Using Domain-Specific, Immediate Feedback to Support Students
Learning Computer Programming to Make Music

Douglas Lusa Krug
Department of Computer Science
Virginia Commonwealth University
Richmond, VA, USA
Instituto Federal do Parané - IFPR

Yifan Zhang
Department of Computer and
Information Sciences
University of Delaware
Newark, DE, USA

Chrystalla Mouza
College of Education
University of Illinois
Urbana-Champaign
Champaign, IL, USA

Unido da Vitéria, PR, BR ericzh@udel.edu cmouza@illinois.edu
krugdl@vcu.edu
Taylor Barnett Lori Pollock David C. Shepherd

Department of Music
Virginia Commonwealth University
Richmond, VA, USA

Department of Computer and
Information Sciences
University of Delaware

Department of Computer Science
Virginia Commonwealth University
Richmond, VA, USA

barnettt@vcu.edu Newark, DE, USA shepherdd@vcu.edu
pollock@udel.edu
ABSTRACT KEYWORDS

Broadening participation in computer science has been widely stud-
ied, creating many different techniques to attract, motivate, and
engage students. A common meta-strategy is to use an outside do-
main as a hook, using the concepts in that domain to teach computer
science. These domains are selected to interest the student, but stu-
dents often lack a strong background in these domains. Therefore,
a strategy designed to increase students’ interest, motivation, and
engagement could actually create more barriers for students, who
now are faced with learning two new topics. To reduce this poten-
tial barrier in the domain of music, this paper presents the use of
automated, immediate feedback during programming activities at a
summer camp that uses music to teach foundational programming
concepts. The feedback guides students musically, correcting notes
that are out-of-key or rhythmic phrases that are too long or short,
allowing students to focus their learning on the computer science
concepts. This paper compares the correctness of students that re-
ceived automated feedback with students that did not, which shows
the effectiveness of the feedback. Follow up focus groups with stu-
dents confirmed this quantitative data, with students claiming that
the feedback was not only useful but that the activities would be
much more challenging without the feedback.

CCS CONCEPTS

« Social and professional topics — Informal education; K-12
education; « Applied computing — Sound and music comput-
ing; Interactive learning environments.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ITiCSE 2023, July 8-12, 2023, Turku, Finland

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0138-2/23/07.

https://doi.org/10.1145/3587102.3588851

coding, hint, TunePad, hip-hop

ACM Reference Format:

Douglas Lusa Krug, Yifan Zhang, Chrystalla Mouza, Taylor Barnett, Lori
Pollock, and David C. Shepherd. 2023. Using Domain-Specific, Immediate
Feedback to Support Students Learning Computer Programming to Make
Music. In Proceedings of the 2023 Conference on Innovation and Technology in
Computer Science Education V. 1 (ITiCSE 2023), July 8-12, 2023, Turku, Finland.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3587102.3588851

1 INTRODUCTION

Attracting students and broadening the participation of underrepre-
sented groups in Computer Science (CS), such as women, African-
Americans, and Latino-Americans is a topic that has been a contin-
uous target of CS education research [24]. To attract students of
different identities, researchers have experimented with domains
outside of those that attract traditional programming students (e.g.,
robotics and games development) to improve the students’ first
impression of the field and engage them in activities they enjoy.

One of the non-traditional topics is music, which has shown
promise in attracting and engaging students in computer program-
ming [5, 10, 14, 15]. While this approach has shown promise, as
with any external domain, there is a major caveat that students
must understand two domains at once, computer science and music.
To avoid unnecessary barriers to learning, researchers and instruc-
tors must pay careful attention to this secondary domain, ensuring
that either the students already have the necessary background
or that they are given this background. Creating positive experi-
ences (including enjoyment and growing confidence) is particularly
important because they profoundly impact students’ intention to
persist in computing [13].

Learning programming can be challenging, and most students
need help to make progress. Therefore, providing timely feedback is
an important factor in learning [11] for improving knowledge and
acquiring skills [3]. Specifically, immediate automated hints can
help students progress in their learning by providing instant and

https://doi.org/10.1145/3587102.3588851
https://doi.org/10.1145/3587102.3588851

relevant feedback to correct their mistakes and point them in the
right direction to advance through activities [19]. Some studies use
feedback with programming activities, which has been shown to be
helpful [3, 11]. However, there is still a need for further research on
designing programming feedback to create positive, motivating, and
engaging programming experiences while promoting performance
and learning [17]. Furthermore, the feedback necessary to ensure
good musical choices is orthogonal to the feedback necessary to
create correct programs; a program can be syntactically correct
and even play the correct number of notes but still be woefully
out-of-key.

