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Improving the Interpretation of Data-Driven Water
Consumption Models via the Use of Social Norms
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Abstract: Water is essential to improving social equity, promoting just economic development and protecting the function of the Earth
system. It is therefore important to have access to credible models of water consumption, so as to ensure that water utilities can adequately
supply water to meet the growing demand. Within the literature, there are a variety of models, but often these models evaluate the water
consumption at aggregate scales (e.g., city or regional), thus overlooking intra-city differences. Conversely, the models that evaluate intra-city
differences tend to rely heavily on one or two sources of quantitative data (e.g., climate variables or demographics), potentially missing key
cultural aspects that may act as confounding factors in quantitative models. Here, we present a novel mixed-methods approach to predict intra-
city residential water consumption patterns by integrating climate and demographic data, and by incorporating social norm data to aid the
interpretation of model results. Using Indianapolis, Indiana as a test case, we show the value in adopting a more integrative approach to
modeling residential water consumption. In particular, we leverage qualitative interview data to interpret the results from a predictive model
based on a state-of-the-art machine learning algorithm. This integrative approach provides community-specific interpretations of model results
that would otherwise not be observed by considering demographics alone. Ultimately, the results demonstrate the value and importance of such
approaches when working on complex problems. DOI: 10.1061/(ASCE)WR.1943-5452.0001611. This work is made available under the
terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Author keywords: Urban water consumption; Mixed-methods study design; Statistical learning theory; Socio-environmental systems;
Socio-hydrological systems.

Introduction

Globally, cities are facing pressing challenges, including rapid ur-
banization and intensifying climate change. These challenges will
likely undermine urban water management around the world. Tradi-
tionally, urban water management has been supply-focused, mean-
ing that cities have focused on increasing their water supply to meet
the demand (Gleick 2003). Recently, however, many cities have
started to integrate demand management with their existing policies
(Mitchell 2006; Luo et al. 2015; Wang et al. 2020). As droughts
become more frequent and intense (Dai 2011; AghaKouchak et al.
2015; Bruss et al. 2019; Ault 2020), it is likely that these integrated
management strategies will become increasingly important in many
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regions. To ensure that integrated strategies can be implemented
successfully, there is a need to better understand the nuances of
residential water consumption, particularly within cities.

Many water consumption models aimed at characterizing intra-
city water consumption focus on demographics and housing char-
acteristics, which are often correlated with water consumption. For
example, in a case study conducted in Reno, Nevada, Viñoles et al.
(2015) found that length of residency was associated with higher
water consumption. The authors reasoned that this was due to the
growth in physical and social capital that participants experienced
the longer they lived in the area (Viñoles et al. 2015). A similar study,
conducted in Phoenix, Arizona, found that longer residence times
increased water consumption and that longer-term residents were
more likely to believe in the idea that Phoenix is an oasis (Harlan
et al. 2009). Interestingly, a recent study conducted in Southern
California found that water consumption decreased as residents oc-
cupied a house for longer periods of time (Bolorinos et al. 2020),
which suggests that there may be significant differences between
areas, possibly based on localized norms. In addition to length of
residency, a number of studies have demonstrated an increase in
water consumption as household income increases (Harlan et al.
2009; Shandas and Parandvash 2010; Ghavidelfar et al. 2017).
Many of these studies attributed this to the larger homes and lot
sizes that are often associated with higher incomes. Recently, Com-
inola et al. (2018) adopted a segmentation approach to classify the
water and electricity demand profiles in Los Angeles, California.
The authors found that increased water consumption was driven
by large house sizes, more occupants, and intensive outdoor uses
(Cominola et al. 2018), echoing previous work that leveraged lin-
ear models. Going beyond income and housing characteristics, a
recent study focused on the impact of the COVID-19 pandemic
on water consumption (Li et al. 2021). The authors found that while
California’s urban water consumption decreased while residents
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were working from home, the residential sector experienced an
increase in consumption (Li et al. 2021). This suggests that remote
work (one of the demographics included in the present study) may
impact water consumption, although it is not as common of a pre-
dictor as income or housing characteristics. These studies high-
light the need to consider a wide array of demographic variables
when modeling water consumption.

In addition to the work on demographics-based models, there is a
significant body of literature dedicated to understanding the role that
social norms play in determining water consumption. For example,
several studies have demonstrated that environmental awareness
often leads to increased water conservation, especially if there are
social norms that encourage pro-environmental behaviors (Pinto
et al. 2011; Willis et al. 2011; Beal et al. 2016; Ramsey et al. 2017).
However, the norms that influence water conservation may vary
within a given city or lead to different reactions from different seg-
ments of a population. For example, Bhanot (2017) found that com-
petitive messaging about water consumption among neighbors led
to lower consumption for those that were already among the more
efficient users, while the households that consumed more water (and
thus had a lower rank) were likely to increase their water consump-
tion when presented with competitive messaging. The author attrib-
uted this to the “last place effect” and subsequent demotivation to
work towards reducing water use (Bhanot 2017). In a similar study,
Cominola et al. (2021) used smart meter data to evaluate the impact
of getting feedback on water consumption via a mobile application,
including comparisons with peer households. The authors found
that households that had access to the application reduced their
water consumption in both the short- and long-term (Cominola et al.
2021). Social influences can also arise through media consumption.
Quesnel and Ajami (2017) found that increased news media cover-
age and subsequent internet searches led to a reduction in water
consumption during an extreme drought. Overall, these studies
demonstrate the importance of social norms in explaining trends in
water consumption in the context of groups (i.e., segments of pop-
ulations), as well as the benefit of integrating these norms within
local water management policies.

Going beyond demographics and social norms, some studies
consider the climate impacts on water consumption. For example,
Ashoori et al. (2016) found that residential water consumption in
Los Angeles was sensitive to the climate, namely, temperature and
precipitation. Specifically, Ashoori et al. (2016) found that precipi-
tation was especially significant in predicting water consumption
single family homes, with more precipitation leading to lower water
consumption. This was tied to the increased outdoor water use
common to single family homes in the area. Using higher resolu-
tion data, Balling et al. (2008) further demonstrated that climate
played a role in determining water consumption at the census tract
level. The authors found that water consumption increased across
the city during periods of higher-than-normal temperatures, as well
as lower-than-normal precipitation (Balling et al. 2008). In a study
conducted in San Francisco, California, the authors found that
higher temperatures were correlated with higher water consumption
across income levels, while precipitation was found to be insignifi-
cant (Quesnel and Ajami 2017). Finally, a recent study used future
climate scenarios to predict water consumption (Rasifaghihi et al.
2020). Rasifaghihi et al. (2020) found that future increases in tem-
perature and changes in precipitation patterns are likely to lead to
increased seasonal water consumption, while base water consump-
tion is likely to remain constant. Many of these studies considered
only temperature and precipitation as climatic variables and often
used linear regression as the main modeling technique (Balling et al.
2008; Ashoori et al. 2016; Rasifaghihi et al. 2020). In fact, in a semi-
nal review by House-Peters and Chang (2011), the authors found

that studies focused on the climate impact on water consumption
primarily focused on precipitation and temperature, with only a few
studies considering wind speed and evapotranspiration. Recent
work, however, has provided evidence that additional climatic var-
iables, such as relative humidity and dew point temperature, are
needed to accurately model water consumption (Obringer et al.
2020a). Moreover, it has been shown that the relationship between
climate and water consumption is nonlinear (Obringer et al. 2019,
2020a; Wongso et al. 2020), which calls for more complex model-
ing techniques than linear regression.

