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Abstract—This study proposes a low-cost and “proof-of-
concept” methodology to obtain high spatial resolution soil mois-
ture (SM) via processing reflected global positioning system (GPS)
and a multispectral camera data acquired by small unmanned air-
craft system (UAS) platforms. An SM estimation model is developed
using a random forest (RF) machine-learning (ML) algorithm by
combining features obtained from reflected GPS signals (collected
by smartphones and commercial off-the-shelf receivers) in con-
junction with ancillary vegetation indices from the multispectral
camera data. The proposed ML algorithm uses in situ SM measure-
ments acquired via SM probes as labels. A preliminary field experi-
ment was conducted on 210 by 110 m (2.31 ha) crop fields (corn and
cotton) in 2020 (from January to November, including crop planting
through senescence time period) at Mississippi State University
(MSU)’s the heavily instrumented North Farm to acquire data
needed for the ML model to train and test. Our results showed that
both fields could be covered by GPS reflectometry measurements
with about 13 min of flight time at a 15-m altitude, and SM can be
mapped with 5 × 5 m spatial resolution (corresponding to the elon-
gated first Fresnel zone). The model is trained with and validated
against eight in situ SM station datasets via tenfold and leave-one-
probe-out cross-validation techniques. Overall, root-mean-square
errors (RMSE) of 0.013 m 3 m − 3  volumetric SM and R-value of 0.95
[-] are obtained for tenfold cross validation. The proposed model
reached an RMSE of 0.033 m3 m − 3  and an R-value of 0.5 [-] in
leave-one-probe-out cross validation. While having limited data,
the results indicate that high-resolution SM measurement can be
achieved with a low-cost GPS reflectometry system onboard a small
UAS platform for use in precision agriculture applications.

Index Terms—Cyclone global navigation satellite system
(CYGNSS), global navigation satellite system reflectometry
(GNSS-R), precision agriculture (PA), reflectometry, soil moisture
(SM), unmanned aircraft system (UAS).
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I. INTRODUCTION

OIL moisture (SM) content is one of the critical physi-
cal parameters for soil characterization [1], [2]. Accurate

measurement of volumetric SM (VSM) is an essential part of
site-specific precision agriculture (PA) management. Efficiently
planned and managed irrigation water not only improves yields
and product quality but also protects the environment and limited
natural sources [3]. VSM traditionally can be measured using
in situ SM probes in the field. This technique is generally
regarded as accurate and reliable to the sensitivity of the SM
probe and it is used as a reference for determining VSM [4].
However, high-resolution SM observations through SM probes
can be time consuming, costly, and inefficient for large
heterogeneous fields.

Over the last several decades, remote sensing approaches have
become a popular way of retrieving spatially distributed VSM
for regional and global studies. A variety of sensing techniques
have been utilized to estimate VSM. Space-borne microwave
remote sensing missions such as soil moisture and ocean salinity
(SMOS) [5], soil moisture active passive (SMAP), Sentinel-1
[6], advanced SCATterometer [7], Fengyun-3B [8], and mete-
orological operational satellite [9] are typical examples of those
that provide surface SM measurements on a large scale. These
microwave-based satellite technologies mainly use L-band
(1–2 GHz) or C-band (4–8 GHz) observations and produce a sur-
face (top few centimeters) VSM product from active or passive
observations. Their spatial temporal characteristics vary with
respect to the sensing modalities. For instance, the European
Space Agency’s (ESA) SMOS and the National Aeronautics
and Space Administration’s (NASA) SMAP [10] are both ded-
icated SM missions that are instrumented with L-band passive
radiometers and provide 36-km spatial and 1–3 days temporal
resolution. Sentinel-1 is another ESA mission equipped with
C-band synthetic aperture radar and can create SM maps with
1-km spatial and 6–12 day temporal resolution [6]. Although
all existing satellite missions are critical for many large-scale
climate, hydrometeorology, atmospheric research, and water re-
source management studies, they have a coarse spatio-temporal
resolution that do not meet the practical requirements for many
high-resolution subfield scale PA applications.

Unmanned aircraft systems (UASs) are widely available and
utilized in PA, such as vegetation trait and stress monitoring [11],
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[12], weed mapping [13], and irrigation management [14]. How-
ever, compared with these UAS applications, subfield scale VSM
estimation studies are very limited and can be grouped as soil
spectral reflectance [15], vegetation spectral reflectance [16],
[17], and microwave response [18].