This paper presents the results of a quasi-experimental study
that uses music to teach coding in a summer camp format. Students
from one group received expert-authored, domain-specific feedback
in their in-class activities to help them during the solution process.
In comparison, students from another group that received the same
instructions had to solve the same activities without integrated
feedback. The data collected during eight classes, and twenty-four
activities, shows statistically significant evidence that the group
that received feedback completed their activities with higher scores.
In addition, focus groups conducted after the camp showed that
the students valued the feedback and that they increased student
confidence.

2 RELATED WORK
2.1 Teaching Code with Music

Using music to motivate students to learn computer programming
has attracted educators’ and researchers’ attention, resulting in the
development of various platforms.

For instance, EarSketch [15], a programming environment for
remixing music, uses an approach that focuses on the level of beats,
loops, and effects more than individual notes. JythonMusic [16]
emphasizes depth, allowing users to generate individual notes or
chords instead of mixing existing audio files. Sonic Pi [1], a coding
platform initially created to run on a Raspberry Pi, works as a
text-based IDE and allows the use of individual notes and also
additional samples, such as percussion instruments. TunePad [7] is
another approach to engaging students via music mixing, created
in a computational notebook style, which integrates visualization
and computation, with its focus on usability and ease of use.

The use of music can be effective in teaching introductory com-
puting concepts. Freeman et al. [5], showed that using EarSketch.
Also using EarSketch, Magerko et al. [15], showed results that in-
creased the “Computing Confidence”, “Motivation to Succeed in
Computing” and “Creativity” in students that participated in their
workshop. Using TunePad, Horn et al. [10], showed results where
students had significant attitudinal gains in interest, self-confidence,
enjoyment, and intention to persist in CS. Krug et al. [14], using
Sonic Pi, reported a statistically significant difference in engage-
ment towards computer science, with students able to create their
own song at the end of the reported summer camp.

2.2 Feedback to Improve Code Learning

Formative feedback is defined as information communicated to the
learner intended to modify their thinking or behavior to improve

learning [25]. An effective feedback is defined as non-evaluative,
supportive [25], timely, specific [23, 25], positive, and corrective [23].

The timeliness of feedback can be divided into three categories.
First, immediate feedback is often more effective on complex tasks
when students have less prior knowledge [25] and is appropriate
for novice programmers [17]. Next, delayed feedback is given when
the student submits a solution to an auto-grader or test case. This
type of feedback is most used to show correct behavior rather
than subgoals for a task [17]. Finally, feedback on demand, where
the student has to ask for help explicitly, an action that novice
programmers need help with [17].

Feedback can also be categorized by type. For instance, “Verifi-
cation”, which informs the learners about the correctness of their
responses; “Correct Response”, that tells the learner of the correct
answer to a specific problem, with no additional information; “Try
Again”, informs the learner about an incorrect response and allows
the learner one or more attempts to answer it; “Error Flagging”,
which highlights errors in a solution without giving a correct an-
swer; “Elaborated”, explains why a specific response was correct
or not and may allow the learner to review part of the instruction;
“Hints”, indicate what to do next, avoiding explicitly presenting the
correct answer; And “Bugs/misconceptions”, provides information
about the learner’s specific errors or misconceptions [25].

Successful results in learning, student engagement, and motiva-
tion in computer programming using feedback are reported [3, 11].
For instance, Reis et al. [8], report that students using Clara, a tool
that provides hints, could significantly reduce their effort to get
the correct solution compared to using Python Tutor [9], which
produces code visualization, or only test cases. Additionally, stu-
dents scored Clara as more useful than test cases to fix bugs in their
programs [22]. Also, Marwan et al. [17], present an adaptive imme-
diate feedback system integrated into a block-based programming
environment. This system provides positive and corrective feedback
in real-time as students work. The results show that the feedback
system increased students’ intention to persist in CS and that stu-
dents that used the feedback system had greater engagement than
the students that did not use the feedback system.

In terms of expert-authored feedback, Gerdes et al. [6], presents
Ask-Elle, a tutor for learning that supports the stepwise develop-
ment of Haskell programs by providing hints during the devel-
opment process. Also using expert-authored feedback, Benotti et
al. [2], presents Mumuki, a web-based tool that provides formative
feedback. One of the differences between Mumuki and Ask-Elle is
that Mumuki shows feedback only when the solution is submitted
and not during the development of the program.

3 BACKGROUND
3.1 Code Beats

Code Beats is an approach that teaches foundational computer pro-
gramming concepts using music, specifically hip hop. Students
taking Code Beats classes learn the basics of music theory and cod-
ing fundamentals and can apply the concepts in activities that use
actual hip-hop songs.