Much of the previously discussed literature has focused on
evaluating the impact of a single data type (e.g., demographics or
climate variables). That being said, there have been a number of
models aimed at integrating multiple data types into a single analy-
sis of urban water consumption. For example, Ashoori et al. (2016)
included price and population in addition to the climate variables
to model water consumption in Los Angeles. However, this study
focused on sector-level water use (e.g., single-family residential or
commercial), and did not account for the intra-city differences be-
yond housing type. In this sense, the study may have overlooked
potential cultural or demographic indicators of water consumption.
Several studies have integrated climate variables and demographics
to characterize the climate sensitivity of intra-city water consump-
tion. House-Peters et al. (2010), for example, found that the census
blocks with newer homes and more educated residents tended to be
more sensitive to climatic conditions (e.g., drought). Similar results
were found in a study by Balling et al. (2008), which demonstrated
that the water consumption in census tracts with large lots and
higher income was more sensitive to the climate. These studies pri-
marily relied on linear models and did not account for the cultural
aspects that may also have been driving water consumption. Finally,
Ramsey et al. (2017) evaluated the impact of demographics and
social norms on water consumption in India, but did not account for
the various climate influences that may shape water consumption.
Given that water consumption is multi-faceted, with a number of
different influences, including demographics, climate, and social
norms, it is important to build predictive models that consider a
variety of input variables, including the socio-demographic charac-
teristics of the population and other social variables when available.
Moreover, models that account for the intra-city water consumption
patterns will enable practitioners to develop community-specific
plans to curb water consumption.

Here, we present a data-driven model to predict intra-city res-
idential water consumption, accounting for the variability in dem-
ographics and climate, while leveraging social norms to aid the
interpretation of the model results. In particular, we combine dem-
ographic variables measured by the census, such as education level
and household income, with high resolution climate data, including
precipitation, temperature, and relative humidity. These quantita-
tive variables are used to create a data-driven model of water con-
sumption, the results of which are then interpreted through the
novel incorporation of qualitative social norms data. This work ad-
vances the growing body of work surrounding the use of data-
driven models within water resources research by (1) focusing on
a non-linear modeling technique, which has been shown to be ef-
fective in other scenarios (Obringer and Nateghi 2018; Wongso
et al. 2020), (2) expanding the included climate variables beyond
precipitation and temperature, which better captures consumption
trends (Obringer et al. 2019), and (3) emphasizing intra-city pat-
terns, which are underexplored in comparison to larger, sector-level
studies. Additionally, the use of social norms as a tool for improv-
ing interpretation of model results aids in bridging the gap between
quantitative and qualitative work. The integration of quantitative
and qualitative data is a key aspect of socio-environmental systems

© A S C E 04022065-2 J.  Water Resour. Plann. Manage.

J. Water Resour. Plann. Manage., 2022, 148(12): 04022065



D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

96
.2

31
.1

88
.1

5 
on

 0
4/

29
/2

3.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

 r
ig

ht
s 

re
se

rv
ed

.

research, particularly as qualitative data can be used to provide
insight to quantitative measurements (Elsawah et al. 2020). The
data-driven model is based on observational data, but can be used
to predict water consumption at the census tract level, assuming the
demographics and climate input data are available. We then expand
this quantitative model by leveraging qualitative data on social norms
to provide insights to the model results that cannot be inferred from
demographics or climate data alone. This study aims to increase the
scientific understanding of the driving factors behind urban water
consumption, allowing water utilities to implement community-
specific demand management techniques. In the following sections,
we first discuss the data and methods used within this study. Then,
we delve into the results and discussion. Finally, we conclude with
a summary of the implications for practitioners.

Data and Methods

Site Description

This study considered the city of Indianapolis, Indiana as a test case
to demonstrate the value of the integrative approach. Indianapolis is
a Midwestern city, which generally experiences mild spring and
autumn months, with more extreme summer and winter months.
Most of the region is considered to have a temperate climate (the
Köppen classification is humid continental). In terms of urban form,
similar to many Midwestern cities, Indianapolis is more sprawling
than in other areas of the country (Ewing and Hamidi 2014; Hamidi
et al. 2015). Finally, the region is considered to be water-rich, based
on the number of water resources, both on the surface and below
ground. These conditions often lead to higher water consumption
(Harlan et al. 2009; Shandas and Parandvash 2010; Ghavidelfar
et al. 2017). That being said, there is still interest in enacting demand
management strategies within the city, so as to reduce the load on
existing infrastructure and ensure adequate water supply in the event
of a drought. Little work within the urban water demand manage-
ment literature has focused on the Midwest, likely owing to the large
availability of water resources when compared to other locations,
such as the Southwestern United States. Nonetheless, the region has
experienced some significant droughts in the recent past (Basara
et al. 2019), which have encouraged the water utility company to
focus more intently on demand management and drought prepara-
tion. The lack of previous work in this region, paired with the past

experiences with drought, make Indianapolis an ideal case study
for testing the novel integrative approach to modeling urban water
consumption.

Data Description

There were four main categories of data collected for this study:
(1) water consumption data; (2) demographic data; (3) climate data;
and (4) social norms data.

The residential water consumption data served as the response
variable (i.e., dependent variable) in the analysis. The data were
obtained from the Indianapolis water utility based on monthly me-
tering. To protect consumer privacy, the consumption values were
aggregated to the census tract level, such that each data point rep-
resented the total water consumption within each census tract for
each month in 2018.