Soil spectral reflectance from UAS platforms can be, for in-
stance, used for VSM estimation by characterizing its influence
on spectral reflectance with laboratory measurements as studied
by several previous works [19], [20]. These studies showed that
reflectance level decreases as VSM increases due to a darkening
of the soil surface color. Water Index SOIL [21], Shortwave An-
gle Slope Index [22], and Normalized Soil Moisture Index [23]
are several spectral indices that are highly correlated with VSM.
These indices have been tested in the laboratory at varying VSM
levels over different bare soil types. The main drawbacks of soil
spectral reflectance are that the performance depends on soil
color and texture and organic material. In addition, the penetra-
tion depth is limited to the uppermost layer of soil. Furthermore,
these indexes are mainly valid for bare or sparse vegetation areas
and require atmospheric compensation for higher sensitivity. In a
recent study [24], the authors showed the correlation between
VSM and the brightness of UAS-based visible images for arid
and semiarid regions. To minimize the effect of the atmosphere,
the UAS flight height was kept close to the ground (1.4 m).

Establishing an inversion model of VSM based on vegetation
spectral data is an alternative and well-studied approach for
assessing SM. The principle is to use remotely sensed spec-
tral observations strongly linked with VSM [25]. The studies
show that many canopy spectral indices and biophysical and
biochemical parameters are strongly correlated with VSM [26].
Recently some UAS applications have been performed using the
vegetation reflectance technique [25], [27], [28].

The advantages of using the spectral index of vegetation can
be summarized as sensitivity to target parameters and insensitiv-
ity to interference factors [29]. However, this technique depends
on vegetation type and is not available for barren and sparsely
vegetated areas. Additionally, changes in spectral indices can
lag changes in climate/irrigation/precipitation. This lag may vary
between 20 and 45 days depending on vegetation type [30], [31].

Using global navigation satellite system reflectometry
(GNSS-R) for measurements of VSM is another attractive re-
mote sensing technology. In this technology, all navigation satel-
lites act as a transmitter, and a small size and low-cost receiver is
sufficient to capture reflected signals from the ground. GNSS-R
has been used in many geophysical applications, such as ocean
surface winds [32], snowpack, sea ice [33], vegetation [34], and
wetland [35] and flooding monitoring [36].

GNSS-R has already demonstrated the ability to sense SM
from space-borne [37], airborne [38], and tower platforms [39].
For instance, many research groups developed models and algo-
rithms to retrieve VSM from land observations of NASA’s recent
spaceborne GNSS-R mission called cyclone global navigation
satellite system (CYGNSS) [40], [41], [42], [43], [44]. Most of
these CYGNSS-based SM retrieval studies use peak power of
delay-Doppler maps to calculate surface reflectivity. Although
CYGNSS-based VSM estimations have high spatial and tem-
poral resolution compared to other space-borne missions that

measure VSM, its resolution under coherent scattering assump-
tion is approximately 7 by 0.5 km with 1 ms integration time, and
25 by 25 km when noncoherent scattering is assumed [40]. For
both cases, the achieved resolution by CYGNSS SM products is
not enough for subfield scale PA applications. Airborne GNSS-R
studies that create VSM estimations have been performed with
special aircraft and GNSS systems. These may be expensive and
produce spatial resolutions (30–300 m, depending on aircraft’s
speed and altitude) that are not fine enough for many PA appli-
cations [38], [45], [46].

To bring the GNSS-R technique into PA applications, we
utilize a down-facing smartphone on a low-altitude (� 15 m)
small UAS, where GPS signals reflected from the land surface
are collected via the built-in GPS chip of the smartphone [47].
Due to the long pulse length of GPS signals (about 300 m for
Coarse Acquisition C/A code), both direct and reflected
signals interfere at low altitudes (e.g., below height of 100 m).
Thus, we use a ground plane to block the direct signal and to
isolate surface-reflected GPS signals that carry information
around specular points (SPs). The preliminary results of the
study indicate that reflected signals are highly correlated with
surface features, including high reflectivity over ponds, sensi-
tivity to land crop types, and moisture in the soil. Furthermore,
the smartphone is capable of simultaneously acquiring multiple
measurements from different surface locations (more than 10,
depending on visible GNSS satellites during the experiments).
Discussions on the UAS configuration and flight information,
antenna and orientation effects, and the methods to prevent direct
signals for GNSS satellites are provided in [47].

This article extends our aforementioned study over larger and
more diverse datasets using both smartphone and custom GPS
receivers along with auxiliary vegetation features from multi-
spectral cameras to develop a data-driven high-resolution VSM
retrieval algorithm. We train and test a machine learning (ML)
algorithm using experimental data collected from UAS-based
systems. The ML model aims to learn nonlinear and complex
land surface characteristics between VSM and reflected GPS
signal and multispectral data features. To this end, we conducted
a preliminary field experiment on 2.31 ha crop fields (corn and
cotton) from January to November in 2020 (including crop plant-
ing through senescence) at MSU’s heavily-instrumented North
Farm. The reflected GPS data are complemented by ancillary
vegetation indices from a multispectral camera as well as in situ
SM measurements.