Code Beats uses hip-hop as the musical genre for two main
reasons: (1) hip-hop is part of the African-American and Latino-
American cultures, populations underrepresented in CS, and the

primary focus to broadening participation; (2) a hip-hop beat is cre-
ated in a way that does not require extensive harmonic knowledge,
with its focus on complex rhythms, being well suited to teaching
the computational concepts.

We use actual hip-hop songs transcribed to a music-coding plat-
form called TunePad [7]. TunePad is a platform delivered as a
website, using a computational notebook approach with a differ-
ent code snippet for each cell. Each cell is an instrument that is
programmable and can be played individually or with all cells at
the same time. The code and music from each cell code can be
relatively simple, but realistic-sounding songs can be composed
by combining many cells. TunePad has a user-friendly, interactive
interface where users can experiment and test the instruments by
simply clicking on a note from a virtual keyboard or percussion
instrument. TunePad uses Python code and pre-built functions to
allow the users to create the code in each cell that will form the
song.

Code Beats’ approach is based on the Use-Modify-Create frame-
work [12]. In every class, students work with almost complete
projects inspired by an actual hip-hop song containing all but one
coding cell (Use). Each project contains one empty cell where the
students must create the code according to the project’s instructions
(Modify). The expected code for this cell is simple and short, and
the sound produced by this cell will complement the song from the
whole project. By the end of Code Beats, the students are expected
to create their project, following music and code recommendations
(Create).

3.2 Domain-Specific Immediate Feedback

In a previous iteration of Code Beats, we noticed that even using
scaffolded, short tracks, the code developed by many students, while
accurate from a computer science perspective, often violated musi-
cal guidelines, playing notes out-of-key or in an odd rhythm. While
most students could hear, and correct, the most egregious musical
mistakes, they often struggled with more subtle issues. This eroded
their confidence overall, even when they were mastering the com-
puter programming concepts. With that in mind, we implemented
a domain-specific, immediate feedback system to guide students as
they completed the activities. The feedback messages point out the
music requirements of the activity, specifically where the current
composition falls short, and not the coding requirements. In the
context of this work, aligned with the feedback types explained
by Shute [25], formative feedback will be called “Hints”, indicating
what to do next, avoiding presenting the correct answer. The other
type will be called “Feedback”, combining “Verification” and “Error
Flagging” from their original types, indicating whether the program
is correct or incorrect.

The content of the hints and feedback messages are a break-
down of the activity requirements. When the activity starts, the
messages on the screen are hints that inform students of the activity
requirements. At the bottom of Figure 1, in yellow, are examples of
hints, each pointing to one of the activity’s requirements. The first
reminds the student that the melody must be four beats long, the
second states that the melody must be the same as the original, and
the third states that the rhythm must be the same as the original

melody. The sound of the original track (e.g., melody or drum track)
is provided to students as example.

import *

3 FIRST TRACK - MELODY
Complete the melody using the playNote function and MIDI numbers 61, 68 and 69.

5 Your melody should have 4 beats. (Each playNote command is 1 beat.)

6 Your melody must match the original beat.

Make a melody with 4 beats!

Match the original melody!

Match the original rhythm!

Figure 1: Example of Hints

Each activity has a trigger that transforms the hint into feedback.
In our running example, each time the number of beats in a track
changes (i.e., the student plays a note or adds a rest), the feedback
mechanism is triggered. For example, Figure 2 shows an example
of the same activity that is now four beats long. The messages that
were hints in Figure 1 (yellow) now are feedback in Figure 2 (green
and red). The first and third messages, in green, are examples of
verification feedback indicating that the student has achieved two
requirements: (1) the melody is four beats long; (2) the rhythm
is the same as the rhythm from the original melody. The second
message, in red, is an example of verification feedback indicating
that the student did not reach that requirement because the melody
is not the same as the melody from the original song. The feedback
points out that something is wrong and indicates the line of code
with the problem, also working as error flagging.

import *

3 FIRST TRACK - MELODY
Complete the melody using the playNote function and MIDI numbers 61, 68 and 69.

5 Your melody should have 4 beats. (Each playNote command is 1 beat.)

6 Your melody must match the original beat.

Q Make a melody with 4 beats!

€ Match the original melody! - Check line(s): [11, 12]

& Match the original rhythm!

Figure 2: Example of Feedback - 1

On the other hand, if the student reaches all the requirements, all
messages will be green, using the verification feedback to indicate
that the solution is correct. Figure 3 shows an example of the same
activity with all feedback messages in green, indicating that the
student reached the correct answer.