The demographic data were obtained from the 2018 American
Community Survey conducted by the US Census Bureau (US
Census Bureau 2018). These data contained 72 variables obtained
directly from the Census Bureau, without pre-selection, which are
outlined in Table 1. It should be noted that most variables listed in
Table 1 had multiple levels, which were considered to be separate
variables for the analysis. For example, the birth rate variable had
three levels based on different age groups (i.e., the birth rate for the
population below 18 years old, 19–34 years old, and above 35 years
old), which were used as predictors (i.e., independent variables) in
the study. To limit bias within the modeling framework, each of the
72 demographic variables (Table 1) were considered in the initial
analysis. This ensured that we were not inserting any bias into the
model by only selecting certain variables from the start. Later, we
implemented a process to iteratively remove variables to reduce com-
plexity (see “Methods” section). Each variable was obtained for each
census tract (defined by the 2010 Census) in the city, each of which
has an average population of 4,000.

The climate data were obtained from the PRISM Climate Group
through the Northwest Alliance for Computational Science and
Computing (Prism Climate Group 2018). The data are available at
a 4-km spatial scale and include precipitation, dry bulb temperature
(i.e., the ambient air temperature), dew point temperature (i.e., the
temperature at which the air is fully saturated with water vapor),
and vapor pressure deficit, which was used to calculate relative
humidity. In particular, we considered the total precipitation (mm),
the minimum, average, and maximum dry bulb temperature (°C),

Table 1. Demographic variables from the 2018 American Community Survey considered in this study

Variable category

Birth rate
Education level
Income level
Household unit type

House type
House value
Language
Marital status
Place of birth
Age
Race
Poverty rate
Work commute

Description

Birth rate separated by age group
Percent of the population that has achieved various levels of education
Percent of the population with various levels of household income
Percent of the population that belongs to various types of households (e.g., single person, married couple, family with
kids, etc.)
Percent of population that resides is various types of houses (e.g., detached, attached, mobile, etc.)
Percent of population that resides in houses of various values
Percent of population that speaks various languages at home
Percent of population that identifies as various martial statuses (e.g., married, divorced, single, etc.)
Percent of population that was born outside of the US, separated by continent
Percent of population in various age groups
Percent of population with various racial identities
Poverty rate
Percent of population that uses various modes of transportation to get to work (e.g., car, bus, work from home, etc.)

Source: Data from US Census Bureau (2018).
Note: There were 72 demographic variables in the study, which are presented here as categories. Under birth rate, for example, the variables included the birth
rate for the 15–19 age range, 20–34 age range, and so on, as defined by the US Census.
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the average dew point temperature (°C), and the average relative
humidity (%). These variables were selected based on previous
work on water consumption (Ashoori et al. 2016; Obringer et al.
2019). The climate variables were subject to the same variable
selection process as the demographic variables (see “Methods” sec-
tion). Although the climate data are not directly linked to the census
tracts, the 4-km resolution is high enough to conduct an intra-city
analysis on the impact of climate variables on water consumption.
To transform the climate data to the same scale as the census tracts,
we used a nearest-neighbor approach to associate each 4-km grid
point from the PRISM data with a census tract. Thus, each census
tract had one value for each climatic variable, corresponding to the
nearest grid point from the 4-km PRISM dataset.

Finally, the social norms data were collected via semi-structured
interviews conducted in Indianapolis. These interviews focused on
assessing resident awareness of water conservation programs, as
well as the expectations they and others held regarding water con-
servation (see the Supplemental Methods for interview questions).
The existence of a social norm (as opposed to a personal value) was
determined by asking three styles of questions, defined by Bicchieri
(2016): (1) expectations of oneself, (2) expectations of others, and
(3) other’s expectations of oneself. A respondent from a neighbor-
hood without clear social norms on water conservation, for exam-
ple, might have expectations of themselves (i.e., a personal value),
but will not have expectations of others nor will they feel that others
have expectations of them in terms of water conservation. On the
other hand, the presence of a social norm will lead people to expect
a certain behavior of other people, as well as feeling that other peo-
ple expect that behavior of them. Interviewees were selected via a
snowball sampling approach, in which we interviewed an initial
group of people and asked them to nominate other people within
their social groups to be interviewed (Neumann 2011), who were
then interviewed and asked to provide additional interviewees, and
so forth. Our initial group of interviewees consisted of people that
held leadership roles within their neighborhood associations. The
interviewees came from a variety of neighborhoods, ranging from
quasi-suburban to central downtown. We followed standard quali-
tative sampling procedures that enabled us to reach data saturation,
a point when additional interviews no longer reveal new insights
relevant to the research questions (Fusch and Ness 2015; Saunders
et al. 2018; Guest et al. 2020). For a generally non-controversial
topic with a demographically homogeneous population, data satu-
ration is expected around 12 interviews (Guest et al. 2006). In our

case, we felt confident that data saturation was reached before the
15th interview. Therefore, after conducting a total of 15 interviews
in different neighborhoods, we completed the interview process and
no longer sought additional interviews (Guest et al. 2006). These
interviews were associated with distinct neighborhoods throughout
Indianapolis, which we were able to geographically connect to cen-
sus tracts. Some of the larger neighborhoods covered multiple cen-
sus tracts, while others were contained within a single tract. These
interviews were used to help interpret the quantitative model results
within those tracts.

Methods

The primary analysis was based on supervised learning (i.e., predic-
tive modeling), a subset of statistical learning theory, followed by
an interpretation phase using the qualitative data (see Fig. 1). For
more information on supervised learning, see the Supplemental
Methods. In particular, this study leverages the random forest al-
gorithm (Breiman 2001), which has been successfully used in a
number of sustainability and resilience-focused studies on the en-
ergy sector (Mukherjee and Nateghi 2019; Mukherjee et al. 2018;
Lokhandwala and Nateghi 2018) and the water sector (Obringer
and Nateghi 2018; Wongso et al. 2020). A more detailed account
of the algorithm can be found in the Supplemental Methods.

