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Abstract

Sparse coding refers to modeling a signal as sparse linear combinations of the elements of a learned
dictionary. Sparse coding has proven to be a successful and interpretable approach in many applications,
such as signal processing, computer vision, and medical imaging. While this success has spurred much
work on sparse coding with provable guarantees, work on the setting where the learned dictionary is
larger (or over-realized) with respect to the ground truth is comparatively nascent. Existing theoretical
results in the over-realized regime are limited to the case of noise-less data.

In this paper, we show that for over-realized sparse coding in the presence of noise, minimizing the
standard dictionary learning objective can fail to recover the ground-truth dictionary, regardless of the
magnitude of the signal in the data-generating process. Furthermore, drawing from the growing body of
work on self-supervised learning, we propose a novel masking objective and we prove that minimizing
this new objective can recover the ground-truth dictionary. We corroborate our theoretical results with
experiments across several parameter regimes, showing that our proposed objective enjoys better empirical
performance than the standard reconstruction objective.

1 Introduction

Modeling signals as sparse combinations of latent variables has been a fruitful approach in a variety of domains,
and has been especially useful in areas such as medical imaging (Zhang et al., 2017), neuroscience (Olshausen
& Field, 2004), and genomics (Tibshirani & Wang, 2008), where learning parsimonious representations of
data is of high importance. The particular case of modeling high-dimensional data in R

d as sparse linear
combinations of a set of p vectors in R

d (referred to as a dictionary) has received significant attention over
the past two decades, leading to the development of many successful algorithms and theoretical frameworks.

In this case, the typical assumption is that we are given data yi generated as yi ∼ Azi + ǫi, where A ∈ R
d×p

is a ground-truth dictionary, zi is a sparse vector, and ǫi is a noise vector. When the dictionary A is known
a priori, the goal of modeling is to recover the sparse representations zi, and the problem is referred to as
compressed sensing. However, in many applications we do not have access to the ground truth A, and instead
hope to simultaneously learn a dictionary B that approximates A along with learning sparse representations
of the data. This problem is referred to as sparse coding or sparse dictionary learning, which is what we
focus on in this work.
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One of the primary goals of analyses of sparse coding is to provide provable guarantees for recovering the
ground-truth dictionary A, both with respect to specific algorithms and information-theoretically. Most prior
work with such guarantees has focused exclusively on the setting where the learned dictionary B has the
same size as the ground truth (in R

d×p), which is in line with the fact that recovery error is often formulated
as some norm of (B −A).

Unfortunately, in practice one does not necessarily have access to the structure of A. It is thus natural to
consider what will happen (and how to formulate recovery error) if we learn a dictionary B ∈ R

d×p′

with
p′ > p, where it is possible to recover A as a sub-dictionary of B. The study of this over-realized setting was
recently taken up in the work of Sulam et al. (2020), in which the authors showed that a modest level of
over-realization can be empirically and theoretically beneficial. However, the results of Sulam et al. (2020) are
restricted to the noise-less setting where data is generated simply as yi ∼ Azi, which motivates the following
questions:

Does over-realized sparse coding run into pitfalls when there is noise in the data-generating process?
And if so, is it possible to prevent this by designing new sparse coding algorithms?

1.1 Main Contributions and Outline

In this work, we answer both of these questions in the affirmative. After providing the necessary background
on sparse coding in Section 2, we show in Theorem 3.2 of Section 3 that, using standard sparse coding
algorithms for learning over-realized dictionaries in the presence of noise leads to overfitting. In fact, our result
shows that even if we allow the algorithms to access infinitely many samples and solve NP-hard problems,
the learned dictionary B can still fail to recover A.

The key idea behind this result is that existing approaches for sparse coding largely rely on a two-step
procedure (outlined in Algorithm 1): solving the compressed sensing problem Bẑ = yi for a learned dictionary

B, and then updating B based on a reconstruction objective ‖yi −Bẑ‖2. However, because we force ẑ to be
sparse, by choosing B to have columns that are linear combinations of the columns of A, one can effectively
get around the sparsity constraint on ẑ. Consequently, it can be optimal to use such a B for reconstructing
the data yi, in which case A cannot be recovered as a sub-dictionary of B.

On the other hand, we show in Theorem 3.6 that for a large class of data-generating processes, it is possible
to prevent this kind of B by masking data (as outlined in Algorithm 3): performing the compressed sensing
step on a subset M of the coordinates of yi, and then computing the reconstruction loss on the complement
of M . This idea of masking has seen great success in self-supervised learning (Devlin et al., 2019). Our result
shows that it can lead to provable benefits in the context of sparse coding.

Finally, in Section 4 we conduct experiments comparing our masking approach with the standard sparse coding
approach across several parameter regimes. In all of our experiments, we find that our masking approach
leads to better ground truth recovery, which becomes more pronounced as the amount of over-realization
increases.

1.2 Related Work

Compressed Sensing. The seminal works of Candes et al. (2006), Candes & Tao (2006), and Donoho (2006)
established conditions on the dictionary A ∈ R

d×p, even in the case where p≫ d (the overcomplete case),
under which it is possible to recover (approximately and exactly) the sparse representations zi from Azi + ǫi.
In accordance with these results, several efficient algorithms based on convex programming (Tropp, 2006; Yin
et al., 2008), greedy approaches (Tropp & Gilbert, 2007; Donoho et al., 2006; Efron et al., 2004), iterative
thresholding (Daubechies et al.; Maleki & Donoho, 2010), and approximate message passing (Donoho et al.,
2009; Musa et al., 2018) have been developed for solving the compressed sensing problem. For comprehensive
reviews on the theory and applications of compressed sensing, we refer the reader to the works of Candes &
Wakin (2008) and Duarte & Eldar (2011).
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Sparse Coding. Different framings of the sparse coding problem exist in the literature (Krause & Cevher,
2010; Bach et al., 2008; Zhou et al., 2009), but the canonical formulation involves solving a non-convex
optimization problem. Despite this hurdle, a number of algorithms (Engan et al., 1999; Aharon et al., 2006a;
Mairal et al., 2010; Arora et al., 2013, 2014, 2015) have been established to (approximately) solve the sparse
coding problem under varying conditions, dating back at least to the groundbreaking work of Olshausen &
Field (1997) in computational neuroscience. A summary of convergence results and the conditions required
on the data-generating process for several of these algorithms may be found in Table 1 of Gribonval et al.
(2014).

In addition to algorithm-specific analyses, there also exists a complementary line of work on characterizing
the optimization landscape of dictionary learning. This type of analysis is carried out by Gribonval et al.
(2014) in the general setting of an overcomplete dictionary and noisy measurements with possible outliers,
extending the previous line of work of Aharon et al. (2006b), Gribonval & Schnass (2010), and Geng et al.
(2011). However, as mentioned earlier, these theoretical results rely on learning dictionaries that are the same
size as the ground truth. To the best of our knowledge, the over-realized case has only been studied by Sulam
et al. (2020), and our work is the first to analyze over-realized sparse coding in the presence of noise.