3 FIRST TRACK - MELODY

4 Complete the melody using the playNote function and MIDI numbers 61, 68 and 69.

5 Your melody should have 4 beats. (Each playNote command is 1 beat.)

6 Your melody must match the original beat.

@ Make a melody with 4 beats!

@ Match the original melody!

& Match the original rhythm!

Figure 3: Example of Feedback - 2

Observing the classification described by Narciss [21] and ex-
tended by Keuning, Jeuring, and Heeren [11], the formative feed-
back used in the context of this work have the following compo-
nents: Knowledge of Performance (KP), as we identify the activity
subgoals and indicate when they are achieved; Knowledge of Re-
sult/Response (KR), identifying the specific subgoal as correct or in-
correct; Knowledge of the Correct Results (KCR), identifying when
all subgoals are correct, the activity is correct; Knowledge About
Task Constraints (KTC), subtype Hints on Task Requirements (TR),
breaking down the activity goal in domain-specific hints. Knowl-
edge About Mistakes (KM), subtype Solution Errors (SE), indicating
that the solution does not show the behavior expected in the ac-
tivity, pointing to the line where the error is. Finally, in terms of
technique, also defined by Keuning, Jeuring, and Heeren [11], the
feedback system reported here uses Basic Static Analysis (BSA),
analyzing the piece of code the student is writing in a specific cell
to generate the hint or feedback message.

A test case-like code performs the static analysis using as input
the cell code and cell output (e.g., Musical Instrument Digital Inter-
face (MIDI) numbers), returning to the activity cell the messages
content and its type. This analysis is performed at every line com-
pletion in the students’ code (e.g., hitting enter, changing line, or
“playing” the cell’s code). This categorizes the feedback as imme-
diate, as it is there since the beginning of the activities, and it is
updated at every code change. The feedback is expert-authored,
where the rules are specified according to the expected results of
each activity known by the feedback author.

4 RESEARCH QUESTIONS

RQ1: How does domain-specific, immediate feedback affect the
activities’ correctness during class?

RQ2: What is the student’s perception of the domain-specific, im-
mediate feedback?

5 METHODS
5.1 Study Design and Data

This paper reports a quasi-experiment using data collected from
a summer camp held in the Summer of 2022. The classes were
in person and held for five days, with two classes each day, each
with a duration of one hour and forty-five minutes. Each class

consisted of a mix of instructions and coding activities. The coding
activities were actual hip-hop songs transcribed into TunePad. The
project presented to the student was almost complete, with all
song tracks but one to students create (e.g., melody or hi-hat track).
The activities were divided into two types. The first was the short
activity, which asked students to create a song track in a specific
code cell that would mimic the original song. This short activity
had only one correct answer, for example, a sequence of musical
notes in a particular order and rhythm. And the second was the
long activity that asked students to create a song track in a code
cell that would fit the original song. This activity had the music
requirements but allowed multiple solutions. For instance, they
required that the students used a group of musical notes but did
not specify the order. Each class, from class one to class eight, had
two short and one long activity, summing up to 24 activities !. The
last two classes did not have these activities, as the classes were
used to prepare the students to create their final project.

During the Summer of 2022, two sessions of Code Beats were of-
fered, one in the morning and another in the afternoon. The student
chose the session that they would like to attend. Students from one
session received the activities with the immediate feedback system,
and students from the other session received the same activities,
except by the immediate feedback system. All the rest of the classes
were the same. The group of students that received the immediate
feedback will be called “Group A” and the group of students that
did not receive the immediate feedback will be called “Group B”.

To analyze the correctness of the students’ solution, we collected
the final solution developed by the student and also code snapshots
generated during the solving process. To analyze the immediate
feedback system effect, the students from Group A answered the
question: “When you saw a message that looked like this, how did it
affect your motivation?” presented with each of the hints/feedback
examples. Additionally, they participated in a focus group to talk
about their experience.

5.2 Demographics

Students from both groups answered demographic questions. 24
students from each group answered those questions. On average,
Group A students were 12.1 years old (min - 10; max - 15). 33.3%
of the students from Group A self-declared as girl, 58.3% as boy,
and 8.3% prefer not to say. 12.5% of the students from Group A
self-declared as Asian/Asian-Americans, 33.3% as Black/African-
American, 8.3% as Multi-Racial, 37.5% as White/Caucasian, and 8.3%
prefer not to say. 58.3% of the students from Group A declared that
they play instruments, and for 29.2% of the students from Group A,
Code Beats was their first coding experience.