The overarching objective of the present study is to develop a
low-cost “proof-of-concept” solution for high-resolution (sub-
field scale) VSM retrieval from small UAS platforms. As a
retrieval approach, we adapt our previously developed and vali-
dated space-borne GNSS-R VSM retrieval approach [48] to the
geometries from small UAS platforms. To show the efficiency
of the proposed model, we trained and tested the ML model
independently using GNSS-R measurements for SM retrieval.
Then, we trained the model with merged datasets. This study is
fundamentally different from other UAS-based VSM retrieval
systems by providing a GNSS-R microwave-based solution
while the others focus mainly on image-based systems. The
distinctions of this study can be summarized as follows.
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Fig. 1.     Simplified structure of the proposed approach. UAS1a,b collects reflected GPS signals from the SPs via smartphone (for UAS1a) or U-blox GPS receiver
(UAS1b). UAS2 collects multispectral images of the study field weekly to calculate vegetation spectral indices NDVI and VWC. Inputs C /N 0 ,  elevation, and
azimuth angles from GPS receiver, and NDVI and VWC feed an RF model. The model trained with eight in situ SM measurements estimates SM for all study
fields.

1) This study proposes a ubiquitous and low-cost microwave-
based approach on a small UAS for subfield scale VSM
estimations that could be suitable for PA.

2) This study fuses microwave measurements of reflected
GPS signals with ancillary vegetation indices from a mul-
tispectral camera and develops a random forest (RF) ML
model that can map VSM at high resolutions.

3) Contrary to the spectral reflectance-based technique (sen-
sitive to greenness of vegetation), the proposed method
efficiently operates for bare and vegetated areas.

4) Compared to space-borne reflected GPS data acquisition
techniques, where direct and reflected signals are isolated
in time, we use mesh metal planes to isolate reflected signal
from the direct signal.

This article is organized as follows. Section II describes
the methodology, materials, data preparation process, and ML
algorithm that were applied in the study. Section III presents
and evaluates the experimental results. The implication of the
findings and the potential future improvements of UAS-based
VSM estimations are discussed in Section IV. Finally, Section V
summarizes this study.

II. METHODOLOGY

This section describes the concept and overall structure of
UAS-based VSM estimations from GNSS-R and ancillary mea-
surements, material and hardware in developed systems and the
flight details, the properties of the study field and details of the

experiment, collected data types and preprocessing for the data,
and details of the ML model for VSM estimation.

A. Proof of Concept Overview

Fig. 1 shows the concept and the simplified experimental steps
for the proposed approach. A down-facing GPS antenna with a
ground plane is used. The receiver can be a smartphone or
commercial off-the-shelf receiver—UAS1a,b in the figure, and
acquires reflected GPS signals over a specific predefined flight
path (see Section II-C and Fig. 3) on each experiment date. This
provides consistent data collection and near full coverage of
the field. As UAS1 moves with a constant speed (e.g., 5 m/s in
this work), the GPS receiver collects reflected carrier-to-noise
density ratio (C /N0 ) measurements from multiple SPs for
each visible GPS satellite, simultaneously. Through these
observations, we generate reflected C/N0 maps of the field. Two
different GPS receivers (i.e., built-in GPS chip and antenna of a
smartphone, and a custom GPS receiver with linear polarized
antenna) were used to acquire the reflected signals in the study.
Experimental flights were performed for each receiver type
within a 30 min lag.

A separate UAS (UAS2 in the figure) is equipped with
RedEdge-MX multispectral camera (https://micasense.com/
rededge-mx/), which provides spectral images in blue, green,
red, red edge, and near-infrared (NIR) bands. The collected
multispectral camera data are used to calculate specific vege-
tation indices, such as normalized difference vegetation index

https://micasense.com/rededge-mx/
https://micasense.com/rededge-mx/
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TABLE I
FLIGHTS AND STATISTICS OF COLLECTED DATA FROM DIFFERENT GPS RECEIVERS

(NDVI), and vegetation water content (VWC), which are used
as ancillary data in the developed ML-based VSM estimation
architecture. UAS2, equipped with the multispectral camera,
performs its weekly flight separately from UAS1. Hence, a
weekly multispectral data are collected to observe changes in
vegetation indices over the same study field.

To collect the ground truth SM measurements, eight HOBO
SM probes are placed at different locations in the field. The
placement of the probes is shown in Fig. 8. Each probe provides
SM measurements for the top 5 cm VSM every 15 min. We
acquire and record daily averaged surface SM values through
the experimental period. These ground truth measurements are
then used to train and validate the ML algorithm with the SP
observations close to the probes. The ML model was trained
using five features extracted from received GPS data and mul-
tispectral images. These features are reflected C /N0 ,  elevation
and azimuth angles from GPS data, NDVI, and VWC indexes
calculated from multispectral orthoimages. The in situ SM val-
ues from the probes are used as the labels for the ML model.
After the ML model is trained, the trained model is applied to
test data, and an SM map of the study field is generated.

