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ABSTRACT

Mixup is a data augmentation technique that relies on training using random convex
combinations of data points and their labels. In recent years, Mixup has become
a standard primitive used in the training of state-of-the-art image classification
models due to its demonstrated benefits over empirical risk minimization with
regards to generalization and robustness. In this work, we try to explain some
of this success from a feature learning perspective. We focus our attention on
classification problems in which each class may have multiple associated features
(or views) that can be used to predict the class correctly. Our main theoretical results
demonstrate that, for a non-trivial class of data distributions with two features per
class, training a 2-layer convolutional network using empirical risk minimization
can lead to learning only one feature for almost all classes while training with a
specific instantiation of Mixup succeeds in learning both features for every class.
We also show empirically that these theoretical insights extend to the practical
settings of image benchmarks modified to have additional synthetic features.

1 INTRODUCTION

Data augmentation techniques have been a mainstay in the training of state-of-the-art models for a
wide array of tasks - particularly in the field of computer vision - due to their ability to artificially
inflate dataset size and encourage model robustness to various transformations of the data. One such
technique that has achieved widespread use is Mixup (Zhang et al., 2018), which constructs new data
points as convex combinations of pairs of data points and their labels from the original dataset. Mixup
has been shown to empirically improve generalization and robustness when compared to standard
training over different model architectures, tasks, and domains (Liang et al., 2018; He et al., 2019;
Thulasidasan et al., 2019; Lamb et al., 2019; Arazo et al., 2019; Guo, 2020; Verma et al., 2021b;
Wang et al., 2021). It has also found applications to distributed private learning (Huang et al., 2021),
learning fair models (Chuang and Mroueh, 2021), semi-supervised learning (Berthelot et al., 2019b;
Sohn et al., 2020; Berthelot et al., 2019a), self-supervised (specifically contrastive) learning (Verma
et al., 2021a; Lee et al., 2020; Kalantidis et al., 2020), and multi-modal learning (So et al., 2022).

The success of Mixup has instigated several works attempting to theoretically characterize its
potential benefits and drawbacks (Guo et al., 2019; Carratino et al., 2020; Zhang et al., 2020; 2021;
Chidambaram et al., 2021). These works have focused mainly on analyzing, at a high-level, the
beneficial (or detrimental) behaviors encouraged by the Mixup-version of the original empirical loss
for a given task.

As such, none of these previous works (to the best of our knowledge) have provided an algorithmic
analysis of Mixup training in the context of non-linear models (i.e. neural networks), which is
the main use case of Mixup. In this paper, we begin this line of work by theoretically separating
the full training dynamics of Mixup (with a specific set of hyperparameters) from empirical risk
minimization (ERM) for a 2-layer convolutional network (CNN) architecture on a class of data
distributions exhibiting a multi-view nature. This multi-view property essentially requires (assuming
classification data) that each class in the data is well-correlated with multiple features present in the
data.

Our analysis is heavily motivated by the recent work of Allen-Zhu and Li (2021), which showed that
this kind of multi-view data can provide a fruitful setting for theoretically understanding the benefits
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of ensembles and knowledge distillation in the training of deep learning models. We show that Mixup
can, perhaps surprisingly, capture some of the key benefits of ensembles explained by Allen-Zhu and
Li (2021) despite only being used to train a single model.

Main Contributions and Outline. Our main contributions are three-fold. In Sections 2 and 3, we
introduce the main ideas behind Mixup and analyze a simple, linearly separable multi-view data
distribution which we use to lay the groundwork for our main results. In analyzing this distribution,
we motivate the use of a particular setting of Mixup - which we refer to as Midpoint Mixup - in which
training is done on the midpoints of data points and their labels.

Section 4 contains our main results; we prove that, for a highly noisy class of data distributions with
two features per class, minimizing the empirical cross-entropy using gradient descent can lead to
learning only one of the features in the data while minimizing the Midpoint Mixup cross-entropy
succeeds in learning both features. While our theory focuses on the case of two features/views per
class to be consistent with Allen-Zhu and Li (2021), our techniques can readily be extended to more
general multi-view data distributions.

Lastly, in Section 5, we conduct experiments illustrating that our theoretical insights in Sections 3 and
4 can apply to the training of realistic models on image classification benchmarks. We show for each
benchmark that, after modifying the training data to include additional spurious features correlated
with the true labels, both Mixup (with standard settings) and Midpoint Mixup outperform ERM on
the original test data, with Midpoint Mixup closely approximating the performance of regular Mixup.

Related Work. The idea of training on midpoints (or approximate midpoints) is not new; both Guo
(2021) and Chidambaram et al. (2021) empirically study settings resembling what we consider in this
paper, but they do not develop theory for this kind of training (beyond an information theoretic result
in the latter case). As mentioned earlier, there are also several theoretical works analyzing the Mixup
formulation and it variants (Carratino et al., 2020; Zhang et al., 2020; 2021; Chidambaram et al.,
2021; Park et al., 2022), but none of these works contain optimization results (which are the focus
of this work). Additionally, we note that there are many Mixup-like data augmentation techniques
and training formulations that are not (immediately) within the scope of the theory developed in this
paper. For example, Cut Mix (Yun et al., 2019), Manifold Mixup (Verma et al., 2019), Puzzle Mix
(Kim et al., 2020), Co-Mixup (Kim et al., 2021), and Noisy Feature Mixup (Lim et al., 2021) are all
such variations.

Our work is also influenced by the existing large body of work theoretically analyzing the benefits of
data augmentation (Bishop, 1995; Dao et al., 2019; Wu et al., 2020; Hanin and Sun, 2021; Rajput
et al., 2019; Yang et al., 2022; Wang et al., 2022; Chen et al., 2020; Mei et al., 2021). The most
relevant such work to ours is the recent work of Shen et al. (2022), which also studies the impact of
data augmentation on the learning dynamics of a 2-layer network in a setting motivated by that of
Allen-Zhu and Li (2021). However, Midpoint Mixup differs significantly from the data augmentation
scheme considered in Shen et al. (2022), and consequently our results and setting are also of a
different nature (we stick much more closely to the setting of Allen-Zhu and Li (2021)). As such, our
work can be viewed as a parallel thread to that of Shen et al. (2022).

2 PRELIMINARIES AND MOTIVATION FOR MIDPOINT MIXUP

We will introduce Mixup in the context of k-class classification, although the definitions below easily
extend to regression. As a notational convenience, we will use [k] to indicate {1, 2, ..., k}.

Recall that, given a finite dataset X C R? x [k‘JC with |X| = N, we can define the empirical
cross-entropy loss J(g, X') of amodel g : RY — RF as:

T(0,X) = % log 6% (9(:))  where 6%(g(x) = 5= e;ﬁ’iil(é?w @.1)
i€ sE

With ¢ being the standard softmax function and the notation g¥, ¢¥ indicating the y-th coordinate
functions of g and ¢ respectively. Now let us fix a distribution D) whose support is contained in
[0, 1] and introduce the notation z; ;(A) = Az; + (1 — A)z; (using z; ; when A is clear from context)



where (2;,y;), (z;,y;) € X. Then we may define the Mixup cross-entropy Jas (g, X', D) as:

Y Y B, [Mog ¢ (g(z1,)) + (1 - Moz (g(,)] 22)

i€[N] je[N]

JM(97X7D)\) =

‘We mention a minor differences between Equation 2.2 and the original formulation of Zhang et al.
(2018). Zhang et al. (2018) consider the expectation term in Equation 2.2 over [V randomly sampled
pairs of points from the original dataset X, whereas we explicitly consider mixing all N2 possible
pairs of points. This is, however, just to make various parts of our analysis easier to follow - one could
also sample /N mixed points uniformly, and the analysis would still carry through with an additional
high probability qualifier (the important aspect is the proportions with which different mixed points
show up; i.e. mixing across classes versus mixing within a class).

3  MOTIVATING MIDPOINT MIXUP: THE LINEAR REGIME

As can be seen from Equation 2.2, the Mixup cross-entropy Jus (g, X, D)) depends heavily on the
choice of mixing distribution D,. Zhang et al. (2018) took D) to be Beta(a, ) with « being a
hyperparameter. In this work, we will specifically be interested in the case of o« — oo, for which the
distribution D), takes the value 1/2 with probability 1. We refer to this special case as Midpoint Mixup,
and note that it can also be viewed as a case of the Pairwise Label Smoothing strategy introduced by
Guo (2021). We will write the Midpoint Mixup loss as Jasar(g, X) (here z; j = (2; + x;)/2 and
there is no D, dependence as it is deterministic):

Jan(g, X) = —# > > (log¢¥(g(zi5)) + log 6% (9(2i7))) 3.0)

i€[N] j€[N]

We focus on this version of Mixup for a few key reasons. Firstly, we will show that Jyrar(g, X)
exhibits the nice property that its global minimizer corresponds to a model in which all of the features
in the data are learned equally (in a sense to be made precise below). We will also show that this is
not the case for Jys (g, X', Dx) when D}, is any other non-trivial distribution. Additionally, from a
technical perspective, the Midpoint Mixup loss lends itself to a much cleaner optimization analysis
due to the fact that the structure of its gradients is not changing with each optimization iteration (i.e.
we do not need to sample new mixing proportions at each step). This allows us to more easily show
how the gradient descent dynamics encourage learning all of the features in the data. That being
said, we are not trying to claim that Midpoint Mixup is a superior practical alternative to standard
Mixup - our goal is simply to show that it better accentuates the theoretical benefits of Mixup, and is
empirically comparable to standard Mixup settings. Full proofs for all of the results presented in the
next subsection can be found in Section C of the Appendix.

3.1 MIDPOINT MIXUP WITH LINEAR MODELS ON LINEARLY SEPARABLE DATA

To make clear what we mean by feature learning, we first turn our attention to the simple setting
of learning linear models g¥(z) = (w,, x) (i.e. one weight vector associated per class) on linearly
separable data, as this setting will serve as a foundation for our main results. Namely, we consider
k-class classification with a dataset X’ of N labeled data points generated according to the following
data distribution (with IV sufficiently large):

Definition 3.1. [Simple Multi-View Setting] For each class y € [k], let v, 1, v, 2 € R? be orthonor-
mal unit vectors also satisfying v, ¢ L vs  when y # s for any ¢, ¢ € [2]. Each point (z,y) ~ D is
then generated by sampling y € [k] uniformly and constructing z as:

x = PByvy1 + (1 — By)vy2 By ~ Uni([0.1,0.9]) (3.2)

Definition 3.1 is multi-view in the following sense: for any class y, it suffices (from an accuracy
perspective) to learn a model g that has a significant correlation with either the feature vector v,, 1 or
vy,2. In this context, one can think of feature learning as corresponding to how positively correlated
the weight w,, is with each of the same class feature vectors v, 1 and v, 1 (we provide a more rigorous
definition in our main results).



If one now considers the empirical cross-entropy loss J(g, X), it is straightforward to see that it is
possible to achieve the global minimum of J(g, X’) by just considering models g in which we take
(wy,vy,1) — oo for every class y. This means we can minimize the usual cross-entropy loss without
learning both features in the dataset X.

However, this is not the case for Midpoint Mixup. Indeed, we show below that a necessary (with
extremely high probability) and sufficient condition for a linear model g to minimize Jjsps (When
taking its scaling to o) is that it has equal correlation with both features for every class (sufficiency
relies also on having weaker correlations with other class features). In what follows, we use
inf Jaras (h, X) to indicate the global minimum of Jy/ s over all functions h : R? — R* (i.e. this is
the smallest achievable loss).

Lemma 3.2. [Midpoint Mixup Optimal Direction] A linear model g satisfies the following:
'ylgrolo J]y[M(’yg7X) :ianM]y[(h,X) (33)

If g has the property that for every class y we have (wy, vy ¢,) = (Ws, Vs,e,) > 0 and (wy, vs¢,) <0
for every s # y and ¢1,¢5 € [2]. Furthermore, with probability 1 — exp(—©(N)) (over the
randomness of '), the condition (w,, vy ¢, ) = (ws, vs ¢, ) is necessary for g to satisfy Equation 3.3.

Proof Sketch. The idea is that if g has equal correlation with both features for every class, its
predictions will be constant on the original data points due to the fact that the coefficients for each
feature in each data point are mirrored as per Equation 3.2. With the condition (wy, v, ¢) < 0 (this
can be weakened significantly), this implies the softmax output of g on the Midpoint Mixup points
will be exactly 1/2 for each of the classes being mixed (and 0 for all other classes), which is optimal.

As mentioned earlier, we can also show that if we consider Jy/(g, X', D)) for any other non-point-
mass distribution, we can prove that the analogue of Lemma 3.2 does not hold true.

Proposition 3.3. For any distribution D, that is not a point mass on 0, 1, or 1/2, and any linear
model g satisfying the conditions of Lemma 3.2, we have that with probability 1 — exp(—O(V))
(over the randomness of X') there exists an ¢y > 0 depending only on D), such that:

JM(g,X,'D)\) ZianM(h,X,'D,\)-f—Eo 3.4

Proof Sketch. In the case of general mixing distributions, we cannot achieve the Mixup optimal
behavior of ¢¥i(g(z; ;(A))) = A for every A if the outputs g¥ are constant on the original data points.

Lemma 3.2 outlines the key theoretical benefit of Midpoint Mixup - namely that its global optimizers
exist within the class of models that we consider, and such optimizers learn all features in the data
equally. And although Lemma 3.2 is stated in the context of linear models, the result naturally carries
through to when we consider two-layer neural networks of the type we define in the next section. That
being said, the interpretation of Proposition 3.3 is not intended to disqualify the possibility that the
minimizer of Jps(g, X', D)) when restricted to a specific model class is a model in which all features
are learned near-equally (we expect this to be the case in fact for any reasonable D, ). Proposition 3.3
is moreso intended to motivate the study of Midpoint Mixup as a particularly interesting choice of
the mixing distribution D).

