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Mathematics education researchers and classroom teachers have been focused on math-
ematical problem solving as a main goal of school mathematics for decades. From Polya’s
How to Solve It (1945) to present, thousands of mathematics education researchers and
even more practitioners worldwide have studied and struggled with ways to help students
become more confident and able with their skill at applying mathematics to solve prob-
lems. This article describes one strategy for adapting common classroom practice in the
form of textbook word problems to engage students in problem solving activities along
with an example.

A traditional approach to include problem solving in the school classroom has been

the use of textbook word problems. Traditionally, students learn new mathematics and
mathematical techniques, practice these skills through exercises, and then are assigned
a few word problems from the textbook which help them apply those skills. But often
those problems are unrealistically prescribed with all the needed information and only
the needed information included. Furthermore, perhaps believing that students struggle
with and dislike these word problems, teachers may opt to teach the students a set of
procedural steps to complete to arrive at the needed answers. In a sense, the word prob-
lems have become simple skill exercises similar to the exercises practiced earlier in the
textbook section. Students are not required to think critically by, for example, evaluating
a variety of solution pathways. They simply mimic a set of steps and, as a result, their
mathematical reasoning is not enhanced.

Open-ended tasks in the mathematics classroom are commonly considered those tasks
where there are multiple approaches and sometimes even multiple correct answers.
Students are given the opportunity to openly explore some mathematics problem using
a multiplicity of strategies and then given flexibility in how they solve, display, and explain
their solutions. Much discussion and research has centred around the use of these tasks
with both younger students (Boaler, 1998; Varygiannes, 2014; Munroe, 2015) and older
students (Sanchez, 2013; Sole, 2018). Although many traditional mathematics word
problems may have only one correct answer, there may be ways to rewrite or repose the
guestion to make it less procedural and to allow for more flexibility, engagement, and
participation in the solution process.

Mathematics educators have long been aware of students’ struggles with applying
mathematics to real contexts to solve problems. The international PISA (Program for
International Student Assessment) 2018 results (Organisation for Economic Cooperation



and Development (OECD), 2019) note that only slightly more than half of those students
tested (53.8%) have sufficient skills for “building a simple model or for selecting and
applying simple problem-solving strategies.” And only 10.9% can “develop and work with
models for complex situations, identifying constraints and specifying assumptions.” Boaler
and Selling’s longitudinal study (2017) compared two groups of students: one group which
was taught mathematics traditionally and one which learned mathematics using a prob-
lem-solving approach. Eight years later the students who experienced the problem-based
instruction were more likely to be in more highly technical and skilled jobs while the others
were less confident with their abilities to use mathematics in their careers. Much recent
writing has helped teachers explore how to integrate more problem solving and modelling
activities in the classroom including work by Brown (2021) and Galbraith and Holton (2018).
Such exposure to problem-solving in real-world contexts is crucial for preparing students
to be successful in their future endeavours.

One classic optimisation problem from an early calculus class is the ‘pipe around a corner’
problem. One key strategy of such an activity is to choose a problem which has multiple
solution approaches and match with a variety of student backgrounds and preparation.
This calculus problem can also easily be solved in an algebra, geometry, trigonometry,

or pre-calculus class or by using an exploratory approach with graphing technology.

The standard problem typically is stated like this:

T A pipe is being carried horizontally down a 4-metre
3m wide hallway. At the end of the hallway there is a 90°
l turn into a 3-metre wide hallway. What is the length
of the longest pipe which can be carried horizontally

through the hallway? (See Figure 1.)

The statement of this textbook word problem is
simplistic. The situation is described with all the
measures given and the question is posed so that
the mathematics can be completed. Yet it may not be
very engaging to students who likely don’'t need to
carry a pipe through a hallway. One first adjustment
that could be made for classroom presentation is to
change the context by determining what might be interesting to students in the school.
Does the theatre tech crew need to carry part of a stage set through the hallway? Does the
marching band or cheer-leading team need to carry a large banner? The problem can be
posed in a way that is more interesting to students without initially including the measure-
ments. A more relatable context can better engage the students in seeking out the needed
information and exploring a method of solution.

In addition to presenting the problem in a more relatable context, having the students
move into the hallway and take measurements themselves can help to make the problem
even more realistic and engaging. Once students are challenged with the task of carrying
the item (which we’ll continue to call a pipe) through the hallway, they should be asked
to determine where the main obstacles might be; thus, in addition to “problem solving”,
students are responsible for “problem identification”, a layer of complexity that requires
higher-order thinking. Although identifying the tightest corners may be intuitive to the
teacher, some students may need to actually take a walk through the hallways to think
about this. The next task is to measure the hallways (the hallway entering the turn and the
hallway after the turn). If possible, the teacher could provide string, measuring tapes, or
other materials to allow students to estimate the maximum length of the pipe that will fit.