Self-Supervised Learning. Training models to predict masked out portions of the input data is an approach
to self-supervised learning that has led to strong empirical results in the deep learning literature (Devlin et al.,
2019; Yang et al., 2019; Brown et al., 2020; He et al., 2022). This success has spurred several theoretical
studies analyzing how and why different self-supervised tasks can be used to improve model training (Tsai
et al., 2020; Lee et al., 2021; Tosh et al., 2021). The most closely related works to our own in this regard
have studied the use of masking objectives in autoencoders (Cao et al., 2022; Pan et al., 2022) and hidden
Markov models (Wei et al., 2021).

2 Preliminaries and Setup

We first introduce some notation that we will use throughout the paper.

Notation. Given n ∈ N, we use [n] to denote the set {1, 2, ..., n}. For a vector x, we write ‖x‖ for the
L2-norm of x and ‖x‖0 for the number of non-zero elements in x. We say a vector x is k-sparse if ‖x‖0 ≤ k
and we use supp(x) to denote the support of x. For a vector x ∈ R

d and a set S ⊆ [d], we use [x]S ∈ R
|S| to

denote the restriction of x to those coordinates in S.

For a matrix A, we use Ai to denote the i-th column of A. We write ‖A‖F for the Frobenius norm of A,
and ‖A‖op for the operator norm of A, and we write σmin(A) and σmax(A) for the minimum and maximum

singular values of A. For a matrix A ∈ R
d×q and S ⊆ [q], we use AS ∈ R

d×|S| to refer to A restricted to the
columns whose indices are in S. We use Id to denote the d× d identity matrix. Finally, for M ⊆ [d], we use
PM ∈ R

|M |×d to refer to the matrix whose action on x is PMx = [x]M . Note that for a d× q matrix A, PMA
would give a subset of rows of A, which is different from the earlier notation AS which gives a subset of
columns.

2.1 Background on Sparse Coding

We consider the sparse coding problem in which we are given measurements y ∈ R
d generated as Az+ǫ, where

A ∈ R
d×p is a ground-truth dictionary, z ∈ R

p is a k-sparse vector distributed according to a probability
measure Pz, and ǫ ∈ R

d is a noise term with i.i.d. entries. The goal is to use the measurements y to
reconstruct a dictionary B that is as close as possible to the ground-truth dictionary A.

In the case where B has the same dimensions as A, one may want to formulate this notion of “closeness” (or

recovery error) as ‖A−B‖2F . However, directly using the Frobenius norm of (A− B) is too limited, as it
is sufficient to recover the columns of A up to permutations and sign flips. Therefore, a common choice of
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recovery error (Gribonval et al., 2014; Arora et al., 2015) is the following:

min
P∈Π
‖A−BP‖2F (2.1)

where Π is the set of orthogonal matrices whose entries are 0 or ±1.
In the over-realized setting, when B ∈ R

d×p′

with p′ > p, Equation (2.1) no longer makes sense as A and B
do not have the same size. In this case, one can generalize Equation (2.1) to measure the distance between
each column of A and the column closest to it in B (up to change of sign). This notion of recovery was
studied by Sulam et al. (2020), and we use the same formulation in this work:

dR(A,B) ,
1

p

p
∑

i=1

min
j∈[p′],c∈{−1,1}

‖Ai − cBj‖2 (2.2)

Note that Equation (2.2) introduced the coefficient 1/p in the recovery error and thus corresponds to the
average distance between Ai and its best approximation in B. Also, Equation (2.2) only allows sign changes,
even though for reconstructing Az, it is sufficient to recover the columns of A up to arbitrary scaling. In
our experiments we enforce A and B to have unit column norms so a sign change suffices; in theory one can
always modify the B matrix to have correct norm so it also does not change our results.

Given access to only measurements y, the algorithm cannot directly minimize the recovery error dR(A, ·).
Instead, sparse coding algorithms often seek to minimize the following surrogate loss:

ℓ(B) = Ey

[

min
ẑ∈Rp′

‖y −Bẑ‖2 + h(ẑ)

]

(2.3)

where h is a sparsity-promoting penalty function. Typical choices of h include hard sparsity (h(ẑ) = 0 if ẑ is
k-sparse and h(ẑ) =∞ otherwise) as well as the L1 penalty h(ẑ) = ‖ẑ‖1. While hard sparsity is closer to the
assumption on the data-generating process, it is well-known that optimizing under exact sparsity constraints
is NP-hard in the general case (Natarajan, 1995). When h(ẑ) = ‖ẑ‖1 is used, the learning problem is also
known as basis pursuit denoising (Chen & Donoho, 1994) or Lasso (Tibshirani, 1996).

Equation (2.3) is the population loss one wishes to minimize when learning a dictionary B. In practice,
sparse coding algorithms must work with a finite number of measurements y1, y2, . . . , yn obtained from the
data-generating process and instead minimize the empirical loss ℓ̃(B):

ℓ̃(B) =
1

n

n
∑

i=1

min
ẑ∈Rp′

‖yi −Bẑ‖2 + h(ẑ) (2.4)

2.2 Sparse Coding via Orthogonal Matching Pursuit

Most existing approaches for optimizing Equation (2.4) can be categorized under the general alternating
minimization approach described in Algorithm 1.

Algorithm 1 Alternating Minimization Framework

Input: Data y, Dictionary B(t) ∈ R
d×p′

Decoding Step: Solve B(t)ẑ = y for k-sparse ẑ
Update Step: Update B(t) to B(t+1) by performing a gradient step on loss computed using B(t)ẑ and y

At iteration t, Algorithm 1 performs a decoding/compressed sensing step using the current learned dictionary
B(t) and the input data y. As mentioned in Section 1.2, there are several well-studied algorithms for this
decoding step. Because we are interested in enforcing a hard-sparsity constraint, we restrict our attention to
algorithms that are guaranteed to produce a k-sparse representation in the decoding step.
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We thus focus on Orthogonal Matching Pursuit (OMP) (Mallat & Zhang, 1993; Rubinstein et al., 2008),
which is a simple greedy algorithm for the decoding step. The basic procedure of OMP is to iteratively
expand a subset T ⊂ [p′] of atoms (until |T | = k) by considering the correlation between the unselected atoms

in the current dictionary B(t) and the residual

(

y −B
(t)
T argminẑ∈R|T |

∥

∥

∥
y −B

(t)
T ẑ

∥

∥

∥

2
)

(i.e., the least squares

solution using atoms in T ). A more precise description of the algorithm can be found in Rubinstein et al.
(2008). Moving forward, we will use gOMP(y,B, k) to denote the k-sparse vector ẑ ∈ R

p′

obtained by running
the OMP algorithm on an input dictionary B and a measurement y.