There are four main steps in the modeling framework, as shown
in Fig. 1. The first is data collection and pre-processing. The data
were collected as described above and aggregated into seasons, as
variability in residential water consumption tends to be seasonal
(e.g., water consumption rises in the summer due to outdoor ac-
tivities). Due to the heavy-tailed nature of the water consumption
values, it was necessary to separate the data into moderate- and
high-intensity datasets, which were analyzed separately. Often, the
high-intensity users are of particular interest to water utilities since
they tend to use a disproportionate amount of water and thus have
the potential to see large savings from conservation (Rosenberg
2007; Suero et al. 2012; Abdallah and Rosenberg 2014). However,
these high-intensity users are also likely to have different key pre-
dictors of their consumption than the majority of the population. In
this sense, we have split the dataset based on these levels of inten-
sity, so that we may better understand the impact of the predictor
variables across the city. To perform this separation, we drew from
previous work, namely Balling et al. (2008) and Mukherjee and
Nateghi (2017), to classify the lower 75% of the data as ‘moderate-
intensity’ and the remaining 25% as ‘high-intensity’. It is important

Input Data

Water Consumption Data
Local Utility, 2018 Cross-Validation Loop

Demographics Data
ACS, 2018

Seasonal
Separation

Outlier
Separation

Correlation-
based Dataset

Pre-screening

Model Training
and Testing

Climate Data
PRISM, 2018

Social Norms Data
Interviews, 2018

Transcription and
Thematic Coding

Model Evaluation
and Interpretation

Threshold-Based
Variable Selection

Qualitative Data Collection and Analysis Quantitative Modeling

Fig. 1. The integrated modeling approach employed in this study.
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to note that the moderate-intensity group also includes low-intensity
users, but for brevity, we will refer to this group as moderate-intensity
throughout this text. This allowed us to model the majority of census
tracts with accuracy, as these are likely to be of interest to water util-
ities, as well as uncover the general trends present within the city. The
high-intensity analysis, results of which are included in the Supple-
mental Materials, contains many rural census tracts, which may be
better predicted by different variables than the urban and suburban
areas. Additionally, the social norms data were collected in the cen-
tral part of the city, which is included in the moderate-intensity
analysis. In this sense, the novel integration of quantitative mod-
eling with interpretation from qualitative data remains unchanged by
the decision to separate the moderate- and high-intensity users.

Variable Selection
There were two phases of variable selection in this analysis: (1) a
correlation-based pre-screening; and (2) a threshold-based variable
removal. This process helps reduce the complexity of the model
while maintaining a high predictive accuracy. The first phase of var-
iable selection (correlation-based pre-screening) was performed prior
to testing and training the model. Although multicollinearity does
not pose a problem to the model’s predictive accuracy, the pres-
ence of a high number of highly-correlated variables (see Fig. S1)
can create ‘masking effects’ and confound model inferencing
(Shmueli 2010; Mukherjee and Nateghi 2017; Obringer et al.
2020b). Masking effects often confound model inferencing by
causing a number of highly correlated variables to be of high im-
portance, even though the variables are likely all explaining the
same thing (due to the correlation). This means that other important
variables might be ‘masked’ by the highly correlated variables. Re-
moving these correlated variables can allow for more insightful
interpretation without impacting model performance. Moreover,
large amounts of predictor variables increase computation time
and unnecessarily increase the complexity of the model. In the var-
iable selection analysis, we keep only the variables X  that contrib-
ute the most towards predictive accuracy and remove the highly-
correlated variables Y that have a correlation score to variables
X  greater than 0.6. For example, home ownership, a key predictor
of water consumption, is highly correlated with detached houses
and marital status. Since home ownership contributed more to
the overall accuracy than the detached house or marital status var-
iables, it was kept in the dataset, while the variables that were
highly-correlated with home ownership (detached house and marital
status) were removed. This method of variable selection is often re-
ferred to as a high correlation filter. Here, we implemented this filter
automatically through computational code so that there is limited
opportunity to introduce bias to the system.

Following the first phase of variable selection, the model was
trained and tested using the updated variable list. This step involved
developing a model for each season, considering the total residen-
tial water consumption in each census tract as the response variable.
The model was developed using five-fold cross validation, in which
20% of the data were held out for testing purposes (Hastie et al.
2009). This process was done iteratively, such that a different 20%
was held out of the model in each iteration. The result is a robust
model that is not biased towards one particular area of the city. Fol-
lowing this initial training and testing, the second variable selection
step was performed—threshold-based selection. Here, the final var-
iables were selected based on a threshold analysis. In particular, any
variable that was in the 90th percentile in terms of relative impor-
tance was kept for the final model. In this study, relative importance
was determined by the increase in predictive error (mean squared
error; MSE) that would occur, should the variable be removed from
the model. In other words, the variables that contributed the most to

predictive accuracy were included in the final model, while those
that made very little contribution were removed. Removing the var-
iables not only reduces the complexity of the model (and therefore
reduces predictive error through the bias-variance trade-off) (Hastie
et al. 2009), but it also ensures that only the most important var-
iables are considered in the final interpretation phase, avoiding any
issues of ‘masking’ (Shmueli 2010). Finally, threshold-based var-
iable selection using relative importance as the metric has been
widely used in previous predictive modeling studies that focused on
model interpretability (Genuer et al. 2010; Obringer et al. 2020a).

The approach discussed above relies on selecting a correlation
threshold, which can introduce bias into the model. To avoid this
bias, it is possible to implement an automated process, such as var-
iable selection using random forests (VSURF), which implements a
threshold and conducts an importance analysis with minimal input
from the user (Genuer et al. 2015). However, this method is very
computationally expensive, particularly with large datasets, such as
the one considered in this study. Additionally, it may result in a
predictor set that has high levels of multicollinearity, which will not
impact predictive accuracy but limit the interpretability and add
unnecessary complexity to the model (Shmueli 2010; Mukherjee
and Nateghi 2017; Obringer et al. 2020b). As such, it may be pref-
erable to leverage the two-stage approach discussed here to im-
prove computational efficiency and increase interpretability.

Model Training and Testing
After the variables were selected, the model was re-run through the
training and testing process. The results were then subsequently
analyzed by evaluating variable importance and partial dependence
(Hastie et al. 2009), as well as comparing the modeled water con-
sumption with the social norms data collected via the interviews.
The variable importance analysis was performed using the variables
selected via the process outlined above. This type of analysis dem-
onstrates magnitude of importance, but not the direction of the rela-
tionship (i.e., positive or negative). To comprehensively assess the
relationship between water consumption and the predictor variables,
we performed a partial dependence analysis. A partial dependence
analysis holds all predictor variables constant except the one of
interest, which allows the user to determine the impact that the var-
iable of interest has on the average value of the response variable
(Hastie et al. 2009).