On average, Group B students were 12.2 years old (min - 10; max
- 17). 16.7% of the students from Group B self-declared as girl, 75.0%
as boy, and 8.3% prefer not to say. 25.0% of the students from Group
B self-declared as Asian/Asian-Americans, 25.0% as Black/African-
American, 8.3% as Multi-Racial, 33.3% as White/Caucasian, and 8.3%
prefer not to say. 54.2% of the students from Group B declared that
they play instruments, and for 16.7% of the students from Group B,
Code Beats was their first coding experience.

IThe list of activities can be accessed here: http://bit.ly/3GBpOP1

http://bit.ly/3GBpOP1

5.3 Data Analysis

To answer the first research question, all activities’ final solutions
and code snapshots collected during the solving process were ana-
lyzed, searching for the code that meets the expected solution. If the
code that meets the expected solution was identified at any time,
the solution for that student and activity was classified as “Correct”,
even if the student changed the solution afterward. Otherwise, the
student’s solution for that activity was classified as “Incorrect”. This
code analysis was performed automatically using a Python script
that compared the result produced by all the solutions with the
expected result.

That analysis was performed for solutions developed by students
from both groups. To test the statistical significance of the difference
between both groups, the Two Sample t-test was performed when
the data is normally distributed (Shapiro-Wilk test with p-value
> 0.05), and the Wilcoxon Rank Sum test when the data is non-
normally distributed (Shapiro-Wilk test with p-value < 0.05).

To answer the second question, we analyze the data from a
post-camp survey question that asks about students’ motivation
regarding the immediate feedback system and a follow-up question
on the post-camp interview. These questions were asked only for
students from Group A.

6 RESULTS
6.1 RQ1: Correctness

To answer the first research question, we present the results of the
analysis of the solutions, where the students’ solutions for each
activity were classified as “Correct” or “Incorrect”. There were a
total of 24 activities for each group. A total of 526 solutions were
submitted by students from Group A, with an average of 21.9 (SD
= 1.2). A total of 565 solutions were submitted by students from
Group B, with an average of 23.5 (SD = 2.4).

Figure 4 shows the percentage of correct solutions for both
groups. The percentage of students that reached a correct solu-
tion is normally distributed for both groups, Group A (p-value =
0.2117) and Group B (p-value = 0.1645). The difference in the per-
centage of correct solutions between groups A and B is statistically
significant (Two Sample t-test - p-value = 0.0002145).

100
90

s7.o—r
80 78.2 78.3

70

60
55. 57.7X
50 49.5

20 a1,
30 %329 1306
20 17.4

13.1
10 J—3.7

[Group A [Group B

Figure 4: Percentage of Correct Solutions

Considering only students from Group A, on average, 59.4% of
the students that reached the correct solution were able to do that

without receiving any error flagging during the solving process
of the activity that they got right. (SD = 21.82; Shapiro-Wilk test
p-value = 0.7625).

Analyzing only the long activities, the difference is more ex-
pressive. The average percentage of students that got the correct
solution is 45.7% for Group A (SD = 15.7) and 13.5% for Group B (SD
= 9.4). This difference is statistically significant (Wilcoxon Rank
Sum test - p-value = 0.002742).

6.2 RQ2: Students Perception

To answer the second research question, we present in Figure 5 the
results of students’ responses regarding their motivation for each
message type. With examples of each message type, the student
answered if they felt less motivated, more motivated, or the moti-
vation did not change when seeing a message like the one showed
them as an example.

Red (n=22) 27.3 45.5 27.3
Yellow (n=22) 13.6 54.5 31.8
Green (n=21) 23.8 76.2
0% 20% 40% 60% 80% 100%
Less motivated No change More motivated

Figure 5: Students Motivation - Feedback System

After the camp, Group A students were asked, “how did you
know if you coded something correctly or not.” One student related
the whole feedback system behavior, since the error identification to
the indication when the problem was fixed: “Well, there’s something
that pops up as an error. It’s at the bottom, of yourself, and then you
have to read what the problem is or it’ll tell you the problem. Then
when you find the problem, you could fix it and then it would just go
away. I guess that would be how it works.”

Another student pointed out the error flagging functionality that
tells the student where the problem is: “It would tell me the line
that was in or row. It would be like, “Error in line 36,” or something.
Then I'd go to 36 and see what the problem is, or there would be where
it would say an error, but it isn’t actually an error. You just have to
continue the code.”

Finally, one student reported the verification behavior of the
feedback system, making a correlation with a check mark: ‘Tt basi-
cally gives you this thing on the bottom part where it gives you like
a check mark, if it’s correct. And if it has anything bad on it, then it
says invalid syntax or something.”