‘We now proceed one step further from the above results and show that the feature learning benefit
of Midpoint Mixup manifests itself even in the optimization process (when using gradient-based
methods). We show that, if significant separation between feature correlations exists, the Midpoint
Mixup gradients correct the separation. For simplicity, we suppose WLOG that (w,,v, 1) >
(wy, vy 2). Now letting A, = (wy, vy 1 — vy 2) and using the notation V., for aiwy, we can prove:
Proposition 3.4. [Mixup Gradient Lower Bound] Let y be any class such that A, > logk, and
suppose that both (w,, v,1) > 0 and the cross-class orthogonality condition (ws, v, ¢) = 0 hold for
all s # w and ¢ € [2]. Then we have with high probability that:

<_waJJ\IM(gyX)7'Uy,2> Z () <I€12> (35)

Proof Sketch. The key idea is to analyze the gradient correlation with the direction v,,; — vy 2 via a
concentration of measure argument.



Proposition 3.4 shows that, assuming nonnegativity of within-class correlations and an orthogonality
condition across classes (which we will show to be approximately true in our main results), the
feature correlation that is lagging behind for any class y will receive a significant gradient when
optimizing the Midpoint Mixup loss. On the other hand, we can also prove that this need not be the
case for empirical risk minimization:

Proposition 3.5. [ERM Gradient Upper Bound] For every y € [k], assuming the same conditions as
in Proposition 3.4, if A, > C'log k for any C' > 0 then with high probability we have that:

1
<7wa‘](gvX)avy,2> <0 (k/,()lC—l) 3.6)

Proof Sketch. This follows directly from the form of the gradient for J(g, X).

While Proposition 3.5 demonstrates that training using ERM can possibly fail to learn both features
associated with a class due to increasingly small gradients, one can verify that this does not naturally
occur in the optimization dynamics of linear models on linearly separable data of the type in Definition
3.1 (see for example, the related result in Chidambaram et al. (2021)). On the other hand, if we move
away from linearly separable data and linear models to more realistic settings, the situation described
above does indeed show up, which motivates our main results.

4 ANALYZING MIDPOINT MIXUP TRAINING DYNAMICS ON GENERAL
MULTI-VIEW DATA

For our main results, we now consider a data distribution and class of models that are meant to more
closely mimic practical situations.

4.1 GENERAL MULTI-VIEW DATA SETUP

We adopt a slightly simplified version of the setting of Allen-Zhu and Li (2021). We still consider the
problem of k-class classification on a dataset X’ of NV labeled data points, but our data points are now

represented as ordered tuples = = (21, ..., (")) of P input patches z(*) with each z(") € R? (so
X C RP x [k)).

As was the case in Definition 3.1 and in Allen-Zhu and Li (2021), we assume that the data is multi-
view in that each class y is associated with 2 orthonormal feature vectors vy 1 and vy 2, and we once
again consider N and k to be sufficiently large. As mentioned in Allen-Zhu and Li (2021), we could
alternatively consider the number of classes & to be fixed (i.e. binary classification) and the number
of associated features to be large, and our theory would still translate. We now precisely define the
data generating distribution D that we will focus on for the remainder of the paper.

Definition 4.1. [General Multi-View Data Distribution] Identically to Definition 3.1, each class y is
associated with two orthonormal feature vectors, after which each point (x, y) ~ D is generated as:.

1. Sample a label y uniformly from [£].

2. Designate via any method two disjoint subsets P, 1 (z), P, 2(z) C [P] with |Py 1 (z)| =
|P,2(xz)| = Cp for a universal constant C'p, and additionally choose via any method a
bijection ¢ : P, 1(x) — P, 2(x). We then generate the signal patches of « in corresponding
pairs 2P = 3, ,v, 1 and 2(*P) = (53 — 3, ))v, 2 = By (p)Vy,2 for every p € P, ()
with the 3, ,, chosen according to a symmetric distribution (allowed to vary per class ¥)
supported on [d1, 02 — d1] satisfying the anti-concentration property that 3, , takes values
in a subset of its support whose Lebesgue measure is O(1/ log k) with probability o(1).!

3. Fix, via any method, @) distinct classes s1, s2,...,5¢ € [k] \ y with @ = ©(1). The
remaining [P] \ (Py,1(x) U Py 2(x)) patches not considered above are the feature noise
patches of , and are defined to be () = Zje[Q] Eee[z] 7j,eVs, e, Where the v; ¢ € [03, d4]
can be arbitrary.

!This assumption is true for any distribution with reasonable variance; for example, the uniform distribution.



Note that there are parts of the data-generating process that we leave underspecified, as our results
will work for any choice. Henceforth, we use X to refer to a dataset consisting of NV i.i.d. draws from
the distribution D. Our data distribution represents a very low signal-to-noise (SNR) setting in which
the true signal for a class exists only in a constant (2C'p) number of patches while the rest of the
patches contain low magnitude noise in the form of other class features.

We focus on the case of learning the data distribution D with the same two-layer CNN-like architecture
used in Allen-Zhu and Li (2021). We recall that this architecture relies on the following polynomially-

smoothed ReLU activation, which we refer to as ReLU:

0 ifx <0

ReLU(2) = { a7 it €[0,7)

x—<1—i)p ifx>p

The polynomial part of this activation function will be very useful for us in suppressing the feature
noise in D. Our full network architecture, which consists of m hidden neurons, can then be specified
as follows.

Definition 4.2. [2-Layer Network] We denote our network by g : R”? — R*. For each y € [k], we

define ¢g¥ as follows.
gY(z) = Z Z m<<wy’r,x(m>) 4.1

re[m] pe[P]
We will use w?S?)“ to refer to the weights of the network g at initialization (and w?(fzﬂ after ¢ steps
of gradient descent), and similarly g; to refer to the model after ¢ iterations of gradient descent.
We consider the standard choice of Xavier initialization, which, in our setting, corresponds to

wi ~ N(0, 11,).

For model training, we focus on full batch gradient descent with a fixed learning rate of n applied to
J(g,X) and Jarn (g, X). Once again using the notation V) for FON 8(0 , the updates to the weights
v, Wy

of the network g are thus of the form:

w
In defining our data distribution and model above, we have introduced several hyperparameters.
Throughout our results, we make the following assumptions about these hyperparameters.

Assumption 4.3. [Choice of Hyperparameters] We assume that:
d = Q(k**) P = 0(k?) Cp=0(1) m = O(k)
81,02 = O(1) 53,04 = O(k~17) p=0(1/k) a=8

Discussion of Hyperparameter Choices. We make concrete choices of hyperparameters above
for the sake of calculations (and we stress that these are not close to the tightest possible choices),
but only the relationships between them are important. Namely, we need d to be a significantly
larger polynomial of & than P, we need d3, 04 = o(1) but large enough so that Pd3 > d2 (to avoid
learnability by linear models, as shown below), we need « sufficiently large so that the network can
suppress the low-magnitude feature noise, and we need d1, d2 = O(1) so that the signal feature
coefficients significantly outweigh the noise feature coefficients.

To convince the reader that our choice of model is not needlessly complicated given the setting, we
prove the following result showing that there exist realizations of the distribution D on which linear
classifiers cannot achieve perfect accuracy.

Proposition 4.4. There exists a D satisfying all of the conditions of Definition 4.1 and Assumption
4.3 such that with probability at least 1 — k? exp(©(—N/k?)), for any classifier i : RF4 — R¥ of

the form h¥(x) = 3_ ¢ (p) {(wy, 2P} and any X consisting of N i.i.d. draws from D, there exists a
point (z,y) € X and a class s # y such that h®(x) > h¥(x).



Proof Sketch. The idea, as was originally pointed out by Allen-Zhu and Li (2021), is that there
are O (k?) feature noise patches with coefficients of order ©(k~1®). Thus, because the features are

orthogonal, these noise patches can influence the classification by an order @(\/E) term away from
the direction of the true signal.

The full proof can be found in Section C of the Appendix.

4.2 MAIN RESULTS

Having established the setting for our main results, we now concretely define the notion of feature
learning in our context.

Definition 4.5. [Feature Learning] Let (z,y) ~ D. We say that feature v, 4 is learned by g if
argmax, g°(z) = y where 2’ is 2 with all instances of feature v, 3_, replaced by the all-zero vector.

Our definition of feature learning corresponds to whether the model g is able to correctly classify
data points in the presence of only a single signal feature instead of both (generalizing the notion of
weight-feature correlation to nonlinear models). By analyzing the gradient descent dynamics of g for
the empirical cross-entropy .J, we can then show the following.

Theorem 4.6. For k and N sufficiently large and the settings stated in Assumption 4.3, we have that
the following hold with probability at least 1 — O(1/k) after running gradient descent with a step size
n = O(1/poly(k)) for O(poly(k)/n) iterations on J(g, X) (for sufficiently large polynomials in k):

1. (Training accuracy is perfect): For all (z;,y;) € X, we have argmax, g; (z;) = ;.

2. (Only one feature is learned): For (1 — o(1))k classes, there exists exactly one feature that
is learned in the sense of Definition 4.5 by the model g;.

Furthermore, the above remains true for all ¢ = O(poly(k)) for any polynomial in k.
Proof Sketch. The proof is in spirit very similar to Theorem 1 in Allen-Zhu and Li (2021), and

relies on many of the tools therein. The main idea is that, with high probability, there exists a
separation between the class i weight correlations with the features v,,; and v, > at initialization.

This separation is then amplified throughout training due to the polynomial part of ReLU. Once
one feature correlation becomes large enough, the gradient updates to the class y weights rapidly
decrease, leading to the remaining feature not being learned.

Theorem 4.6 shows that only one feature is learned (in our sense) for the vast majority of classes. As
mentioned, our proof is quite similar to Allen-Zhu and Li (2021), but due to simplifications in our
setting (no added Gaussian noise for example) and some different ideas the proof is much shorter
- we hope this makes some of the machinery from Allen-Zhu and Li (2021) accessible to a wider
audience.

The reason we prove Theorem 4.6 is in fact to highlight the contrast provided by the analogous result
for Midpoint Mixup.

Theorem 4.7. For k and N sufficiently large and the settings stated in Assumptions 4.3, we have
that the following hold with probability 1 — O(1/k) after running gradient descent with a step size
n = O(1/poly(k)) for O(poly(k)/n) iterations on Jaras (g, X') (for sufficiently large polynomials
in k):

1. (Training accuracy is perfect): For all (x;,y;) € X, we have argmax, ¢°(x;) = v;.

2. (Both features are learned): For each class y € [k], both vy,1 and v, o are learned in the
sense of Definition 4.5 by the model g.

Furthermore, the above remains true for all ¢ = O(poly(k)) for any polynomial in k.

Proof Sketch. The core idea of the proof relies on similar techniques to that of Proposition 3.4,

but the nonlinear part of the ReLU activation introduces a few additional difficulties due to the

fact that the gradients in the nonlinear par are much smaller than those in the linear part of ReLLU.



Nevertheless, we show that even these smaller gradients are sufficient for the feature correlation that
is lagging behind to catch up in polynomial time.

The full proofs of Theorems 4.6 and 4.7 can be found in Section B of the Appendix.

Remark 4.8. Theorems 4.6 and 4.7 show a separation between ERM and Midpoint Mixup with
respect to feature learning, as we have defined. They are not results regarding the test accuracy of the
trained models on the distribution D; even learning only a single feature per class is sufficient for
perfect test accuracy on D. The significance (and our desired interpretation) of these results is that,
when the training distribution D has some additional spurious features when compared to the testing
distribution, ERM can potentially fail to learn the true signal features whereas Midpoint Mixup will
likely learn all features (including the true signal). One may also interpret the results as generalization
that is robust to distributional shift; the test distribution in this case has dropped some features present
in the training distribution.

5 EXPERIMENTS

The goal of the results of Sections 3 and 4 was to provide theory (from a feature learning and
optimization perspective) for why Mixup has enjoyed success over ERM in many practical settings.
The intuition is that, for image classification tasks, one could reasonably expect images from the same
class to be generated from a shared set of latent features (much like our data distribution in Definition
4.1), in which case it may be possible to achieve perfect training accuracy by learning a strict subset
of these features when doing empirical risk minimization. On the other hand, based on our ideas,
we would expect Mixup to learn all such latent features associated with each class (assuming some
dependency between them), and thus potentially generalize better.

A direct empirical verification of this phenomenon on image datasets is tricky (and a possible avenue
for future work) due to the fact that one would need to clearly define a notion of latent features with
respect to the images being considered, which is outside the scope of this work. Instead, we take
for granted that such features exist, and attempt to verify whether Mixup is able to learn the “true”
features associated with each class better than ERM when spurious features are added.

For our experimental setup, we consider training ResNet-18(He et al., 2015) on versions of Fashion
MNIST (FMNIST) (Xiao et al., 2017), CIFAR-10, and CIFAR-100 (Krizhevsky, 2009) in which
every training data point is transformed such that a randomly sampled training point from a different
(but randomly fixed) class is concatenated (along the channels dimension) to the original point.
Additionally, to introduce a dependency structure akin to what we have in Definitions 3.1 and 4.1,
we sample a v ~ Uni([0, 1]) and scale the first part of the training point (the true image) by ~ while
scaling the concatenated part by 1 — ~ during training.

T
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Figure 1: Visualization of data modification in CIFAR-10.

