or 1/2, and any linear
model g satisfying the conditions of Lemma 3.2, we have that with probability 1 − exp(−Θ(N))
(over the randomness of X ) there exists an ε0 > 0 depending only on Dλ such that:

JM (g,X ,Dλ) ≥ inf JM (h,X ,Dλ) + ε0 (3.4)

Proof. Firstly, we observe (just from properties of cross-entropy):

inf JM (h,X ,Dλ) = −Eλ∼Dλ [λ log λ+ (1− λ) log(1− λ)] (C.2)

Now suppose a model g satisfies the conditions of Lemma 3.2. Then we have that gyi(xi) =
gyj (xj) = C > 0 for some constant C and every pair (xi, yi) and (xj , yj).

As before, with at least probability 1− exp(−Θ(N)), we have that there exist a pair of points (xi, yi)
and (xj , yj) in X with yi 6= yj . The Mixup loss restricted to this pair (for which we use the notation
JM (g, zi,j ,Dλ)) is then:

JM (g, zi,j ,Dλ) = −Eλ∼Dλ
[
λ log φyi(g(zi,j)) + (1− λ) log φyj (g(zi,j))

]
(C.3)
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Furthermore, we have that:

φyi(γg(zi,j(λ))) =
exp(λC)

O(k − 2) + exp(λC) + exp((1− λ)C)
(C.4)

From Equations C.3 and C.4 we can see that, since Dλ is supported on more than just 0, 1, and 1/2,
JM (g, zi,j ,Dλ)→∞ as C →∞ (Equation C.4 implies that in the limit φyi(γg(zi,j(λ))) can only
take the values, 0, 1, or 1/2). It is also easy to see that the same behavior occurs if one considers
C → 0. Thus it suffices to constrain our attention to C ∈ [M1,M2] for some M1,M2 > 0 depending
only on Dλ.

However, JM (g, zi,j ,Dλ) − inf JM (h, zi,j ,Dλ) > 0 (note that inf JM (h, zi,j ,Dλ) =
inf JM (h,X ,Dλ)) for all C ∈ [M1,M2]. Since this is a continuous function of C over a com-
pact set, it must obtain a minimum greater than 0, and we may choose ε0 to be this minimum (rescaled
by a factor of Ω(1/N2)), thereby finishing the proof.

C.2 PROOFS OF PROPOSITIONS 3.4 AND 3.5

Proposition 3.4. [Mixup Gradient Lower Bound] Let y be any class such that ∆y ≥ log k, and
suppose that both 〈wy, vy,1〉 ≥ 0 and the cross-class orthogonality condition 〈ws, vu,`〉 = 0 hold for
all s 6= u and ` ∈ [2]. Then we have with high probability that:〈

−∇wyJMM (g,X ), vy,2
〉
≥ Θ

(
1

k2

)
(3.5)

Proof. The idea of proof will be to analyze the gradient correlation with vy,1 − vy,2, and either show
that this is significantly negative or, in the case where it is not, the gradient correlation with vy,2 is
still significant. Firstly, using the cross-class orthogonality assumption and Calculation A.10, we can
compute:〈

−∇wyJMM (g,X ), vy,1 − vy,2
〉

=
1

N2

∑
i∈Ny

∑
j /∈Ny

(
1− 2φy

(
(g(zi,j))

))(
βi −

1

2

)

+
1

N2

∑
i∈Ny

∑
j /∈Ny

(
1− φy

(
(g(zi,j))

))(
βi −

1

2

)
(C.5)

Where above we used Ny to indicate the indices corresponding to class y data points (as we do in the
proofs of the main results). Now using concentration of measure for bounded random variables and
the fact that N is sufficiently large, we have from Equation C.5 that with high probability (and with
poly(k) representing a very large polynomial in k):〈
−∇

w
(t)
y
JMM (g,X ), vy,1 − vy,2

〉
≤ Θ

(
1

k2

)∑
s6=y

Eβs,βy [A1(βs, βy)(βy − 1/2)]

+ Θ

(
1

k2

)
Eβy [A2(βy)(βy − 1/2)] +O(1/poly(k)) (C.6)

Where we define the functions A1 and A2 as:

A1(βs, βy) , 1− 2φy
(
(gt(zy,s))

)
(C.7)

A2(βs, βy) , 1− φy
(
(gt(zy,s))

)
(C.8)

With zy,s being a random variable denoting the sum of a class y point and a class s point (distributed
according to Definition 4.1). Note that Equations C.7 and C.8 are not abuses of notation - the functions
A1 and A2 depend only on the random variables βs and βy, since we can ignore the cross-class
correlations due to orthogonality.

Let us immediately observe that the first two terms (the expectation terms) in Equation C.6 are
bounded above by 0. This is due to the fact that βy − 1/2 is a symmetric, centered random variable
and the functions A1 and A2 are monotonically decreasing in βy . We will focus on showing that the
first term is significantly negative, as that will be sufficient for our purposes.
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Now we let Ξy = 〈wy, vy,1〉 + 〈wy, vy,2〉 and perform the transformation gst ← gst − Ξy/2 for all
s ∈ [k] (note this doesn’t change the value of the softmax outputs). Under this transformation we
have that gyt (zy,s) = (βy − 1/2)∆y , which isolates the gap term ∆y .