Furthermore, they were prompted to discuss the feedback they
received, how helpful they were in identifying and fixing mistakes,
and what would happen if TunePad had no feedback available.

One student pointed out how the feedback helped him/her to
identify the MIDI numbers that were expected: “The hints were
helpful when you were trying to figure out, when you were trying to...
when you knew what we wanted it to sound like, but you had to find
out which number on the keyboard or which string on the guitar it
was. And the hints’ kind of helped you lean towards the area that the
number you wanted were.”

Some students highlighted the importance of the feedback to
help develop a good-sounding solution, for example: “If they weren’t
there, then the music would either sound very bad or not play at all”,
and: “Then until then when you finished the music, you're wondering,
“How come it’s not working,” or it sounds so off and you would have
never found it because the error wouldn’t have showed you.”

Another student mentioned how hard it would be to find the
lines with error if the feedback system was not in use: “Tt would’ve
been a lot harder [without the hints]... Because you don’t know what
you did wrong, so you would have to check every single line of code
you have to see what you did wrong. Because it tells you where exactly
you did it wrong.”

Finally, one student states that it would not be possible to know
what happened with its solution: “You would never know what hap-
pened.”, and another student thinking of a bigger solution stated
that with more lines of code the situation would be worst: “If you
had larger lines that go up to 100, then we would be doomed.”

7 DISCUSSION

The results presented in this paper provide evidence that using
domain-specific immediate feedback improves the percentage of
correct solutions developed by the students. The data shows a
statistically significant difference in the percentage of students
that reached the expected solution between both groups. Students
who received domain-specific immediate feedback have a higher
percentage of correct solutions than those who did not receive the
feedback.

- The percentage of students that reached the correct solu-
v tion is greater for the group that received the immediate
feedback than for the group that did not receive it.

This finding differs in parts from the one reported by Reis et
al. [22], where students using the feedback system and only test
cases got similar scores in a post-test. It is crucial to mention that
the measure used on that work differs from the measure we are
using, as we are using specifically the activity correctness and not
a post-test. Conversely, Marwan et al. [17], found suggestive evi-
dence that using their feedback system improved students’ perfor-
mance and learning. Finding reinforced by Marwan, Williams, and
Price [18], which found evidence suggesting that code hints with
textual explanations and code hints with both textual explanations
and self-explanations prompts significantly improve performance.

Furthermore, when we isolate and analyze only the long ac-
tivities, this difference between the averages of the percentage of
students that reached the correct solutions from both groups is
even higher, indicating that the feedback is even more critical with
longer tasks, showing that students are more engaged in doing
the activities. The difference in student engagement aligns with
findings from Marwan et al. [17], where students using their feed-
back system significantly improved their engagement. However, it
is essential to mention that the measure used in that work differs
from the measure we are using.

The results presented in this paper show that students were
more motivated by the “green” messages that indicated that they
met one requirement. Additionally, the motivation did not change
when students saw a “yellow” or “red” message. This suggests that,

regardless of the hints and feedback indicating something was
wrong, the students were motivated to see that their solution was
correct.

o Most students were motivated to receive the “green” feed-
v back during the activity solution process.

This finding is in some measure related to the result reported
by Mitrovic, Ohlsson, and Barrow [20], not associated with the
motivation but with the importance of the positive feedback, as
they report the impact of the positive feedback on students’ per-
formance on SQL activities. Moreover, this finding is related to
the affective consequences of feedback, where positive feedback
increases motivation, carrying information about one’s accomplish-
ments, strengths, and correct responses [4].

Analyzing the interview answers, it is possible to conclude that
students understood how immediate feedback works and how to
use it to reach the objectives of the activities. Furthermore, students
believe the feedback is helpful, and without it, it would be much
harder to solve the activities.

- Students found the hints and feedback helpful, and it
v would be much harder to solve the problems without
them.

This finding is in line with what is related by Reis et al. [22],
where students score their hints system as more useful than test
cases, and the students could easily find the location of the errors
using the hints system.

8 LIMITATION

Due to the nature of the summer camp organization, where each
student chooses to register for the session that best suits their inter-
ests, it was impossible to have an equivalent distribution of partici-
pants between both groups or randomize the students’ selection,
that is the main reason to use a quasi-experimental setup rather
than a controlled experiment. This immediate feedback system was
implemented specifically in TunePad. Therefore, the results here
cannot necessarily transfer to music programming with other tools;
however, TunePad is similar to most other music coding tools.