Qualitative Data Analysis
A key focus of this research was the integration of qualitative data
with quantitative modeling, following a mixed-methods study de-
sign. One common use of qualitative data is to enhance or clarify
quantitative results based on quantitative surveys or models. Specifi-
cally, when the quantitative component of a study reveals unexpected
patterns that the research does not quite understand or need addi-
tional explanations, using qualitative interviews with targeted indi-
viduals could help illuminate the unexpected results (Creswell and
Clark 2017; Schoonenboom and Johnson 2017). More information
on this style of study design can be found in the Supplemental Meth-
ods. In this study, we conducted a total of 15 interviews with resi-
dents around the city to discuss their views on water conservation,
both personally and within their neighborhood. The interviews were
coded and analyzed thematically to discern perceptions of water con-
servation within various neighborhoods (Hsieh and Shannon 2005).
We paid particular attention to the presence (or lack thereof) of social
norms related to water conservation. Here, by matching the neigh-
borhood of each interviewee with the associated census tract(s), we
used the social norms data to further interpret the quantitative model
results in a select number of census tracts. In particular, the quali-
tative data, though smaller in extent when compared to the quanti-
tative model results, were used to interpret differences between the
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modeled water consumption and actual water consumption. For ex-
ample, in some areas, the model predicted higher consumption than
reality. Here, the qualitative data was used to provide context as to
why the area was using less water than expected. Ultimately, the use
of qualitative data as an interpretation tool led to deeper insight into
the model results than what would be possible with solely using dem-
ographic and climate data. Through this approach, we were able to
use qualitative data collection and analysis (i.e., semi-structured in-
terviews) to aid the interpretation of quantitative modeling (i.e., su-
pervised learning) and ultimately gain deeper insight into intra-city
water consumption patterns.

Results

In this section, we discuss the results from the moderate-intensity
analysis (described in the section “Methods”). In particular, we first
show the model performance, including measures of error and the
difference between the actual and predicted water consumption val-
ues. Then, we discuss the variable importance in terms of predictive
accuracy. Finally, we discuss the results of the qualitative interviews,
which are then used to interpret the predicted residential water con-
sumption. Results of the high-intensity analysis are presented in
Figs. S5–S10.

Model Performance

The statistical performance of a model is often measured in terms
of out-of-sample prediction error, as well as the ability of the
model to explain the variance of the actual data. Table 2 outlines
the model performance across each season. In particular, the table
contains values for out-of-sample (i.e., the test sample) R2 , root
mean squared error (RMSE), and the normalized root mean squared
error (NRMSE). The R2 values can be used to evaluate the ability of
the model to fit the data (i.e., the amount of variance explained by
the model). These performance measures indicate that the model
can adequately capture the variance in the water consumption data
across the seasons, with R2 values from 0.77 to 0.83 (Table 2). The
other two measures of model performance (RMSE and NRMSE)
represent the prediction error. The NRMSE is the normalized form
of the RMSE, providing a unitless measure of prediction error. Here,
lower values indicate lower prediction error. The results therefore
demonstrate that the model has high predictive accuracy (low error)
across the seasons (Table 2). In particular, the summer season per-
forms the best, which is a critical time for demand management, as it
generally represents tpeak usage.

Additionally, the NRMSE can be used to gauge uncertainty. Our
model, for example, results in an NRMSE ranging from 0.096 in
the summer to 0.114 in the spring (see Table 2). This means that
the average error in our model is 9.6% to 11.4%, depending on the
season. In other words, the prediction results may be about 10%
more or less than the actual values. That being said, there remains
uncertainty in the model, which can present a challenge when

Table 2. Measures of model performance, including R2 , root mean squared
error (RMSE), and normalized root mean squared error (NRMSE), for each
season

Season R2 RMSE (L) NRMSE

Spring 0.77 2,454,930 0.114
Summer 0.83 2,571,736 0.096
Fall 0.80 2,440,708 0.109
Winter 0.79 2,506,419 0.112

Note: Each measure represents the out-of-sample (i.e., test sample) model
performance averaged across the five cross validation iterations.

applying the framework. For example, a 9.6% error in the model
is relatively low, but translates to about 2.57 million liters of water
(see Table 2)—this could cause issues for utility companies that
plan to allocate a certain portion of water to the city but end up
with an unexpected deficit or surplus. Nonetheless, the model per-
forms well and improves upon previous work. In terms of the vari-
ance, our results indicate that the model explains 77% to 83% of the
variance in the actual data, depending on the season (see Table 2).
This is a significant improvement over previous work conducted in
Phoenix, Arizona, in which the average R2 value was 0.25 (Balling
et al. 2008). The improvement is likely due to the use of a nonlinear
model that does not require any strict parameterizations of the re-
lationship between the dependent variable (water consumption) and
the independent variables (demographics and climate).

Fig. 2 shows the differences between predicted and actual water
consumption in each census tract over the course of 2018, which
can be used to visualize the spatial variations in predictive accuracy.
One can, for example, evaluate where the model over-predicts res-
idential water consumption (blue shades) and which areas the model
under-predicts water consumption (red shades), as well as the mag-
nitude of those over-/under-predictions. The figure shows relatively
small differences across the study area with some seasonal differ-
ences. In particular, the summer and fall months include more ex-
treme differences (>   7.5 million liters) than the winter and spring
seasons. Around 4% of the census tracts in the summer model have
extreme differences between the actual and predicted data, com-
pared to 2% in the winter model. Likewise, the fall model shows
3% of tracts with extreme differences ( >   7.5 million liters), com-
pared to 2% in the spring model. These differences could be due to
the increase in outdoor water consumption during the summer and
fall seasons, compared to the winter and spring seasons. In most of
these extreme cases, the model predicted less water consumption
than the observations (red tracts in Fig. 2). This is likely due to hous-
ing characteristics (lot size, house age, etc.), which were not in-
cluded in this study. It is possible that adding these variables would
increase the predictive accuracy in certain tracts, but that is beyond
the scope of this study.

It is notable that the model performs better in the central areas of
the city, where water consumption tends to be less than the outer,
more suburban areas (see Fig. S11). The suburban areas likely have
similar demographics to some of the more central areas (house
value, income, etc.), but different end-uses (e.g., outdoor landscap-
ing). Considering the generalized data-driven model architecture
for the entire study domain, if two different tracts have similar dem-
ographic data, the model will predict similar water consumption.
Overall, the majority of the tracts are being predicted accurately,
with minimal differences between the predicted and actual values—
a benefit for water utilities and policymakers interested in better
understanding the intra-city water consumption patterns.

Variable Importance and Partial Dependence

Following the variable selection process outlined in the section
"Data and Methods," five to six variables per season were selected
for the final model. The final variables are shown in Fig. 3. Among
the important variables, home ownership was found to be the most
influential across all seasons. This means that the percentage of
houses that are owned within a census tract is crucial for predicting
the water consumption within that tract. Furthermore, house value
and household income are repeatedly among the most important
variables, indicating a close relationship between socioeconomic
status and water consumption. Additionally, the percentage of
families with kids in a given census tract was found to be important
for predicting water consumption. Education was also shown to

© A S C E 04022065-6 J.  Water Resour. Plann. Manage.