B. Materials and Hardware

In the beginning of the study, we started collecting reflected
GPS signals with a smartphone. However, the preliminary tests
showed that the irregular pattern of smartphone’s bulit-in an-
tenna made the interpretation for received signal challenging
despite the use of a gimbal tofix its orientation. We decided to use
an omnidirectional antenna with commercial GNSS receivers
(see Section III-C and Table I) to minimize the impact of antenna
and orientational variations on the measurements. Because of
this, we started to fly a separate U-blox-equipped UAS on June
15th. We used a small-size quadcopter for U-blox-equipped
UAS and a midsize quadcopter for smartphone-equipped UAS.
The small-size UAS was built around a 550-mm carbon fiber
frame (ZD550) with 13-in (33 cm) propellers and used Pixhawk
arducopter as the flight controller, as displayed in Fig. 2(a). We
used a U-blox application board C099 ZED F9P and AA.175 –
Magma X linear polarized antenna as the GPS receiver. The
antenna is attached underneath an 18-in (45.7 cm) circular mesh
metal plate to block direct signals from GPS satellites affixed at
the bottom of the UAS.

The midsize quadcopter was built on a Tarot 960-mm frame
with 18 in propellers to carry smartphone-based (Xiaomi Mi8)
GPS receiver. The receiver was attached underneath a 12-in
(30.5 cm) circular mesh plate connected to a three-axis gimbal
(Gremsy T3 V2) at the bottom of the drone depicted in Fig. 2(b).
The built-in antenna of the smartphone is highly irregular, so
the gimbal keeps the smartphone at a fixed orientation and level
regardless of drone’s pitch, yaw, and roll movement [49]. The

Fig. 2.     UASs used for GNSS-R data collection. (a) UAS1b, equipped with
U-blox GPS receiver. (b) UAS1a, equipped with smartphone.

metal mesh plate works as an electromagnetic shield that isolates
the direct GPS signal from the reflected one. The UAS retracts
its legs while collecting the reflected GPS signals. The U-blox
GPS receiver is controlled with an onboard minicomputer on the
UAS using a software (U-Center) designed for U-blox receivers
while the smartphone uses an Android app named rinexON to
record the signal. The GPS receivers on the UAS receive and
record the reflected GPS signal while flying on the predefined
flight path. A 5 in (12.7 cm) touch screen display is attached to
the UAS for operating the custom GPS receiver. We also
connected a downward-looking GoPro camera on the UAS for
the real-time monitoring and recording of the field condition.

C. Study Field and Experiments

We conducted our study on a 210 by 110-m (2.31 ha) field
(lower left corner 33◦28015.7000N : 88◦46027.5300W ) at the R. R.
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its operation on September 15th, and probes 2113 and 2115
stopped on October 13th, 2020. After a sensor malfunction on
August 20, SM data from probe 2125 were deemed unusable and
removed. The measurements after August 2020 of this probe
were removed from the dataset. Fig. 4(b) shows the statistics of
each SM probe. The data corresponding to the in situ SM
measurements period were used for the SM retrieval model
development process.

The UAS flew at a constant speed of 5 m/s with one-second
integration time. That means each 1 s observation corresponds
to a trace of 5 m path on the ground. While the size of the first
Fresnel zone at 15-m altitude for usable elevation angles (larger
than 15◦) is smaller than 5 m, 1-s observations were gridded into
5 × 5-m pixels and a VSM estimation is done for each resolution
grid, where GPS observations are acquired.

Fig. 3.     Flight plan of the study.

Foil Plant Science Research Center, Mississippi State Univer-
sity, Starkville, MS, USA during January–November in 2020.
The mean annual temperature is 17.8 ◦C. July has the highest av-
erage monthly temperature, and January has the lowest. Annual
precipitation is 1 329 mm. Average monthly humidity ranges
from 55% to 66%. The elevation of the field is 92 m.

At the time of the study, the field was organized with a
split-plot arrangement and was planted with corn and cotton as
main crops. The corn was planted on April 4 and harvested on
September 11. The cotton was planted on May 4 and harvested
on October 15. For all crops, the crop rows were spaced 38 in
(96.5 cm).

The UAS follows a predefined flight path that contains nine
north–south flight lines, as depicted in Fig. 3, while collecting
GPS signals. The UAS maintains a 15-m altitude during its
whole flight time. From beginning to end, the UAS flies ap-
proximately 3900 m with a speed of 5 m/s within its 13 min
flight time. This includes flights over a pond at the north end of
the fields. During the flight, GPS receiver records National
Marine Electronics Association files every second. A total of
50 flights were performed with the smartphone-equipped UAS
between January 7 and October 15, and a total of 230 150
samples were collected. With the U-blox-equipped UAS, 40
flights were performed, and a total of 209 757 samples were
collected between June 15 and November 12. Fig. 4(a) shows the
flight dates performed with each UAS and measurements of eight
SM probes (see Fig. 8 for the location of SM probes). Although
we performed flights before corn planting and after the harvest
of cotton, these flights were not shown in the figure. For the
cornfield, SM probes’ measurements started on May 7th, 2020
and ended on August 21st, 2020. SM probes in the cotton field
started measurements on May 26th, 2020. Probe 2111 stopped