9 CONCLUSION

This paper report results from a summer camp where foundational
concepts of computer programming were taught using music. Using
a quasi-experimental setup during this camp, we tested an expert-
authored domain-specific immediate feedback system comparing
the correctness of in-class activities and student perception. The
main contributions of this paper aiming to help the CS education
community provides evidence that: 1) the use of domain-specific
immediate feedback helps students reach the correct solution in
a coding activity; 2) the use of positive feedback messages moti-
vates students during a coding activity; and 3) the domain-specific
immediate feedback made the solving process easier.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 2048792 and 2048793.

REFERENCES

[1] Samuel Aaron and Alan F. Blackwell. 2013. From Sonic Pi to Overtone: Creative

(5

[10

[11

[12

[13

[14

[15

[16

[17

[18

=

]

]

]

Musical Experiences with Domain-Specific and Functional Languages. In Pro-
ceedings of the First ACM SIGPLAN Workshop on Functional Art, Music, Modeling
& Design (Boston, Massachusetts, USA) (FARM ’13). Association for Computing
Machinery, New York, NY, USA, 35-46. https://doi.org/10.1145/2505341.2505346
Luciana Benotti, Federico Aloi, Franco Bulgarelli, and Marcos J. Gomez. 2018.
The Effect of a Web-Based Coding Tool with Automatic Feedback on Stu-
dents’ Performance and Perceptions. In Proceedings of the 49th ACM Tech-
nical Symposium on Computer Science Education (Baltimore, Maryland, USA)
(SIGCSE ’18). Association for Computing Machinery, New York, NY, USA, 2-7.
https://doi.org/10.1145/3159450.3159579

Galina Deeva, Daria Bogdanova, Estefania Serral, Monique Snoeck, and Jochen De
Weerdt. 2021. A review of automated feedback systems for learners: Classification
framework, challenges and opportunities. Computers & Education 162 (2021),
104094. https://doi.org/10.1016/j.compedu.2020.104094

Ayelet Fishbach and Stacey R Finkelstein. 2012. How feedback influences persis-
tence, disengagement, and change in goal pursuit. Goal-directed behavior (2012),
203-230.

Jason Freeman, Brian Magerko, Tom McKlin, Mike Reilly, Justin Permar, Cameron
Summers, and Eric Fruchter. 2014. Engaging Underrepresented Groups in High
School Introductory Computing through Computational Remixing with EarS-
ketch. In Proceedings of the 45th ACM Technical Symposium on Computer Science
Education (Atlanta, Georgia, USA) (SIGCSE ’14). Association for Computing Ma-
chinery, New York, NY, USA, 85-90. https://doi.org/10.1145/2538862.2538906
Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and L Thomas Van Binsbergen.
2017. Ask-Elle: an adaptable programming tutor for Haskell giving automated
feedback. International Journal of Artificial Intelligence in Education 27, 1 (2017),
65-100.

Jamie Gorson, Nikita Patel, Elham Beheshti, Brian Magerko, and Michael Horn.
2017. TunePad: Computational thinking through sound composition. In Proceed-
ings of the 2017 Conference on Interaction Design and Children. 484-489.

Sumit Gulwani, Ivan Radi¢ek, and Florian Zuleger. 2018. Automated clustering
and program repair for introductory programming assignments. ACM SIGPLAN
Notices 53, 4 (2018), 465-480.

Philip J Guo. 2013. Online python tutor: embeddable web-based program visual-
ization for cs education. In Proceeding of the 44th ACM technical symposium on
Computer science education. 579-584.

Michael Horn, Amartya Banerjee, Melanie West, Nichole Pinkard, Amy Pratt,
Jason Freeman, Brian Magerko, and Tom McKlin. 2020. TunePad: Engaging
learners at the intersection of music and code. (2020).

Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2018. A Systematic Literature
Review of Automated Feedback Generation for Programming Exercises. ACM
Trans. Comput. Educ. 19, 1, Article 3 (sep 2018), 43 pages. https://doi.org/10.1145/
3231711

Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational Thinking for Youth in
Practice. ACM Inroads 2, 1 (Feb. 2011), 32-37. https://doi.org/10.1145/1929887.
1929902

Colleen M Lewis, Ken Yasuhara, and Ruth E Anderson. 2011. Deciding to major
in computer science: a grounded theory of students’ self-assessment of ability. In
Proceedings of the seventh international workshop on Computing education research.
3-10.