If we work under the intuition that images from each class are generated by relatively different latent
features, then this modification process corresponds to adding patches of (fixed) spurious features to
each class that have a dependency (from the scaling factor ) on the original features of the data. We
leave the test data for each dataset unmodified, except for the concatenation of an all-zeros vector of
the same shape to each point so that the shape of the test data matches that of the training data (in
effect, this penalizes models that learned only the spurious features we concatenated in the training
data). This zeroing out of the additional channels is also intended to replicate Definition 4.5 in our
experimental setup.

While we consider the above setup to be intuitive and resemble our theoretical setting, it is fair to
ask why we chose this setup compared to the many possible alternatives. Firstly, we found that
using synthetic spurious features (i.e. random orthogonal vectors scaled to have the same norm as
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Figure 2: Test error comparison between Uniform Mixup (green), Midpoint Mixup (orange), and
ERM (blue). Each curve represents the average of 5 model runs (over the randomness of the data
augmentations and model initializations), while the surrounding area represents 1 standard deviation.

the images) as opposed to images from different classes was far too noisy (training error went to 0
immediately); the test errors on each dataset degraded to near-random levels, so it was difficult to
make comparisons. Additionally, we found the same to be true if we considered adding spurious
features as opposed to concatenating them.

For each of our image classification tasks, we train models using Mixup with D) = Beta(1, 1) (the
choice used in Zhang et al. (2018) for CIFAR, which we refer to as Uniform Mixup), Midpoint
Mixup, and ERM. Our implementation is in PyTorch (Paszke et al., 2019) and uses the ResNet
implementation of Kuang Liu, released under an MIT license. All models were trained for 100
epochs with a batch size of 750, which was the largest feasible size on our compute setup of a single
P100 GPU (we use a large batch size to approximate the full batch gradient descent aspect of our
theory). For optimization, we use Adam (Kingma and Ba, 2015) with the default hyperparameters
of f1 = 0.9, B2 = 0.999 and a learning rate of 0.001. We did a modest amount of hyperparameter
tuning in preliminary experiments, where we compared Adam and SGD with different log-spaced
learning rates in the range [0.001, 0.1], and found that Adam with the default hyperparameters almost
always worked the best. We report our results for each dataset in Table 1, and accompanying test
error plots are shown in Figure 2.

Model FMNIST | CIFAR-10 | CIFAR-100
Uniform Mixup 9.66 18.52 +1 5342 £1
Midpoint Mixup | 14.84 £1 | 22.29 £2 53.61 £2

ERM 16.55 +£2 | 27.77 £2 69.28 £2

Table 1: Final test errors on unmodified test data (mean over 5 runs) along with 1 standard deviation
range for Uniform Mixup, Midpoint Mixup, and ERM.

From Table 1 we see that Uniform Mixup performs the best in all cases, and that Midpoint Mixup
tracks the performance of Uniform Mixup reasonably closely. We stress that the ordering of model
performance is unsurprising; a truly fair comparison with Midpoint Mixup would require training
on all N2 possible mixed points, which is infeasible in our compute setup (we opt to randomly mix
points per batch, as is standard). Our experiments are intended to show that Midpoint Mixup still
non-trivially captures the benefits of Mixup in an empirical setting that is far from the asymptotic
regime of our theory, while Mixup using standard hyperparameter settings significantly outperforms
ERM in the presence of spurious features. A final observation worth making is that we find Midpoint
Mixup performs significantly better than ERM when moving from the 10-class settings of FMNIST
and CIFAR-10 to the 100-class setting of CIFAR-100, and this is in line with what our theory predicts
(a larger number of classes more closely approximates our setting).

6 CONCLUSION

To summarize, the main contributions of this work have been theoretical motivation for an extreme
case of Mixup training (Midpoint Mixup), as well as an optimization analysis separating the learning



dynamics of a 2-layer convolutional network trained using Midpoint Mixup and empirical risk
minimization.

Our results show that, for a class of data distributions satisfying the property that there are multiple,
dependent features correlated with each class in the data, Midpoint Mixup can outperform ERM
(both theoretically and empirically) in learning these features. We hope that the ideas introduced in
the theory can be a useful building block for future theoretical investigations into Mixup and related
methods in the context of training neural networks.
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A SUPPORTING LEMMAS AND CALCULATIONS

In this section we collect several technical lemmas and computations that will be necessary for the
proofs of our main results.

A.1  GAUSSIAN CONCENTRATION AND ANTI-CONCENTRATION RESULTS

The following are well-known concentration results for Gaussian random variables; we include proofs
for the convenience of the reader.

Proposition A.1. Let X; ~ N(0,0?) with i € [m] and let o = max; o;. Then,

E[max X;] < o+/2logm
Proof. Let Z = max; X;. Then by Jensen’s inequality and the MGF of N/ (0, 0?), we have:
exp (tE[Z]) < Eexp(tZ) = Elexp (t maxXi)]
< E[Zexp(tXi)] = Zexp(tQU?/Q)

< mexp (t202/2)

logm  to?

= E[Z] <

t 2
Minimizing the RHS yields t = v/2log m/o, from which the result follows. O

Proposition A.2. Let X; be as in Proposition A.1. Then,

P(max X; >t 4+ 0/2logm) < exp(—t*/(207))

Proof. We simply union bound and use the fact that P(X; > t) < exp(—t?/(20?)) (Chernoff bound
for zero mean Gaussians) to get:

P(max X; >t + o+v/2logm) < ZP(Xi >t+ o04/2logm)
< mexp(—(t + 0\/210gm)2/(202)>

< exp(—t*/(20?))
O

Proposition A.3. Let X, Xy, ..., X,,, be i.i.d. Gaussian variables with mean 0 and variance o2.
Then we have that:

P (mZaxXi >0 (o— Tog(m/ 1og(1/5)))) —1-0()

Proof. We recall that:

P(X;>2z)=0 (Ee#/(zo?))

T
A proof of this fact can be found in Vershynin (2018). We additionally have that:

Pmax X; >z)=1—(1-P(X; > z))™

So from the previous asymptotic characterization of P(X,; > z) we have that choosing z =

© (m/log(m/ 10g(1/5))> gives P(X; > x) = O(log(1/d)/m), from which the result follows. [J

We will also have need for a recent anti-concentration result due to Chernozhukov et al. (2014), which
we restate below.
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Proposition A.4 (Theorem 3 (i) Chernozhukov et al. (2014)). Let X; ~ N(0,02) for i € [m] with
02 > 0. Defining a,, = E[max; X; /o], we then have for every € > 0:

sup P(
zeR

_I‘ <€) <4de(l+am)/o

Corollary A.5. Applying Proposition A.1, we have sup,cp P(Jmax; X; — 2| < €) < 4e(1 +
V2logm)/o.

A.2 GRADIENT CALCULATIONS

Here we collect the gradient calculations used in the proofs of the main results. We recall that we use

v wit), 10 indicate — (,) and z; ; = (x; + x;)/2. Additionally, we will omit parentheses after ReLU
when function appllcatlon is clear.
Calculation A.6. For any (z;,y;) € X:

Vo gl (@) =) ReL,U <wy oz <p)>x§p>

p€E[P]

Proof.

Vw§t>rgt( T;) = (t) Z Z ReLU< Z(Jt)u7 Zp> Z ReLU< ét)” (p)> (p)

awyz T u€[m] pe[P]
O

Calculation A.7. For any (v;,y;) € &, if max, e[y <w§,t)r, ’l)u7g> < p/(62 — 01) and s # y;, then:

a—1
(t)
Ofp <wyz‘>h Vy; 0

pa—l

<Vw§f;>,rgfi(xi)7vy1,,€>: >

PEPy, o(x4)

N (t) a—1
Po§ maxy2y ( Wy,r, Vu,e

pa—l

<Vw(t> 9/ (fﬂi),vs,z> <0
Yi,r

Proof. When max, ¢y <wg)ﬂ», ’Uu’e> < p/(d2 — d1), we are in the polynomial part of ReLU for

every patch in x;, since MaXpep, ,(z;) <wg(h)r, Ep)> < psince 3; , < d2 — 1. The first line then

follows from Calculation A.6 and the fact that all of the feature vectors are orthonormal (so only
those patches that have the features v,, , are relevant). The second line follows from the fact that
there are at most P — 2C'p feature noise patches containing the vector v, ¢, and in each of these
patches there are only a constant number of feature vectors (which we do not constrain). O

Calculation A.8. For any (z;,y;) € X, if <w1(f)r, vyi’g> > p/dy, then:
<ngpTgfi (Jiz‘),vyi,é> = > Bip
N PEPy, o(z:)
Proof. When <w?(fi),r,vyhg> > p/d1 we necessarily have minycp, () <U’z(11)r, (p)> > p since

Bi p > 61, and then the result again follows from Calculation A.6 and the fact that ReLU = 1in the
linear regime. O

Calculation A.9 (ERM Gradient).



Proof. First let us observe that:
log ¢V (g:(w:)) = ' (w:) —log Y _ exp(g; (z:))

. 0log ¢ (gs(x;))

9 =1y,=yV o g{ (xi) = ¢¥(9(2:))V v g/ ()
wy,r Y, Y,T

Summing (and negating) the above over all points x; gives the result. O

Calculation A.10 (Midpoint Mixup Gradient).

1
ngt)rJJ»IM(gty X) = “oNZ Z Z (lyi=y + Ly,=y — 297 (gt(zz‘,j)))vwgqgil(zi,j)
N i€[N] j€[N) B

Proof. Follows from applying Calculation A.9 to each part of the summation in Jysps(g, X). O

B PROOFS OF MAIN RESULTS

This section contains the proofs of the main results in this paper. We have opted to present the proofs
in a linear fashion - inlining several claims and their proofs along the way - as we find this to be more
readable than the alternative. The proofs of inlined claims are ended with the Ml symbol, while the
proofs of the overarching results are ended with the [J symbol.

For convenience, we recall the assumptions (as they were stated in the main body) that are used in
these results:

Assumption 4.3. [Choice of Hyperparameters] We assume that:
d = Q(k**) P = 0(k?) Cp=0(1) m = O(k)
51,52 29(1) 53,54 :G(kil'g)) p:@(l/k) a=28

B.1 PROOF OF THEOREM 4.6

Theorem 4.6. For k and N sufficiently large and the settings stated in Assumption 4.3, we have that
the following hold with probability at least 1 — O(1/k) after running gradient descent with a step size
n = O(1/poly(k)) for O(poly(k)/n) iterations on J(g, X) (for sufficiently large polynomials in k):

1. (Training accuracy is perfect): For all (x;,y;) € X, we have argmax, g5 (x;) = v;.

2. (Only one feature is learned): For (1 — o(1))k classes, there exists exactly one feature that
is learned in the sense of Definition 4.5 by the model g;.

Furthermore, the above remains true for all ¢ = O(poly(k)) for any polynomial in k.

Proof. We break the proof into two parts. In part one, we prove that (with high probability) each
class output g7 becomes large (but not too large) on data points belonging to class y and stays small
on other data points, which consequently allows us to obtain perfect training accuracy at the end
(thereby proving the first half of the theorem). In part two, we show that (again with high probability)
the max correlations with features v, ; and v, o for a class y have a separation at initialization that
gets amplified over the course of training, and due to this separation one of the feature correlations
becomes essentially irrelevant, which will be used to prove the second half of the theorem.

Part 1.

In this part, we show that the network output g;* (x;) reaches and remains O (log k) while g{ (z;) =
o(1) for all ¢ = O(poly(k)) and s # y;. These two facts together allow us to control the 1 —
@Y (g+(x;)) terms that show up throughout our analysis (see Calculation A.9), while also being
sufficient for showing that we get perfect training accuracy. The intuition behind these results is that,
when ¢¥* (z;) > clog k, we have that exp(gY* (z;)) > k¢ so the 1 — ¢¥ (g;(w;)) terms in the gradient
updates quickly become small and g;* stops growing. Throughout this part of the proof and the next,
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we will use the following notation (some of which has been introduced previously) to simplify the
presentation.

N,={i:ic[Nlandy, =y}  Pe(a:)={p:pe[P]and <x§”,vy,g> > 0}

Bg% ={r:r €[m]and <wé€l,vy,g> > p/o1} (B.1)

Here, N, represents the indices corresponding to class y points, P, ¢(x;) (as used in Definition 4.1)
represents the patch support of the feature vy ¢ in x; (recall the features are orthonormal), and Bz%
represents the set of class i weights that have achieved a big enough correlation with the feature v, o

to necessarily be in the linear regime of ReL'U on all class y points at iteration ¢.

Prior to beginning our analysis of the network outputs g7, we first prove a claim that will serve as the
setting for the rest of the proof.

Claim B.1. With probability 1 — O(1/k), all of the following are (simultaneously) true for every
class y € [k]:

* [Nyl = ©(N/k)
. maXsE[k],rE[m],ﬁE[Z] <w§?), Uy7g> = O(log k/\/g)

« Ve [2], MAaX,¢[m] <U)75,())2,’Uy75> = Q(l/\/&)

Proof of Claim B.1. We prove each part of the claim in order, starting with showing that |N,| =
©(N/k) with the desired probability for each y. To see this, we note that the joint distribution of
the |V, | is multinomial with uniform probability 1/k. Now by a Chernoff bound, we have that
|N1| = ©(N/k) with probability at least 1 — exp(©(—N/k)). Conditioning on |N;| = ©O(N/k), we
have that the joint distribution of | Na|, ..., | Ni| is multinomial with uniform probability 1/(k — 1), so
we obtain an identical Chernoff bound for | N3|. Repeating this argument and taking a union bound
gives that [N, | = ©(N/k) for all y € [k] with probability at least 1 — k exp(©(—N/k)).