D. Data Preparation

The reflected GPS (L-band) signal power is not only a function
of VSM but also surface roughness and vegetation. Vegetation
cover affects reflected signal power. Vegetation cover on a soil
layer attenuates incident and reflected signals and adds its reflec-
tion [50]. The effect of the vegetation cover should be considered
during the model development process. The vegetation cover
can be characterized using several different indices. NDVI is
an often-used index that shows vegetation activity [51]. VWC is
another essential parameter used in retrieving VSM via mi-
crowave remote sensing. The weekly NDVI is calculated from
light reflectance in the red and near-infrared wavelength bands
in multispectral images as

NIR −  Red
NIR +  Red

VWC is calculated by using NDVI and the stem factor sf  of
the vegetation [52] as

VWC =  1.9134 ×  NDVI2 −  0.3215 ×  NDVI

NDVImax −  NDVImin
f 1 −  NDVImin

where NDVImax and NDVImin are the annual maximum and
minimum NDVI at a given location, respectively. The stem factor
is an estimate of the peak amount of water residing in the stems,
and for crops, it is taken as 3.5 by following SMAP’s retrievals
approach [53]. NDVI and WVC maps at 8-cm spatial resolution
are aggregated to 5-m by averaging to match the GNSS-R
resolution. We have used the closest available multispectral data
to add NDVI and VWC to the GNSS-R features.

The recorded GPS navigation messages are decoded, and
C /N 0  ratio, elevation, and azimuth angles are extracted for each
visible GPS satellite during the flight. The C /N 0  is the ratio of
received carrier power to noise density in the receiver system.
The elevation describes the angle of a satellite relative to the
horizontal plane. The azimuth is the angle between the satellite
and true north. The observations that correspond to elevation
angles lower than 15◦ were masked since the signal strength is
much smaller and fluctuates more due to possible multipath as a
blend of direct and reflected signals is expected at low elevation
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Fig. 4.     (a) in situ SM measurements and flight dates. (b) boxplots of SM measurements.

angles. In addition, the C /N 0  observations smaller than 15 dB
were removed from the dataset. Specular reflection points are
determined using simple image theory for each reflected GPS
signal using the position of the UAS and the GPS satellites.
During the study, only SP reflection is assumed and surface
roughness effects are ignored. Each specular reflection point
and its corresponding data are gridded into 5 ×  5 m to generate a
daily input map.

E. Machine Learning-Based VSM Estimation and Validation

This section describes the development of ML-based model
for VSM estimation, as illustrated in Fig. 1, utilizing the col-
lected dataset described in Section II-D. In this study, an RF
regression algorithm was utilized due to its higher performance
in comparable satellite-based VSM estimation studies [43], [48],
[54], [55]. The RF model is trained and validated with a total of
five input features C/N0, elevation angle, azimuth angle, NDVI,
and VWC. in situ SM observations are used as the reference SM
labels for the RF model. The required ground truth VSM labels
were provided by eight SM probes located in the field acquiring
data throughout the experimental period.

The developed RF model in this study contains ten trees with
a maximum split size of six for each tree. The RF model is
trained using a least-squares boosting ensemble strategy with a
learning rate of 0.75. During the model training, we used only
samples whose SP location was close (< 5 m) to any SM probes.
Two different training and cross-validation procedures are used
to assess the performance of the proposed SM model. These
are tenfold cross validation and leave-one-probe-out validation.
For the tenfold cross validation, the dataset is first split into
ten folds, then nine folds are used as the training set, and the
remaining fold is used as the testing set. The overall evaluation
result is the averaged result of each fold. In the second cross
validation, we have used the leave-one-probe-out approach. This
leave-one-out cross validation is one of the effective ways to

evaluate how well a model will perform on out-of-sample data.
In the leave-one-probe-out approach, data for a single SM probe
are used as the test dataset while data for all other SM probes are
used for training. Having a dataset of eight SM probes, seven
were chosen for the training model, and the remaining probe’s
data were used for the test. These procedures were repeated for
each SM probe data. The developed ML model performances
are evaluated using root-mean-square error, unbiased RMSE,
and R-value performance metrics.

III. RESULTS

The results will be given in two parts: first, for a selected
experiment day, the maps that belong to measured features
and the estimated VSM map will be provided. Second, the
cross-validated performances will be summarized in the terms
of performance metrics.