J. Water Resour. Plann. Manage., 2022, 148(12): 04022065

http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001611#supplMaterial
http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001611#supplMaterial
http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001611#supplMaterial


D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

96
.2

31
.1

88
.1

5 
on

 0
4/

29
/2

3.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

 r
ig

ht
s 

re
se

rv
ed

.

Fig. 2. Differences between the actual and predicted water consumption within each census tract for each season during the year 2018. Blue represents an
over-prediction of the water consumption, while red represents an under-prediction. Note that the grayed-out areas represent tracts that were con-sidered
part of the high intensity dataset (see Fig. S6).

Fig. 3. Variable importance within each season.

play an important role in predicting total water consumption
within a census tract. In particular, in the spring, fall, and winter
months, the percent of residents with some college education was
an important predictor, while in the summer months, the percent of
residents with an associate’s degree was found to be important.
Finally, the percentage of people that walk to work was important
in the spring months. Notably, none of the climate variables

remained following the final threshold-based variable selection.
This suggests that while changes in climate may be important at
the larger inter-city scale (Obringer et al. 2019), they are less im-
portant for predicting intra-city water consumption within the city
of Indianapolis. This is may be due to the variability in the data. In
other words, the climate does not vary as much (within the city) as
compared to the demographics. It is possible, then, that an analysis

© A S C E 04022065-7 J.  Water Resour. Plann. Manage.

J. Water Resour. Plann. Manage., 2022, 148(12): 04022065

http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001611#supplMaterial


8
1

0
1

2
1

4
1

6

W
a

te
r 

U
se

 (
m

ill
. 

L
)

1
3

1
4

1
5

1
6

W
a

te
r 

U
se

 (
m

ill
. 

L
)

1
3

.0
1

4
.0

1
5

.0

W
a

te
r 

U
se

 (
m

ill
. 

L
)

1
1

1
2

1
3

1
4

W
a

te
r 

U
se

 (
m

ill
. 

L
)

1
2

.0
1

3
.0

1
4

.0

W
a

te
r 

U
se

 (
m

ill
. 

L
)

1
3

1
4

1
5

1
6

W
a

te
r 

U
se

 (
m

ill
. 

L
)

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

96
.2

31
.1

88
.1

5 
on

 0
4/

29
/2

3.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

 r
ig

ht
s 

re
se

rv
ed

.

Partial Dependence Plots for Important Variables in the Summer Months

0  20 40 60 80 0 20 40 60 80 0 5 10 15 20

Percentage of Owned Houses                                                Percentage of Houses Valued $50−100k                                       Percentage of Pop. w/ Income $75−100k

10 15 20 25 30 5 10 15 30 40 50 60 70 80 90

Percentage of Pop. Aged 50−64 Percentage of Pop. w/ Assoc. Degree Percentage of Families w/ Kids

Fig. 4. Partial dependence plots for the most important variables during the summer months.

conducted in a more climatically-variable area may be more sen-
sitive to the changes in intra-city climate, as previously shown in
Phoenix (Balling et al. 2008).

The variable importance plots (Fig. 3) indicate the most crucial
independent variables for predicting intra-city water consumption,
but they do not indicate the direction of the relationship (i.e., pos-
itive or negative correlation). To understand how the important var-
iables impact water consumption, we can use partial dependence
plots. Fig. 4 shows the results of the partial dependence analysis
for the summer months (see Figs. S2–S4 for the other seasons in-
cluded in the analysis). In particular, the figure shows the partial
dependence for the six variables shown in Fig. 3. Fig. 4 shows that
as the percentage of home owners increase, the water consumption
increases as well. Similarly, as the percentage of families increase,
so does total water consumption within the census tract. In terms of
socioeconomic indicators, as the percentage of houses valued be-
tween $50,000 and $100,000 increases, there is an initial reduction
in water consumption. However, this drop is followed by a steady
increase in water consumption as the percentage of lower-valued
homes increases. Finally, the percentage of people with associate’s
degrees was an important variable in the summer months (Fig. 3).
The partial dependence plot indicates that at first, water consump-
tion increases with the percentage of associate’s degrees, but then
decreases around 5%. The partial dependence plots allow us to at-
tach a direction to the sensitivity of important variables and begin to
understand the relationship between the predictor and response
variables.

Qualitative Interviews

The interviews were coded and analyzed thematically to discern
perceptions of water conservation within various neighborhoods.
We paid particular attention to the presence (or lack thereof) of so-
cial norms related to water conservation. In general, most interview-
ees indicated that there were no strong social norms regarding water
conservation within their neighborhoods. Rather than expressing an
expectation on their neighbors in terms of water conservation, the
interviewees discussed having personal values that were not shared
by the neighborhood as a whole, as evident in the following quote:
“I think it’s very much on a house to house basis, there are people
doing individual things, but I don’t know in our neighborhood that
there is necessarily like a grassroots effort.” That being said, there

were a few respondents who indicated their neighborhoods did in
fact have social norms surrounding water conservation. These inter-
viewees indicated that environmentally-friendly activities, such as
recycling, driving electric vehicles, and using rain barrels, were pop-
ular among the residents. Moreover, they stated that those behaviors
were expected and that conservation would often be brought up at
neighborhood gatherings. One particular interviewee discussed pro-
environmental behavior and mindsets in their neighborhood by say-
ing: “I think that from a community perspective, at a micro-level,
[the neighborhood] is going to be much more socially conscious of
environmental conservation efforts, if you will, than Indiana as a
whole or even Indianapolis. I think we’re somewhat unique in that
regard and I certainly think that is the reality, especially from the
interactions that I have had, not just in person, but on social media.”
By geographically connecting these neighborhoods with the census
tract(s) within the same designated area we use the interview results
to interpret the quantitative model findings discussed above.

Discussion

Within the body of literature on water demand modeling, there
have been a number of studies aimed at determining the various
factors that ultimately impact water consumption. For example,
Sankarasubramanian et al. (2017) found that higher education
and income often led to higher adoption of efficiency techniques.
House-Peters et al. (2010) found that water consumption depended
on several housing characteristics (e.g., outdoor space and house
size), as well as education levels. Finally, Ashoori et al. (2016) found
that temperature and precipitation were important factors for pre-
dicting water consumption, particularly in single family homes. The
work presented here shares some similarities with previous findings,
as well as some differences, which are discussed below.