2.3 Conditions on the Data-Generating Process

For the data-generating process y ∼ Az + ǫ, it is in general impossible to successfully perform the decoding
step in Algorithm 1 even with access to the ground-truth dictionary A. As a result, several conditions have
been identified in the literature under which it is possible to provide guarantees on the success of decoding
the sparse representation z. We recall two of the most common ones (Candes & Tao, 2005).

Definition 2.1. [Restricted Isometry Property (RIP)] We say that a matrix A ∈ R
d×p satisfies (s, δs)-RIP if

the following holds for all s-sparse x ∈ R
p:

(1− δs)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δs)‖x‖2 (2.5)

Definition 2.2. [µ-Incoherence] A matrix A ∈ Rd×p with unit norm columns is µ-incoherent if:

|〈Ai, Aj〉| ≤ µ for all i 6= j (2.6)

These two properties are closely related. For example, as a consequence of the Gershgorin circle theorem,
(δs/s)-incoherent matrices must satisfy (s, δs)-RIP.

Given the prominence of RIP and incoherence conditions in the compressed sensing and sparse coding
literature, there has been a large body of work investigating families of matrices that satisfy these conditions.
We refer the reader to Baraniuk et al. (2008) for an elegant proof that a wide class of random matrices in
R

d×p (i.e. subgaussian) satisfy (k, δ)-RIP with high probability depending on δ, k, p, and d. For an overview
of deterministic constructions of such matrices, we refer the reader to Bandeira et al. (2012) and the references
therein.

3 Main Results

Having established the necessary background, we now present our main results. Our first result shows that
minimizing the population reconstruction loss with a hard-sparsity constraint can lead to learning a dictionary
B that is far from the ground truth. We specifically work with the loss defined as:

L(B, k) = Ey

[

min
‖ẑ‖0≤k

‖y −Bẑ‖2
]

(3.1)

Note that in the definition of L(B, k), we are considering an NP-hard optimization problem (exhaustively
searching over all k-sparse supports). We could instead replace this exhaustive optimization with an alternative
least-squares-based approach (so long as it is better than random), and our proof techniques for Theorem 3.2
would still work. We consider this version only to simplify the presentation.

We now show that, under appropriate settings, there exists a dictionary B whose population loss L(B, k)
is smaller than that of A, while dR(A,B) is bounded away from 0 by a term related to the noise in the
data-generating process.
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Assumption 3.1. Let A ∈ R
d×p be an arbitrary matrix with unit-norm columns satisfying (2k, δ)-RIP for

k = o
(

d
log p

)

and δ = o(1), and suppose σ2
min(A) = Ω(p/d). We assume each measurement y is generated as

y ∼ Az + ǫ, where z is a random vector drawn from an arbitrary probability measure Pz on k-sparse vectors
in R

p, and ǫ ∼ N (0, σ2Id) for some σ > 0.

Theorem 3.2. [Overfitting to Reconstruction Loss] Consider the data-generating model in Assumption 3.1
and define Λ(z) to be:

Λ(z) = inf{t | Pz(z ≥ t) ≤ 1/d}. (3.2)

Then for q = Ω(p2 max(dσ2,Λ(z)2)/σ2), there exists a B ∈ Rd×q such that L(B, k) ≤ L(A, k)− Ω(kσ2) and
dR(A,B) = Ω(σ2).

Proof Sketch. The key idea is to first determine how much the loss can be decreased by expanding from
k-sparse combinations of the columns of A to 2k-sparse combinations, i.e., lower bound the gap between
L(A, k) and L(A, 2k). After this, we can construct a dictionary B whose columns form an ǫ-net (with ǫ = σ2)
for all 2-sparse combinations of columns of A. Any 2k-sparse combination of columns in A can then be
approximated as a k-sparse combination of columns in B, which is sufficient for proving the theorem.

Remark 3.3. Before we discuss the implications of Theorem 3.2, we first verify that Assumption 3.1 is not
vacuous, and in fact applies to many matrices of interest. This follows from a result of Rudelson & Vershynin
(2008), which shows that after appropriate rescaling, rectangular matrices with i.i.d. subgaussian entries
satisfy the singular value condition in Assumption 3.1. Furthermore, such matrices will also satisfy the RIP
condition so long as k is not too large relative to d and p, as per Baraniuk et al. (2008) as discussed in the
previous section.

Theorem 3.2 shows that learning an appropriately over-realized dictionary fails to recover the ground truth
independent of the distribution of z. This means that even if we let the norm of the signal Az in the
data-generating process be arbitrarily large, with sufficient over-realization we may still fail to recover the
ground-truth dictionary A by minimizing L(B, k).

We also observe that the amount of over-realization necessary in Theorem 3.2 depends on how well z ∼ Pz

can be bounded with reasonably high probability. If z is almost surely bounded (as is frequently assumed),
we can obtain the following cleaner corollary of Theorem 3.2.

Corollary 3.4. Consider the same settings as Theorem 3.2 with the added stipulation that Pz(‖z‖ ≤ C) = 1
for a universal constant C. Then for q = Ω(p2d), there exists a B ∈ Rd×q such that dR(A,B) = Ω(σ2) and
L(B, k) ≤ L(A, k)− Ω(kσ2).

The reason that we can obtain a smaller population loss than the ground truth in Theorem 3.2 is because we
can make use of the extra capacity in B to overfit the noise ǫ in the data-generating process. To prevent
this, our key idea is to perform the decoding step Bẑ = y on a subset of the dimensions of y - which we refer
to as the unmasked part of y - and then evaluate the loss of B using the complement of that subset (the
masked part of y). Intuitively, because each coordinate of the noise ǫ is independent, a dictionary B that
well-approximates the noise in the unmasked part of y will have no benefit in approximating the noise in the
masked part of y.

We can formalize this as the following masking objective:

Lmask(B, k,M) = Ey

[

∥

∥[y][d]\M − [Bẑ][d]\M
∥

∥

2
]

(3.3)

where ẑ([y]M ) = gOMP(y,B, k) (3.4)

In defining Lmask, we have opted to use gOMP in the inner minimization step, as opposed to the exhaustive
argmin in the definition of L. Similar to the discussion earlier, we could have instead used any other approach
based on least squares to decode ẑ (including the exhaustive approach), so long as we have guarantees on the
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probability of failing to recover the true code z given access to the ground-truth dictionary A. This choice of
using OMP is mostly to tie our theory more closely with our experiments.

Now we present our second main result which shows, in contrast to Theorem 3.2, that optimizing Lmask

prevents overfitting noise (albeit in a different but closely related setting).