A. Experimental Results

A total of 50 flights were performed with smartphone-
equipped UAS during January 7 to October 15. During these
flights, the smartphone collected data from an average of 10.14
(standard deviation ±1.35) GPS satellites. After masking low-
reflected power signals and low elevation angle satellites, data
from an average of 6.28 (±1.05) GPS satellites remained for
VSM estimation each day. From the utilized GPS satellites, an
average of 4736 (±878) SP reflections were recorded daily. For
the U-blox GPS receiver-equipped UAS, 40 flights were
performed between June 15 and November 12. With these mea-
surements, an average of 7.56 (±0.8) usable GPS satellites and
5378 (±629) SP observations were recorded. The results show
that the SP measurements with smartphone receiver cover 84%
of the study field, while the experiments with the U-blox GPS
receiver cover 86% of the field on average. It is also possible that
multiple SPs fall into the same 5 ×  5-m grid cells. We observed
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Fig. 5.     Measured inputs on July 10. (a), (b) Reflection power and elevation angle for smartphone. (c), (d) Reflection power and elevation angle for U-blox.
(e) NDVI. (f) VWC.

that 71% and 82% of the cells have multiple specular measure-
ments for smartphone and U-blox GPS receivers, respectively.
Table I reports the statistics about the performed experiments.

Fig. 5(a)–(d) shows the observations over the field for C /N 0

and elevation angle obtained from U-blox and smartphone
equipped UASs, respectively. NDVI and VWC observations
over the same field are shown in Fig. 5(e) and (f). All the data
shown in Fig. 5 were collected on July 10. On this day, U-blox
equipped flight was performed at 18:40 UTC, and during the
flight, signals from nine GPS satellite are recorded by the GPS

receiver. Data with elevation angle lower than 15◦ are removed;
hence, data of two GPS satellites were removed due to the
elevation angle flag. The elevation angles of other GPS signals
were 65◦, 50◦, 42◦, 57◦, 20◦, 35◦, and 30◦. A total of 5343 sample
data were collected during the flight. The coverage rate of the
field is 0.88 and the rate of the grid with multiple SP is 0.84.
Fig. 6 shows the distribution of SPs collected via U-blox on the
experiment day. The figure indicates that multiple reflections
that belong to different GPS satellites can be measured from
the same grid during the experiment. For this case, individual
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TABLE II
OVERALL PERFORMANCE OF GPS RECEIVERS IN DIFFERENT

CROSS- ALIDATION TECHNIQUES WITH GNSS-R + SPECTRAL AND GNSS-R
FEATURES

Fig. 6.     Distribution of calculated SP collected via U-blox in the study filed on
July 10.

VSM estimations are obtained from the developed ML model
for each GPS observation. These individual VSM estimations
for the same grid were averaged and assigned as the final VSM
estimate of the grid for that day. The results show that the
currentflight duration of 13 min is sufficient to acquire necessary
measurements to cover more than 80% of the entire study field.

Fig. 7(a) and (b) shows the estimated VSM using U-blox
GPS receiver and smartphone on July 10, and Fig. 7 (c) shows
the differences between two VSM estimations. Although the
proposed method provides VSM estimation for most parts of
thefield, there are grids without SM estimation. Uncovered parts
generally are the east and west ends of the field, and they are
parallel to the flight path. This result indicates that the flight
lines should start before the boundary of the study field. From
the figure, it is clearly seen that there are a smooth changes over
the field and the overall VSM for corn (upper part) and cotton
(lower part) are slightly different. This difference and the alley
between the two crop fields are more noticeable in the U-blox
VSM estimation map. The figure shows that the overall VSM
values via smartphone are slightly higher than VSM estimations
via the U-blox unit.

B. Performance Evaluation of the VSM ML Model

In this section, we evaluated UAS-based VSM predictions
against the in situ VSM measurements from eight SM probes on
the field. Fig. 8 shows the positions of SM probe stations. The
evaluation was performed with two different training-validation
strategies: tenfold cross validation and leave-one-probe-out val-
idation. Fig. 9 provides a temporal comparison of UAS-based
VSM estimates against SM probe measurements for tenfold
cross validation. The figure shows that UAS-based GNSS-R
VSM estimates follow the in situ measurements closely for all
available SM probes. For this case, an overall RMSE of 0.013 m3

m−3 and a correlation coefficient of 0.95 are obtained. The
ubRMSE for individual SM probe varies between 0.006 and
0.015 m3 m−3 .

Fig. 10 shows the estimated VSM for leave-one-probe-out
cross-validation and in situ measurements in time series. This
validation process is more challenging because the ML model
that is tested over measurements at a single probe has been
trained with measurements from different portions of the field
without any observations from the test probe. In this challeng-
ing approach, overall RMSE and R-value were calculated as
0.033 m3 m−3 and 0.50, respectively. ubRMSE was calculated
between 0.016 and 0.037 m3 m−3 for different in situ stations.