For example, our study did not include housing characteristics,
but did include home ownership, which was found to be important
across all four seasons. Fig. 3 shows that the percentage of home
ownership was the most important variable across the entire year—
indicating a potential demographic variable for the water utility to
use for targeted conservation initiatives. Fig. 4 demonstrates that
as the number of owned houses increases, the total water consump-
tion does as well, which is expected, as home ownership usually
means larger lot sizes and houses, leading to higher water
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consumption, especially in the summer when landscaping is popu-
lar (House-Peters et al. 2010; Sankarasubramanian et al. 2017).
Likewise, as the number of families with kids increases, so does
water consumption (Fig. 4). This is likely due to the increased num-
ber of people within a household, which leads to more water con-
sumption. This finding is aligned with previous studies on the
subject (Worland et al. 2018). The percentage of families with kids
was also an important predictor in the high-intensity user group (see
Fig. S5), indicating that this may be an optimal demographic pre-
dictor across the city. These findings suggest that efforts to limit
water consumption ought to be targeted at areas in which home
ownership is significant, rather than areas with a majority of renters,
as well as areas that are primarily made up of families.

One of the particularly novel results of our analysis was the im-
portance of walking to work in predicting the water consumption,
which has not, to our knowledge, been reported prior to this work.
The percentage of people that walk to work is not a variable that
many would intuitively connect to water consumption, thus it is
possible that previous analyses have simply not included variables
related to commutes. This is an advantage of starting with a large
dataset (e.g., 72 demographic variables) and doing an automated
variable selection procedure—the algorithm was able to use a var-
iable to make a prediction that otherwise might not have even been
included. Given that the percentage of people who walk to work is
positively correlated with the percentage of single people and peo-
ple in their twenties while negatively correlated with the percentage
of families and home ownership (see Fig. S1), it is likely that walk-
ing to work is an indirect proxy for location within the city. In par-
ticular, the population that walks to work is primarily located in the
city center (see Fig. S11), which is also an area that contains a lot
of apartments and smaller houses with little to no outdoor space. In
this sense, it may not be walking to work which is the predictor
of water consumption, rather walking to work is representative of
one’s location within the city and thus, the predominant style of
living, which may be the true predictor of water consumption. This
echoes previous work, which demonstrated that suburban house-
holds (which are unlikely to be associated with walking to work)
tend to consume more water due to outdoor landscaping, as well
as larger house sizes (Balling et al. 2008; House-Peters et al. 2010).
Conversely, in the high-intensity user group, which contains a
number of rural census tracts, the percentage of people that worked
from home and the percentage of people that drive to work were
found to be important predictors in the summer and winter season,
respectively (see Fig. S5). The partial dependence analysis suggests
that as the number of people that work from home increases in these
high-intensity tracts, the water consumption increases (see Fig. S8).
This could be due to increased use of indoor water while people are
home most of the day, as shown by a recent study focused on the
impact of remote work (Li et al. 2021). Another possibility is that
the increased use of water is being used primarily outdoors for
work-related purposes, such as farming, since the majority of the
high-intensity census tracts are rural. Additional research is needed
to better understand these impacts on the high-intensity user base
and how they might be leveraged to encourage water conservation.

A common predictor of water consumption is household income.
A number of studies have found positive relationships between these
two variables, with higher income often leading to higher water con-
sumption (Harlan et al. 2009; House-Peters et al. 2010; Worland
et al. 2018). Similarly, in our model, during the summer months,
the percentage of houses valued between $50,000 and $100,000
(the median house value for the city is $130,000) was found to be
positively related to water consumption. In particular, there is a
notable inflection point when 30% of the homes within the tract
are valued between $50,000 and $100,000 in which the water

consumption begins to steadily increase. In fact, census tracts with
percentages of lower-valued houses above this threshold tend to
also have higher percentages of low income households (less than
$50k a year), as shown in Fig. S11. Previous work has shown that
lower-income households are less likely to have efficient applian-
ces (Sankarasubramanian et al. 2017), which may contribute to the
increased water consumption shown in Fig. 4. In the high-intensity
group, income was also shown to be important, with higher per-
centages of affluence leading to higher consumption of water (see
Figs. S7–S10). This aligns with previous research into the connec-
tion between income and water consumption (Harlan et al. 2009;
House-Peters et al. 2010; Worland et al. 2018). Finally, education
levels were found to be important across the seasons. In particular,
the percentage of people with associate’s degrees was found to be
important in the summer months. Previous work has suggested that
education levels were a significant predictor of water use efficiency
(Sankarasubramanian et al. 2017), which may explain the decrease
once the census tract reaches 5% of the population having associ-
ate’s degrees. Overall, the important variables presented here not
only echo previous studies, but also provide valuable information
on how to target conservation within cities.

The majority of previous literature has focused on quantitative
modeling of water consumption, which has its own limitations in
terms of interpretation. That is, one cannot interpret the results be-
yond the correlation or the predictive accuracy. One way to move
past this limitation is to using qualitative data as a source of insight
(Elsawah et al. 2020). Here, we used qualitative interviews to assess
the presence of social norms in several census tracts, shown in Fig. 5.
Visually, these census tracts cluster into two groups—the center-top

and the central group, with the center-top group containing
more census tracts where the water consumption was overpredicted
than the central group. The central group represents the city center,
while the center-top group is still relatively close to the city center,
but larger properties (often with large yards) and detached houses
are common. Normally, these neighborhoods would have higher
than usual water consumption—given the percentage of home

Summer

39.9

Difference

39.8
(mill. L)

4
0
−4
−8

39.7

−86.3 −86.2 −86.1 −86.0

Longitude (deg. E)

Fig. 5. Differences in the predicted and actual water consumption
values during the summer months for the specific census tracts that
geographically correspond with the neighborhoods in which we
conducted interviews. Note that some neighborhoods cover multiple
census tracts.
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ownership and families. However, the model over-predicted the
consumption, indicating that in reality these neighborhoods con-
sume less water than their demographics alone would suggest,
based on the rest of the study area. This finding was confirmed
by the interview results, discussed above, in which interviewees
from the center-top group indicated that there were social norms
within their neighborhoods that encouraged water conservation
practices. In particular, the interviewees discussed the prevalence
of using rain barrels for outdoor landscaping, rather than relying
on water from the tap. This information regarding the local water
conservation practices cannot be obtained through the usual data
sources (i.e., census data, housing records, etc.), but it is, nonethe-
less, critical to understanding intra-city water consumption patterns.
Based on the demographics of the area (e.g., presence of families,
detached homes, higher income, etc.), water utilities may assume
that they need to run a conservation program in these neighbor-
hoods, when in fact, conservation-based norms already exist and
are leading to less consumption than neighborhoods with similar
demographics. By integrating an understanding of local social
norms into the interpretation of quantitative modeling results, utility
companies may be able to focus their efforts on areas of the city in
which demand management interventions will be more effective.