Assumption 3.5. Let A ∈ R
d×p be an arbitrary matrix such that there exists an M ⊂ [d] with PMA

being µ-incoherent with µ ≤ C/(2k − 1) for a universal constant C < 1. We assume each measurement y
is generated as y ∼ Az + ǫ, where [z]supp(z) ∼ N (0, σ2

zIk) with supp(z) drawn from an arbitrary probability
distribution over all size-k subsets of [d], and ǫ ∼ N (0, σ2Id) for some σ > 0.

Theorem 3.6. [Benefits of Masking] Consider the data-generating model in Assumption 3.5. For any
non-empty mask M ⊂ [d] such that PMA satisfies the µ-incoherence condition in the assumption, we have

lim
σz→∞

(

Lmask(A, k,M)−min
B

Lmask(B, k,M)
)

= 0 (3.5)

That is, as the expected norm of the signal Az increases, there exist minimizers B of Lmask such that
dR(A,B)→ 0.

Proof Sketch. The proof proceeds by expanding out Lmask(B, k,M) and using the fact that [Bẑ][d]\M is
independent of [ǫ][d]\M to obtain a quantity that closely resembles the prediction risk considered in analyses
of linear regression. From there we show that the Bayes risk is lower bounded by the risk of a regularized
least squares solution with access to a support oracle. We then rely on a result of Cai & Wang (2011) to
show that gOMP([y]M ) recovers the support of z with increasing probability as σz →∞, and hence its risk
converges to the aforementioned prediction risk.

Remark 3.7. As before, so long as the mask M is not too small, matrices with i.i.d. subgaussian entries will
satisfy the assumptions on A in Assumption 3.5. In particular, the set of ground truth dictionaries satisfying
Assumptions 3.1 and 3.5 is non-empty.

Comparing Theorem 3.6 to Theorem 3.2, we see that approximate minimizers of Lmask can achieve arbitrarily
small recovery error, so long as the signal Az is large enough; whereas for L, there always exist minimizers
whose recovery error is bounded away from 0. We note that having the expected norm of the signal be large
is effectively necessary to hope for recovering the ground truth in our setting, as in the presence of Gaussian
noise there is always some non-zero probability that the decoding step can fail. Full proofs of Theorems 3.2
and 3.6 can be found in Section A of the Appendix.

4 Experiments

In this section, we examine whether the separation between the performance of sparse coding with or without
masking (demonstrated by Theorems 3.2 and 3.6) manifests in practice. To do so, we need to make a few
concessions from the theoretical settings introduced in Sections 2.1 and 2.3. Firstly, we cannot directly
optimize the expectations in L and Lmask as defined in Equations (3.1) and (3.3), so we instead optimize
the corresponding empirical versions defined in the same vein as Equation (2.4). Another issue is that the

standard objective L requires solving the optimization problem min‖ẑ‖0≤k ‖y −Bẑ‖2, which is NP-hard in
general. In order to experiment with reasonably large values of d, p, and p′ and to be consistent with the
decoding step in Lmask, we thus approximately solve the aforementioned optimization problem using OMP.

The approaches for optimizing L and Lmask given n samples from the data-generating process are laid out in
Algorithms 2 and 3, in which we use ProjSd−1B to denote the result of normalizing all of the columns of B.
We also use M c as a shorthand in Algorithm 3 to denote [d] \M .

We point out that Algorithm 3 introduces some features that were not present in the theory of the masking
objective; namely, in each iteration, we randomly sample a new mask of a pre-fixed size. This is because
if we were to run gradient descent using a single, fixed mask M at each iteration, as we don’t differentiate
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Algorithm 2 Algorithm for Optimizing L

Input: Data {y1, ..., yT }, Dictionary B(0) ∈ R
d×p′

, Learning Rate η ∈ R
+

for t = 0 to T − 1 do

z ← gOMP(yt+1, B
(t))

B(t+1) ← B(t) − η∇B(t)

∥

∥yt+1 −B(t)z
∥

∥

2

B(t+1) ← ProjSd−1B(t+1)

end for

Algorithm 3 Algorithm for Optimizing Lmask

Input: Data {y1, ..., yT }, Dictionary B(0) ∈ R
d×p′

, Learning Rate η ∈ R
+, Mask Size m ∈ [d]

for t = 0 to T − 1 do

M ← Uniformly random subset of size m from [d]
z ← gOMP([yt+1]M , B(t))

B(t+1) ← B(t) − η∇B(t)

∥

∥[yt+1]Mc − [B(t)z]Mc

∥

∥

2

B(t+1) ← ProjSd−1B(t+1)

end for

through the OMP steps, the gradient with respect to B(t) computed on the error
∥

∥[y][d]\M − [Bz][d]\M
∥

∥

2

would be non-zero only for those rows of B corresponding to the indices [d] \M . To avoid this issue, we
sample new masks in each iteration so that each entry of B can be updated. There are alternative approaches
that can achieve this; i.e. deterministically cycling through different masks, but we found them to have
similar performance.

While we will analyze the performance of Algorithms 2 and 3 across several different experimental setups over
the next few subsections, we describe the following facets shared across all setups. We generate a dataset of
n = 1000 samples yi = Azi + ǫi, where A ∈ R

d×p is a standard Gaussian ensemble with normalized columns,
the zi have uniformly random k-sparse supports whose entries are i.i.d. N (0, 1), and the ǫi are mean zero
Gaussian noise with some fixed variance (which we will vary in our experiments). We also normalize the zi
so as to constrain ourselves to the bounded-norm setting of Corollary 3.4. In addition to the 1000 samples
constituting the dataset, we also assume access to a held-out set of p′ samples from the data-generating
process for initializing the dictionary B(0) ∈ R

d×p′

.

For training, we use batch versions of Algorithms 2 and 3 in which we perform gradient updates with respect
to the mean losses computed over {y1, ..., yB} with B = 200 as the batch size. For the actual gradient step, we
use Adam (Kingma & Ba, 2014) with its default hyperparameters of β1 = 0.9, β2 = 0.999 and a learning rate
of η = 0.001, as we found Adam trains significantly faster than SGD (and we ran into problems when using
large learning rates for SGD). We train for 500 epochs (passes over the entire dataset) for both Algorithms
2 and 3. For Algorithm 3, we always use a mask size of d − ⌊d/10⌋, which we selected based off of early
experiments. We ensured that, even for this fairly large mask size, the gradient norms for both L and Lmask

were of the same order in our experiments and that 500 epochs were sufficient for training.

We did not perform extensive hyperparameter tuning, but we found that the aforementioned settings
performed better than the alternative choices we tested for both algorithms across all experimental setups.
Our implementation is in PyTorch (Paszke et al., 2019), and all of our experiments were conducted on a
single P100 GPU.