Moreover, we independently trained and tested the SM re-
trieval model using GNSS-R features. The results indicated that
the fusion of spectral and GNSS-R features provides better SM
retrievals for both devices in both cross validations. Using only
GNSS-R features, the smartphone dataset reached an R-value
of 0.38, whereas the U-blox dataset reached 0.48. By adding
spectral features, NDVI and VWC, to the dataset, we have
reached R-values of 0.48 and 0.50 for smartphone and U-blox,
respectively. The spectral inputs provided information related to
the vegetation to correct the effect of vegetation in the proposed
method. Table II summarizes the overall performance of the
proposed model for different cross-validation techniques and
independent comparison of spectral and GNSS-R features.

C. Comparison of Smartphone and U-Blox GPS Receivers

The overall performance results of the study show that a
UAS-based smartphone or a specially designed GPS receiver
could be used to collect reflected GPS signals. Highly accurate
VSM estimations can be achieved from data collected by both
receivers with the proposed ML-based approach. However, as
seen in Table II, the U-blox GPS receiver data model has
comparably better performance than the smartphone receiver
data model. The receive antenna for the U-blox GPS receiver is
more uniform than the smartphone antenna.

To make a better comparison, we performed two UAS flights
with 15-min lags for most of the study period. First, we flew the
smartphone-based receiver, and then, we flew the U-blox-based
receiver. The satellite’s elevation angle did not change signifi-
cantly between these two flights as it takes only 13 min to com-
plete the full flight path. The received C/N0 for both U-blox and
smartphone receivers and the elevation angle during both flights
are shown in Fig. 11. The red dotted lines represent the reflected
signal received by the smartphone in dB-Hz, while the black
dashed line represents the signal received by the U-blox GPS
receiver in dB-Hz. The solid blue line represents the satellite’s
elevation angle in degree. Due to the near constant elevation
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Fig. 7.     Estimated VSM via (a) U-blox GPS receiver, (b) smartphone receiver, and (c) difference between U-lox and smartphone on July 10.

have used a gimbal to obtain a consistent smartphone orientation
during the experiments to reduce this effect and incorporated
elevation angles into the ML model, the effect of orientation
and antenna issues was observed in the final results.

Fig. 8.     Positions of the in situ VSM measurement stations on the field.

angle, we received comparable data from both receiver types.
In this figure, the bottom x-axis (time in UTC) and left y-axis
(C /N0  [dB Hz]) represent the smartphone-based receiver’s sig-
nal and top x-axis (time in UTC) and left y-axis (C /N0  [dB
Hz]) represent the U-blox-based receiver’s signal. The bottom
x-axis (time in UTC) and right y-axis (angle [degree]) represent
the satellites elevation angle. The shadowed region in the fig-
ure shows the signal strength received over the water body, as
displayed in Fig. 3. While both receivers acquired similar and
strong reflected signal over the water body, it can be seen that
the U-blox receiver exhibits higher variation (and potentially
higher sensitivity) over the field compared to the signal strength
acquired by the smartphone. In addition, the results in Table I
show that smartphone collected data from fewer GPS satellites
than the U-blox GPS receiver. These observations are confirmed
with the developed ML model performance results provided in
Table II, where the ML model developed for smartphone is
comparably less accurate than the U-blox model. This indicates
the higher reliability of U-blox receiver over the smartphone.
This could be due to the GPS antenna pattern of the smartphone
being more complex as the received signal power changes along
the antenna pattern at different elevation angles. Although we

IV. DISCUSSION

This section will discuss the relationship between the exper-
imental flight plan, collected data, developed ML model, and
resultant VSM estimations. In the study, a 13-min flight duration
with a 15-m flight altitude allowed the sensor to collect enough
data to cover more than 80% of the study field (about 2.31 ha)
with 5 ×  5 m grid sizes. Decreasing the flight speed and/or
altitude will allow for more data at finer spatial resolutions at
the expense of longer flight times. However, longer flight times
require higher battery capacity, which adds more complexity to
the UAS design. Also, decreasing flight speed leaves the flight
more susceptible to wind and motion, which, in turn, affects
the quality of observations. The selected flight parameters were
chosen to balance flight duration, stability, and field coverage.

Averaging multiple reflection data points over a single grid
(in this study it was 5 ×  5 m) can improve performance of
VSM estimations. However, reducing the speed of UAS makes
the stability of the UAS more difficult and will change the GPS
antenna orientation that results in changes in measured reflection
power. As an alternative, the UAS can repeat the flight path
and more reliable data can be obtained. Although, in this study,
we recorded the orientation (roll, pitch, and yaw angles) of the
UAS and the GPS antenna, these parameters are not used in
development process of the ML model due to the lack of ground
truth data to prevent possible overfitting of the model.