The fact that for every y we have max (i) re[m],ce[2] <w£0,2, Uy, g> = O(log k/+/d) with probability
1 — O(1/k) follows from Proposition A.2. Namely, using Proposition A.2 with ¢t = 20+/2logm
(here & = 1/+/d by our choice of initialization) yields that max, <w§?2, vy,g> > 3,/2Togk/v/d with

probability bounded above by 1/k? for any s, 3. Taking a union bound over s, y then gives the result.
The final fact follows by near identical logic but using Proposition A.3 (note that the correlations
<w§?2, Vy, g> are i.i.d. M(0,1/d) due to the fact that the features are orthonormal and the weights

themselves are i.i.d.). |

In everything that follows, we will always assume the conditions of Claim B.1 unless otherwise
stated. We begin by proving a result concerning the size of softmax outputs ¢¥(g;(x)) that we will
repeatedly use throughout the rest of the proof.

Claim B.2. Consider i € N, and suppose that both max e, refm, r[2] <wgtl, 7}57£> = O(logk)
and max,y, refm], £e[2] <w£t27 ’Uy’g> = O(log(k)/+/d) hold true. If we have g¥(x;) > alog k for

some a € [0, 00), then:

, N O(1/k*71) ifa>1
1= ¢ (ge(xi)) = {@ (1) otherwise

Proof of Claim B.2. By assumption, all of the weight-feature correlations are O(log k) at ¢. Further-
more, for s # y, all of the off-diagonal correlations <wgt2, vy7g> are O(log(k)/+/d). This implies
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that (using 6, = ©(k~1%), p = O(1/k), P = O(k?), and o = 8):

o (t) “
mP54 maxyy \ Ws,r, Uy ¢

g;(x;) <O

pafl
k*tlog(k)® log(k)“
<o(Sn)=o(M")
= exp(g;(v;)) <140 <log;£§) ) (B.2)

Where above we disregarded the constant number (2C'p) of very low order correlations <w§fz7 Vy, g>

and used the inequality that exp(x) < 1+ x + 22 for x < 1. Now by the assumption that
g¢ (z;) > alogk, we have exp(g? (z;)) > k%, so:

ka
1—¢Y xX; <1-
Olonlen) < 1= e T o)

k-1 1

_ +oll) (B.3)
k*+ (k—1) 4 o(1)
From which the result follows. u
Corollary B.3. Under the same conditions as Claim B.2, for s # y, we have:
s 1
o (gt(xl)) =0 <kmax(a,1)>

Proof of Corollary B.3. Follows from Equations B.2 and B.3. |

With these softmax bounds in hand, we now show that the “diagonal” correlations <wg(f2~, Vy, g> grow

much more quickly than the the “off-diagonal” correlations <w3(,t2ﬂ, Vs, g> (where s # y). This will
allow us to satisfy the conditions of Claim B.2 throughout training.

Claim B.4. Consider an arbitrary y € [k]. Let A < p/(d2 — d1) and let T4 denote the first iteration
at which max,.¢[m] ¢e[2] <w$f‘) , vy,g> > A. Then we must have both that T4 = O(poly(k)) and

that )y iz (057, 00 ) = O (log(k)/V).

Proof of Claim B.4. Firstly, all weight-feature correlations are o(p) at initialization (see Claim B.1).
Now for s # y and <w?5?,),, Us,z> > 0, we have for every ¢ at which <w7(f)r, 1)57g> < p/(d2 — 67) that
(using Calculations A.7 and A.9):
a—1
Bioj;n <w!(1t727 US,E>
pafl

(=¥ 0, T(9: ) v00) < =1 37 ¢ (ge(a)) Y

1€N; PEP; ¢(x;)

o (1) ot
P6§ max, 2, ve2] { Wy,rs Vu,er

pa—l

+ 3 (1= (aw))e

iEN,

N ) (t) a—1
Pog minyzy, ref2) { Wy,r, Vu,e

—% Z ¢Y(g¢(2;))©

a—1
i¢N,UN, P
n P(Sff maxwg% 5'6[2] <w?(ji2”7vu’g/>a_l
= N 1-¢ (gd%)))@ pa—1
1ENy

(B.4)
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Similarly, for <w1(,02, ’Uy’g> > 0, we have for every ¢ at which <wq(,t)r, ’Uy’g> < p/(02 — 1) that:

IR
(0¥ 08 00) 2 0 32 (1-0"(ae) 30 = <w;ajyvf>

iEN, PEPs (i)

o (t) ot
P6g max, o, vef) { Wy, r, Vuer

- % Z ¢y(9t($i))@

a—1
igN, P
(B.5)
From Equation B.5, Claim B.2, and Corollary B.3 we get that for ¢t < T'4:
a—1
n <wl(/ty2"’ Uy75>
(=¥ 0 I (9, ), 00 ) > © — (B.6)

Where above we also used the fact that | N,| = ©(N/k). On the other hand, also using Claim B.2
and Corollary B.3, we have that for all ¢ for which <wl(,t)r, 1}5’@> < p/ (02 —01):

o 0 a—1
NPOg max, 2y ¢ej2) { Wy,r, Vu,er

pafl

<—an;§;J(g,X),vs,e> <O (B.7)

Now suppose that <w£,02, Vs, g> is the maximum off-diagonal correlation at initialization. Then using

Equation B.7, we can lower bound the number of iterations 7 it takes for <w?§t)r, Vs, g> to grow by a
fixed constant C' factor from initialization:

nPogCot (wii) v

a—1
> >(C-1) <w(027vs’g>

Te pa—l Y,
a—1
= T>0 P —5
npéz <wl(}(,)7)“avs,€>
f1.5a—2 afldoz/271
-0 < id . ) (B.8)

As there exists at least one <w3(,02, Uy, g> = Q(1/+/d), it immediately follows from comparing to

Equation B.6 and recalling that o« = 8 in Assumption 4.3 that T >> T'4, and that Ty = O(poly(k)),
so the claim is proved. |

Having established strong control over the off-diagonal correlations, we are now ready to prove the
first half of the main result of this part of the proof - that g} (z;) reaches Q(log k) for all i € N,, in
O(poly(k)) iterations. In proving this, it will help us to have some control over the network outputs
g¢ across different points z; and x; at the later stages of training, which we take care of below.

Claim B.5. For every y € [k] and all ¢ such that maxen, gf(z;) > logk
and  Max,¢(m], s£y,cc[2] <w3(,t72~,v374> = O(log(k)/\/ﬁ), we have max;en, g7 (7;)

Q(minien, g (2:)).

Proof of Claim B.5. Let j = argmax;cy, g¢ (v;). Since g/ (z;) > log k, we necessarily have that

B, ¢ is non-empty for at least one ¢ € [2] (since mp = ©(1)). Only those weights w?(fl withr € By ¢
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for some ¢ € [2] are asymptotically relevant (as any weights not considered can only contribute a
O(1) term), and we can write:

d@) <Y (X B D (wive) +ollogh)

ZG[Q] pePy,l(zi) rer/t)Z

For any other j € N,, we have that 3; , > §15; ,/(d2 — 1), from which the result follows. [ ]

Now we may show:
Claim B.6. For each y € [k], let T}, denote the first iteration such that max;cy, g%/ (z;) > logk.

Then T, = O(poly(k)) and max, (), s£y,ce[2] <w$§’),vs7g> =0 <log(k)/\/3>. Furthermore,
minen, g7 (z;) = Q(log k) forall t > T),.

Proof of Claim B.6. Applying Claim B.4 to an arbitrary y € [k] yields the existence of a corre-
lation <w?5t2,,vyg> > p/(62 — 61). Reusing the logic of Claim B.4, but this time replacing
<w1(f)r , Uy7g*> in Equation B.6 with p/(d2 — d1), shows that in O(poly(k)) additional iterations we

have <w(t) Uy7g*> > p/d61 (implying r € Bﬁ*) while the off-diagonal correlations still remain

y,r*

within a constant factor of initialization.
Now we may lower bound the update to <w7(f)r ) Uy, Z*> as (using Calculation A.8):
n
<_77Vw(f)*J(.gaX)vvy,Z*> 2 N Z (]- - (by (gt(xz))) Z ﬂi,p
o 1ENy PEP; o(x;)

a (1) ot
P6§ max, 2, vref2) ( Wy, pe Vu,er

p(x—l

- % Z ﬁby(gt(%))@

igN,
(B.9)

So long as max;ep, g¢ (z;) < logk (which is necessarily still the case at this point, as again
mp = O(1)), we have by the logic of Claim B.2 that we can simplify Equation B.9 to:

<_77Vw(t)r* J(g,X),Uy7g*> > 0(n/k) (B.10)

Where again we used the fact that |N,| = ©(N/k). Now we can upper bound T}, by the number
of iterations it takes <w;tl* , Uy7g*> to grow to log(k)/é;. From Equation B.10, we clearly have
that T, = O(poly(k)) for some polynomial in k. Furthermore, comparing to Equation B.7, we
necessarily still have max, ¢ (], sy, cc[2] <wﬁ’), vs,e> =0 <log(k) / \/E) Finally, as the update in

Equation B.9 is positive at T}, (and the absolute value of a gradient update is o(1)), it follows that
minen, g7 (2;) = Q(log k) for all t > T, by Claim B.5. ]

The final remaining task is to show that g7 (x;) = O(log k) and g§ (z;) = o(1) forall t = O(poly(k))
and i € N, for every y € [k].

Claim B.7. For all t = O(k“) for any universal constant C, and for every y € [k] and s # y, we
have that g (z;) = O(log k) and max, ¢ ;) sy,cc[2) <wg)r, ’Usyg> =0 (log(k)/\/@ forall i € N.

Proof of Claim B.7. Let us again consider any class y € [k] and ¢ > T,,. The idea is to show that
max;en, 1 — ¢¥(g:(x;)) is decreasing rapidly as miney, g7 (z;) grows to successive levels of
alogk fora > 1.
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Firstly, following Equation B.9, we can form the following upper bound for the gradient updates to
re BY.
y,l

<_77Vw’(t)‘* J(gv X)v Vy, 0 > < % Z (1 - d)y (gt (.’EJ)) Z ﬁi,p
" iEN, PEP:,((xi)
< (1 ~ min ¢ (gt(a:i)))@(n/k;) (B.11)

From Equation B.11 it follows that it takes at least ©(k log(k)/(mn) iterations (since the correlations
must grow at least log(k)/m) from T, for g/ (x;) to reach 2log k. Now let T, denote the number of
iterations it takes for min;e v, g (;) to cross alog k after crossing (a — 1) log k for the first time.
For a > 3, we necessarily have that T;, = Q(kT,—1) by Claim B.2 and Equation B.11.

Let us now further define T to be the first iteration at which max;en, g%f (x;) > f(k)logk for
some f(k) = w(1). By Claim B.5, at this point min;e, g‘}if (x;) = Q(f(k)log k). However, we
have from the above discussion that:

IO palogk
Ty > Q(poly(k)) + Y Q( p )
a=0

log k (k¥(F)=2 —1)
= ( nk— 1) )

> w(poly(k)) (B.12)

So max;en, g¢ (z;) = O(logk) for all t = O(poly(k)). An identical analysis also works for the

off-diagonal correlations <w§t),, Vs, g> but forming an upper bound using Equation B.4, so we are
done. ]

We get the following two corollaries as straightforward consequences of Claim B.7.

Corollary B.8 (Perfect Training Accuracy). We have that there exists a universal constant C' such
that argmax, g3 (z;) = y; for every (x;,5;) € X for all t > k© but with t = O(poly(k)).

Corollary B.9 (Softmax Control). We have that for all y € [k] and any ¢ = O(poly(k)) for any
polynomial in k that max;en, >, exp(g; (v:)) = k + o(1).

Corollary B.8 finishes this part of the proof.
Part II.

For the next part of the proof, we characterize the separation between max,.¢c [, <w?(,0,)«, vy71> and

MaXy¢ [m) <w§?}, vy72>, and show that this separation (when it is significant enough) gets amplified

over the course of training. To show this, we will rely largely on the techniques found in Allen-Zhu
and Li (2021), and finish in a near-identical manner to the proof of Claim B.7.

As with Part I, we first introduce some notation that we will use throughout this part of the proof.

Sumx X X B A= max ()

. relm
’LEN’U ;DGPy,[(ZEq‘,) [

Here, S, ¢ represents the data-dependent quantities that show up in the gradient updates to the

correlations during the phase of training in which the correlations are in the polynomial part of ReLU,
while A;t)e represents the max class y correlation with feature v, o at time ¢.