4.1 Scaling Over-realization

We first explore how the choice of p′ for the learned dictionary B affects the empirical performance of
Algorithms 2 and 3 when the other parameters of the problem remain fixed. Theorem 3.2 and Corollary 3.4
indicate that the performance of Algorithm 2 should suffer as we scale p′ relative to d and p.
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In order to test whether this is actually the case in practice, we consider samples generated as described
above with A ∈ R

d×p for d = 100, p = 200, and ‖z‖0 = k = 5 fixed, while scaling the number of atoms p′ in
B from p′ = p (exactly realized) to p′ = n (over-realized and overparameterized). We choose ǫi ∼ N (0, 1/d),
which is a high noise regime as the expected norm of the noise ǫi will be comparable to that of the signal
Azi. To make it computationally feasible to run several trials of our experiments, we consider the p′ values
{200, 400, 600, 800, 1000} and do not consider more fine-grained interpolation between p and n.

For the training process, we consider two different initialization of B(0). In the first case, we initialize B(0)

to have columns corresponding to the aforementioned set of held-out p′ (normalized) samples from the
data-generating process, as this is a standard initialization choice that has been known to work well in practice
(Arora et al., 2015). However, this initialization choice in effect corresponds to a dataset of n+p′ samples, and
it is fair to ask whether this initialization benefit is worth the sample cost relative to a random initialization.
Our initial experiments showed that this was indeed the case, i.e. random initialization with access to p′

additional samples did not perform better, so we focus on this sample-based initialization. That being said,
we did not find the ordering of the performances of Algorithms 2 and 3 sensitive to the initializations we
considered, only the final absolute performance in terms of dR(A,B).

In addition to this purely sample-based initialization, we also consider a “local” initialization of B(0) to the
ground truth A itself concatenated with p′ − p normalized samples. This is obviously not intended to be
a practical initialization; the goal here is rather to analyze the extent of overfitting to the noise ǫi in the
dataset for both algorithms. Namely, we expect that Algorithm 2 will move further away from the ground
truth than Algorithm 3.

(a) Training from sample initialization (b) Training from local initialization

Figure 1: Comparison of Algorithm 2 (Baseline) and Algorithm 3 (Masking) under the settings of Sections
4.1). Each curve represents the mean of 5 training runs, with the surrounded shaded area representing one
standard deviation.

The results for training using these initializations for both algorithms and then computing the final dictionary
recovery errors dR(A,B) are shown in Figure 1. We use cosine distance when reporting the error dR(A,B)
since the learned dictionary B also has normalized columns, so Euclidean distance only changes the scale of
the error curves and not their shapes.

For both choices of initialization, we observe that Algorithm 3 outperforms Algorithm 2 as p′ increases, with
this gap only becoming more prominent for larger p′. Furthermore, we find that recovery error actually
worsens for Algorithm 2 for every choice of p′ > p for both initializations in our setting. While this is possibly
unsurprising for initializing at the ground truth, it is surprising for the sample-based initialization which does
not start at a low recovery error. On the other hand, training using Algorithm 3 improves the recovery error
from initialization when using sample-based initialization for every choice of p′ except p′ = n, which again
corresponds to the overparameterized regime in which it is theoretically possible to memorize every sample as
an atom of B.

Additionally, we also see that the performance of Algorithm 3 is much less sensitive to the level of over-
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realization in B. When training from local initialization, Algorithm 3 retains a near-constant level of
error/overfitting as we scale p′. Similarly, when training from sample initialization, performance does not
degrade as we scale p′, and in fact improves initially with a modest level of over-realization.

This improvement up to a certain amount of over-realization (in our case p′ = 2p) is seen even in the
performance of Algorithm 2 for sample initialization (although note that while the recovery error is better for
p′ = 2p compared to p′ = p, training still makes the error worse than initialization for Algorithm 2). A similar
phenomenon was observed in Sulam et al. (2020) in the setting where yi = Azi (no noise), and we find it
interesting that the phenomenon is (seemingly) preserved even in the presence of noise. We do not investigate
the optimal level of over-realization any further, but believe it would be a fruitful direction for future work.

4.2 Scaling All Parameters

The experiments of Section 4.1 illustrate that for the fixed choices of d, p, and k that we used, scaling the
over-realization of B leads to rapid overfitting in the case of Algorithm 2, while Algorithm 3 maintains good
performance. To verify that this is not an artifact of the choices of d, p, and k that we made, we also explore
what happens when over-realization is kept at a fixed ratio to the other setting parameters while they are
scaled.

For these experiments, we consider A ∈ R
d×p for d ∈ {100, 150, 200, 250} and scale p as p = 2d and k as

k = ⌊d/20⌋ to (approximately) preserve the ratio of atoms and sparsity to dimension from the previous
subsection. We choose to scale p′ as p′ = 2p since that was the best-performing setting (for the baseline) from
the experiments of Figure 1. We keep the noise variance at 1/d to stay in the relatively high noise regime.

(a) Training from sample initialization (b) Training from local initialization

Figure 2: Comparison of Algorithm 2 (Baseline) and Algorithm 3 (Masking) under the settings of Section 4.2
(all parameter scaling).

As before, we consider a sample-based initialization as well as a local initialization near the ground truth
dictionary A. The results for both Algorithms 2 and 3 under the described parameter scaling are shown in
Figure 2. Once again we find that Algorithm 3 has superior recovery error, with this gap mostly widening
as the parameters are scaled. However, unlike the case of fixed d, p, and k, this time the performance of
Algorithm 3 also degrades with the scaling. This is to be expected, as increasing p leads to more ground
truth atoms that need to be recovered well in order to have small dR(A,B).

4.3 Analyzing Different Noise Levels

The performance gaps shown in the plots of Figures 1 and 2 are in the high noise regime, and thus it is fair
to ask whether (and to what extent) these gaps are preserved at lower noise settings. We thus revisit the
settings of Section 4.1 (choosing d, p, and k to be the same) and fix p′ = 1000 (the maximum over-realization
we consider). We then vary the variance of the noise ǫi from 1/d2 to 1/d linearly, which corresponds to the
standard deviations of the noise being {0.01, 0.0325, 0.055, 0.0775, 0.1}.
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(a) Training from sample initialization (b) Training from local initialization

Figure 3: Comparison of Algorithm 2 (Baseline) and Algorithm 3 (Masking) under the settings of Section 4.3
(noise scaling).

Results are shown for the sample-based initialization as well as the local initialization in Figure 3. Here we see
that when the noise variance is very low, there is virtually no difference in performance between Algorithms 2
and 3. Indeed, when the variance is 1/d2 we observe that both algorithms are able to near-perfectly recover
the ground truth, even from the sample-based initialization.