Douglas Lusa Krug, Edtwuan Bowman, Taylor Barnett, Lori Pollock, and David
Shepherd. 2021. Code Beats: A Virtual Camp for Middle Schoolers Coding Hip
Hop. Association for Computing Machinery, New York, NY, USA, 397-403.
https://doi.org/10.1145/3408877.3432424

Brian Magerko, Jason Freeman, Tom McKlin, Scott McCoid, Tom Jenkins, and
Elise Livingston. 2013. Tackling Engagement in Computing with Computational
Music Remixing. In Proceeding of the 44th ACM Technical Symposium on Com-
puter Science Education (Denver, Colorado, USA) (SIGCSE °13). Association for
Computing Machinery, New York, NY, USA, 657-662. https://doi.org/10.1145/
2445196.2445390

Bill Manaris, Blake Stevens, and Andrew R Brown. 2016. JythonMusic: An
environment for teaching algorithmic music composition, dynamic coding and
musical performativity. Journal of Music, Technology & Education 9, 1 (2016),
33-56.

Samiha Marwan, Ge Gao, Susan Fisk, Thomas W. Price, and Tiffany Barnes. 2020.
Adaptive Immediate Feedback Can Improve Novice Programming Engagement
and Intention to Persist in Computer Science. In Proceedings of the 2020 ACM
Conference on International Computing Education Research (Virtual Event, New
Zealand) (ICER °20). Association for Computing Machinery, New York, NY, USA,
194-203. https://doi.org/10.1145/3372782.3406264

Samiha Marwan, Joseph Jay Williams, and Thomas Price. 2019. An Evaluation of
the Impact of Automated Programming Hints on Performance and Learning. In
Proceedings of the 2019 ACM Conference on International Computing Education
Research (Toronto ON, Canada) (ICER ’19). Association for Computing Machinery,

[19

[20

[21

[22

[23

[24

[25

]

]

]

]

New York, NY, USA, 61-70. https://doi.org/10.1145/3291279.3339420

Jessica McBroom, Irena Koprinska, and Kalina Yacef. 2021. A Survey of Automated
Programming Hint Generation: The HINTS Framework. ACM Comput. Surv. 54,
8, Article 172 (oct 2021), 27 pages. https://doi.org/10.1145/3469885

Antonija Mitrovic, Stellan Ohlsson, and Devon K. Barrow. 2013. The effect of
positive feedback in a constraint-based intelligent tutoring system. Computers &
Education 60, 1 (2013), 264-272. https://doi.org/10.1016/j.compedu.2012.07.002
Susanne Narciss. 2008. Feedback strategies for interactive learning tasks. In
Handbook of research on educational communications and technology. Routledge,
125-143.

Ruan Reis, Gustavo Soares, Melina Mongiovi, and Wilkerson L. Andrade. 2019.
Evaluating Feedback Tools in Introductory Programming Classes. In 2019 [EEE
Frontiers in Education Conference (FIE). 1-7. https://doi.org/10.1109/FIE43999.
2019.9028418

Mary Catherine Scheeler, Kathy L Ruhl, and James K McAfee. 2004. Providing
performance feedback to teachers: A review. Teacher education and special
education 27, 4 (2004), 396-407.

Allison Scott, Alexis Martin, Frieda McAlear, and Tia C. Madkins. 2016. Broaden-
ing Participation in Computer Science: Existing Out-of-School Initiatives and a
Case Study. ACM Inroads 7, 4 (Nov. 2016), 84-90. https://doi.org/10.1145/2994153
Valerie J Shute. 2008. Focus on formative feedback. Review of educational research
78, 1 (2008), 153-189.

https://doi.org/10.1145/2505341.2505346
https://doi.org/10.1145/3159450.3159579
https://doi.org/10.1016/j.compedu.2020.104094
https://doi.org/10.1145/2538862.2538906
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3231711
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1145/3408877.3432424
https://doi.org/10.1145/2445196.2445390
https://doi.org/10.1145/2445196.2445390
https://doi.org/10.1145/3372782.3406264
https://doi.org/10.1145/3291279.3339420
https://doi.org/10.1145/3469885
https://doi.org/10.1016/j.compedu.2012.07.002
https://doi.org/10.1109/FIE43999.2019.9028418
https://doi.org/10.1109/FIE43999.2019.9028418
https://doi.org/10.1145/2994153

	Abstract
	1 Introduction
	2 Related Work
	2.1 Teaching Code with Music
	2.2 Feedback to Improve Code Learning

	3 Background
	3.1 Code Beats
	3.2 Domain-Specific Immediate Feedback

	4 Research Questions
	5 Methods
	5.1 Study Design and Data
	5.2 Demographics
	5.3 Data Analysis

	6 Results
	6.1 RQ1: Correctness
	6.2 RQ2: Students Perception

	7 Discussion
	8 Limitation
	9 Conclusion
	Acknowledgments
	References