Now we can prove essentially the same result as Proposition B.2 in Allen-Zhu and Li (2021), which
(0)

quantifies the separation between A, j

and AS?% after taking into account .Sy ; and Sy ».
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Claim B.10 (Feature Separation at Initialization). For each class y, we have that either:

A(O)

Sya )7 1 (0)
> [ 22 14+6 A
vl = (SyJ) ( * (log2k>> y2 O
Sya) ™2 1
AL > (yl> (1 +0 ( >> A
y,2 = Sy’2 10g2 k y,1

with probability 1 — O ( L )

log k

Proof of Claim B.10. Suppose WLOG that S, ; > S, 2. If neither of the inequalities in the claim
hold, then we have that:

Sy2\ ™2 1
A(O) y,2 1+ A(O)
vl € Sy1 © logzk Y2

Which follows from the fact that, for a constant A, we have:
1 A

1+logi2k_ _10g2]€

Now we recall that A(O% and A(O) are both maximums over i.i.d. A(0, 1/d) variables (again, since
the feature vectors are orthonormal) S0 we can apply Corollary A.5 (Gaussian anti- concentratlon)

to Agg while taking € = (S,.2/5,1)72 © (1/log* k) Agg and z = (S,.2/S,1)72 AEIO% It is

crucial to note that we can only do this because Agg is independent of A?(ﬁ) , and both take values
over all of R. From this we get that:

Y2

oz de(1 + /21
P(A(y?iG(Sy,Q/S 1) A<o>i€) < e(1 + /2Togm)

o
_0 (cr\/logm) o (Vlogm)
B log? k o

log k

Where we used the fact that m = ©(k) and Proposition A.2 to characterize A;?% (also noting that
Sy.2/Sy,1is ©(1)). Thus, neither of the inequalities hold with probability O(1/log k), so we have
the desired result. u

1 1
=0 () with probability 1 — —
m

We can use the separation from Claim B.10 to show that, in the initial stages of training, the max

—_—

correlated weight/feature pair grows out of the polynomial region of ReLU and becomes large
much faster than the correlations with the other feature for the same class. For y € [k], let £* be

such that A;O; is the left-hand side of the satisfied inequality from Claim B.10. Additionally, let

r* = argmax, <w1(,02, Vy, o= >, i.e. the strongest weight/feature correlation pair at initialization. We

will show that when <w;t)r* ) Uy, 0= > becomes Q(p), the other correlations remain small. In order to
do so, we need a useful lemma from Allen-Zhu and Li (2021) that we restate below.

Lemma B.11 (Lemma C.19 from Allen-Zhu and Li (2021)). Let ¢ > 3 be a constant and xg, yg =
o(1). Let {x, y: }+>0 be two positive sequences updated as

Iyl >+ 770,5953—1 for some C; = ©(1), and
© Y1 < yr +nSCuy? " for some constant S = O(1).

Where n = O(1/poly(k)) for a sufficiently large polynomial in k. Suppose zp >
YoS 2 (1 + 0 (polylog(k))). For every A = O(1), letting T, be the first iteration such that
x; > A, we must have that

yr, = O(yopolylog(k))
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To apply Lemma B.11 in our setting, we first prove the following claim.

Claim B.12. For a class y € [k], we define the following two sequences:

1 1
Sy \ 2 " S5 g\ o2
ayt = (pg_l) <w?(!72,*,vy’g*> and by, = z’a_l <w§l’f)r,vy_’3,g*>

Where the 7 in the definition of b, ; is arbitrary. Then with probability 1 — O (
Ct, S = O(1) such that for all ¢ for which <w;f)r*,vy,g*> < p/(62 —61):

—L_) there exist
log k

a—1
Ay+1 = aye +nCrayy

by.t+1 < byt + nSCth,;l
Additionally (with the same probability), we have that a, o > S a2 (1 + 06 (m)) by.0-

Proof of Claim B.12. The update to <w7(f)r , vy,g*> in this regime can be bounded as follows (using

a—1
t
i <uéng%€>

<_77Vw;f>r*J(g,X),vy’Z*> 2 % Z (1 -9’ (gt(xz))) Z r P

iENy peps,[(ri)

Corollary B.9 and recalling Equation B.5):

o (t) ot
Pog max, 2y 2] { Wy,rs Vu,er

pa—l

- % Z ¢y(9t(fﬂi))@

iENy

a—1
1 <’U);t))r*,vy)g*>
>n(1-0(=)) S, (B.13)

k a—1

Similarly, we have (noting also that <w§t)r, vy,g,g*> < p/(62 — 01)):

0 a—1
Wy, ry Vy,3—*
pafl

1
Multiplying the above inequalities by (S, /p® ') *%, we see that a,,; and by, satisfy the inequal-
ities in the claim with C; = 1 — © (1) and S = (Sy,3-¢-/Sy.¢+) (1 + © (1)). Now by Claim B.10

we have:
ay o > | 2/ 1+0( —— b
y,0 — ( Sy,f* 10g2 k} y,0

. 1
> Sa73 (1 -
=5 ( e (polylog(k)>> v

So we are done. [ |

(B.14)

<—nvw§§;J(ga X), vy 3¢~ > < NSy 3

Now by the fact that |N,| = O(N/k), we have S, 1,S5,2 = © (1/k) = O(p), which implies
that (S, ¢« /po‘_l)l/(a_Q) = O (1/p). From this we get that while a, ; < C/(d2 — &;) for some
appropriately chosen constant C, we have <wl(f)r , vy,4*> < p/(62 — 01).

Since Claim B.12 holds in this regime, we can apply Lemma B.11 with A = C/(d3 — 6;), which

gives us that when a,, ; > C/(d2 — 01), we have b, ; = O(by opolylog(k)). From this we obtain that

t

when <w( )

w*,vy,g*> > p/(d2 — 01) we have that <w3(f27 vy’g,g*> is still within a polylog(k) factor

of <w@(,?2, vy,3_g*> for any 7.
Now from the same logic as the proof of Claim B.7, we can show that this separation remains

throughout training.
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Claim B.13. For any class y € [k], with probability 1 — O(1/logk), we have that
MaX;¢m] <w,(,t2,7 vag_g*> = O(polylog(k) max,¢m) <wg(,02, Uy 3—¢+ >) for all ¢ = O(poly(k)) for
any polynomial in k.

Proof of Claim B.13. It follows from the same logic as in the proof of Claim B.6 that at the first

iteration ¢ for which we have min;¢ y, g7 (x;) > log k, we still have <w§f)r, Vy,3— ¢~ > is within some

polylog(k) factor of initialization (here the correlation <w1(f)r, Vy,3—0* > can be viewed as the same
as an off-diagonal correlation from the proof of Claim B.6). The rest of the proof then follows from
identical logic to that of Claim B.7; namely, we can show that for <w?(f)r, Vy,3—¢= > to grow by more

than a polylog(k) factor we need w(poly(k)) training iterations.

From Claim B.13 along with Claim B.7, it follows that with probability 1 — O(1/log k), for any
class y (after polynomially many training iterations) we have:

) =0 <mp01$1§g(k)> _0 (kpoliy/lgg(k))
sitel) = (PB) — o (oot

Where z is any point z; with ¢ € N,y modified so that all instances of feature v, ¢~ are replaced by

) for s # vy, if 3 Py o(x;) # 0 (B.15)

0, and the second line above follows from the fact that by Claim B.7 we must have <w§’2, Vg, g> =

Q(log(k)/k) for at least some r, ¢ for every s (and d = ©(k?)). This proves that feature vy 3_¢- is
not learned in the sense of Definition 4.5.

Using Claim B.13 for each class, we have by a Chernoff bound that with probability at least 1 —o(1/k)
that for (1 — o(1))k classes only a single feature is learned, which proves the theorem. O

B.2 PROOF OF THEOREM 4.7

Theorem 4.7. For k and N sufficiently large and the settings stated in Assumptions 4.3, we have
that the following hold with probability 1 — O(1/k) after running gradient descent with a step size
n = O(1/poly(k)) for O(poly(k)/n) iterations on Jysps (g, X') (for sufficiently large polynomials
in k):

1. (Training accuracy is perfect): For all (x;,y;) € X, we have argmax, ¢°(x;) = y;.

2. (Both features are learned): For each class y € [k], both v, 1 and v, o are learned in the
sense of Definition 4.5 by the model g.

Furthermore, the above remains true for all ¢ = O(poly(k)) for any polynomial in k.

Proof. As in the proof of Theorem 4.6, we break the proof into two parts. The first part mirrors most
of the structure of Part I of the proof of Theorem 4.6, in that we analyze the off-diagonal correlations
and also show that the network outputs g/ can grow to (and remain) Q(log k) as training progresses.
However, we do not show that the outputs stay O(log k) in Part I (as we did in the ERM case), as
there are additional subtleties in the Midpoint Mixup analysis that require different techniques which
we find are more easily introduced separately.

The second part of the proof differs significantly from Part II of the proof of Theorem 4.6, as our
goal is to now show that any large separation between weight-feature correlations for each class are
corrected over the course of training. At a high level, we show this by proving a gradient correlation
lower bound that depends only on the magnitude of the separation between correlations and the
variance of the feature coefficients in the data distribution, after which we can conclude that any
feature lagging behind will catch up in polynomially many training iterations. We then use the
techniques from the gradient lower bound analysis to prove that the network outputs g7 stay O(log k)
throughout training, which wraps up the proof.
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Part 1. We first recall that z; ; = (z; + x;)/2, and we refer to such z; ; as “mixed points”. In this
part of the proof, we show that g;* (z; ;) crosses log k on at least one mixed point z; ; in polynomially
many iterations (after which the network outputs remain (log k)). As before, this requires getting a

handle on the off-diagonal correlations <w@(f)r, Us,g> (with s £ y).

Throughout the proof, we will continue to rely on the notation introduced in Equation B.1 in the
proof of Theorem 4.6. However, we make one slight modification to the definition of Bz% for the
Mixup case (so as to be able to handle mixed points), which is as follows:

B(t% ={r:r €[m]and <w§fl,vyyg> > 2p/61} (B.16)

Y,
We again start by proving a claim that will constitute our setting for the rest of this proof.

Claim B.14. With probability 1 — O(1/k), all of the following are (simultaneously) true for every
class y € [k]:

|Ny| = ©(N/k)

* MAXge[k],relm],ce)2] <w§?r), vy,z> = O(log k/V/d)

VL€ (2], maxiep (Wi ve) = Q(1/VA)

* For Q(k) tuples (s, ¢) € [k] x [2] we have <w§?7),,vs,g> > 0.

Proof of Claim B.14. The first three items in the claim are exactly the same as in Claim B.1, and the

. . . 0 .
last item is true because the correlations <w§,2, ’U37[> are mean zero Gaussians. n

Once again, in everything that follows, we will always assume the conditions of Claim B.14 unless
otherwise stated. We now translate Claim B.2 to the Midpoint Mixup setting.

Claim B.15. Consider i € N,, j € N, for s # y and suppose that max,¢, s} 9i'(2:,;) =
O(log(k)/k) holds true. If we have g/ (z; ;) = alogk and g; (z; ;) = blogk for a, b = O(1), then:
—Q(1) ifa>1,a-b=0(1)
1—2¢Y(gi(2i5)) = { £O(1) ifa>1, a—b==o(1)
©(1) otherwise

Where in the second item above the sign of 1 — 2¢¥(g.(2;,;)) depends on the sign of a — b.

Proof of Claim B.15. In comparison to Claim B.2, the Midpoint Mixup case is slightly more involved
in that g7 (z; ;) can be quite large due to the x; part of z; ;. As a result, we directly assume some
control over the different class outputs on the mixed points (which we will prove to hold throughout
training later). By assumption, we have for u # y, s:

9¢' (zi,5) = O(log(k) /k) = exp(g;'(zi,5)) < 1+ O(log(k)/k) (B.17)
Where above we used the inequality exp(x) < 1 + z + 22 for x € [0, 1]. Now by the assumptions
that g/ (z; ;) = alog k and g; (z; ;) = blog k, we have:
2k
1—2¢%(g(x:)) <1—

¥ (gu(@i)) < ke + kb + (k — 2) + o(k)

kP —k* + (k- 2) + o(k)

ke + kb 4 (k- 2) + o(k)

From which the result follows. |

(B.18)

Corollary B.16. Under the same conditions as Claim B.15, for u # y, s we have:
1—2¢"(gi(zi5)) = ©(1)
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Proof of Corollary B.16. Follows from Equations B.17 and B.18. |

We observe that Claim B.15 and Corollary B.16 are less precise than Claim B.2, largely because
there is now a dependence on the gap between the class y and class s network outputs as opposed
to just the class y network output. We are now again ready to compare the growth of the diagonal

correlations <wg(f2n, vy,g> with the off-diagonal correlations wg(fl, vs,¢ ). However, this is not as

straightforward as it was in the ERM setting. The issue is that the off-diagonal correlations can
actually grow significantly, due to the fact that the features v, ¢ can show up when mixing points in
class y with class s.

Claim B.17. Fix an arbitrary class y € [k]. Let A € [Q(p), p/(d2 — d1)] and let T4 be the first
iteration at which max, e[, ¢[2] <w§,€f‘), vy,g> > A; we must have both that T4 = O(poly(k)) and
that, for every s # y and £ € [2]:

<’LU?EZ;A),US,€> =0 (max <wl(/7,;“)7 Uy,€’> /k>

0 e2]

w©

Additionally, for all s, ¢ with <w§02, 1}37g> > 0, we have that <w$nA), vs,g> =0 <W>

Proof of Claim B.17. By our setting, we must have that there exists a diagonal correlation
<w35?2* , Uyyg*> = Q(1/+/d), which we will focus our attention on. Using Calculation A.10 and

the ideas from Calculation A.7, we can lower bound the update to <wl(/t3n ) Uy, [*> from initialization

up to T4 as:

WO )
<—77Vw§f)r*JMM(Q,X),vy,e*> > % S>> (1—2¢y((gt(zi?j))))@ < v Uy >

pa—l
i€ENy j¢N,

w(t)*,v% * ot
+% Z Z (1—¢y((gt(zi,j))))@ < y,r e>

a—1
1ENy jJEN, P

o () ot
PO'4 maxue[k])qe[g] <wy7,.*,vu7q>

- % Z Z ¢ (9:(2i,4))©

a—1
iEN, JEN, P

(B.19)

Above we made use of the fact that, for i € N, and j ¢ N,, we have <w3(lt72q*,zi(?> >
(t)

<w1(/tl , ’Uy’g*> /2 for at least ©(| V| N) mixed points since the correlation { w, .-, vu7q> is pos-

itive for Q(k) tuples (u, q) € [k] x [2] (under Setting B.14). We can similarly upper bound the update
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to <w7(f)r, Us7g> for an arbitrary r € [m] as:

Ty Us,t

) a—1
Wy,
<—’7Vw§f1JMM(g,X),vs,e> < —% > D ¢ (aelzig))@ <a1>
’ i¢ N, jEN, r
a—1
P(S? minue[que[Q] <w§/t72“avu7CI>

pafl

—% YooY ¢wlzg)e

i¢ N, UN, j¢N,UN,

) a—1
maxge(o] { Wy,r, Vs, + Vy,q

pa—l

+ % Z Z (1 —2¢y(gt(zi7j))>@

i€N, jEN.