However, as we scale the noise variance, the gap between the performance of the two algorithms resembles
the behavior seen in the experiments of Sections 4.1 and 4.2.

5 Conclusion

In summary, we have shown in Sections 3 and 4 that applying the standard frameworks for sparse coding to
the case of learning over-realized dictionaries can lead to overfitting the noise in the data. In contrast, we
have also shown that by carefully separating the data used for the decoding and update steps in Algorithm 1
via masking, it is possible to alleviate this overfitting problem both theoretically and practically. Furthermore,
the experiments of Section 4.3 demonstrate that these improvements obtained from masking are not at the
cost of worse performance in the low noise regime, indicating that a practitioner may possibly use Algorithm
3 as a drop-in replacement for Algorithm 2 when doing sparse coding.

Our results also raise several questions for exploration in future work. Firstly, in both Theorem 3.6 and our
experiments we have constrained ourselves to the case of sparse signals that follow Gaussian distributions. It
is natural to ask to what extent this is necessary, and whether our results can be extended (both theoretically
and empirically) to more general settings (we expect, at the very least, that parts of Assumptions 3.1 and 3.5
can be relaxed). Additionally, we have focused on sparse coding under hard-sparsity constraints and using
orthogonal matching pursuit, and it would be interesting to study whether our ideas can be used in other
sparse coding settings.

Beyond these immediate considerations, however, the intent of our work has been to show that there is
still likely much to be gained from applying ideas from recent developments in areas such as self-supervised
learning to problems of a more classical nature such as sparse coding. Our work has only touched on the use
of a single such idea (masking), and we hope that future work looks into how other recently popular ideas
can potentially improve older algorithms.

Finally, we note that this work has been mostly theoretical in nature, and as such do not anticipate any
direct misuses or negative impacts of the results.
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A Full Proofs

A.1 Proof of Theorem 3.2

We first recall the setting of Theorem 3.2.

Assumption 3.1. Let A ∈ R
d×p be an arbitrary matrix with unit-norm columns satisfying (2k, δ)-RIP for

k = o
(

d
log p

)

and δ = o(1), and suppose σ2
min(A) = Ω(p/d). We assume each measurement y is generated as

y ∼ Az + ǫ, where z is a random vector drawn from an arbitrary probability measure Pz on k-sparse vectors
in R

p, and ǫ ∼ N (0, σ2Id) for some σ > 0.

And now we prove:

Theorem 3.2. [Overfitting to Reconstruction Loss] Consider the data-generating model in Assumption 3.1
and define Λ(z) to be:

Λ(z) = inf{t | Pz(z ≥ t) ≤ 1/d}. (3.2)

Then for q = Ω(p2 max(dσ2,Λ(z)2)/σ2), there exists a B ∈ Rd×q such that L(B, k) ≤ L(A, k)− Ω(kσ2) and
dR(A,B) = Ω(σ2).

Proof. Our proof technique will be to first lower bound the gap L(A, k)− L(A, 2k), and then to construct a
B matrix that closely approximates the 2k-sparse combinations of the columns of A.

From the definition of L(B, k) we have that:

L(A, k)− L(A, 2k) = Ey

[

min
‖ẑ‖0=k

‖y −Aẑ‖2
]

− Ey

[

min
‖ẑ‖0=2k

‖y −Aẑ‖2
]

(A.1)

Now let ẑ∗(y) = argmin‖ẑ‖0=k ‖y −Aẑ‖ and S∗ = supp(ẑ∗), and further define:

z̃(y) = argmin
‖ẑ‖0=k

‖(y −Aẑ∗(y))−Aẑ‖ (A.2)

We will also use S̃ = supp(z̃(y)). For convenience, we will write ẑ∗ and z̃ when y is clear from context.
Applying this notation to Equation (A.1) gives:

L(A, k)− L(A, 2k) ≥ Ey[‖y −Aẑ∗‖2]− Ey[‖y −Aẑ∗ −Az̃‖2]
= Ey[2 〈y −Aẑ∗, Az̃〉]− Ey[‖Az̃‖2]
= Ey[‖Az̃‖2] (A.3)

Where we obtained the last line above by using the fact that Az̃ is the orthogonal projection of y −Aẑ∗ on
to the span of AS̃ . Now using the fact that A is (2k, δ)-RIP we have that:

Ey[‖Az̃‖2] ≥ (1− δ)2Ey

[

‖z̃‖2
]

≥ (1− δ)2Ey

[

∥

∥

∥
A+

S̃
(y −Aẑ∗)

∥

∥

∥

2
]

≥ (1− δ)4Ey

[

∥

∥AT

S̃
(y −Aẑ∗)

∥

∥

2
]

= (1− o(1))Ey

[

∥

∥AT

S̃
(y −Aẑ∗)

∥

∥

2
]

(A.4)

Where above we used the fact that A+

S̃
= (AT

S̃
AS̃)

−1AT

S̃
and RIP to obtain

∥

∥

∥
(AT

S̃
AS̃)

−1
∥

∥

∥

op
≥ 1/(1+ δ), which

led to the penultimate step. It remains to compute (or lower bound) the expectation in Equation (A.4).
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Towards this end, we let S denote a (uniformly) random subset of size k from [p]. Then we have that (using
Assumption 3.1):

Ey

[

∥

∥AT

S̃
(y −Aẑ∗)

∥

∥

2
]

≥ Ey

[

ES

[

∥

∥AT
S (y −Aẑ∗)

∥

∥

2
]]

=
k

p
Ey

[

∥

∥AT (y −Aẑ∗)
∥

∥

2
]

≥ k

p
σ2
min(A)Ey

[

‖y −Aẑ∗‖2
]

= Ω

(

k

d
Ey

[

‖y −Aẑ∗‖2
]

)

(A.5)

Now the expectation in Equation (A.5) can be lower bounded in the same vein as Equation (A.4) (i.e. relying
on the RIP property). Below we use S∗

2k to denote the optimal support for the minimization problem.