Although the task is to find the longest pipe that will fit, the problem is often solved by
finding the minimum distance through which the pipe will need to fit, so this may be a




good time to explore that while standing in the hallway. Scaffolding may be required

to help students recognise that the maximum pipe length cannot exceed the minimum
distance around the corner. This also suggests that the minimum distance around the
corner and the maximum pipe length have the same value. Students may solve for the
maximum pipe length or the minimum distance around the corner to solve the problem,
but different solution methods are required depending on which variable they are trying
to find. Spending time recognising that the problem can be solved by finding either the
maximum pipe length or the minimum distance around the corner can help support stu-
dents as they look for a possible solution method and develop their problem identification
skills. At this point students have become involved in the context of the problem, have
thought about and determined necessary measurements, and have collected measure-
ments to consider reasonable answers. It is time to mathematise the problem by creating
a model to represent the problem and then explore methods of solution.

Another alteration to the presentation of this problem to make it both realistic and
engaging is to justify the constraints given in the problem. Although these constraints
are given to make the problem more straightforward and limit ambiguity for students,
sometimes the constraints seem counterproductive to a real-world context. One constraint
that some students may recognise is that carrying the pipe completely horizontally means
that the maximum pipe length is going to be shorter than if the pipe is carried at an angle.
Teachers will recognise that this is true but allowing tipping makes the problem more
complex. Depending on the classroom, solving this problem without the constraint of car-
rying the pipe horizontally may provide an interesting extension, but for many classrooms
this approach may be outside the scope of the course. In order to make this problem more
realistic, suggesting that the pipe is too heavy to be carried and tilted around the corner
and needs to be rolled on carts supporting each end provides a more authentic represen-
tation of the constraint. For the solution methods provided, this constraint is assumed.

Although there is only one correct final answer for any given corner in the school building,
this particular problem has a richness of solution methods depending on the background
of students and student choice of strategies and some of these are summarised below.
Again, the goal is to encourage students to create their own solution method. One approach
is to split the students into groups (3 to 5 students) and give them the first task of drawing
the picture to illustrate the situation similar to the one in Figure 1 with all the dimensions
labelled (the dimensions given in the original problem statement will be used in this writing
for illustration purposes). Then the student groups can brainstorm about how to proceed.
An initial goal may be to find an expression for the length of the pipe P which then needs
to be maximised (again, the minimum distance through which the pipe will need to fit) and
the teacher may pose this as a scaffolding question if needed. The amount of scaffolding
and guided discourse involved will depend on students’ experience with such types of
mathematical reasoning. As student problem solving skills develop with continued
experience with this kind of true problem and
as student confidence grows, it is the goal
to provide as little direction as possible to
maximise student exploration and reasoning
development. Multiple solution paths may
evolve as follows.

Solution 1: An algebra student who has not
yet experienced trigonometry or calculus
might approach this problem using Cartesian
coordinates and the Pythagorean Theorem
as shown in Figure 2.




The line sketched on the coordinate plane is the pipe P. The origin of the coordinate
plane (0, 0) is where the pipe hits the left wall. The pipe hits the corner at (4, b-3) when
the pipe meets the opposite wall at the point (a, b). We want to find the length of the pipe
P which is represented by length h in the diagram. The work below eliminates one of the
unknowns (a) by writing it in terms of b using knowledge about the slope m of the line.
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Now using the Pythagorean Theorem on the right triangle with the vertices (0, 0), (a, 0),
and (a,b) and substituting for a yields:
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The graph of this function can be found using technology (Figure 3) and the minimum is
approximated as b = 6.634 m and the length of the pipe h(b) = 9.866 m. Thus, a pipe of 986
centimetres can be carried through the hallway (to the nearest possible centimetre).

Solution 1b: Of course, rather than graphing
the above function, this function can also be il
optimised using calculus with the more advanced
student. In this case, the solution is elementary
but a bit tedious for high school students as it
requires finding the root of the derivative either
by factoring a cubic or using graphing technol-
ogy to estimate:
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These denominators are zero only at b = 3 which is unreasonable for the pipe and the given
hallway. Getting a common denominator and setting the numerator equal to zero yields:

b(b—3)>-3(16+(b—-3)%)=0o0r
b3 -9b2+27b—-75=0



This leads to an opportunity to use The Rational Root Theorem and Descartes’ Rule of
Signs to analyse and classify the roots to this cubic. A graph of this cubic (Figure 4) yields
the root b=6.634 and plugging this into our function h(b) from above gives the similar
estimate of h(b)=9.866 m for the length of the pipe.
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Solution 2: Geometry students might solve this problem by setting up similar triangles
in the following way.