O a—1
4 maXy,e[k],q€[2] <wy,r> Uu,q>

+%Z 3 (172¢y(9t(2i7j)))®

pa—l
i€Ny j¢N,UN,

o (t) ot
Pég maXy£y qe(2] { Wy,rs Vu,q

pa—l

taz 2 2 (1 (al=))e

iEN, JEN,
(B.20)

As the above may be rather difficult to parse on first glance, let us take a moment to unpack the
individual terms on the RHS. The first two terms are a precise splitting of the —2¢¥(g;) term from
Calculation A.10; namely, the case where we mix with the class s allows for constant size coefficients
on the feature v, ¢ while the other cases only allow for v, » to show up in the feature noise patches.
The next three terms consider all cases of mixing with the class y. The first of these terms considers
the case of mixing class y with class s, in which case it is possible to have patches in z; ; that have
both v, ¢ and v, ¢~ with constant coefficients. The next term considers mixing class i with a class
that is neither y nor s, in which case the feature v, ¢ can only show up when mixing with a feature
noise patch, so we suffer a factor of at least 6, = ©(1/k'®) (note we do not suffer a §§ factor as
vy ¢+ can still be in z; ;) from the (2; ;, vs ¢) part of the gradient. Finally, the last term considers
mixing within class y.

The first of the three positive terms in the RHS of Equation B.20 presents the main problem - the
fact that the diagonal correlations can show up non-trivially in the off-diagonal correlation gradient
means the gradients can be much larger than in the ERM case. However, the key is that there are
only ©(N/k?) mixed points between classes y and class s. Thus, once more using the fact that
O(|Ny|) = ©(N/k) for every u € [k], the other conditions in our setting, and Claim B.15, we obtain
that forall t < Tl4:

a—1
n <wy, , vy,g*>
<_77Vw(6)*JMM(gaX)7'Uy,Z*> >0 g (B.21)

max (t) a—1
n ue{s,y},q€[2] Wy, 7y Vy,q

k2poz—1

(=¥ 0 Inine (9, X), 00,0 ) < © (B.22)

Crucially we have that Equation B.22 is a ©(1/k) factor smaller than Equation B.21. Recalling
that all correlations are O(log(k)/+/d) at initialization, we see that the difference in the updates
in Equations B.21 and B.22 is at least of the same order as Equation B.21. Thus, in O(poly(k))

iterations, it follows that <w§t2« , ’Uy’g*> > <wz(f20, U5’5> (this necessarily occurs for at < T4 by

definition of A and comparison to the bounds above), after which it follows from Equations B.21 and
B.22 that <w?§?;i“), v574> = O(<wgﬂ), Uy g+ > /k) (and clearly T4 = O(poly(k))). This proves the

first part of the claim.
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It remains to show that the off-diagonal correlations also do not decrease by too much, as if they were
—~—

to become negative that would potentially cause problems in Equation B.19 due to ReLU becoming

0. Using Equation B.20, we can form the following lower bound to <w7(f)r, 1137g>2

-1
(t @
Wy, 2“7’09 ¥4

T (B.23)

i
<_77sz(/t)rJMM(g7 X)’ Us,€> > -0

Now let T" denote the number of iterations starting from initialization that it takes <w1(,t2~, Usﬁe>

to decrease to <w@(,07)~, Usﬁg> /polylog(k) for some fixed polylog(k) factor. Then it follows from

Equation B.21 that in T iterations <w§fl , Uy, g*> has increased by at least a k/polylog(k) factor. As

a result, we have that at T’y the correlation <w3§t2ﬂ, Vs, g> has decreased by at most a polylog(k)“
factor for some universal constant C', proving the claim. ]

Corollary B.18. For any class y € [k], and any ¢ > T4 (for any T'4 satisfying the definition in Claim
B.17), we have for any s # y and ¢ € [2]:

<w7(;2*7vs£> @ (t;ne%< wil), vy, w>/k>

Additionally, for all s, ¢ with <wq§ 2, Vg g> > 0, we have that <w3(fl, ’Usyg> > 0.

Proof of Corollary B.18. The O(1/k) factor separation between the updates to diagonal and off-
diagonal correlations shown in Equations B.21 and B.22 continue to hold once we pass into the linear

—~—

regime of ReLU. Furthermore, the logic used to prove the lower bound for positive correlations in
Claim B.17 easily extends to showing that the correlations remain positive throughout training. W

As noted above, the bound on the off-diagonal correlations obtained in Claim B.17 and Corollary
B.18 is much weaker than what it was in Claim B.4, which is why we weakened the assumptions in
Claim B.15. We now prove the Midpoint Mixup analogues to Claims B.5, B.6, and B.7.

Claim B.19. Consider y € [k] and t such that max;ey,, je[n) 9¢ (2i;) = ©(logk). Then

max;en,, je(N] 9¢ (2i,) = O(mingen,  jein 9¢ (2i,5))-

Proof of Claim B.19. For any t satisfying the conditions of the claim, we necessarily have that
Corollary B.18 holds. As a result, we have:

3 3 (ulth ) = Otogk) = 32 3 (ufhva) = Oos

rem] £€[2 m] £€(2]

Thus, we may disregard the off-diagonal correlations in considering the class y output on z; ; (i.e. we
do not need to worry about the x; part of z; ;), and the rest is identical to Claim B.5.

Claim B.20. For each y € [k], let T, denote the first iteration at which max;c | j¢n, g%y (zij) >

log(k — 1). Then we have that T,, = O(poly(k)) (for a sufficiently large polynomial in k) and that
mingey,, je[n) 9¢ (2i,5) = Qlog k) for all t > Ty,

Proof of Claim B.20. As in the proof of Claim B.6, applying Claim B.17 to any class y yields
the existence of a correlation <wl(ﬁ)r*,vy,g*> and a t = O(poly(k)) such that <w?(f72,*,vy,g*> >
p/(02—01). And again, reusing the logic of Claim B.17 but replacing <w;t)r* s Uy, 0+ > in Equation B.21
with p/(d2 — 1) yields that in an additional O(poly(k)) iterations we have <w1(fl ) vy,g*> > 2p/01
(implying that wéfl* has reached the linear regime of m on effectively all mixed points) while
the off-diagonal correlations continue to lag behind by a O(1/k) factor.
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At this point we may lower bound the update to <w1§tl ) Uy > as:

<—an<t>*JMM(g,X)7vy,e*> > % S 9(1 - 2¢y((gt(2iﬁ,j))))

Yy,

1ENy jEN,
taz 2 2 01— (=)
iEN, JEN,
a—1
) PO’ff maxue[k]’qe[g] w(f)r*,v%q
- % Yo ¢ (9ilzi9))0 ag - >
igN, iEN, P

(B.24)

Using Claim B.15, we have that so long as max;en,  j¢n, g¢(zi,;) < log(k — 1), we get (using
|Ny| = O(N/k) for all u € [k]):

<T]Vw(t)*J]\/[]W(Q,X)7’l)yyg*> > @(n/k?) (B.25)

This also implies, by the logic of Claim B.17, that the off-diagonal correlations <w3(f)r, ’Us)g> have
updates that can be upper bounded as:

(=11 0 Taine(9,X), 05,0 ) < O(n/?) (B.26)

Comparing Equations B.25 and B.26, we have that g} (z; ;) > log(k — 1) (and, consequently,
gf (x;) > log(k — 1)) for at least one mixed point z; ; with i € N, in O(poly(k)) iterations while the
off-diagonal correlations are O(log(k)/k). This also implies that min;c v, je[n) 9¢ (2i,5) = Q(log k)
by Claim B.19. Finally, since Equation B.25 is positive, the class y network outputs remain Q(log k)
for t > T, (as again we cannot decrease below log(k — 1) by more than o(1) since the gradients are
o(1)). [ |

Part I1. Having analyzed the growth of diagonal and off-diagonal correlations in the initial stages of
training, we now shift gears to focusing on the gaps between the correlations for each class. The key
idea is that Jps s will push the correlations for the features vy, ; and vy 2 closer together throughout
training (so as long as they are sufficiently separated), for every class y.

In order to prove this, we will rely on analyzing an expectation form of the gradient for Jas5s. As the
expressions involved in this analysis can become cumbersome quite quickly, we will first introduce a
slew of new notation to make the presentation of the results a bit easier.

Firstly, in everything that follows, we assume v, 1 to be the better correlated feature at time ¢ for
every class y € [k] in the following sense:

Z <w1§t,)r’”y11>2 Z <w§fi,vy,z> (B.27)

sy ren)

Where the sets Bﬁ are as defined in Equation B.16. Furthermore, as we will refer to the quantities
in Equation B.27 many times, we use C;t% and Cét% to denote the LHS and RHS of Equation B.27,
and Ay = 0\ — )

y,1 Y2
Now for the aforementioned expectation analysis we introduce several relevant random variables.
We use 3,,, (for every y € [k]) to denote a random variable following the distribution of the signal
coefficients for class y from Definition 4.1 and we further use 3, to denote a random variable
representing the sum of Cp i.i.d. B, ,. Similarly, we use 2, to denote the average of two random
variables following the distributions of class y and class s points respectively. Finally, we define
Al (BS? /By) and AQ(/BSa By) as:

A1 (Bs, By) & 1= 20" ((ge(2y.5))) (B.28)
As(Bs, By) 1= 0"((9:(2y,5))) (B.29)
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In context, this notation will imply that A; (8y, Bs) = 1 — 2¢*((g:(2y,s))) (i-e. swapping the order
of arguments changes which coordinate of the softmax is being considered).

Now we will first prove an upper bound on the difference of gradient correlations in the linear regime,

and then use these ideas to prove that correlations in the poly part of ReL'U will still get significant
gradient. After we have done that, we will revisit this next claim to show that the separation between
feature correlations continues to decrease even after they reach the linear regime.

Claim B.21. Suppose that max,¢|z] C’gti = O(log k). Then for any class y € [k] and any r; € BY

y,1
and o € B,‘,Sf)Q, we let:
\11(7“17 7”2) £ <_sz(/t,)rl JMM(ga X)v 'Uy,1> - <_Vw3(f,)rg JJWM(g, X), Uy,2> (B.30)
After which we have that:
1
‘1/(7“1,7“2) S @ (kQ) ZEBa;By [Al(ﬁsv 67/)(61/ - OP(SQ/Q)]
s#Y
1
+o (k2> Egs, [A2(By, By)(By — Cpd2/2)]
+ O (P&§ (logk)* 1) (B.31)

Proof of Claim B.21. Using the logic from Equation B.24 as well as the fact that r; € B((t’)1 and

ro € Bz(;t)2 (i.e. we are considering weights in the linear regime of ReLU for each feature), we get:

W) <55 Y Y (1-20((a) [ X0 Buo— G2

iENy j¢N, PEPy 1(x4)
1
Tz 2 (- (@) | X B Crda/2
1ENy JEN, PEPy 1 (z:)
+ O (P& (log k)™ 1) (B.32)

Now since we took N sufficiently large in Assumption 4.3, by concentration for bounded random
variables we can replace the expressions on the RHS above with their expected values, as the
deviation will be within O (Pé§§ (log k)*~!) (with probability 1 — O(1/k), consistent with our
setting). However, the expectations will be over all of the random variables 3, for u € [k], not just
the classes s and y being mixed (or in the case of the second term above, just the class y).

Fortunately, we observe that for the mixed point random variable z, s, the 3, for u # y, s can only
show up in the feature noise patches of 2, . Thus, by an identical calculation to the one controlling
the feature noise contribution to the gradient above (once again, refer to Equation B.24), we see
that we may consider the expectation over just 3, and 3, while marginalizing out the other random
variables and staying within the error term above, thereby obtaining Equation B.31. |

We will now show that Eg, 5 [A1(Bs, By)(By — Cpdz/2)] is significantly negative so long as the

separation between feature correlations Agf) is sufficiently large. Once again, to simplify notation

even further, we will use By = B, — Cpd2/2 and use P(By) to refer to its associated probability
measure. Furthermore, we will use:

DY, = (c) + ) — (Y + ¢

)

In other words, Dg(f)s represents the difference in the linear outputs of classes y and s. With this in

mind, we can prove the aforementioned result.

Claim B.22. Suppose that max,,c[x Cﬁ“l = O(logk). Let y be any class such that Aét) > logk —
o(1), and suppose that there exists at least one class s € [k] such that there isaset U C [0, Cp(d2/2—
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61)] X [~Cp(82/2 — 61), Cp(32/2 — 61)] with (P(3,) x P(8,))(U) > 0.01 (i.e. its measure is at
least 0.01) and for all (a,b) € U we have:

(b— Cpda/2) Al — Cp, DY) /2 < (a — Cpoz/2) Al (B.33)
Then we have:

Es. 5, [A1(Bs, By)(By — Cpd2/2)] = O (1) (B.34)

Proof of Claim B.22. We begin by first showing that the expectation on the LHS of Equation B.34 is
negative. Indeed, this is almost immediate from the fact that 3, is a symmetric, mean zero random

variable - we need only show that A; is monotonically decreasing in (3,,.
From the definition of A, we observe that it suffices to show that g (z, 5) is monotonically increasing

in 3,. However, this is straightforward to see from the assumption that Aét) > log k — o(1), as this
implies that an € increase in 3, leads to a O(elog k) — O(e) increase in g7, since the feature noise

and weights that are in the polynomial part of ReLU can contribute at most O(1) by the logic of
Claim B.19.