For further convenience, let us use Λs ,
∑
u6=y exp(gut (zy,s)), and observe that Λs depends only

on βs due to orthogonality. Using the change of variables β̃y = βy − 1/2 we can then compute the
expectation in the first term of Equation C.6 as:

Eβs,βy [A1(βs, βy)(βy − 1/2)] =
1

0.64

∫ 0.9

0.1

∫ 0.9

0.1

Λs − exp(gyt (zy,s))

Λs + exp(gyt (zy,s))
(βy − 1/2) dβy dβs

=
1

0.64

∫ 0.4

−0.4

∫ 0.4

−0.4

Λs − exp
(
β̃y∆y

)
Λs + exp

(
β̃y∆y

) β̃y dβ̃y dβ̃s (C.9)

We will focus on the inner integral in Equation C.9. Using the symmetry of β̃y , we have that:

Eβy [A1(βs, βy)(βy − 1/2)] =
1

0.8

∫ 0.4

−0.4

Λs − exp
(
β̃y∆y

)
Λs + exp

(
β̃y∆y

) dβ̃y
= − 1

0.8

∫ 0.4

0

Λs − exp
(
−β̃y∆y

)
Λs + exp

(
−β̃y∆y

) − Λs − exp
(
β̃y∆y

)
Λs + exp

(
β̃y∆y

)
 β̃y dβ̃y

= − 1

0.8

∫ 0.4

0

Λs

(
exp
(
β̃y∆y

)
− exp

(
−β̃y∆y

))
Λ2
s + Λs

(
exp
(
β̃y∆y

)
+ exp

(
−β̃y∆y

))
+ 1

β̃y dβ̃y

(C.10)

From our orthogonality assumption and the facts that ∆y ≥ log k and 〈wy, vy,2〉 ≥ 0, we have that∑
u 6=y,s exp(gut (zy,s)) = O(1). Additionally, if we let:

Dy,s = (Cy,1 + Cy,2)− (Cs,1 + Cs,2)

Then we get from Equation C.10 that:

Eβs,βy [A1(βs, βy)(βy − 1/2)]

= −
∫ 0.4

−0.4

∫ 0.4

0

Θ

 β̃y exp
(
β̃s∆s −Dy,s/2

)
exp
(
β̃y∆y

)
exp
(

2β̃s∆s −Dy,s

)
+ exp

(
β̃s∆s −Dy,s/2

)
exp
(
β̃y∆y

)
 dβ̃y dβ̃s

(C.11)

Now we consider two cases. First, suppose there exists a set U ⊂ [−0.4, 0.4] × [0, 0.4] with
probability measure at least 0.01 such that for all (β̃s, β̃y) ∈ U :

β̃s∆s −Dy,s/2 ≤ β̃y∆y

Then we immediately have that Equation C.11 is Θ(1). On the other hand, if this is not the case, one
can see that Eβs,βy [A1(βs, βy)(1− βy)] = Θ(1), so we are done.

Proposition 3.5. [ERM Gradient Upper Bound] For every y ∈ [k], assuming the same conditions as
in Proposition 3.4, if ∆y ≥ C log k for any C > 0 then with high probability we have that:〈

−∇wyJ(g,X ), vy,2
〉
≤ O

(
1

k0.1C−1

)
(3.6)

Proof. From the facts that 〈wy, vy,2〉 ≥ 0 and ∆y ≥ C log k, we have that gy(xi) ≥ βy,iC log k for
every i ∈ Ny (where βy,i represents the coefficient in front of vy,1 in xi). Since βy,i ∈ [0.1, 0.9], we
immediately have the result from the logic of Claim B.2 and Calculation A.9.
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C.3 PROOF OF PROPOSITION 4.4

Proposition 4.4. There exists a D satisfying all of the conditions of Definition 4.1 and Assumption
4.3 such that with probability at least 1− k2 exp

(
Θ(−N/k2)

)
, for any classifier h : RPd → Rk of

the form hy(x) =
∑
p∈[P ]

〈
wy, x

(p)
〉

and any X consisting of N i.i.d. draws from D, there exists a
point (x, y) ∈ X and a class s 6= y such that hs(x) ≥ hy(x).

Proof. For hyperparameters, we can choose δ1 = δ2 − δ1 = 1, δ3 = δ4 = k−1.5 while being
consistent with Assumption 4.3. For the distribution D, for each point (xi, yi), we sample a class
s ∈ [k] \ yi uniformly and choose it to be the single class used in the feature noise patches for xi.
This clearly falls within the scope of Definition 4.1.

Now in N i.i.d. samples from D as specified above, we have with probability at least 1 −
k2 exp

(
Θ(−N/k2)

)
(Chernoff bound, as in Claim B.1) that a sample with each possible pair

y, s ∈ [k] of signal and noise classes exists. Suppose now that there exist classes y, u ∈ [k]
such that u /∈ argmaxs∈[k] 〈ws, vy,1 + vy,2〉. This necessarily implies that u 6= maxs∈[k] g

s(x) for
all points x with label u but having feature noise class y (since the order of the sum of the feature
noise is Θ(

√
k)), which gives the result.

On the other hand, if there does not exist such a class pair y, u, then we are also done as that implies
all of the weight-feature correlations are the same.
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