Ey

[

‖y −Aẑ∗‖2
]

= Ez,ǫ

[

min
‖ẑ‖0=k

‖ǫ−A(ẑ − z)‖2
]

≥ Eǫ

[

min
‖ẑ‖0=2k

‖ǫ−Aẑ‖2
]

= Eǫ

[

‖ǫ‖2
]

− 2Eǫ

[〈

A+
S∗
2k
ǫ, ǫ

〉]

+ Eǫ

[

∥

∥

∥
A+

S∗
2k
ǫ
∥

∥

∥

2
]

≥ Eǫ

[

‖ǫ‖2
]

− (1 + o(1))Eǫ

[

∥

∥

∥
AT

S∗
2k
ǫ
∥

∥

∥

2
]

≥ dσ2 − (1 + o(1))2kEǫ

[

max
i∈[p]

(AT
i ǫ)

2

]

≥ dσ2 −O
(

kσ2 log p
)

= Ω(dσ2) (A.6)

Where above we used Lemma A.2 since the random variables (AT
i ǫ)

2 follows a scaled chi-square distribution

with degree of freedom 1, and for the last line we use k = o
(

d
log p

)

. Now putting Equations (A.3)-(A.6)

together, we obtain:

L(A, k)− L(A, 2k) ≥ Ω(kσ2) (A.7)

Given the gap between L(A, k) and L(A, 2k) shown in Equation (A.7), our goal is now to construct a matrix
B such that we can approximate sufficiently large 2k-sparse combinations of the columns of A via Bẑ (where
ẑ is k-sparse). We recall from standard concentration of measure arguments (see Vershynin (2019) for details)

that P(‖ǫ‖2 ≥ 2dσ2) ≤ exp(−Ω(d)). Furthermore, by Assumption 3.1, ‖Az‖ ≤ Λ(z)(1+o(1)) with probability
1 − 1/d. Thus, we only need the columns of B to approximate Ax for 2-sparse x (since we are interested
in Bẑ and ẑ is k-sparse) and ‖Ax‖ ≤ γ1 max(σ

√
d,Λ(z)) for an appropriately large constant γ1 (as this will

imply we get the same gap as Equation A.6).

To do this, we can construct ǫ-nets for each of the following sets (indexed by the different possible 2-sparse
supports S ⊂ [p]):

VS = {Az | supp(z) = S, ‖Az‖ ≤ γ1 max(σ
√
d,Λ(z))} (A.8)

Since A has p columns, we need Θ(p2) such ǫ-nets. As long as we choose ǫ = γ2σ
2 with γ2 a constant, we can

approximate 2k-sparse combinations of the columns of A with error kγ2σ
2 using k-sparse combinations from

these nets, which is sufficient for our purposes given the result of Equation (A.7).

17



Now let the columns of B be the union of the ǫ-nets for the sets VS and define E = {‖y‖ ≤ γ1 max(σ
√
d,Λ(z))}.

After choosing γ2 to be sufficiently small, we then get from Equations (A.3)-(A.7):

L(A, k)− L(B, k) ≥ Ey

[

‖Az̃‖2
∣

∣ E
]

P (E)− kγ2σ
2

= Ω(kσ2) (A.9)

Noting that the ǫ-nets for each VS are of size O(max(dσ2,Λ(z)2)/σ2) from our choice of ǫ (once again, refer to
Vershynin (2019) for bounds on the size of ǫ-nets), this construction of B requires O(p2 max(dσ2,Λ(z)2)/σ2)
columns. As we can choose these columns to be different from those of A by γ2σ

2 (in norm), we obtain the
desired result.

A.2 Proof of Theorem 3.6

Again, we first recall the setting of Theorem 3.6.

Assumption 3.5. Let A ∈ R
d×p be an arbitrary matrix such that there exists an M ⊂ [d] with PMA

being µ-incoherent with µ ≤ C/(2k − 1) for a universal constant C < 1. We assume each measurement y
is generated as y ∼ Az + ǫ, where [z]supp(z) ∼ N (0, σ2

zIk) with supp(z) drawn from an arbitrary probability
distribution over all size-k subsets of [d], and ǫ ∼ N (0, σ2Id) for some σ > 0.

In order to prove Theorem 3.6, we will need a result from Cai & Wang (2011), which we restate below.

Theorem A.1 (Theorem 9 in Cai & Wang (2011)). For y ∼ Az + ǫ with ǫ ∼ N (0, σ2I) and A ∈ R
d×p being

µ-incoherent with µ < 1/(2k − 1), let us define:

S =

{

Ai : i ∈ [p], |zi| ≥
2σ
√
k
√

2(1 + η) log p

1− (2k − 1)µ

}

(A.10)

Then OMP (as defined in Algorithm) selects a column from S at each step with probability at least 1− 1
pη

√
2 log p

.

Now we may prove:

Theorem 3.6. [Benefits of Masking] Consider the data-generating model in Assumption 3.5. For any
non-empty mask M ⊂ [d] such that PMA satisfies the µ-incoherence condition in the assumption, we have

lim
σz→∞

(

Lmask(A, k,M)−min
B

Lmask(B, k,M)
)

= 0 (3.5)

That is, as the expected norm of the signal Az increases, there exist minimizers B of Lmask such that
dR(A,B)→ 0.

Proof. We have from the definition of Lmask that:

Lmask(B, k,M) = Ez,ǫ

[

∥

∥[Az][d]\M + [ǫ][d]\M − [Bẑ][d]\M
∥

∥

2
]

= Ez,ǫ

[

∥

∥[Az][d]\M − [Bẑ][d]\M
∥

∥

2
]

+ Eǫ

[

∥

∥[ǫ][d]\M
∥

∥

2
]

− Ez,ǫ

[〈

[Bẑ][d]\M , [ǫ][d]\M
〉]

= Ez,ǫ

[

∥

∥[Az][d]\M − [Bẑ][d]\M
∥

∥

2
]

+ (d− |M |)σ2

= Ez,ǫ

[

∥

∥P[d]\MAz − P[d]\MBẑ
∥

∥

2
]

+ (d− |M |)σ2 (A.11)

Since [Bẑ][d]\M is necessarily independent1 of [ǫ]d\M (by the construction of ẑ). Now the quantity in Equation
A.11 depending on B looks almost identical to the prediction risk considered in linear regression.

1There is actually a slight technicality here; we need gOMP to be Borel measurable, which is the case because it consists of
the composition of Borel measurable functions.
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With this in mind, let us define:

RM (ŷ) = Ez,ǫ

[

∥

∥P[d]\MAz − ŷ
∥

∥

2
]

(A.12)

Where ŷ is any estimator that depends only on [y]M (i.e. in the interest of brevity we are omitting writing
ŷ([Az + ǫ]M )). We can lower bound Equation (A.11) by analyzing RM (ŷ):

inf
ŷ
RM = inf

ŷ
Ez,ǫ

[

∥

∥P[d]\MAz − ŷ
∥

∥

2
]

= inf
ŷ
Ez,ǫ

[

Ez,ǫ

[

∥

∥P[d]\MAsupp(z)[z]supp(z) − ŷ
∥

∥

2
]

∣

∣

∣

∣

supp(z)

]

(A.13)

Equation (A.13) can be lower bounded by considering the infimum over the inner expectation with respect to
estimators ŷ that have access to [Az + ǫ]M and the support S∗ = supp(z). In this case, the Bayes estimator
ŷ∗ is:

ŷ∗ = Ez,ǫ

[

P[d]\MAS∗)[z]S∗

∣

∣

∣

∣

PMAS∗ [z]S∗ + [ǫ]M

]