The independent evaluation of GNSS-R shows the impor-
tance of GNSS-R features for SM retrieval. Merging GNSS-R
features with spectral features provides an improvement in SM
estimation. Although the results of the fusion of GNSS-R and
spectral features have promising improvements in SM retrieval,
it is important to note that we are performing this analysis with a
limited number of data. A more detailed analysis will be
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Fig. 9.     Time series of measured and estimated VSM in tenfold cross validation for U-blox GPS receiver.

Fig. 10.     Time series of measured and estimated VSM in leave-one-probe-out cross-validation for U-blox GPS receiver.

performed in future studies covering more frequent data collec-
tion. We want to note an essential point for GNSS-R-based SM
retrieval; the reflected signal (C/N0) is not only a function of SM
but also antenna pattern, GPS satellite output power, elevation
angle, surface roughness, and attenuation effects of vegetation.
Although the output power of GPS satellites is consistent in
time, this power level is not the same for each GPS satellite.

The distance between the GPS satellite and the study field (a
function of the elevation angle) is another critical parameter that
affects measured C/N0. Normalizing measured C/N0 with GPS
satellites’ transmit power and elevation angle may help increase
the SM retrieval accuracy. In this study, we used GPS data only.
For future research, we will consider other GNSS missions, such
as Galileo, GLONASS, and Beidou for the SM retrieval.
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for the UAS. In addition, we used daily averaged SM probe
measurements from the field as reference SM. However, this
makes it challenging to catch diurnal changes and negatively
affects SM retrieval performance. To remedy these drawbacks,
one can use a mobile robotic instrument that can traverse crops
to take SM measurements over an entire field coincident with
UASflights. This can allow us to train and test the model spatially
at more locations. In addition, we plan to increase the number of
SM probes in the study field for a better site-independent
model. Also, we plan to conduct more flights over longer periods
that cover at least two growing seasons to increase the time
independence of the model.

Fig. 11.     U-blox and smartphone signal time series Comparison for GPS
satellite 15.

Although surface roughness affects on L-band reflection, it
is neglected in this study. If surface roughness parameter can
be measured via another drone equipped with a LIDAR, it may
be included in the ML model for enhanced VSM estimation.
We filtered the reflections with elevation angles lower than 15◦

since the observation may belong to incoherent reflection. This
threshold level could vary depending on the surface conditions.
Increasing this threshold level will reduce possible incoherent
reflections. However, remaining GPS reflections may not be
enough for complete spatial coverage of the study field.

In this study, we have used NDVI and VWC to measure veg-
etation information. However, other vegetation indices, such as
the green NDVI and vegetation health index, can be considered.
To obtain vegetation indices, a separate UAS with a multispectral
camera is utilized. Both the GPS receiver and the camera can
also be equipped in the same UAS. This would allow a single
UAS to generate a VSM map of the field. Current experiments
are done with a separate UAS to obtain more stable data, but our
future work will include the development of a joint GPS receiver
and multispectral camera load for a single UAS platform. As
another alternative, instead of a multispectral camera, a low-cost
RGB camera can be used, and different vegetation index can be
calculated as input to the VSM retrieval model. Detailed analysis
of such possible changes should be done in order to determine
the optimal combination of sensing strategy for UAS-based
high-resolution VSM mapping.

Finally, this is an initial study that was performed with limited
flight and in situ measurements. In particular, the limited number
of SM probes in the field makes the developed ML model’s
spatial evaluation difficult. As seen in Fig. 8, some SM probes
are located very close to each other, so the spatial variation of
reference SM is limited. In addition, temporal SM variation of
the field is limited between 0.015 and 0.035 m3 m−3 . Although
there were multiple rain events during the study period, we could
not collect data on rain days because of difficult flight conditions

V. SUMMARY AND CONCLUSION

This article illustrated the UAS application of a low-cost and
high-resolution (subfield scale) GNSS-R-based remote sensing
methodology for surface VSM in PA. Surface-reflected GPS
signals, in combination with vegetation indices via a multispec-
tral camera, provide sufficient modeling information to estimate
surface SM accurately. In the study, nonlinear and complex land
surface characteristics between VSM and reflected GPS signal
and multispectral data were modeled using an RF ML algorithm
that uses limited features, C /N0 ,  elevation and azimuth angle,
NDVI, and VWC. VSM estimation was performed with a de-
veloped ML model for the crops’ complete growing season.
Surface VSM estimation was accomplished with an overall
RMSE of 0.013 m3 m−3 and correlation of 0.95 for tenfold
cross validation. The obtained performance score of the model
using different cross-validation techniques shows the capability
of the application for different crop fields. The proposed method
can enable accurate prediction in the agricultural application to
identify dry/wet spots and water-stressed crops for different
time periods. A more accurate and better spatial resolution could
be obtained by adjusting different flight plans (flight altitude,
flight speed, and flight duration). We consider this work as a
preliminary “proof of concept” study and future research will
use more in situ SM measurements and flights to obtain an
enhanced-trained ML model that can allow more detailed
performance analysis of the proposed approach.
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