Now we need only show that the expectation is sufficiently negative. To do this, we will rely on the

following facts, which will allow us to write things purely in terms of C’ﬁ and C’itz (i.e. disregarding
the weights that are not in the linear regime):

g} (z.) € [B,CSY + (Cpoa = B)CYY, B,CL + (Crda = B,)Ci5+0(1)]  (B33)

9; (2y,s) € [ﬂsciff +(Cpy — B5)CY), B,CY) + (Cpy — B,)CY) + 0(1)} (B.36)
gi'(zys) = O (loik) foru # y, s (B.37)

Which follow from Claim B.19 and Corollary B.18 (alongside the assumption that max,,¢ ] Cffi =

O(log k)) respectively. Now we perform the substitution g;* <— g;* — C'pda (C;q (f) 5)/2 for all
u € [k], as this can be done without changing the value of ¢¥(g;(zy,s)). Under this transformatlon
we have that (using Equation B.35):

G} (z.0) € [(By = Cpoa/2) AP, (B, = Cpoa /A +0(1)] (B.38)
63 (2y.6) € [(B, = Cpoa /DAY = Cpo; DY) /2, (8, — Cpoa/2)AL) = Cpéy DYf)/2 4+ O(1)
(B.39)

Which isolates the correlation gap term Ag(lt). Prior to proceeding further we will let Agt) =
>y €XP(9' (2y,5)), 50 as to prevent the equations to follow from becoming too unwieldy. Now we
have:

Eg..5, [A1(8s; By)(By — Cpd2/2)]

B Cp(62—61) ,Cp(02—0d1) A(t) GXP(Q?(Zy ))( _ Crby)2) dB(5,)AP(8.)
" Jows O AP +exp(gy(z ) e v
PO1 PO1 t
Cp(62/2—51) exp( ( ) ¢ o(1 ) . . .
<[ / ; 8, dP(3,)dP(4.)
Cp(61—62/2) JCp(61—62/2) A + exp(ﬁyA( +0(1 )

+

/Cp(52/2 1) /C’P(52/251) Ag/) - exp(ﬂyAg(,))
0

- B, dP(B3,)dP(Bs (B.40)
Agt)—kexp(ﬁyAz(f)) y (y) (Bs)

(61 62/2
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Where above we used Equation B.38 to get the upper bound in the last step. We next focus on
bounding the inner integral in Equation B.40. Using the symmetry of 3,, we have that:

Eg, [A1(Bs, By)(By — Cpd2/2)]
Cp(s2/2-61) AP — eXp(—ByAét) + 0(1)) AW — exp (ﬂ;Agp) _ _
B _/0 AP 4+ exp( @Aé” + O(l)) - AP 4+ exp(ByA(t)) B @B{Py)
B Cp(82/2—61) QAgt) (exp(ByA(t)) — exp( ByA(t) + O( 1)))
B _/0 (A( )2 + AP (exp (By ) + exp( B;,Ay ) + exp(O

(B 41)

One can sanity check that Equation B.41 is bounded below by -1, as we would expect. The only
tricky aspect of Equation B.41 is the O(1) term in the exponential, which can lead to a positive
contribution (via a negative integrand) when g, is close to 0. However, we can safely restrict the
bounds of integration in Equation B.41 to a region [0, Cp(d2/2 — §1)] for o = ©(1/log k) (with
an appropriately chosen constant), as in such a region the integrand is guaranteed to be positive
since Agf) > log k — o(1). Furthermore, this restriction does not cost us anything (like an additional
positive term), as concern from Equation B.41 is purely a consequence of how we bounded g7 and g .
Indeed, by our earlier monotonicity argument it is clear that we can cut out the region corresponding
to [—p, o] from the first line of Equation B.40 without decreasing the RHS.

Furthermore, we also have from A(t) > log k—o(1) and Equation B.37 that } _, ,, . exp(gy'(zy,s)) =

(l/kCP52 1Y (after making the adjustment g;* < g;* — Cpdy (Cét) + C(*) 3)/2 that we did above).
Now using our assumption in the statement of the claim that Equation B. 33 holds for some set U, we
obtain:

Eg, 5, [A1(Bs, By)(By — Cpda/2)]

Cp(62/2—81) pCp(82/2—01) B, exp (gyAét)) ) )
= ‘/ / © s | dB(8,)dP(5.)
Orlon=02/2) e O(k1=Cro2) +exp(5yAy )
=00 (B.42)

Where the last line follows after restricting the bounds of integration of the two integrals to their
intersections with U (this allows us to disregard g; in the asymptotic expression above via Equation
B.39). This proves the claim. |

We proved Claim B.22 in terms of 3, (the sum of the individual 3, ;) to keep notation manageable
(avoids C'p iterated integrals) and to more closely mirror the proof of Proposition 3.4. However, what
we will really use for our remaining analysis is the following corollary, which gives the same result
as Claim B.22 but for each of the individual terms 3, ,,. Below we use Elczpl By,i to make explicit
the dependence between the sum and each individual random variable 3, ;, (so as to not mislead one
to think of them as independent random variables).

Corollary B.23. Under the same conditions as Claim B.22, we have for every p € [Cp]:

Cp
Eﬂsﬁy,l,...,ﬁy,c}, A1 (Bs, Zﬁy,i)(ﬁy,p —62/2)| =-0O(1) (B.43)

i=1

Proof of Claim B.23. The proof follows identically to that of Claim B.23 (effectively the only change
in the computations is that 3, becomes 3, ), as the functions A; and A satisfy the same mono-
tonically increasing property in each of the i.i.d. 8, , (and there are only Cp = ©(1) many). One
could also have simply seen this from the symmetry of the 3, ,, in Equation B.43; indeed, we expect
Equation B.43 to only differ by a factor 1/Cp from Equation B.34. |
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Now we can show using Corollary B.23 that there is a significant gradient component towards
correcting the separation between the feature correlations even when the second feature correlation is

in the polynomial part of ﬁ} (which is where it got stuck for a significant number of classes in the
ERM proof).

Claim B.24. Suppose that max,c[x) C’ 1 = O(log k). Let y be any class such that A(t) > logk —
o(1). Then for any 7o ¢ By,2 satisfying <wz(/?22,vy$2> > 1 > 0, so long as there exists an r; € Bf/)l
satisfying:
(=¥ 0 Trne(9,2),v0y,0) = 0 (B.44)
We have:

(=9, Tarni (9. X),0,2) 2 © (paflkg) (B.45)

Proof of Claim B.24. By near-identical logic to the steps leading to Equation B.31 and using Equation
B.21, we obtain (following the same notation as before):

<_Vw§,f12']MM(g’X) Uy, 2> > @( akQ) ; BssBy,1,--:By,cp
sy

Cp
A1 Be;Zﬂyp Z _By7p)a]

p=1
(B.46)

Where above we have absorbed a factor of 1/2 resulting from mixing classes and the feature noise
component into the asymptotic term in front of the summation.

Now we break the rest of the proof into two cases: whether Equation B.33 holds or not. In the former
case, using Corollary B.23 and our assumption in the statement of the claim that Equation B.44 holds,

we get (from linearity of expectation):
1
S} w2 (B.47)

<k2> ZEﬁﬁ,ﬁy 15By,Cp
Now observing that Cov(A; (S, ijl By.p) (02— By p), (02— By p)*~ 1) > 0 for every p, we obtain:

s#yY
<—V ) JM]\/I(ga X), Uy»2>

>Y Z Eg..8,.1,.8y.0p

s#y p=1

Av(Bs, Z By,p o ﬁy,p)

A1 (Bs, Z 5@/ P - ﬂy,p) Eﬁs,ﬁy,l,mﬁy,cp [(62 — ﬁym)ail}

(B.48)

And the result then follows for this case from Equation B.47 and the fact that Eg_ g, , ... 5, ¢, [(02 —
By.p)® ! is a data-distribution-dependent constant.

For the second case when Equation B.33 does not hold, we have that for every class s # y there exists a

set U C [0,Cp(d2/2—61)] X [-Cp(d2/2—61),Cp(d2/2 — 61)] such that (P (ﬁy) x P(B:))(U') >
0.49 (note the total measure of the set which U’ is a subset of is 0.5, by symmetry) and for all
(a,b) € U’ we have:

(b— Cpda/2)AY) — Cpsy D) /2 > (a — Cpéa/2) A (B.49)
By our anti-concentration assumption on the 3, , it immediately follows that Dg(fs = —0O(logk),
from which we obtain that the the expectation terms in Equation B.46 are all ©(1), so we are
done. ]

Having proved Claim B.24, it remains to prove that both Equation B.44 and max, ¢ C’y 1 =

O(log k) hold throughout training, as after doing so we can conclude that the second feature correla-

tion will escape the polynomial part of ReL U and become sufficiently large in polynomially many
training steps.
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Claim B.25. For any y € [k], ¢ € [2], and r € [m], we have that:
<—Vw7(/tir1)JMM(g, X), ’Uy7g> >0.99 <_Vw£tZ‘JMM (g, X), Uy7g>
Solongas} .., exp (951 (2i,5)) = 254y €xXP(97 (21,5)) for all mixed points z; j with i € N,

Proof of Claim B.25. We proceed by brute force; namely, as long as 7 is sufficiently small, we can
prove that the gradient for Jys; does not decrease too much between successive iterations. As
notation is going to become cumbersome quite quickly, we will use the following place-holders for
the gradient correlations at time ¢ and ¢ + 1:

Gt é <_Vw,(fj)r']MJw(g’ X),’L)y7g>

We will now prove the result assuming r € Bz(f) , as the the case where r ¢ Bl% is strictly better

(we will have the upper bound shown below with additional o(1) factors). We have that (compare to
Equation B.24):

G Crir < 7 3 3 0(0" (9 (210)) — ¥ ((0e(=1,))))

1€Ny jEN,

+ % Z Z @(¢y((9t+1(zi,j))) - ‘ZSU((gt(Z”))))

i€EN, jEN,

a ® ot
Pog max,ek] qe2) <wy,r*7vu,q>

+ % Z Z <¢y((9t+1(2i,j))) - qby((gt(zi’j))))@ =
i¢Ny jENy
(B.50)

Let us now focus on the ¢¥ ((ge+1(2i,5))) — @Y ((9¢(2i,5))) terms present in Equation B.50 above. We
will just consider the first case above (mixing between class y and a non-y class), as the other analyses
follow similarly. Furthermore, we will omit the z; ; in what follows (in the interest of brevity) and
simply write g7, ;. Additionally, similar to Claim B.22, we will use the notation Ay = >~ 2y €XP(97)-

Now by the assumption in the statement of the claim, we have that A;; > Ay, and since m = O(k)
(number of weights per class), we have that g 1 < g? + ©(knG;) (all of the updates for weights in
the linear regime are identical and strictly larger than updates for those in the poly regime). Thus,

exp(gy + O(knGy)) exp(gy)
P9002) = 009 < L ep(gf + O(RnGR)) ~ Ar + explg?)
B Ay exp(gy)(exp(©(knGr)) — 1)
— A2+ Arexp(g)) (exp(O(knGy)) + 1) + exp(2gf + O (knG))
< O(knGy + k*n*G}) = ©(knGy) (B.51)

Where in the last line we again used the inequality exp(z) < 1 + z + 22 for z € [0, 1]. Plugging
Equation B.51 into Equation B.50 (after similar calculations for the other two pieces of Equation
B.50) yields the result (since again, n = O(1/poly(k)) is suitably small). |

Corollary B.26. For any y € [k],£ € [2],7 € [m], and ¢, we have that:

<—sz(/9)TJMM(g,X),’Uy7g> >0 = <—wa}f)TJMJ»I(g7X)7Uy,€> >0

Proof of Corollary B.26. For every class y, we have } |, exp (9541(2i5)) > > sty €XP(97 (21,5))
for all mixed points z; ; with ¢ € N, for t = 0 (see the proof of Claim B.17), and the corollary then
follows from an induction argument and Claim B.25. ]

And with Corollary B.26 we may prove that max, ¢ ] C’ét)l = O(log k) holds throughout training.
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Claim B.27. For all t = O(poly(k)), for any polynomial in k, we have that max,ec(x C, 1
O(log k).

Proof of Claim B.27. The idea is to consider the sum of gradient correlations across classes, and
show that the cross-class mixing term in this sum becomes smaller (as this would be our only concern
- we already know the same-class mixing term will become smaller by the logic of Claim B.6).

As in the previous claims in this section, we will proceed with an expectation analysis. We will focus
on the weights w, , that are in the linear regime for the feature v, ; for each class ¥, as these are the

only relevant weights for Cqst)l Additionally, instead of considering the sum of gradient correlations

over all w, , with r € Bg(,t)p it will suffice for our purposes to just consider the sum of gradient

correlations over classes while using an arbitrary weight w, ,. in the linear regime. Thus, we will
abuse notation slightly and use w, , to indicate such a weight for each class y for the remainder of
the proof of this claim (note that we do not mean to imply by this that weight r is in the linear regime
for every class simultaneously, but rather that there exists some 7 for every class that is in the linear
regime).