Limitations of the Study

There are a few limitations of the study. First, the present study only
uses 15 interviews to conduct the interpretation analysis. While the
sample size was guided by the data saturation point in our semi-
structure interview process (Guest et al. 2006), we recognize that
it represents a small fraction of the population in Indianapolis. A
broader data coverage over the city, rather than focusing on a few
central neighborhoods, could contribute to more inclusive and suc-
cessful conservation interventions. It would be especially impor-
tant to extend this analysis to the high-intensity users, as they tend
to have a disproportionately high level of water consumption and
also represent an opportunity to greatly reduce water consumption
(Rosenberg 2007; Suero et al. 2012; Abdallah and Rosenberg
2014). However, conducting interviews on such large scales is la-
bor intensive and may be infeasible for research teams, policymak-
ers, and water and other resource management practitioners due
to time and monetary constraints. In place of interviews, a survey
method may be more beneficial in future studies for determining
large-scale attitudes towards water conservation, as well as any so-
cial norms that are present within different areas of the city. Surveys
have their own set of challenges, however, and must be carefully
designed to ensure unbiased results. Although a survey was outside
the scope of the current study, the results from the interviews can be
used to develop future survey questionnaires and large-scale datasets.
Similar work has been done in other areas of the country, although
not specifically focused on social norms (White et al. 2019). In ad-
dition, in our current study, social norm data was only collected and
used a posteriori to improve interpretation of model results, but not
used to build the mathematical models. There is great potential for
including social norm variables in future models and use relevant
large-scale data as model inputs.

Another limitation of the study is the lack of landscaping var-
iables in the study, such as lot size or irrigation requirements. These
variables play a major in role in determine total water consumption,
particularly in the summer months (House-Peters and Chang 2011).
Moreover, landscaping variables, or more broadly outdoor water
use, is likely to be more influential among the high-intensity group,
which could improve the interpretation of the model results from
these tracts. Often this data is collected from a variety of sources,
such as real estate websites or remote sensing images. However, the

lack of unified public database for the city of Indianapolis led us
to not include the data in the quantitative analysis—although some
interviewees discussed irrigation habits within their neighborhoods.
This exclusion of landscaping variables likely impacted the predic-
tive accuracy of the model, especially for suburban census tracts,
which are likely to have larger yards that require irrigation. Future
work should seek to include these variables, particularly if the end
goal is to improve predictive accuracy.

Finally, this study leveraged a two-stage approach for variable
selection that relied on a pre-detremined correlation threshold.
While this process has been leveraged in several previous studies
(Genuer et al. 2010; Mukherjee and Nateghi 2017; Obringer et al.
2020b), the correlation pre-screening may add bias, particularly if it
involves expert opinions in the decision-making process. To min-
imize this opportunity for added bias, we maintained a strict com-
putational criterion for the pre-screening filter, which did not rely
on expert opinions. Additionally, the two-stage process implemented
in this analysis was found to be more computationally efficient, as
well as more interpretable, when compared to a heuristic-based
algorithm. That being said, in the future, there is likely to be a shift
towards automated variable selection, particularly as algorithms
become more efficient. There are a growing number of algorithms,
such as the variable selection using random forest (VSURF), which
is similar to the threshold-based approach implemented here (Genuer
et al. 2015). These algorithms can be used with a variety of algo-
rithms, from simple linear regression (Li et al. 2013) to more com-
plex tree-based models (Galelli and Castelletti 2013). In the future,
researchers may opt to implement these procedures to further limit
any potential for added bias.

Conclusions

This study sought to improve the interpretation of water consump-
tion models through the integration of data-driven modeling with
qualitative data collected via semi-structured interviews. This inte-
grated modeling approach, which pulls from both data science and
social science, represents a step towards deeper integration of these
two fields, which is a challenge facing socio-environmental sys-
tems research (Elsawah et al. 2020). Using Indianapolis, Indiana
as a case study, we showed that the developed model can reliably
predict the actual consumption across the seasons, particularly dur-
ing the summer months, which is when water consumption peaks in
the study area. Additionally, we demonstrated that variables such as
the percentage of home ownership and families with kids were key
predictors of total water consumption in a given census tract. Look-
ing at differences within the study area, the results indicated that the
modeled water consumption was representative of the actual water
consumption across the city. A few exceptions were found on the
outer edge of the study area, where lots tend to be larger, possibly
indicating that in these areas’ water consumption is more dependent
on housing characteristics (lot size, house age, etc.) than demo-
graphics. Additionally, there were some areas in the city in which
the model predicted more water consumption than in reality. Using
resident interviews to supplement these results, we showed that so-
cial norms regarding water conservation may play a role in limiting
water consumption in certain areas around the city. This highlights
the need for utilities and policymakers to consider the conservation-
focused social norms of communities when trying to implement
water conservation initiatives and plan for future water supply needs.
That being said, this study mainly focused on presenting the model
results, rather than delving deep into the implications of using
this model in a practical sense. Therefore, future work should
further investigate the impact of this model on reducing water
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consumption. In this sense, researchers and practitioners could test
scenarios in which this model could be deployed to determine op-
timal areas around the city for water saving measures, then tested to
evaluate any changes to overall water consumption. This would fur-
ther add to the practicality of the presented model. Future research-
ers could also look into segmentation analysis, which was briefly
mentioned in the Introduction. This type of analysis creates groups
of residents based on shared characteristics and can be used to fur-
ther conservation policies. Although the model was developed and
applied in Indianapolis, the methodology presented is general and
can be applied to a number of other locations around the world,
although different cities are likely to have different important var-
iables. For example, Balling et al. (2008) found intra-city water
consumption patterns in Phoenix to be sensitive to climate, while
our study showed that the climatic changes within the city were not
as important for explaining the differences between census tracts.
To test the current model in different areas would require a more
intensive analysis with similar data across a number of cities.
Although this is outside of the scope of the present study, it is an
area of interest for future research. Finally, the integrated, mixed-
methods modeling approach presented here, which allowed us to
draw a number of conclusions that went beyond single-method ap-
proaches, demonstrates not only the possibility of integrating data
science and qualitative social science, but also the importance of
such integrative frameworks when faced with complex challenges,
such as water conservation.

Data Availability Statement

The data and code used in this study have been archived with
Zenodo (https://doi.org/10.5281/zenodo.6452575) and are also
available on GitHub (https://github.com/reneeobringer/Water
ConsumptionAnalysis).

Reproducible Results

Masooma Batool (Helmholtz Centre for Environmental Research—
UFZ) downloaded, installed, and ran the code using the input data
set and reproduced results in Table 2 and Figs. 2–4.
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