Here the following proportion can be set up
from the similar triangles:
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Using the Pythagorean Theorem twice, the
length of the pipe then becomes:

P(x) = (12)2+16+ VX2 +9

X

The graph of this function yields the optimised solution as before:
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Solution 2b: Again, Solution 2 can be completed using a calculus approach:

Pz\/(%)2+16+\/x27+9
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This derivative is only undefined at x = 0 (which again makes no sense in this context).
Setting this expression equal to zero yields:
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Setting the first and last expression equal to each other yields:

x3 =36 or x ~ 3.3019
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Substituting this into the equation above gives P = 9.866 m.

Solution 3: Another possible solution path involves consideration of the angle theta which
is formed between the pipe and one wall and using triangle trigonometric ratios to write
length P =A + Bin terms of theta as shown in Figure 7.
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P represents the minimum distance around
the corner that the pipe will need to pass
through or the place of “tightest fit”. This
function can then be graphed on a graphing
device to approximate the minimum point as
in Figure 8.
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So, it appears from the graph as if the
minimum distance around the corner
and therefore the largest pipe P that
can be carried through the hallway has
measure approximately P = 9.866 m.
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Solution 3b: Again, an alternate path for those with some calculus background is to create
the same diagram and function as in Solution 3 but to minimise that function on a reasona-
ble interval using calculus techniques. The solution below does just that.
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~ 9.866 metres

This approach again looks for the solution by minimising the distance around the corner
and using that information to inform the maximum pipe length. So, the largest pipe which
can be carried through the hallway would be about 9.866 m or 986 centimetres (to the
nearest possible centimetre).

The previous six solutions in no way present all the possibilities of how the students might
approach this problem. For example, the original diagram presumed that the hallway turns
to the right. If the student considers a hallway turning to the left, the diagrams, angles,
and Cartesian coordinate equations would vary accordingly. Rather than considering the
angle that the pipe makes with one wall, the student might consider the angle which is
complementary to that (the angle that the pipe makes to a line perpendicular to a wall) and
the solution process will change. The richness of this problem lies in the multiple solution
strategies and choices which allow each group of students to approach it in their own way.
In addition, the students may need to carry the pipe around multiple corners (e.g.a4 m
x 3 m corner followed by a 4.5 m x 2.5 m corner) which could lead to some rich extensions.
Other extensions might include conversations about what might happen if the pipe is
tilted (as discussed previously) or how the actual dimensions of the pipe (or other object)
might change the solution. Students may recognise that many pipes, depending on the
material, may have some degree of slack or bending and therefore could make it around
a tighter corner. Conversely, it may be beneficial to emphasise that if the pipe is completely
rigid, having the pipe length exactly the same length as the minimum distance around
the corner may result in the pipe scratching the walls. This leads to a discussion of how to
eliminate this issue without reducing the length of the pipe more than is needed to account
for buffer space. And finally, students should compare their solutions with their estimates
from when they originally measured in the hallway at the beginning of the activity.



Avaluable part of the solution process is to have groups share their solutions during
a debriefing session so that students experience that real mathematics problems often
don’t have only one correct method of solution.

The success of activities as described above depend on the teacher’s ability to facilitate
the classroom mathematics community and process student collaboration during group-
work. Recent work related to this by Tabach and Schwarz (2018), Haataja, et al. (2021), and
Hofmann and Mercer (2016) provide insights and demonstrate that this is an ongoing area
of study. Practical guides such as Strength in Numbers: Collaborative Learning in Secondary
Mathematics (Horn, 2012) can be good resources for classroom implementation strategies.
Likewise, Smith, Steele, and Sherin’s The 5 Practices in Practice: Successfully Orchestrating
Mathematics Discussions in Your High School Classrooms (2020) provides suggestions to help
the teacher facilitate the group conversations as well as the debriefing process. These are
necessary skills which the teacher can grow and perfect as the group problem-solving
tasks are implemented over time.

Many classic textbook word problems can be adjusted to create more engaging and
authentic activities for students. The goal is that students are given the opportunity to
work on problem solving in this way where all tasks and steps are not defined but they
are supported to reason and explore mathematically to create models and approaches
they understand. When students are routinely given these rich experiences, initially
with much scaffolding and guidance and later with less, they can become better at see-
ing mathematical applications and gain confidence in their ability to use mathematics
to explore real problems.
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