= P[d]\MAS∗Ez,ǫ

[

[z]S∗

∣

∣

∣

∣

PMAS∗ [z]S∗ + [ǫ]M

]

(A.14)

Since [z]S∗ ∼ N (0, σ2
zIk), we can explicitly compute the conditional expectation in Equation (A.14). Indeed,

it is just the ridge regression estimator:

ŷ∗ = P[d]\MAS∗

(

ΛT
S∗ΛS∗ +

1

σ2
z

Ik

)−1

ΛT
S∗(PMAS∗ [z]S∗ + [ǫ]M ) (A.15)

Where we have set ΛS∗ = PMAS∗ above to keep notation manageable. Thus, putting all of the above together
we have:

Lmask(B, k,M) ≥ RM (ŷ∗) + (d− |M |)σ2 (A.16)

Now let ŷLS be the least squares estimator with access to the support supp(z):

ŷLS = P[d]\MAS∗Λ+
S∗(PMAS∗ [z]S∗ + [ǫ]M ) (A.17)

Then we have RM (ŷLS)→ RM (ŷ∗) as σ2
z →∞. If we can now show that RM (P[d]\MAẑ)→ RM (ŷLS), then

we will be done by Equation (A.16).

Showing this essentially boils down to controlling the error of ẑ when OMP fails to recover the true support
S∗ (because when it recovers the true support, P[d]\MAẑ is exactly ŷLS). We do this by appealing to Theorem
A.1.

Recall that [ẑ]S = Λ+
S [y]M , where ΛS = PMAS with S = supp(ẑ) being the support predicted by OMP.

Letting ẑLS be the vector whose non-zero components correspond to [ẑLS ]S∗ = Λ+
S∗ [y]M , it will suffice to

show ‖ẑLS − ẑ‖2 → 0 as σz →∞, since then we will be done due to the fact that
∥

∥P[d]\MA
∥

∥

op
is constant

with respect to σz.

Now letting z̃ = ẑ − Λ+
S [ǫ]M (i.e. z̃ represents the part of the signal z recovered by OMP), we have:

‖ẑLS − ẑ‖2 =
∥

∥z − z̃ + (Λ+
S∗ − Λ+

S )[ǫ]M
∥

∥

2

≤ ‖z − z̃‖2 +
∥

∥(Λ+
S∗ − Λ+

S )[ǫ]M
∥

∥

2
+ 2‖z − z̃‖

∥

∥(Λ+
S∗ − Λ+

S )[ǫ]M
∥

∥ (A.18)
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We begin by first analyzing ‖z − z̃‖2. To do so, we introduce the notation [z]U,0 to represent the vector in
R

k whose non-zero entries correspond to [z]U for U ⊂ [d], |U | ≤ k. Then we can make use of the following
decomposition of ΛS∗ [z]S∗ :

ΛS∗ [z]S∗ = ΛS [z]S∗∩S,0 + ΛS∗ [z]S∗\S,0 (A.19)

From Equation (A.19) we get:

‖z − z̃‖2 =
∥

∥[z]S∗\S,0 − Λ+
SΛS∗ [z]S∗\S,0

∥

∥

2

≤
∥

∥[z]S∗\S,0
∥

∥

2
+

∥

∥(ΛT
SΛS)

−1ΛT
SΛS∗ [z]S∗\S,0

∥

∥

2
+ 2max

(

∥

∥[z]S∗\S,0
∥

∥

2
,
∥

∥Λ+
SΛS∗ [z]S∗\S,0

∥

∥

2
)

=
∑

i∈S∗\S
O(z2i ) (A.20)

where we passed from the penultimate to the last line by using the µ-incoherence of PMA to control the
middle term in the bound. With Equation (A.20) in hand, we are finally in a position to apply Theorem A.1.
Let η = C ′ log σz for a sufficiently large constant C ′. Now for convenience we define:

γ =
2σ
√
k
√

2(1 + η) log p

1− (2k − 1)µ
(A.21)

which corresponds to the lower bound in Equation (A.10). Using Theorem A.1 with Equation (A.20) we
obtain:

Ez,ǫ

[

‖z − z̃‖2
]

≤
∑

i∈S∗

P({|zi| ≥ γ} ∩ {i /∈ S})O(E[z2i ]) + P(|zi| < γ)O(γ2)

=
∑

i∈S∗

O

(

σ2
z

σC′

z

√
log p

+
γ3

σz

)

(A.22)

And clearly Equation (A.22) goes to 0 as σz → ∞. We can apply similar analysis techniques to the term
∥

∥(Λ+
S∗ − Λ+

S )[ǫ]M
∥

∥

2
in Equation (A.18) as well, but for this term we can afford to be less precise.

Namely, when S = S∗, this term is 0. The probability that S 6= S∗ can be bounded as:

P(S 6= S∗) ≤ O

(

k

σC′

z

√
log p

)

P(min
i∈S∗
|zi| ≥ γ)

= O

(

kγk

σC′+k
z

√
log p

)

(A.23)

where again above we used the naive bound for P(mini∈S∗ |zi| ≥ γ) (i.e. replacing the density with 1 and
integrating from ±γ). Now we have:

Ez,ǫ

[

∥

∥(Λ+
S∗ − Λ+

S )[ǫ]M
∥

∥

2
]

≤ P(S 6= S∗)Ez,ǫ

[

∥

∥Λ+
S∗ [ǫ]M

∥

∥

2
+

∥

∥Λ+
S [ǫ]M

∥

∥

2
+ 2max

(

∥

∥Λ+
S∗ [ǫ]M

∥

∥

2
,
∥

∥Λ+
S [ǫ]M

∥

∥

2
)]

≤ P(S 6= S∗)O

(

kEǫ

[

max
i∈[p]

(AT
i ǫ)

2
]

)

≤ P(S 6= S∗)O(kσ2 log p) (A.24)

Putting together Equations (A.22) and (A.24) shows that Equation (A.18) goes to 0 as σz → ∞, which
proves the result.
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A.3 Auxiliary Lemmas

Lemma A.2. Let X1, · · · , Xn be n chi-square random variables with 1 degree of freedom, then

E

[

max
i∈[n]

Xi

]

= O(log n).

Proof. We bound the maximum via the moment-generating function.

From Jensen’s inequality, for t ∈ (0, 1
2 ), we have

exp

(

t · E
[

max
i∈[n]

Xi

])

≤ E

[

exp

(

t ·max
i∈[n]

Xi

)]

= max
i∈[n]

E
[

etXi
]

≤
n
∑

i=1

E
[

etXi
]

= n(1− 2t)−
1
2 .

Setting t = 1
3 gives us

E

[

max
i∈[n]

Xi

]

≤ 3 log n− 3

2
log

1

3
= O(log n).
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