Now in the same vein as Equation B.31 (referring again to Equation B.24), we have that:

k k
5 (T 0. 0001) <0 () X 3 B, (6 B8] + B, [ (3085

y€(k] y=1s=y+1

k
+ 06 (]:2) ZEB@ [A2(By, By) Byl — O (P6] /poly(k))
y=1
(B.52)

And we recall that N is sufficiently large so that the deviations from the expectations above are
negligible compared to the subtracted term. We have carefully paired the expectations in the leading
term of Equation B.52 so as to make use of the following fact:

Zue[k]\{y,s} exp(gy(zy,s))
Zue[k] exp(g;‘(zy’s))

The second term on the RHS of Equation B.53 is of course o( P4y /poly(k)) so long as g7 (zy s)
and/or g{ (z,,s) are greater than C'log k for a large enough constant C, so we obtain:

A1(Bs, By) = —A1(By, Bs) + (B.53)

k k
> <—Vw;{>TJMM(gaX)7Uy,1> <6 (,;) D Esp, [Ai(Bs, By)(By — Bs)]

yE[k] y=1s=y+1

k
Lo <k1) S Ep, [A2(8,, 8,)8,] — O (P53 /poly (k)

y=1

(B.54)

Now again by the logic of Claim B.22 we have that Cov(A;(8s, By), By — Bs) < 0, so it follows
that:

k
5 (= Taa(0n 20, 00) < 6 (35 ) DB, 14a(3,08,)84] — O (P /poly ()

y€e(k] y=1
(B.55)

And if g/ (z,,s) > C'log k for a sufficiently large constant C, we have that the RHS above would be
negative, which contradicts Corollary B.26, proving the claim. ]
We have now wrapped up all of the pieces necessary to prove Theorem 4.7. Indeed, we can now show
that for every class the correlation with both features becomes large over the course of training.
Claim B.28. For every class y € [k], in O(poly(k)) iterations (for a sufficiently large polynomial in
k) we have that both C'") = Q(log k) and Cz(/t% = Q(logk).

y,1
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Proof of Claim B.28. Claim B.20 guarantees Cﬂ = Q(log k) in polynomially many iterations. If at
this point Céf) = Q(log k), we are done. If this is not the case, but we have Bét)Q

done by Claim B.21, Corollary B.26, and Claim B.27. On the other hand, if B?(f)Q = (), then we have

by Claim B.24 that in polynomially many iterations (as we can take 7 = ©(1/ \/E) by our setting)

= (), then we are

B;t)Q # (), after which we have reverted back to the previous case and we are still done. u

Now we may conclude the overall proof by observing that Claims B.20 and B.27 in tandem imply that
we achieve (and maintain) perfect training accuracy in polynomially many iterations, while Claim
B.28 implies that both features are learned in the sense of Definition 4.5. O

C PROOFS OF AUXILIARY RESULTS

C.1 PROOFS OF LEMMA 3.2 AND PROPOSITION 3.3

Lemma 3.2. [Midpoint Mixup Optimal Direction] A linear model g satisfies the following:
WILHOIO Jun (g, X) = inf Jarps (b, X) (3.3)

If g has the property that for every class y we have (wy, vy ¢,) = (Ws, Vs ,) > 0 and (wy, vse,) <0
for every s # y and ¢1,¢5 € [2]. Furthermore, with probability 1 — exp(—©(N)) (over the
randomness of ), the condition (w,, vy ¢, ) = (ws, Us ¢, ) is necessary for g to satisfy Equation 3.3.

Proof. We first prove sufficiency. If g satisfies the conditions in the Lemma, then we have for any
data point (z;,y;) that g¥ (z;) = (wy,, Vy,.1 + vy, ,2) > 0. We also have that g°(x;) = 0 for any
s # y; (by the cross-class orthogonality condition). Letting C' = (w,, vy,1 + vy 2) (note that this
correlation is the same independent of y due to the conditions of the lemma), we then get:

¢ (19(z00)) = 0" (19" (5)) = G _e;)qigii i)(v 7] C.1)

For any mixed point z; ; with y; # y;. Equation C.1 tends to 1/2 as v — oo, and one can easily
check that this is the global optimal prediction for the classes y; and y; on the Mixup point z; ; (for
any such mixed point). Similarly, if z; ; is a mixed point with y; = y;, then Equation C.1 becomes
the ERM case, we obtain the optimal prediction of 1 for the correct class in the limit.

On the other hand, if there exists a pair of classes (y, s) with s # y and ¢;,¢> € [2] such that
(Wy, Uy 0, ) F (Ws, Vs e, ), then with probability 1 —exp(—©(IV)) there exists a mixed point z; ; in X

(where y; =y, y; = s, and y # s) such that g¥(z; ;) # ¢°(z; ;), and hence lim,_, d)y(fyg(zi_j)) #+
1/2, so we cannot achieve the infimum of the Midpoint Mixup loss. O

Proposition 3.3. For any distribution D, that is not a point mass on 0, 1, or 1/2, and any linear
model g satisfying the conditions of Lemma 3.2, we have that with probability 1 — exp(—O(NV))
(over the randomness of X') there exists an ¢y > 0 depending only on D}, such that:

JM(gaXaID)\) zianMUlaXaDk)_'—eO (34)

Proof. Firstly, we observe (just from properties of cross-entropy):
inf Jys(h, X, D)) = —Exwp, [Alog A + (1 — A) log(1 — )] (C.2)

Now suppose a model g satisfies the conditions of Lemma 3.2. Then we have that ¢g¥i(z;) =
g% (z;) = C > 0 for some constant C' and every pair (x;,y;) and (x;,y;).

As before, with at least probability 1 — exp(—©(N)), we have that there exist a pair of points (x;, y;)
and (z;,y;) in X with y; # y;. The Mixup loss restricted to this pair (for which we use the notation
(g, zi,5, Dy)) is then:

Jai(g, zij, Da) = —Eanp, [MNog ¢¥ (g(zi5)) + (1 — A) log 6% (g(zi ;)] (C3)
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Furthermore, we have that:

exp(AC)

?Y (v9(2i;(N))) = O(k — 2) + exp(AC) 4+ exp((1 — N)C)

(C4)

From Equations C.3 and C.4 we can see that, since D), is supported on more than just 0, 1, and 1/2,
JIn (g, zi,5, Da) — 00 as C' — oo (Equation C.4 implies that in the limit ¢¥ (yg(z; ;(A))) can only
take the values, 0, 1, or 1/2). It is also easy to see that the same behavior occurs if one considers
C' — 0. Thus it suffices to constrain our attention to C' € [My, Ms] for some M7, M5 > 0 depending
only on D).

However, Ja(g,2;,Dx) — infJar(h,2z;;,Dx) > 0 (note that infJas(h,z;;,Dy) =
inf Jpr(h, X,Dy)) for all C' € [My, Ms). Since this is a continuous function of C' over a com-
pact set, it must obtain a minimum greater than 0, and we may choose €q to be this minimum (rescaled
by a factor of 2(1/N?)), thereby finishing the proof. O

C.2 PROOFS OF PROPOSITIONS 3.4 AND 3.5

Proposition 3.4. [Mixup Gradient Lower Bound] Let y be any class such that A, > logk, and
suppose that both (w,, v, 1) > 0 and the cross-class orthogonality condition (w,, v, ¢) = 0 hold for
all s # w and ¢ € [2]. Then we have with high probability that:

1
(—Vw, Jum(g,X),vy2) > O (l@) (3.5)

Proof. The idea of proof will be to analyze the gradient correlation with v, 1 — v, 2, and either show
that this is significantly negative or, in the case where it is not, the gradient correlation with v, 5 is
still significant. Firstly, using the cross-class orthogonality assumption and Calculation A.10, we can
compute:

<_wa']MM(g’ ), vy1 = Uy72> = % Z Z (1 - 2¢)y((9(zz‘,j)))> <ﬁi - ;)

1ENy jEN,
T % > (1 *¢y((9(2i,j)))) <Bi - ;) (C.5)
i€ENy jEN,

Where above we used [V, to indicate the indices corresponding to class y data points (as we do in the
proofs of the main results). Now using concentration of measure for bounded random variables and
the fact that N is sufficiently large, we have from Equation C.5 that with high probability (and with
poly(k) representing a very large polynomial in k):

<—Vw<yt> Jvnm(g, X),vy1 — Uy,2> <0 (klz) ZEﬁS,By [A1(Bs, By)(By — 1/2)]
SsF#Y

‘e (kl) Ej, [43(8,)(8, — 1/2)] + O(1/poly(k)) (C.6)

Where we define the functions A; and A5 as:

A1(Bs, By) 2 1= 20" ((9:(2y,5))) (C.7)
As(Bs, By) £ 1= ¢¥((9¢(2y.5))) (C.8)

With z, ; being a random variable denoting the sum of a class y point and a class s point (distributed
according to Definition 4.1). Note that Equations C.7 and C.8 are not abuses of notation - the functions
A, and A, depend only on the random variables 35 and (3, since we can ignore the cross-class
correlations due to orthogonality.

Let us immediately observe that the first two terms (the expectation terms) in Equation C.6 are
bounded above by 0. This is due to the fact that 5, — 1/2 is a symmetric, centered random variable
and the functions A; and A, are monotonically decreasing in 3,. We will focus on showing that the
first term is significantly negative, as that will be sufficient for our purposes.
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Now we let 2, = (wy, vy,1) + (wy, vy,2) and perform the transformation g; + ¢; — Z,/2 for all
s € [k] (note this doesn’t change the value of the softmax outputs). Under this transformation we
have that g (z, ) = (8, — 1/2)A,,, which isolates the gap term A,

For further convenience, let us use Ay = > 4, €xXP(g{'(2y,5)), and observe that A depends only

on f35 due to orthogonality. Using the change of variables By = (3, — 1/2 we can then compute the
expectation in the first term of Equation C.6 as:

)
)

Ba, 008,80 172 = oo [ [ (8, ~ 1/2) dB, d5,

s)
( Zy,5)
1 04 A, —exp A ) .
= m / / ﬂy dﬁy dﬁs (C.9)
: 0.4 Ag + exp ﬂy y)
We will focus on the inner integral in Equation C.9. Using the symmetry of By, we have that:

104 Ay —exp(B,A,)
Eg, [A1(Bs, By)(By —1/2)] = @/04 — E;Ayg a5,
© =04 Ag +exp| byAy

1 04 (A, — exp(—ﬁyA ) - As — eXp(ByAy> 6 di
0.8 Jo A, + exp(—,gyAy> A+ exp(ﬁ;,Ay) y Gy

1 0.4 A (exp(ByAy) - eXp(—ByAy)) 5 dﬁ~
08 ), A2 + A, (exp<3yAy) +exp(—ﬁ~yAy)) +1 y “Py
(C.10)

From our orthogonality assumption and the facts that A, > log k and (w,, v, 2) > 0, we have that
D uty.s €XP(1 (2y,5)) = O(1). Additionally, if we let:

Dy,s = (Cy,l + Oy,?) - (Cs,l + Cs,2)
Then we get from Equation C.10 that:
Eﬂszy [Al(ﬁsa 62/)(/62; - 1/2)}

/0.4 /0.4 B, exp (BSAS - Dyys/2> exp (ByAy)
—_ C._) — — -
exp(2B8sAs — Dy75> + exp <6SAS — Dy7s/2) exp (ﬂyAy)

B, dp;
(C.11)

Now we consider two cases. First, suppose there exists a set U C [—0.4,0.4] x [0,0.4] with
probability measure at least 0.01 such that for all (35, 3,) € U:

BsAs - Dy,s/2 S gyA

Then we immediately have that Equation C.11 is ©(1). On the other hand, if this is not the case, one
can see that Eg, 5 [A1(8s, By)(1 — B,)] = ©(1), so we are done. O

Proposition 3.5. [ERM Gradient Upper Bound] For every y € [k], assuming the same conditions as
in Proposition 3.4, if A, > C'log k for any C' > 0 then with high probability we have that:

1
<—wa'](97X)’Uy,2> <0 <k0101> (3.6)

Proof. From the facts that (w,, v, 2) > 0 and A, > C'log k, we have that g¥(x;) > 5y,iC10g k for
every ¢ € N, (where (3, ; represents the coefﬁ01ent in front of v, 1 in x;). Since 3, ; € [0.1,0.9], we
1mmed1ately have the result from the logic of Claim B.2 and Calculation A.9.
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C.3 PROOF OF PROPOSITION 4.4

Proposition 4.4. There exists a D satisfying all of the conditions of Definition 4.1 and Assumption
4.3 such that with probability at least 1 — k? exp(©(—N/k?)), for any classifier h : RP? — R of

the form h¥(z) = 3_ ¢ (p) {(wy, ) and any X consisting of NV i.i.d. draws from D, there exists a
point (x,y) € X and a class s # y such that h®(x) > h¥(x).

Proof. For hyperparameters, we can choose §; = 8y — 61 = 1, d3 = d; = k~ !> while being
consistent with Assumption 4.3. For the distribution D, for each point (z;,y;), we sample a class
s € [k] \ y; uniformly and choose it to be the single class used in the feature noise patches for ;.
This clearly falls within the scope of Definition 4.1.

Now in N ii.d. samples from D as specified above, we have with probability at least 1 —
k? exp(©(—N/k?)) (Chernoff bound, as in Claim B.1) that a sample with each possible pair
y, s € [k] of signal and noise classes exists. Suppose now that there exist classes y, u € [k]
such that u ¢ argmax,c,) (ws, vy,1 + vy,2). This necessarily implies that u # max,ex) g° () for
all points x with label u but having feature noise class y (since the order of the sum of the feature
noise is ©(v/k)), which gives the result.

On the other hand, if there does not exist such a class pair y, u, then we are also done as that implies
all of the weight-feature correlations are the same. O
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